NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
Micro-crack detection in CFRP laminates using coda wave NDE
NASA Astrophysics Data System (ADS)
Dayal, Vinay; Barnard, Dan; Livings, Richard
2018-04-01
Coda Waves or diffuse field has been touted to be an NDE method that does not require the damage to be in the path of the ultrasound. The object is insonified with ultrasound and instead of catching the first or second arrival, the waves are allowed to bounce multiple times. This aspect is very important in structural health monitoring (SHM) where the potential damage development location is unknown. Researchers have used Coda waves in the interrogation of seismic damage and metallic materials. In this work we have applied the technique to composite material, and present the results herein. The coda wave and acoustic emission signals are recorded simultaneously and corroborated. Development of small incipient damage in the form of micro-crack and their detection is the objective of this work.
Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates
NASA Astrophysics Data System (ADS)
Livings, Richard A.
The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The fundamental capabilities of the coda wave measurements, such as error, repeatability, and reproducibility, are also examined. Damage detection was found to be repeatable, reproducible, and relatively insensitive to noise. The measurements are found to be sensitive to thermal changes and absorbing boundaries. Several propagation models are also presented and discussed along with a brief analysis of coda wave signals and spectra.
Temporal evolution of the Green's function reconstruction in the seismic coda
NASA Astrophysics Data System (ADS)
Clerc, V.; Roux, P.; Campillo, M.
2013-12-01
In presence of multiple scattering, the wavefield evolves towards an equipartitioned state, equivalent to ambient noise. CAMPILLO and PAUL (2003) reconstructed the surface wave part of the Green's function between three pairs of stations in Mexico. The data indicate that the time asymmetry between causal and acausal part of the Green's function is less pronounced when the correlation is performed in the later windows of the coda. These results on the correlation of diffuse waves provide another perspective on the reconstruction of Green function which is independent of the source distribution and which suggests that if the time of observation is long enough, a single source could be sufficient. The paper by ROUX et al. (2005) provides a theoretical frame for the reconstruction of the Green's function in a homogeneous middle. In a multiple scattering medium with a single source, scatterers behave as secondary sources according to the Huygens principle. Coda waves are relevant to multiple scattering, a regime which can be approximated by diffusion for long lapse times. We express the temporal evolution of the correlation function between two receivers as a function of the secondary sources. We are able to predict the effect of the persistence of the net flux of energy observed by CAMPILLO and PAUL (2003) in numerical simulations. This method is also effective in order to retrieve the scattering mean free path. We perform a partial reconstruction of the Green's function in a strongly scattering medium in numerical simulations. The prediction of the flux asymmetry allows defining the parts of the coda providing the same information as ambient noise cross correlation.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Coda Wave Analysis in Central-Western North America Using Earthscope Transportable Array Data
NASA Astrophysics Data System (ADS)
Escudero, C. R.; Doser, D. I.
2011-12-01
We determined seismic wave attenuation in the western and central United States (e.g. Washington, Oregon, California, Idaho, Nevada, Montana, Wyoming, Colorado, New Mexico, North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, and Texas) using coda waves. We selected approximately twenty moderate earthquakes (magnitude between 5.5 and 6.5) located along the Mexican subduction zone, Gulf of California, southern and northern California, and off the coast of Oregon for the analysis. These events were recorded by the EarthScope transportable array (TA) network from 2008 to 2011. In this study we implemented a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. In this work, we present coda Q resolution maps along with a correlation analysis between coda Q and seismicity, tectonic and geology setting. We observed higher attenuation (low coda Q values) in regions of sedimentary cover, and lower attenuation (high coda Q values) in hard rock regions. Using the 4-6 Hz frequency band, we found the best general correlation between coda Q and central-western North America bedrock geology.
Studies of the seismic coda using an earthquake cluster as a deeply buried seismograph array
NASA Astrophysics Data System (ADS)
Spudich, Paul; Bostwick, Todd
1987-09-01
Loosely speaking, the principle of Green's function reciprocity means that the source and receiver positions in a seismic experiment can be exchanged without affecting the observed seismograms. Consequently, the seismograms observed at a single observation location o and caused by a cluster of microearthquakes at locations {ei} are identical to the time series that would be measured by an array of stress meters emplaced at positions {ei}, recording waves generated by a source acting at o. By applying array analysis techniques like slant stacking and frequency-wave number analysis to these seismograms, we can determine the directions and velocities of the component waves as they travel in the earthquake focal region rather than at the surface. We have developed a computationally rapid plane-wave decomposition which we have applied to single-station recordings of aftershocks of the 1984 Morgan Hill, California, earthquake. The analysis is applied to data from three seismic stations having considerably different site geologies. One is a relatively hard rock station situated on Franciscan metamorphics, one is within the Calaveras fault zone, and one is on semiconsolidated sand and gravels. We define the early coda to be the part of the coda initiating immediately after the direct S wave and ending at twice the S wave lapse time. The character of the S wave and early coda varies from being impulsive at the first station to highly reverberative at the last. We examine waves in sequential time windows starting at the S wave and continuing through the early part of the coda. At all seismic stations the early coda is dominated by a persistent signal that must be caused by multiple scattering, probably within 2 km of each seismic station. Despite clear station-to-station differences in the character of the early coda, coda Q values measured in the late coda (greater than twice the S lapse time) agree well among stations, implying that the mechanisms causing the varying behavior of the early coda do not control the coda decay rate at the stations we have considered. Coda Q values measured on horizontal components of motion agree within a factor of 2 with those measured on vertical components. We have not been able to determine the composition of the late coda because of a low signal-to-noise ratio. Our analysis technique, however, is quite appropriate for such a task.
Teleseismic P wave coda from oceanic trench and other bathymetric features
NASA Astrophysics Data System (ADS)
Wu, W.; Ni, S.
2012-12-01
Teleseismic P waves are essential for studying rupture processes of great earthquakes, either in the back projection method or in finite fault inversion method involving of quantitative waveform modeling. In these studies, P waves are assumed to be direct P waves generated by localized patches of the ruptured fault. However, for some oceanic earthquakes happening near the subductiontrenches or mid-ocean ridges, we observed strong signals between P and PP are often observed on theat telseseismic networkdistances. These P wave coda signals show strong coherence and their amplitudes are sometimes comparable with those of the direct P wave or even higher for some special frequenciesfrequency band. With array analysis, we find that the coda's slowness is very close to that of the direct P wave, suggesting that they are generated near the source region. As the earthquakes occur near the trenches or mid-ocean ridges which are both featured by rapid variation of bathymetry, the coda waves are very probably generated by the scattered surface wave or S wave at the irregular bathymetry. Then, we apply the realistic bathymetry data to calculate the 3D synthetics and the coda can be well predicted by the synthetics. So the topography/bathymetry is confirmed to be the main source of the coda. The coda waves are so strong that it may affect the imaging rupture processes of ocean earthquakes, so the topography/bathymetry effect should be taken into account. However, these strong coda waves can also be used utilized to locate the oceanic earthquakes. The 3D synthetics demonstrate that the coda waves are dependent on both the specific bathymetry and the location of the earthquake. Given the determined bathymetry, the earthquake location can be constrained by the coda, e.g. the distance between trench and the earthquake can be determine from the relative arrival between the P wave and its coda which is generated by the trench. In order to locate the earthquakes using the bathymetry, it is indispensible to get all the 3D synthetics with possible different horizontal locations and depths of the earthquakes. However, the computation will be very expensive if using the numerical simulation in the whole medium. Considering that the complicated structure is only near the source region, we apply ray theory to interface full wave field from spectral-element simulation to get the teleseismic P waves. With this approach, computation efficiency is greatly improved and the relocation of the earthquake can be completed more efficiently. As for the relocation accuracy, it can be as high as 10km for the earthquakes near the trench. So it provides us another, sometimes most favorable, method to locate the ocean earthquakes with ground-truth accuracy.
NASA Astrophysics Data System (ADS)
Hartstra, I.; Wapenaar, C. P. A.
2015-12-01
We discuss a method to retrieve the multi-receiver Moho reflection response by interferometry from SH-wave coda in the 0.5-3 Hz frequency range. An image derived from a reflection response with a well defined virtual source would provide deterministic impedance contrasts, which can complement transmission tomography. For an accurate retrieval, cross-correlation interferometry requires the coda wave field to sample the imaging target and isotropically illuminate the receiver array. When these illumination requirements are not or only partially met, the stationary phase cannot be fully captured and artifacts will contaminate the retrieved reflection response. Here we conduct numerical scalar 2D finite difference simulations to investigate the challenging situation in which only shallow crustal earthquake sources illuminate the Moho and the response is recorded by a 2D linear array. We quantify to what extent the prevalence of scatterers in the crust can improve the illumination conditions and thus the retrieval of the Moho reflection. The accuracy of the retrieved reflection is evaluated for two physically different scattering regimes: the Rayleigh and Mie regime. We only use the earlier part of the scattering coda, because we have found that the later diffusive part does not significantly improve the retrieval. The density of the spherical scatterers is varied in order to change the scattering mean free path. This characteristic length scale is calculated for each model with the 2D radiative transfer equation, which is the governing equation in the earlier part of the scattering coda. The experiment is repeated for models of different geological settings derived from existing S-wave tomographies, which vary in Moho depth and reflectivity. The scattering mean free path can be approximated for real data if intrinsic attenuation is known, because the wavenumber-dependent scattering attenuation of the coherent wave amplitude is dependent on the scattering mean free path. This link makes it possible to determine in which spatial and temporal bandwidth retrieval is most optimal for a specific geological setting.
Envelope of coda waves for a double couple source due to non-linear elasticity
NASA Astrophysics Data System (ADS)
Calisto, Ignacia; Bataille, Klaus
2014-10-01
Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.
NASA Astrophysics Data System (ADS)
Bachura, Martin; Fischer, Tomas
2014-05-01
Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc with depth, where 1/Qc seems to be frequency independent in depth range of upper lithosphere. Lateral changes of 1/Qc were also reported - it decreases in the south-west direction from the Novy Kostel focal zone, where the attenuation is the highest. Results from more advanced methods that allow for separation of scattering and intrinsic loss show that intrinsic loss is a dominant factor for attenuating of seismic waves in the region. Determination of attenuation due to scattering appears ambiguous due to small hypocentral distances available for the analysis, where the effects of scattering in frequency range from 1 to 24 Hz are not significant.
Patra, Subir; Banerjee, Sourav
2017-12-16
Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayeda, K M; Malagnini, L; Phillips, W S
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regionsmore » of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2-D direct wave-based measures.« less
Spatial variation of crustal coda Q in California
Philips, W.S.; Lee, W.H.K.; Newberry, J.T.
1988-01-01
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to ???30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the coda Q measurements coincide at 1.5 Hz (Qc=100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Qc=525) and Long Valley (Qc=2100) with the Salinian midway between (Qc=900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency coda Q measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of coda Q measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan coda Q measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the coda Q measurement is currently a matter of controversy. ?? 1988 Birkha??user Verlag.
2-D or not 2-D, that is the question: A Northern California test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayeda, K; Malagnini, L; Phillips, W S
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions ofmore » approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2-D direct wave-based measures.« less
Novelo-Casanova, D. A.; Lee, W.H.K.
1991-01-01
Using simulated coda waves, the resolution of the single-scattering model to extract coda Q (Qc) and its power law frequency dependence was tested. The back-scattering model of Aki and Chouet (1975) and the single isotropic-scattering model of Sato (1977) were examined. The results indicate that: (1) The input Qc models are reasonably well approximated by the two methods; (2) almost equal Qc values are recovered when the techniques sample the same coda windows; (3) low Qc models are well estimated in the frequency domain from the early and late part of the coda; and (4) models with high Qc values are more accurately extracted from late code measurements. ?? 1991 Birkha??user Verlag.
Neutral axis determination of full size concrete structures using coda wave measurements
NASA Astrophysics Data System (ADS)
Jiang, Hanwan; Zhan, Hanyu; Zhuang, Chenxu; Jiang, Ruinian
2018-03-01
Coda waves experiencing multiple scattering behaviors are sensitive to weak changes occurring in media. In this paper, a typical four-point bending test with varied external loads is conducted on a 30-meter T-beam that is removed from a bridge after being in service for 15 years, and the coda wave signals are collected with a couple of sources-receivers pairs. Then the observed coda waves at different loads are compared to calculate their relative velocity variations, which are utilized as the parameter to distinct the compression and tensile zones as well as determine the neutral axis position. Without any prior knowledge of the concrete beam, the estimated axis position agrees well with the associated strain gage measurement results, and the zones bearing stress and tension behaviors are indicated. The presented work offers significant potential for Non-Destructive Testing and Evaluation of full-size concrete structures in future work.
A surface wave reflector in Southwestern Japan
NASA Astrophysics Data System (ADS)
Mak, S.; Koketsu, K.; Miyake, H.; Obara, K.; Sekine, S.
2009-12-01
Surface waves at short periods (<35s) are affected severely by heterogeneities in the crust and the uppermost mantle. When the scale of heterogeneity is sufficiently large, its effect can be studied in a deterministic way using conventional concepts of reflection and refraction. A well-known example is surface wave refraction at continental margin. We present a case study to investigate the composition of surface wave coda in a deterministic approach. A long duration of surface wave coda with a predominant period of 20s is observed during various strong earthquakes around Japan. The coda shows an unambiguous propagation direction, implying a deterministic nature. Beamforming and particle motion analysis suggest that the surface wave later arrivals could be explained by Love wave reflections by a point reflector located at offshore southeast to Kyushu. The reflection demonstrates a seemingly incidence-independent favorable azimuth in emitting strength. In additional to beamforming, we use a new regional crustal velocity model to perform a grid-search ray-tracing with the assumption of point reflector to further constrain to location of coda generation. Because strong velocity anomalies exist near the zone of interest, we decide to use a network shortest-path ray-tracing method, instead of analytical methods like shooting and bending, to avoid the problems like convergence, shadow zone, and smooth model assumption. Two geological features are found to be related to the formation of the coda. The primary one is the intersection between the Kyushu-Palau Ridge and the Nankai Trough at offshore southeast to Kyushu (hereafter referred as "KPR-NT"), which may act as a point reflector. There is a strong Love wave phase velocity anomaly at KPR-NT but not other parts of the ridge, implying that topography is irrelevant. Rayleigh wave phase velocity does not experience a strong anomaly there, which is consistent to the absence of Rayleigh wave reflections implied by the observed particle motions. The secondary one is a low phase velocity (<2km/s for T=20s) at the accretionary wedge of the Nankai Trough due to the thick sediment. Such a long and narrow low velocity zone, with its southwest tip at KPR-NT, is a potential wave-guide to channel waves towards KPR-NT. The longer duration of deterministic later arrivals than the direct arrival is partially explained by multi-pathing due to the wave-guide. The surface wave coda is observable for earthquakes whose propagation path does not include the accretionary wedge, implying that the wedge is an enhancer but not indispensable of the formation of the observed coda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Mayeda, K; Malagnini, L
2007-02-01
We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less
NASA Astrophysics Data System (ADS)
Zhan, Hanyu; Jiang, Hanwan; Jiang, Ruinian
2018-03-01
Perturbations worked as extra scatters will cause coda waveform distortions; thus, coda wave with long propagation time and traveling path are sensitive to micro-defects in strongly heterogeneous media such as concretes. In this paper, we conduct varied external loads on a life-size concrete slab which contains multiple existing micro-cracks, and a couple of sources and receivers are installed to collect coda wave signals. The waveform decorrelation coefficients (DC) at different loads are calculated for all available source-receiver pair measurements. Then inversions of the DC results are applied to estimate the associated distribution density values in three-dimensional regions through kernel sensitivity model and least-square algorithms, which leads to the images indicating the micro-cracks positions. This work provides an efficiently non-destructive approach to detect internal defects and damages of large-size concrete structures.
P and S wave Coda Calibration in Central Asia and South Korea
NASA Astrophysics Data System (ADS)
Kim, D.; Mayeda, K.; Gok, R.; Barno, J.; Roman-Nieves, J. I.
2017-12-01
Empirically derived coda source spectra provide unbiased, absolute moment magnitude (Mw) estimates for events that are normally too small for accurate long-period waveform modeling. In this study, we obtain coda-derived source spectra using data from Central Asia (Kyrgyzstan networks - KN and KR, and Tajikistan - TJ) and South Korea (Korea Meteorological Administration, KMA). We used a recently developed coda calibration module of Seismic WaveForm Tool (SWFT). Seismic activities during this recording period include the recent Gyeongju earthquake of Mw=5.3 and its aftershocks, two nuclear explosions from 2009 and 2013 in North Korea, and a small number of construction and mining-related explosions. For calibration, we calculated synthetic coda envelopes for both P and S waves based on a simple analytic expression that fits the observed narrowband filtered envelopes using the method outlined in Mayeda et al. (2003). To provide an absolute scale of the resulting source spectra, path and site corrections are applied using independent spectral constraints (e.g., Mw and stress drop) from three Kyrgyzstan events and the largest events of the Gyeongju sequence in Central Asia and South Korea, respectively. In spite of major tectonic differences, stable source spectra were obtained in both regions. We validated the resulting spectra by comparing the ratio of raw envelopes and source spectra from calibrated envelopes. Spectral shapes of earthquakes and explosions show different patterns in both regions. We also find (1) the source spectra derived from S-coda is more robust than that from the P-coda at low frequencies; (2) unlike earthquake events, the source spectra of explosions have a large disagreement between P and S waves; and (3) similarity is observed between 2016 Gyeongju and 2011 Virginia earthquake sequence in the eastern U.S.
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
Monitoring the englacial fracture state using virtual-reflector seismology
NASA Astrophysics Data System (ADS)
Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.
2017-12-01
Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.
Evidence for small-scale heterogeneity in Earth's inner core from a global study of PKiKP coda waves
NASA Astrophysics Data System (ADS)
Koper, Keith D.; Franks, Jill M.; Dombrovskaya, Marina
2004-12-01
Recent seismic observations have provided evidence that the inner core contains strong heterogeneity at a scale-length of tens of kilometers. The corresponding lateral variations in elastic properties could be caused by pockets of partial melt, alignment of iron crystals, or variations in chemistry. However, the relevant seismic observations (precritical PKiKP coda waves) were subtle and were made using historic seismic data. Furthermore, it has been suggested that the seismic data might be explainable by scatterers in the lower mantle or by a complex inner core boundary. To address these issues, we investigate a preexisting global database of precritical PKiKP waveforms at distances of 10°-50°, and a second, newly generated global data base of PKiKP waveforms at distances of 50°-90°. We analyze the data using standard array processing techniques and identify PKiKP coda waves based on travel time, ray parameter, amplitude, and coherence. Although it remains unclear whether the scattered energy is being created within the inner core or along its boundary, we find three lines of evidence which support the idea that it is in fact related to the inner core: at smaller distances the decay rate of PKiKP coda is significantly lower than the decay rates of the corresponding PcP and ScP codas; at larger distances, we find examples of emergent, spindle-shaped PKiKP coda waves that exist without the parent PKiKP phase; and at larger distances, we infer a PKiKP coda decay rate similar to that determined from the data at the smaller distances. It is likely that many more PKiKP coda observations can be made with existing data sets, and hence seismologists possess a new, extraordinarily fine probe for inferring inner core structure.
Active doublet method for measuring small changes in physical properties
Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott
1994-01-01
Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.
NASA Astrophysics Data System (ADS)
David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe
2017-07-01
Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.
Breakdown of equipartition in diffuse fields caused by energy leakage
NASA Astrophysics Data System (ADS)
Margerin, L.
2017-05-01
Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.
Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent
2017-10-01
The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.
NASA Astrophysics Data System (ADS)
Masera, D.; Bocca, P.; Grazzini, A.
2011-07-01
In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.
Seismic Attenuation, Event Discrimination, Magnitude and Yield Estimation, and Capability Analysis
2011-09-01
waves are subject to path-dependent variations in amplitudes. We see geographic similarities between the crustal shear-wave attenuation and the...either Sn or Lg depending on tectonic region, distance, and frequency. Over the past year, we have made great progress on the calibration of surface...between the crustal shear-wave attenuation and the results from the coda attenuation. Calibration of coda in the Middle East and other areas is
NASA Astrophysics Data System (ADS)
Legland, J.-B.; Abraham, O.; Durand, O.; Henault, J.-M.
2018-04-01
Civil engineering is constantly demanding new methods for evaluation and non-destructive testing (NDT), particularly to prevent and monitor serious damage to concrete structures. Tn this work, experimental results are presented on the detection and characterization of cracks using nonlinear modulation of coda waves interferometry (NCWT) [1]. This method consists in mixing high-amplitude low-frequency acoustic waves with multi-scattered probe waves (coda) and analyzing their effects by interferometry. Unlike the classic method of coda analysis (CWT), the NCWT does not require the recording of a coda as a reference before damage to the structure. Tn the framework of the PTA-ENDE project, a 1/3 model of a preconstrained concrete containment (EDF VeRCoRs mock-up) is placed under pressure to study the leakage of the structure. During this evaluation protocol, specific areas are monitored by the NCWT (during 5 days, which correspond to the protocol of nuclear power plant pressurization under maintenance test). The acoustic nonlinear response due to the high amplitude of the acoustic modulation gives pertinent information about the elastic and dissipative nonlinearities of the concrete. Tts effective level is evaluated by two nonlinear observables extracted from the interferometry. The increase of nonlinearities is in agreement with the creation of a crack with a network of microcracks located at its base; however, a change in the dynamics of the evolution of the nonlinearities may indicate the opening of a through crack. Tn addition, as during the experimental campaign, reference codas have been recorded. We used CWT to follow the stress evolution and the gas leaks ratio of the structure. Both CWT and NCWT results are presented in this paper.
NASA Astrophysics Data System (ADS)
Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad
2017-08-01
Unique properties of coda waves are employed to evaluate the frequency dependent quality factor of Lg waves using the coda normalization method in the New Madrid seismic zone of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface wave contamination, site effects, or even a change in coda wave scattering regime which can exacerbate the scatter of the data.
Using seismic coda waves to resolve intrinsic and scattering attenuation
NASA Astrophysics Data System (ADS)
Wang, W.; Shearer, P. M.
2016-12-01
Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Characterizing scattering and absorbing properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing problem in seismology. The wavetrain following the direct body wave phases is called the coda, which is caused by scattered energy. Many studies have analyzed the coda of local events to constrain crustal and upper-mantle scattering strength and intrinsic attenuation. Here we examine two popular attenuation inversion methods, the Multiple Lapse Time Window Method (MLTWM) and the Coda Qc Method. First, based on our previous work on California attenuation structure, we apply an efficient and accurate method, the Monte Carlo Approach, to synthesize seismic envelope functions. We use this code to generate a series of synthetic data based on several complex and realistic forward models. Although the MLTWM assumes a uniform whole space, we use the MLTWM to invert for both scattering and intrinsic attenuation from the synthetic data to test how accurately it can recover the attenuation models. Results for the coda Qc method depend on choices for the length and starting time of the coda-wave time window. Here we explore the relation between the inversion results for Qc, the windowing parameters, and the intrinsic and scattering Q structure of our synthetic model. These results should help assess the practicality and accuracy of the Multiple Lapse Time Window Method and Coda Qc Method when applied to realistic crustal velocity and attenuation models.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eken Tuna, Kevin Mayeda, Abraham Hofstetter, Rengin Gok, Gonca Orgulu, Niyazi Turkelli
A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, they found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction. After calibrating the stations ISP, ISKB and MALT for local and regional distances, single-station moment-magnitude estimates (M{submore » W}) derived from the coda spectra were in excellent agreement with those determined from multistation waveform modeling inversions, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub W} estimates to significantly smaller events which could not otherwise be waveform modeled. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less
Larose, Eric; Hall, Stephen
2009-04-01
Ultrasonic waves propagating in solids have stress-dependent velocities. The relation between stress (or strain) and velocity forms the basis of non-linear acoustics. In homogeneous solids, conventional time-of-flight techniques have measured this dependence with spectacular precision. In heterogeneous media such as concrete, the direct (ballistic) wave around 500 kHz is strongly attenuated and conventional techniques are less efficient. In this manuscript, the effect of weak stress changes on the late arrivals constituting the acoustic diffuse coda is tracked. A resolution of 2 x 10(-5) in relative velocity change is attained which corresponds to a sensitivity to stress change of better than 50 kPa. Therefore, the technique described here provides an original way to measure the non-linear parameter with stress variations on the order of tens of kPa.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-10-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addair, Travis; Barno, Justin; Dodge, Doug
CCT is a Java based application for calibrating 10 shear wave coda measurement models to observed data using a much smaller set of reference moment magnitudes (MWs) calculated from other means (waveform modeling, etc.). These calibrated measurement models can then be used in other tools to generate coda moment magnitude measurements, source spectra, estimated stress drop, and other useful measurements for any additional events and any new data collected in the calibrated region.
Mechanical Strain Measurement from Coda Wave Interferometry
NASA Astrophysics Data System (ADS)
Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.
2017-12-01
Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the strain influence on CWI are shown to be consistent.Lehujeur, M., J. Vergne, J. Schmittbuhl, and A. Maggi. Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern alsace, france. Geothermal Energy, 3(1):1-17, 2015.
NASA Astrophysics Data System (ADS)
Wagner, Gregory S.; Owens, Thomas J.
1993-09-01
High-frequency three-component array d, are used to study the P and S coda produced by* cal earthquakes. The data are displayed as broadba bearing-time records which allow us to examine a compl, time history of the propagation directions and arrival tin of direct and scattered phases crossing the array. This ~ sualization technique is used to examine the wavefield ~ two scale lengths using two sub-arrays~of sensors. Resu suggest that P coda is dominated by P energy propag, ing sub-parallel to the direct P arrival. The S coda pro agates in all directions and appears to be composed p~ dominantly of S and/or surface wave energy. Significant more 0e coda appears on the smaller scale length sub-art relative to the larger scale array suggesting that much, the ~, coda remains coherent for only very short distanc
Diffuse Waves and Energy Densities Near Boundaries
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
NASA Astrophysics Data System (ADS)
Seong-hwa, Y.; Wee, S.; Kim, J.
2016-12-01
Observed ground motions are composed of 3 main factors such as seismic source, seismic wave attenuation and site amplification. Among them, site amplification is also important factor and should be considered to estimate soil-structure dynamic interaction with more reliability. Though various estimation methods are suggested, this study used the method by Castro et. al.(1997) for estimating site amplification. This method has been extended to background noise, coda waves and S waves recently for estimating site amplification. This study applied the Castro et. al.(1997)'s method to 3 different seismic waves, that is, S-wave Energy, Background Noise, and Coda waves. This study analysed much more than about 200 ground motions (acceleration type) from the East Japan earthquake (March 11th, 2011) Series of seismic stations at Jeju Island (JJU, SGP, HALB, SSP and GOS; Fig. 1), in Korea. The results showed that most of the seismic stations gave similar results among three types of seismic energies. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies can give us much information about dynamic amplification of domestic sites characteristics and site classification.
SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, R E; Mayeda, K; Walter, W R
2007-07-10
The objectives of this study are to improve low-magnitude regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge of source scaling at small magnitudes (i.e., m{sub b}more » < {approx}4.0) is poorly resolved. It is not clear whether different studies obtain contradictory results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods. We begin by developing and improving the two different methods, and then in future years we will apply them both to each set of earthquakes. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But there are only a limited number of earthquakes that are recorded locally, by sufficient stations to give good azimuthal coverage, and have very closely located smaller earthquakes that can be used as an empirical Green's function (EGF) to remove path effects. In contrast, coda waves average radiation from all directions so single-station records should be adequate, and previous work suggests that the requirements for the EGF event are much less stringent. We can study more earthquakes using the coda-wave methods, while using direct wave methods for the best recorded subset of events so as to investigate any differences between the results of the two approaches. Finding 'perfect' EGF events for direct wave analysis is difficult, as is ascertaining the quality of a particular EGF event. We develop a multi-taper method to obtain time-domain source-time-functions by frequency division. If an earthquake and EGF event pair are able to produce a clear, time-domain source pulse then we accept the EGF event. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We use the well-recorded sequence of aftershocks of the M5 Au Sable Forks, NY, earthquake to test the method and also to obtain some of the first accurate source parameters for small earthquakes in eastern North America. We find that the stress drops are high, confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We simplify and improve the coda wave analysis method by calculating spectral ratios between different sized earthquakes. We first compare spectral ratio performance between local and near-regional S and coda waves in the San Francisco Bay region for moderate-sized events. The average spectral ratio standard deviations using coda are {approx}0.05 to 0.12, roughly a factor of 3 smaller than direct S-waves for 0.2 < f < 15.0 Hz. Also, direct wave analysis requires collocated pairs of earthquakes whereas the event-pairs (Green's function and target events) can be separated by {approx}25 km for coda amplitudes without any appreciable degradation. We then apply coda spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks. We observe a clear departure from self-similarity, consistent with previous studies using similar regional datasets.« less
NASA Astrophysics Data System (ADS)
Rhode, A.; Lay, T.
2017-12-01
Determining the up-dip rupture extent of large megathrust ruptures is important for understanding their tsunami excitation, frictional properties of the shallow megathrust, and potential for separate tsunami earthquake occurrence. On land geodetic data have almost no resolution of the up-dip extent of faulting and teleseismic observations have limited resolution that is strongly influenced by typically poorly known shallow seismic velocity structure near the toe of the accretionary prism. The increase in ocean depth as slip on the megathrust approaches the trench has significant influence on the strength and azimuthal distribution of water reverberations in the far-field P wave coda. For broadband P waves from large earthquakes with dominant signal periods of about 10 s, water reverberations generated by shallow fault slip under deep water may persist for over a minute after the direct P phases have passed, giving a clear signal of slip near the trench. As the coda waves can be quickly evaluated following the P signal, recognition of slip extending to the trench and associated enhanced tsunamigenic potential could be achieved within a few minutes after the P arrival, potentially contributing to rapid tsunami hazard assessment. We examine the broadband P wave coda at distances from 80 to 120° for a large number of recent major and great earthquakes with independently determined slip distributions and known tsunami excitation to evaluate the prospect for rapidly constraining up-dip rupture extent of large megathrust earthquakes. Events known to have significant shallow slip, at least locally extending to the trench (e.g., 2016 Illapel, Chile; 2010 Maule, 2010 Mentawai) do have relatively enhanced coda levels at all azimuths, whereas events that do not rupture the shallow megathrust (e.g., 2007 Sumatra, 2014 Iquique, 2003 Hokkaido) do not. Some events with slip models lacking shallow slip show strong coda generation, raising questions about the up-dip resolution of slip of their finite-fault models, and others show strong azimuthal patterns in coda strength that suggest propagation from the slip zone to the deep near-trench environments is involved rather than slip near the trench. The various behaviors will be integrated into an assessment of this approach.
Frequency selection for coda wave interferometry in concrete structures.
Fröjd, Patrik; Ulriksen, Peter
2017-09-01
This study contributes to the establishment of frequency recommendations for use in coda wave interferometry structural health monitoring (SHM) systems for concrete structures. To this end, codas with widely different central frequencies were used to detect boreholes with different diameters in a large concrete floor slab, and to track increasing damage in a small concrete beam subjected to bending loads. SHM results were obtained for damage that can be simulated by drilled holes on the scale of a few mm or microcracks due to bending. These results suggest that signals in the range of 50-150kHz are suitable in large concrete structures where it is necessary to account for the high attenuation of high-frequency signals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fine Structure of the Outermost Solid Core from Analysis of PKiKP Coda Waves
NASA Astrophysics Data System (ADS)
Krasnoshchekov, D.; Kaazik, P.; Ovtchinnikov, V.
2006-05-01
Near surface heterogeneities in the Earth's inner core have recently been confirmed to exist, and pods of partial melt or variations in seismic anisotropy either due to orientation of iron crystals or changes in strength were indicated as possible sources for such peculiarities. In the same time, analysis of the phase reflected from the inner core boundary (PKiKP) predicts complex character of the reflecting discontinuity in the form of local thin transition layers resulting in mosaic structure of the Earth's inner core's surface. Precritical PKiKP waveforms and coda waves provide necessary seismological constraints to investigate fine structure of the upper part of the Earth's inner core and its boundary, and rank high among researches that detected the described specifics of the solid core. PKiKP coda studies have to do with weak amplitudes and subtle effects, which frequently requires using a reference core related seismic phase and array data processing, as well as eliminating max number of factors biasing the resulting estimates (for example, source related inaccuracies typical for earthquake analysis). In this work we report new observations of PKiKP coda waves detected on records of a group of Underground Nuclear Explosions (UNEs) carried out in USSR and recorded at distances from 6 to 95 degrees by stations of the world seismological network. Our dataset benefits from using accurate ground truth information on source parameters (locations, origin times, depths, etc.), requires no accounting for different source radiation patterns and contains records corresponding to the whole range of precritical reflection including so called transparent zone where amplitudes of direct PKiKP phase are negligible. The processed dataset incorporates records of the array of sources consisted of the same magnitude explosions closely carried out at Semipalatinsk Test Site and recorded by stations located in Eurasia, Africa and North America. We detect PKiKP coda waves on records of all stations that registered this array. The performed frequency-wavenumber analysis and stacking of the array data reveal both scattering mechanism tracked in the form of slight dependence of PKiKP coda's frequency content on epicentral distance, and reflective mechanism evidenced by detection of distinct arrivals of waves reflected from isotropic or anisotropic discontinuities below the inner core boundary. We infer, that PKiKP coda is built by both volumetric scattering and reverberations on reflectors in the upper portion of the inner core. We also find no significant evidence for the presence of a constant depth global isotropic reflector all through 300 km below the ICB and attribute different types of the observed PKiKP coda patterns to variability in properties of the outermost portion of the Earth's inner core either due to its anisotropy or local specifics. The research described was made possible in part by contribution from grant RUG1-2675-MO-05 of the US Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF) and the President Grant MK-1600.2005.5.
NASA Astrophysics Data System (ADS)
Dai, W. P.; Hung, S. H.; Wu, S. M.; Hsu, Y. J.
2017-12-01
Owing to the rapid development in ambient noise seismology, time-lapse variations in delay time and waveform decorrelation of coda derived from noise cross correlation (NCF) have been proved very effective to monitor slight changes in seismic velocity and scattering properties of the crust induced by various loadings such as the earthquake and healing process. In this study, we employ coda wave interferometry to detect the crustal perturbations immediately preceding and following the 2013 Mw 6.2 Ruisui Earthquake which struck the northern segment of the Longitudinal Valley Fault in eastern Taiwan, a seismically very active thrust suture zone separating the Eurasian and Philippine Sea Plate. By comparing the pre- and post-event coda waves extracted from the auto- and cross-correlation functions (ACFs and CCFs) of ambient seismic and strain fields recorded by the seismometers and borehole strainmeters, respectively, in the vicinity of the source region, we present a strong case that not only coseismic velocity reduction but also preceding decorrelation of waveforms are explicitly revealed in both the seismic and strain CCFs filtered in the secondary microseism frequency band of 0.1-0.9 Hz. Such precursory signals susceptible to the scattering properties of the crust are more unequivocally identified in the coda retrieved from the strainmeter data, suggesting that the ambient strain field can act as a more sensible probe to detect tiny structural perturbations in the critically stressed fault zone at the verge of failure. In addition to coseismic velocity changes detected in both the seismic and strain NCFs, we find quasi-periodic velocity variations that only appear in the strain retrieved coda signals, with a predominant cycle of 3-4 months correlating with the groundwater fluctuations observed at Ruisui.
Lateral Variations of Lg Coda Q in Southern Mexico
NASA Astrophysics Data System (ADS)
Yamamoto, J.; Quintanar, L.; Herrmann, R. B.; Fuentes, C.
Broad band digital three-component data recorded at UNM, a GEOSCOPE station, were used to estimate Lg coda Q for 34 medium size (3.9 <=mb<= 6.3) earthquakes with travel paths laying in different geological provinces of southern Mexico in an effort to establish the possible existence of geological structures acting as wave guides and/or travel paths of low attenuation between the Pacific coast and the Valley of Mexico. The stacked spectral ratio method proposed by XIE and NUTTLI (1988) was chosen for computing the coda Q. The variation range of Q0 (Q at 1Hz) and the frequency dependence parameter η estimates averaged on the frequency interval of 0.5 to 2Hz for the regions and the three components considered are: i) Guerrero region 173 <=Q0<= 182 and 0.6 <=Q0<= 0.7, ii) Oaxaca region 183 <=Q0<= 198 and 0.6 <=Q0<= 0.8, iii) Michoacan-Jalisco region 187 <=Q0<= 204 and 0.7 <=Q0<= 0.8 and iv) eastern portion of the Transmexican Volcanic Belt (TMVB) 313 <=Q0<= 335 and η = 0.9. The results show a very high coda Q for the TMVB as compared to other regions of southern Mexico. This unexpected result is difficult to reconcile with the geophysical characteristics of the TMVB, e.g., low seismicity, high volcanic activity and high heat flow typical of a highly attenuating (low Q) region. Visual inspection of seismograms indicates that for earthquakes with seismic waves traveling along the TMVB, the amplitude decay of Lg coda is anomalously slow as compared to other earthquakes in southern Mexico. Thus, it seems that the high Q value found does not entirely reflect the attenuation characteristics of the TMVB but it is probably contaminated by a wave-guide effect. This phenomenon produces an enhancement in the time duration of the Lg wave trains travelling along this geological structure. This result is important to establish the role played by the transmission medium in the extremely long duration of ground motion observed during the September 19, 1985 Michoacan earthquake. The overall spatial distribution of coda Q values indicates that events with focus in the Michoacan-Jalisco and Oaxaca regions yield slightly higher values than those from Guerrero. This feature is more pronounced for the horizontal component of coda Q. A slight dependence of average coda Q-1 on earthquake focal depth is observed in the frequency range of 0.2 to 1.0Hz approximately on the horizontal component. Deeper (h > 50km) events yield lower values of Q-1 than shallower events. For frequencies higher than 1.0Hz no clear dependence of Q-1 on focal depth is observed. However, due to the estimates uncertainties this result is not clearly established.
Site Effects on Regional Seismograms Recorded in the Vicinity of Weston Observatory
1993-09-30
flanks of the active volcanoes of Mauna Loa and Kilauea . The distances between the sites ranged from a few km to over 100 km. Although there is little...on the island of Hawaii using S-wave coda spectral ratios for frequencies between 1.5 and 15-Hz. They used 40 vertical I-Hz seismometers, and recorded...for the island of Hawaii , Bull. Seis Soc. Am-, 12 No- 3 1151-1185. Mayeda, K., S. Koyanagi, and K. Aki (1991). Site amplification from S-wave coda in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eken, T; Mayeda, K; Hofstetter, A
A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, we found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction for 10 narrow frequency bands ranging between 0.02 to 2.0 Hz. For higher frequencies however, 2-D pathmore » corrections will be necessary and will be the subject of a future study. After calibrating the stations ISP, ISKB, and MALT for local and regional distances, single-station moment-magnitude estimates (M{sub w}) derived from the coda spectra were in excellent agreement with those determined from multi-station waveform modeling inversions of long-period data, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub w} estimates to significantly smaller events which could not otherwise be waveform modeled due to poor signal-to-noise ratio at long periods and sparse station coverage. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less
Monitoring stress changes in a concrete bridge with coda wave interferometry.
Stähler, Simon Christian; Sens-Schönfelder, Christoph; Niederleithinger, Ernst
2011-04-01
Coda wave interferometry is a recent analysis method now widely used in seismology. It uses the increased sensitivity of multiply scattered elastic waves with long travel-times for monitoring weak changes in a medium. While its application for structural monitoring has been shown to work under laboratory conditions, the usability on a real structure with known material changes had yet to be proven. This article presents experiments on a concrete bridge during construction. The results show that small velocity perturbations induced by a changing stress state in the structure can be determined even under adverse conditions. Theoretical estimations based on the stress calculations by the structural engineers are in good agreement with the measured velocity variations.
Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data
NASA Astrophysics Data System (ADS)
Larkin, Steven Paul
Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical PmP energy. Possibly related, inconsistencies in published velocity models are rectified by hypothesizing the existence of large, elongate, high-velocity bodies at the base of the crust oriented to and of similar scale as the basins and ranges at the surface. This structure would result in an anisotropic lower crust.
Towards monitoring the englacial fracture state using virtual-reflector seismology
NASA Astrophysics Data System (ADS)
Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.
2018-04-01
In seismology, coda wave interferometry (CWI) is an effective tool to monitor time-lapse changes using later arriving, multiply scattered coda waves. Typically, CWI relies on an estimate of the medium's impulse response. The latter is retrieved through simple time-averaging of receiver-receiver cross-correlations of the ambient field, i.e. seismic interferometry (SI). In general, the coda are induced by heterogeneities in the Earth. Being comparatively homogeneous, however, ice bodies such as glaciers and ice sheets exhibit little scattering. In addition, the temporal stability of the time-averaged cross-correlations suffers from temporal variations in the distribution and amplitude of the passive seismic sources. Consequently, application of CWI to ice bodies is currently limited. Nevertheless, fracturing and changes in the englacial macroscopic water content alter the bulk elastic properties of ice bodies, which can be monitored with cryoseismological measurements. To overcome the current limited applicability of CWI to ice bodies, we therefore introduce virtual-reflector seismology (VRS). VRS relies on a so-called multidimensional deconvolution (MDD) process of the time-averaged crosscorrelations. The technique results in the retrieval of a medium response that includes virtual reflections from a contour of receivers enclosing the region of interest (i.e., the region to be monitored). The virtual reflections can be interpreted as artificial coda replacing the (lacking) natural scattered coda. Hence, this artificial coda might be exploited for the purpose of CWI. From an implementation point of view, VRS is similar to SI by MDD, which, as its name suggests, also relies on a multidimensional deconvolution process. SI by MDD, however, does not generate additional virtual reflections. Advantageously, both techniques mitigate spurious coda changes associated with temporal variations in the distribution and amplitude of the passive seismic sources. In this work, we apply SI by MDD and VRS to synthetic and active seismic surface-wave data. The active seismic data were acquired on Glacier de la Plaine Morte, Switzerland. We successfully retrieve virtual reflections through the application of VRS to this active seismic data. In application to both synthetic and active seismic data, we show the potential of VRS to monitor time-lapse changes. In addition, we find that SI by MDD allows for a more accurate determination of phase velocity.
Lunar Structure from Coda Wave Interferometry
NASA Astrophysics Data System (ADS)
Nunn, Ceri; Igel, Heiner
2017-04-01
As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.
Estimation of Coda Wave Attenuation in Northern Morocco
NASA Astrophysics Data System (ADS)
Boulanouar, Abderrahim; Moudnib, Lahcen El; Padhy, Simanchal; Harnafi, Mimoun; Villaseñor, Antonio; Gallart, Josep; Pazos, Antonio; Rahmouni, Abdelaali; Boukalouch, Mohamed; Sebbani, Jamal
2018-03-01
We studied the attenuation of coda waves and its frequency and lapse-time dependence in northern Morocco. We analysed coda waves of 66 earthquakes recorded in this region during 2008 for four lapse time windows of length 30, 40, 50, and 60 s, and at five frequency bands with central frequency in the range of 0.75-12 Hz. We determined the frequency dependent Q c relation for the horizontal (NS and EW) and vertical (Z) component seismograms. We analyzed three-component broadband seismograms of 66 local earthquakes for determining coda-Q based on the single back-scattering model. The Q c values show strong frequency dependence in 1.5-12 Hz that is related to high degree of heterogeneity of the medium. The lapse time dependence of Q c shows that Q 0 ( Q c at 1 Hz) significantly increases with lapse time that is related to the depth dependence of attenuation and hence of the level of heterogeneity of the medium. The average frequency-dependent Q c( f) values are Qc = (143.75 ± 1.09)f^{(0.864 ± 0.006)}, Qc = (149.12 ± 1.08)f^{(0.85 ± 0.005)} and Qc = (140.42 ± 1.81)f^{(0.902 ± 0.004)} for the vertical, north-south and east-west components of motion, respectively. The frequency-dependent Q c(f) relations are useful for evaluating source parameters (Singh et al. 2001), which are the key inputs for seismic hazard assessment of the region.
Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.
1998-01-01
Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.
Lunar Structure from Ambient Noise and Coda Wave Interferometry
NASA Astrophysics Data System (ADS)
Nunn, C.; Igel, H.
2016-12-01
As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of ambient noise and coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.
2008-09-30
coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site (STS...waves, coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site ...Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 4.0- Balapan Subregion Semipalatinsk Test Site n- 3.5 - (U CIO ’-3.0 ES UI
NASA Technical Reports Server (NTRS)
Schmerr, Nicholas C.; Weber, Renee C.; Lin, Pei-Ying Patty; Thorne, Michael Scott; Garnero, Ed J.
2011-01-01
Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic codes is generated by the presence of the low velocity megaregolith, and that the diffuse arrivals are a combination of scattered energy and multiple reverberations within this layer. The 3-D modeling indicates the extreme surface topography of the Moon adds only a small contribution to scattering effects, though local geology may play a larger role. We also study the effects of the megaregolith on core reflected and converted phases and other body waves. Our analysis indicates detection of core interacting arrivals with a polarization filter technique is robust and lends the possibility of detecting other body waves from the Moon.
NASA Astrophysics Data System (ADS)
Nakahara, Hisashi
2015-02-01
For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available.
Long codas of coupled wave systems in seismic basins
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.
2002-11-01
Quite some time ago it was pointed out that the damage patterns and Fourier spectra of the 1985 earthquake in Mexico City are only compatible with a resonant effect of horizontal waves with the approximate speed of sound waves in water [see Flores et al., Nature 326, 783 (1987)]. In a more recent paper it was pointed out that this indeed will occur with a very specific frequency selection for a coupled system of Raleigh waves at the interface of the bottom of the ancient lakebed with the more solid deposits, and an evanescent sound wave in the mud above [see J. Flores et al., Bull. Seismol. Soc. Am. 89, 14-21 (1999)]. In the present talk we shall go over these arguments again and show that strong reflection at the edges of the lake must occur to account for the strong magnification entailing necessarily a long coda, and that the mecanism can be understood in the same terms.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.
2017-12-01
Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada National Security Site (NNSS). The results of this modeling study will aid in distinguishing source effects from path effects to the recorded motions in experiments such as the Source Physics Experiment (SPE). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam.
Zhang, Yuxiang; Planès, Thomas; Larose, Eric; Obermann, Anne; Rospars, Claude; Moreau, Gautier
2016-04-01
This paper describes the use of an ultrasonic imaging technique (Locadiff) for the Non-Destructive Testing & Evaluation of a concrete structure. By combining coda wave interferometry and a sensitivity kernel for diffuse waves, Locadiff can monitor the elastic and structural properties of a heterogeneous material with a high sensitivity, and can map changes of these properties over time when a perturbation occurs in the bulk of the material. The applicability of the technique to life-size concrete structures is demonstrated through the monitoring of a 15-ton reinforced concrete beam subject to a four-point bending test causing cracking. The experimental results show that Locadiff achieved to (1) detect and locate the cracking zones in the core of the concrete beam at an early stage by mapping the changes in the concrete's micro-structure; (2) monitor the internal stress level in both temporal and spatial domains by mapping the variation in velocity caused by the acousto-elastic effect. The mechanical behavior of the concrete structure is also studied using conventional techniques such as acoustic emission, vibrating wire extensometers, and digital image correlation. The performances of the Locadiff technique in the detection of early stage cracking are assessed and discussed.
NASA Astrophysics Data System (ADS)
Bartrand, J.; Abbott, R. E.
2017-12-01
We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Technical Reports Server (NTRS)
Suteau, A. M.; Whitcomb, J. H.
1977-01-01
A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.
NASA Astrophysics Data System (ADS)
Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.
2018-03-01
To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.
NASA Astrophysics Data System (ADS)
Chaput, J.; Campillo, M.; Aster, R. C.; Roux, P.; Kyle, P. R.; Knox, H.; Czoski, P.
2015-02-01
We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between ˜1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned.
NASA Astrophysics Data System (ADS)
Nakahara, H.
2013-12-01
For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available. Acknowledgements: Seismograms recorded by KiK-net managed by National Research Institute for Earth Science and Disaster Prevention (NIED) were used in this study. This study was partially supported by JST J-RAPID program and JSPS KAKENHI Grant Numbers 24540449 and 23540449.
Analysis of intermediate period correlations of coda from deep earthquakes
NASA Astrophysics Data System (ADS)
Poli, Piero; Campillo, Michel; de Hoop, Maarten
2017-11-01
We aim at assessing quantitatively the nature of the signals that appear in coda wave correlations at periods >20 s. These signals contain transient constituents with arrival times corresponding to deep seismic phases. These (body-wave) constituents can be used for imaging. To evaluate this approach, we calculate the autocorrelations of the vertical component seismograms for the Mw 8.4 sea of Okhotsk earthquake at 400 stations in the Eastern US, using data from 1 h before to 50 h after the earthquake. By using array analysis and modes identification, we discover the dominant role played by high quality factor normal modes in the emergence of strong coherent phases as ScS-like, and P'P'df-like. We then make use of geometrical quantization to derive the constituent rays associated with particular modes, and gain insights about the ballistic reverberation of the rays that contributes to the emergence of body waves. Our study indicates that the signals measured in the spatially averaged autocorrelations have a physical significance, but a direct interpretation of ScS-like and P'P'df-like is not trivial. Indeed, even a single simple measurement of long period late coda in a limited period band could provide valuable information on the deep structure by using the temporal information of its autocorrelation, a procedure that could be also useful for planetary exploration.
NASA Astrophysics Data System (ADS)
Napoli, V.; Yoo, S. H.; Russell, D. R.
2017-12-01
To improve discrimination of small explosions and earthquakes, we developed a new magnitude scale based on the standard Ms:mb discrimination method. In place of 20 second Ms measurements we developed a unified Rayleigh and Love wave magnitude scale (MsU) that is designed to maximize available information from single stations and then combine magnitude estimates into network averages. Additionally, in place of mb(P) measurements we developed an mb(P-Coda) magnitude scale as the properties of the coda make sparse network mb(P-Coda) more robust and less variable than network mb(P) estimates. A previous mb:MsU study conducted in 2013 in the Korean Peninsula shows that the use of MsU in place of standard 20 second Ms, leads to increased population separation and reduced scattering. The goals of a combined mb(P-coda):MsU scale are reducing scatter, ensuring applicability at small magnitudes with sparse networks, and improving the overall distribution for mb:Ms earthquake and explosion populations. To test this method we are calculating mb(P-coda)and MsU for a catalog earthquakes located in and near the Korean Peninsula, for the six North Korean nuclear tests (4.1 < mb < 6.3) and for the 3 aftershocks to date that occurred after the sixth test (2.6 < ML < 4.0). Compared to the previous 2013 study, we expect to see greater separation in the populations and less scattering with the inclusion of mb(P-coda) and with the implementation of additional filters for MsU to improve signal-to-noise levels; this includes S-transform filtering for polarization and off-azimuth signal reduction at regional distances. As we are expanding our database of mb(P-coda):MsU measurements in the Korean Peninsula to determine the earthquake and explosion distribution, this research will address the limitations and potential for discriminating small magnitude events using sparse networks.
NASA Astrophysics Data System (ADS)
Yoo, S. H.
2017-12-01
Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.
NASA Astrophysics Data System (ADS)
Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent
2018-04-01
The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.
Attenuation Characteristics of the Armutlu Peninsula (NW Turkey) Using Coda Q
NASA Astrophysics Data System (ADS)
Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Woith, Heiko; Gottfried Lühr, Birger; Barış, Şerif
2016-04-01
Attenuation characteristic of seismic waves was determined using coda Q in the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Data from 82 earthquakes recorded in 2013-2014 in the Armutlu Peninsula and its vicinity by 9 ARNET seismic stations were used for processing. The earthquake magnitudes (Ml) and depths vary from 1.5 to 3.7 and 1.2-16.9 km, respectively. Epicentral distances closer than 90 km were selected to ensure better signal-to-noise ratios. Lapse times between 20 seconds and 40 seconds at intervals of 5 seconds were used for the calculation of the coda wave quality factor. The coda windows were filtered at central frequencies of 1.5, 3, 6, 9 and 12 Hz bandpass filter. To obtain reliable results, only data with signal-to-noise ratios greater than 5 and correlation coefficents higher than 0.7 were used. The SEISAN software and one of its subroutines (CODAQ) were used for data processing and analyses. In the whole study area, Qc=(51±4)f^(0.91±0.04) for 20 seconds, Qc=(77±7)f^(0.80±0.04) for 30 seconds and Qc=(112±13)f^(0.72±0.06) for 40 seconds lapse times are obtained for coda wave quality factor. The observed quality factor is dependent on frequency and lapse time. The results indicate that the upper lithosphere is more heterogeneous and seismically more active than the lower lithosphere as expected in the region which is tectonically complex refering to the effects of the North Anatolian Fault Zone. By considering earthquake clusters and recorded stations, the scattering area was drawn. The intersection of the scattered areas for 20 seconds lapse time is covering all stations. Quality factor in 1 Hz and frequency dependent values were calculated separately and for the intersection of all scattered areas. Calculated Qo and n values of the intersection area are 50 and 0.89, respectively. Hence, the Qo and n values which are calculated using all stations and both values of the intersection area are very close to each other. Additionally, in the detailed review of TRML station which located in Yalova Province Termal District; Qc=(46±3)f^(0.97±0.04) for 20 seconds, Qc=(61±6)f^(1.03±0.06), for 30 seconds and Qc=(74±6)f^(1.06±0.05) for 40 seconds lapse times are obtained for coda wave quality factor. With these results, both the lower Qo values increasing with lapse times demonstrate high tectonic activity. Furthermore, the increasing n value with lapse times is conformable with the geothermal sources, next to the TRML station.
Wave Propagation in Non-Stationary Statistical Mantle Models at the Global Scale
NASA Astrophysics Data System (ADS)
Meschede, M.; Romanowicz, B. A.
2014-12-01
We study the effect of statistically distributed heterogeneities that are smaller than the resolution of current tomographic models on seismic waves that propagate through the Earth's mantle at teleseismic distances. Current global tomographic models are missing small-scale structure as evidenced by the failure of even accurate numerical synthetics to explain enhanced coda in observed body and surface waveforms. One way to characterize small scale heterogeneity is to construct random models and confront observed coda waveforms with predictions from these models. Statistical studies of the coda typically rely on models with simplified isotropic and stationary correlation functions in Cartesian geometries. We show how to construct more complex random models for the mantle that can account for arbitrary non-stationary and anisotropic correlation functions as well as for complex geometries. Although this method is computationally heavy, model characteristics such as translational, cylindrical or spherical symmetries can be used to greatly reduce the complexity such that this method becomes practical. With this approach, we can create 3D models of the full spherical Earth that can be radially anisotropic, i.e. with different horizontal and radial correlation functions, and radially non-stationary, i.e. with radially varying model power and correlation functions. Both of these features are crucial for a statistical description of the mantle in which structure depends to first order on the spherical geometry of the Earth. We combine different random model realizations of S velocity with current global tomographic models that are robust at long wavelengths (e.g. Meschede and Romanowicz, 2014, GJI submitted), and compute the effects of these hybrid models on the wavefield with a spectral element code (SPECFEM3D_GLOBE). We finally analyze the resulting coda waves for our model selection and compare our computations with observations. Based on these observations, we make predictions about the strength of unresolved small-scale structure and extrinsic attenuation.
Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method
NASA Astrophysics Data System (ADS)
Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa
2014-02-01
Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.
Localized water reverberation phases and its impact on back-projection images
NASA Astrophysics Data System (ADS)
Yue, H.; Castillo, J.; Yu, C.; Meng, L.; Zhan, Z.
2017-12-01
Coherent radiators imaged by back-projections (BP) are commonly interpreted as part of the rupture process. Nevertheless, artifacts introduced by structure related phases are rarely discriminated from the rupture process. In this study, we adopt the logic of empirical Greens' function analysis (EGF) to discriminate between rupture and structure effect. We re-examine the waveforms and BP images of the 2012 Mw 7.2 Indian Ocean earthquake and an EGF event (Mw 6.2). The P wave codas of both events present similar shape with characteristic period of approximately 10 s, which are back-projected as coherent radiators near the trench. S wave BP doesn't image energy radiation near the trench. We interpret those coda waves as localized water reverberation phases excited near the trench. We perform a 2D waveform modeling using realistic bathymetry model, and find that the sharp near-trench bathymetry traps the acoustic water waves forming localized reverberation phases. These waves can be imaged as coherent near-trench radiators with similar features as that in the observations. We present a set of methodology to discriminate between the rupture and propagation effects in BP images, which can serve as a criterion of subevent identification.
Frequency dependent Lg attenuation in south-central Alaska
McNamara, D.E.
2000-01-01
The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.
NASA Astrophysics Data System (ADS)
Majstorović, Josipa; Belinić, Tena; Namjesnik, Dalija; Dasović, Iva; Herak, Davorka; Herak, Marijan
2017-09-01
The central part of the External Dinarides (CED) is a geologically and tectonically complex region formed in the collision between the Adriatic microplate and the European plate. In this study, the contributions of intrinsic and scattering attenuation (
Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data
NASA Astrophysics Data System (ADS)
Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.
2017-12-01
The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.
NASA Astrophysics Data System (ADS)
Wu, S. M.; Hung, S. H.
2015-12-01
Earthquake-induced temporal changes in seismic velocity of the earth's crust have been demonstrated to be monitored effectively by the time-lapse shifts of coda waves recently. Velocity drop during the coseismic rupture has been explicitly observed in proximity to the epicenters of large earthquakes with different styles of faulting. The origin of such sudden perturbation in crustal properties is closely related to the damage and/or volumetric strain change influenced by seismic slip distribution. In this study, we apply a coda wave interferometry method to investigate potential velocity change in both space and time related to the moderate-sized (Mw6.3) 2010 Jiasian earthquake, which nucleated deeply in the crust (~23 km), ruptured and terminated around the depth of 10 km along a previously unidentified blind thrust fault near the lithotectonic boundary of the southern Taiwan orogenic belt. To decipher the surface and crustal response to this relatively deep rupture, we first measure relative time-lapse changes of coda between different short-term time frames spanning one year covering the pre- and post-seismic stages by using the Moving Window Cross Spectral Method. Rather than determining temporal velocity variations based on a long-term reference stack, we conduct a Bayesian least-squares inversion to obtain the optimal estimates by minimizing the inconsistency between the relative time-lapse shifts of individual short-term stacks. The results show the statistically significant velocity reduction immediately after the mainshock, which is most pronounced at the pairs with the interstation paths traversing through the hanging-wall block of the ruptured fault. The sensitivity of surface wave coda arrivals mainly in the periods of 3-5 s to shear wave speed perturbation is confined within the depth of 10 km, where the crust mostly experienced extensional strain changes induced by the slip distribution from the finite-fault model. Compared with coseismic slip distribution from GPS data and finite-fault inversion, peak ground velocity, and static volumetric strain field following the earthquake, the velocity decrease observed in the hanging wall side of the shallow crust is most likely attributed to pervasive dilatational strain changes induced by the slip rupture on the underlying blind thrust.
NASA Astrophysics Data System (ADS)
Padhy, S.; Furumura, T.; Maeda, T.
2017-12-01
The Okinawa Trough is a young continental back-arc basin located behind the Ryukyu subduction zone in southwestern Japan, where the Philippine Sea Plate dives beneath the trough, resulting in localized mantle upwelling and crustal thinning of the overriding Eurasian Plate. The attenuation structure of the plates and surrounding mantle in this region associated with such complex tectonic environment are poorly documented. Here we present seismological evidence for these features based on the high-resolution waveform analyses and 3D finite difference method (FDM) simulation. We analyzed regional broadband waveforms recorded by F-net (NIED) of in-slab events (M>4, H>100 km). Using band-passed (0.5-8 Hz), mean-squared envelopes, we parameterized coda-decay in terms of rise-time (time from P-arrival to maximum amplitude in P-coda), decay-time (time from maximum amplitude to theoretical S-arrival), and energy-ratio defined as the ratio of energy in P-coda to that in direct P wave. The following key features are observed. First, there is a striking difference in S-excitation along paths traversing and not traversing the trough: events from SW Japan not crossing the trough show clear S waves, while those occurring in the trough show very weak S waves at a station close to the volcanic front. Second, some trough events exhibit spindle-shaped seismograms with strong P-coda excitation, obscuring the development of S waves, at back-arc stations; these waveforms are characterized by high decay-time (>10s) and high energy-ratio (>>1.0), suggesting strong forward scattering along ray paths. Third, some trough events show weak S-excitation characterized by low decay-time (<5s) and low energy-ratio (<1.0) at fore-arc stations, suggesting high intrinsic absorption. To investigate the mechanism of the observed anomalies, we will conduct FDM simulation for a suite of models comprising the key subduction features like localized mantle-upwelling and crustal thinning expected in the region. It is expected that simulation results help to resolve rift-induced crust and upper mantle anomalies in the trough showing maximum waveform distortion as we observed in broadband records, and will enhance understanding of tectonic processes related to back-arc rifting in the region.
De Angelis, Silvio
2006-01-01
A swarm of six long-period (LP) events with slowly decaying coda wave amplitudes and durations up to 120 s, was recorded by seismic stations located in the proximity of Mt. Griggs, a fumarolically active volcano in the Katmai National Park, Alaska, during December 8–21, 2004. Spectral analyses reveal the quasi-monochromatic character of the waveforms, dominated by a 2.5 Hz mode frequently accompanied by a weaker high-frequency onset (6.0–9.0 Hz). Particle motion azimuths and inclination angles show a dominant WNW-ESE direction of polarization for all the signals, and suggest that seismic energy is radiated by a stable source at shallow depth. Damping coefficients between 0.0014 and 0.0063 are estimated by fitting an exponential decay model to the signal's coda; corresponding quality factors range from 78 to 351. The source of the waveforms is modelled as a resonant cavity filled with a fluid/gas mixture.
NASA Astrophysics Data System (ADS)
Yao, J.; Tian, D.; Sun, L.; Wen, L.
2017-12-01
Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.
Attention in western Nevada: Preliminary results from earthquake and explosion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hough, S.E.; Anderson, J.G.; Patton, H.J.
1989-02-01
We present preliminary results from a study of the attenuation of regional seismic waves at frequencies between 1 and 15 Hz and distances up to 250 km in Western Nevada. Following the methods of Anderson and Hough (1984) and Hough et al. (1988), we parameterize the asymptote of the high frequency acceleration spectrum by the two-parameter model. We relate the model parameters to a two-layer model for Q/sub i/ and Q/sub d/, the freuqency-independent and the frequency dependent components of the quality factor. We compare our results to previously published Q studies in the Basin and Range and find thatmore » our estimate of total Q, Q/sub t/, in the shallow crust is consistent with shear wave Q at close distances with previous estimates of coda Q (Singh and Hermann, 1983) and LgQ (Chavez and Priestley, 1986), suggesting that both coda Q and LgQ are insensitive to near-surface contributions to attenuation.« less
Source spectral variation and yield estimation for small, near-source explosions
NASA Astrophysics Data System (ADS)
Yoo, S.; Mayeda, K. M.
2012-12-01
Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.
Lateral and depth variations of coda Q in the Zagros region of Iran
NASA Astrophysics Data System (ADS)
Irandoust, Mohsen Ahmadzadeh; Sobouti, Farhad; Rahimi, Habib
2016-01-01
We have analyzed more than 2800 local earthquakes recorded by the Iranian National Seismic Network (INSN) and the Iranian Seismological Center (IRSC) to estimate coda wave quality factor, Q c , in the Zagros fold and thrust belt and the Sanandaj-Sirjan metamorphic zone in Iran. We used the single backscattering model to investigate lateral and depth variations of Q c in the study region. In the interior of Zagros, no strong lateral variation in attenuation parameters is observed. In SE Zagros (the Bandar-Abbas region) where transition to the Makran subduction setting begins, the medium shows lower attenuation. The average frequency relations for the SSZ, the Bandar-Abbas region, and the Zagros are Q c = (124 ± 11) f 0.82 ± 0.04, Q c = (109 ± 2) f 0.99 ± 0.01, and Q c = (85 ± 5) f 1.06 ± 0.03, respectively. To investigate the depth variation of Q c , 18 time windows between 5 and 90 s and at two epicentral distance ranges of R < 100 km and 100 < R < 200 km were considered. It was observed that with increasing coda lapse time, Q 0 ( Q c at 1 Hz) and n (frequency dependence factor) show increasing and decreasing trends, respectively. Beneath the SSZ and at depths of about 50 to 80 km, there is a correlation between the reported low velocity medium and the observed sharp change in the trend of Q 0 and n curves. In comparison with results obtained in other regions of the Iranian plateau, the Zagros along with the Alborz Mountains in the north show highest attenuation of coda wave and strongest frequency dependence, an observation that reflects the intense seismicity and active faulting in these mountain ranges. We also observe a stronger depth dependence of attenuation in the Zagros and SSZ compared to central Iran, indicating a thicker lithosphere in the Zagros region than in central Iran.
A model for attenuation and scattering in the Earth's crust
NASA Astrophysics Data System (ADS)
Toksöz, M. Nafi; Dainty, Anton M.; Reiter, Edmund; Wu, Ru-Shan
1988-03-01
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves Rg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1 10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedo B 0=0.8 0.9 and a scattering extinction length of 17 32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. The Rg results indicate that Q increases with depth in the upper kilometer or two of the crust, at least in New England. Coda Q appears to be equivalent to intrinsic (anelastic) Q and indicates that this Q increases with frequency as Q=Q o f n , where n is in the range of 0.2 0.9. The intrinsic attenuation in the crust can be explained by a high constant Q (500≤ Q o≤2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence ( Q≃ Q o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms. Q is low near the surface and high in the body of the crust.
NASA Astrophysics Data System (ADS)
Yu, Wen-che
2016-04-01
The inner core boundary (ICB), where melting and solidification of the core occur, plays a crucial role in the dynamics of the Earth's interior. To probe temporal changes near the ICB beneath the eastern hemisphere, I analyze differential times of PKiKP (dt(PKiKP)), double differential times of PKiKP-PKPdf, and PKiKP coda waves from repeating earthquakes in the Southwest Pacific subduction zones. Most PKiKP differential times are within ±30 ms, comparable to inherent travel time uncertainties due to inter-event separations, and suggest no systematic changes as a function of calendar time. Double differential times measured between PKiKP codas and PKiKP main phases show promising temporal changes, with absolute values of time shifts of >50 ms for some observations. However, there are discrepancies among results from different seismographs in the same calendar time window. Negligible changes in PKiKP times, combined with changes in PKiKP coda wave times on 5 year timescales, favor a smooth inner core boundary with fine-scale structures present in the upper inner core. Differential times of PKiKP can be interpreted in the context of either melting based on translational convection, or growth based on thermochemical mantle-inner core coupling. Small dt(PKiKP) values with inherent uncertainties do not have sufficient resolution to distinguish the resultant longitudinal (melting) and latitudinal (growth) dependencies predicted on the basis of the two models on 5 year timescales.
NASA Astrophysics Data System (ADS)
Baena, M.; Perton, M.; Molina-Villegas, J. C.; Sanchez-Sesma, F. J.
2013-12-01
In order to improve the understanding of the seismic response of Mexico City Valley, we have proposed to perform a tomography study of the seismic wave velocities. For that purpose, we used a collection of acceleration seismograms (corresponding to earthquakes with magnitudes ranging from 4.5 to 8.1 and various epicentral distances to the City) recorded since 1985 in 83 stations distributed across the Valley. The H/V spectral ratios (obtained from average autocorrelations) strongly suggest these movements belong to a 3D generalized diffuse field. Thus, we interpret that cross-correlations between the signals of station pairs are proportional to the imaginary part of the corresponding Green function. Finally, the dispersion curves are constructed from the Green function which lead to the tomography. Other tomographies have already been made around the world using either the seismic coda or seismic noise. We used instead the ensemble of many earthquakes from distant sources that have undergone multiple scattering by the heterogeneities of the Earth and assume the wave fields are equipartitioned. The purpose of the present study is to describe the different steps of the data processing by using synthetic models. The wave propagation within an alluvial basin is simulated using the Indirect Boundary Element Method (IBEM) in 2D configuration for the propagation of P and SV waves. The theoretical Green function for a station pair is obtained by placing a unit force at one station and a receiver at the other. The valley illumination is composed by incoming waves which are simulated using distant independent sources and several diffractors. Data process is validated by the correct retrieval the theoretical Green function. We present here the in-plane Green function for the P-SV case and show the dispersion curves constructed from the cross-correlations compared with analytic results for a layer over a half-space. ACKNOWLEDGEMENTS. This study is partially supported by AXA Research Fund and by DGAPA-UNAM under Project IN104712.
Identification of T-Waves in the Alboran Sea
NASA Astrophysics Data System (ADS)
Carmona, Enrique; Almendros, Javier; Alguacil, Gerardo; Soto, Juan Ignacio; Luzón, Francisco; Ibáñez, Jesús M.
2015-11-01
Analyses of seismograms from ~1,100 north-Moroccan earthquakes recorded at stations of the Red Sísmica de Andalucía (Southern Spain) reveal the systematic presence of late phases embedded in the earthquake codas. These phases have distinctive frequency contents, similar to the P and S spectra and quite different to the frequency contents of the earthquake codas. They are best detected at near-shore stations. Their amplitudes decay significantly with distance to the shoreline. The delays with respect to the P-wave onsets of the preceding earthquakes are consistently around 85 s. Late phases are only detected for earthquakes located in a small region of about 100 × 60 km centered at 35.4°N, 4.0°W near the northern coast of Morocco. Several hypotheses could, in principle, explain the presence of these late phases in the seismograms, for example, the occurrence of low-energy aftershocks, efficient wave reflections, or Rayleigh waves generated along the source-station paths. However, we conclude that the most-likely origin of these phases corresponds to the incidence of T-waves (generated by conversion from elastic to acoustic energy in the north-Moroccan coast) in the southern coast of the Iberian Peninsula. T-waves are thought to be generated by energy trapping in low-velocity channels along long oceanic paths; in this case, we demonstrate that they can be produced in much shorter paths as well. Although T-waves have been already documented in other areas of the Mediterranean Sea, this is the first time that they have been identified in the Alboran Sea.
NASA Astrophysics Data System (ADS)
Jonsdottir, K.; Vogfjord, K. S.; Bean, C. J.; Martini, F.
2013-12-01
The glacier overlain Katla volcano in South Iceland, is one of the most active and hazardous volcano in Europe. Katla eruptions result in hazardous glacial floods and intense tephra fall. On average there are eruptions every 50 years but the volcano is long overdue and we are now witnessing the longest quiescence period in 1000 years or since the settlement. Because of the hazard the volcano poses, it is under constant surveillance and gets a good share of the seismic stations from the national seismic network. Every year the seismic network records thousands of seismic events at Katla with magnitudes seldom exceeding M3. The bulk of the seismicity is however not due to volcano tectonics but seems to be caused mainly by shallow processes involving glacial deformation. Katla's ice filled caldera forms a glacier plateau of several hundred meters thick ice. The 9x14 km oval caldera is surrounded by higher rims where the glacier in some places gently and in others abruptly falls off tens and up to hundred meters to the surrounding lowland. The glacier surface is marked with dozen depressions or cauldrons which manifest geothermal activity below, probably coinciding with circular faults around the caldera. Our current understanding is that there are several glacial processes which cause seismicity; these include dry calving, where steep valley glaciers fall off cliffs and movements of glacier ice as the cauldrons deform due to hydraulic changes and geothermal activity at the glacier/bedrock boundary. These glacial events share a common feature of containing low frequency (2-4 hz) and long coda. Because of their shallow origin, surface waves are prominent. In our analysis we use waveforms from all of Katla's seismic events between years 2003-2013, with the criteria M>1 and minimum 4 p-wave picks. We correlate the waveforms of these events with each other and group them into families of highly similar events. Looking at the occurrence of these families we find that individual families are usually clustered in time over several months, and sometimes families may reappear even up to several years later. Using families including many events and covering long periods (10-20 months) we compare the coda (the tail) of individual events within a family. This is repeated for all the surrounding stations. The analysis, coda wave interferometry (cwi) is a correlation method that builds on the fact that changes in stress in the edifice lead to changes in seismic velocities. The coda waves are highly sensitive to small stress changes. By using a repeating source, implying we have the same source mechanism and the same path, we can track temporal stress changes in the medium between the source and the receiver. Preliminary results from Katla suggest that by using the repeating glacial events and the coda wave interferometry technique we observe annual seismic velocity changes around the volcano of ca. 0.7%. We find that seismic velocities increase from January through July and decrease in August to December. These changes can be explained by pore-water pressure changes and/or loading and de-loading of the overlain glacier. We do not find immediate precursors for an impending eruption at Katla; however we now have a better understanding of its background seismicity.
Time patterns of sperm whale codas recorded in the Mediterranean Sea 1985-1996.
Pavan, G; Hayward, T J; Borsani, J F; Priano, M; Manghi, M; Fossati, C; Gordon, J
2000-06-01
A distinctive vocalization of the sperm whale, Physeter macrocephalus (=P. catodon), is the coda: a short click sequence with a distinctive stereotyped time pattern [Watkins and Schevill, J. Acoust. Soc. Am. 62, 1485-1490 (1977)]. Coda repertoires have been found to vary both geographically and with group affiliation [Weilgart and Whitehead, Behav. Ecol. Sociobiol. 40, 277-285 (1997)]. In this work, the click timings and repetition patterns of sperm whale codas recorded in the Mediterranean Sea are characterized statistically, and the context in which the codas occurred are also taken into consideration. A total of 138 codas were recorded in the central Mediterranean in the years 1985-1996 by several research groups using a number of different detection instruments, including stationary and towed hydrophones, sonobuoys and passive sonars. Nearly all (134) of the recorded codas share the same "3+1" (/// /) click pattern. Coda durations ranged from 456 to 1280 ms, with an average duration of 908 ms and a standard deviation of 176 ms. Most of the codas (a total of 117) belonged to 20 coda series. Each series was produced by an individual, in most cases by a mature male in a small group, and consisted of between 2 and 16 codas, emitted in one or more "bursts" of 1 to 13 codas spaced fairly regularly in time. The mean number of codas in a burst was 3.46, and the standard deviation was 2.65. The time interval ratios within a coda are parameterized by the coda duration and by the first two interclick intervals normalized by coda duration. These three parameters remained highly stable within each coda series, with coefficients of variation within the series averaging less than 5%. The interval ratios varied somewhat across the data sets, but were highly stable over 8 of the 11 data sets, which span 11 years and widely dispersed geographic locations. Somewhat different interval ratios were observed in the other three data sets; in one of these data sets, the variant codas were produced by a young whale. Two sets of presumed sperm whale codas recorded in 1996 had 5- and 6-click patterns; the observation of these new patterns suggests that sperm whale codas in the Mediterranean may have more variations than previously believed.
NASA Astrophysics Data System (ADS)
Pham, T. S.; Tkalcic, H.; Sambridge, M.
2017-12-01
The crosscorrelation of earthquake coda can be used to extract seismic body waves which are sensitive to deep Earth interior. The retrieved peaks in crosscorrelation of two seismic records are commonly interpreted as seismic phases that originate at a point source collocated with the first recorder (Huygens-Fresnel principle), reflected upward from prominent underground reflectors and reaching the second recorder. From the time shift of these peaks measured at different interstation distances, new travel time curves can be constructed. This study focuses on a previously unexplained interferometric phase (named temporarily a ghost or "G phase") observed in crosscorrelogram stack sections utilizing seismic coda. In particular, we deploy waveforms recorded by two regional seismic networks, one in Australia and another in Alaska. We show that the G phase cannot be explained by as a reflection. Moreover, we demonstrate that the G phase is explained through the principle of energy partitioning, and specifically, conversions from compressional to shear motions at the core-mantle boundary (CMB). This can be thought of in terms of a continuous distribution of Huygens sources across the CMB that are "activated" in long-range wavefield coda following significant earthquakes. The newly explained phase is renamed to cPS, to indicate a CMB origin and the P to S conversion. This mechanism explains a range of newly observed global interferometric phases that can be used in combination with existing phases to constrain Earth structure.
Near-source attenuation of high-frequency body waves beneath the New Madrid Seismic Zone
NASA Astrophysics Data System (ADS)
Pezeshk, Shahram; Sedaghati, Farhad; Nazemi, Nima
2018-03-01
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6 ≤ M ≤ 4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/ R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P = (115.80 ± 1.36) f (0.495 ± 0.129) and Q S = (161.34 ± 1.73) f (0.613 ± 0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/ Q P > 1, for 4 ≤ f ≤ 24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubucq, D.
2010-12-01
Passive imaging from noise cross-correlation is a consolidated analysis applied at continental and regional scale whereas its use at local scale for seismic exploration purposes is still uncertain. The development of passive imaging by cross-correlation analysis is based on the extraction of the Green’s function from seismic noise data. In a completely random field in time and space, the cross-correlation permits to retrieve the complete Green’s function whatever the complexity of the medium. At the exploration scale and at frequency above 2 Hz, the noise sources are not ideally distributed around the stations which strongly affect the extraction of the direct arrivals from the noise cross-correlation process. In order to overcome this problem, the coda waves extracted from noise correlation could be useful. Coda waves describe long and scattered paths sampling the medium in different ways such that they become sensitive to weak velocity variations without being dependent on the noise source distribution. Indeed, scatters in the medium behave as a set of secondary noise sources which randomize the spatial distribution of noise sources contributing to the coda waves in the correlation process. We developed a new technique to measure weak velocity changes based on the computation of the local phase variations (instantaneous phase variation or IPV) of the cross-correlated signals. This newly-developed technique takes advantage from the doublet and stretching techniques classically used to monitor weak velocity variation from coda waves. We apply IPV to data acquired in Northern America (Canada) on a 1-km side square seismic network laid out by 397 stations. Data used to study temporal variations are cross-correlated signals computed on 10-minutes ambient noise in the frequency band 2-5 Hz. As the data set was acquired over five days, about 660 files are processed to perform a complete temporal analysis for each stations pair. The IPV permits to estimate the phase shift all over the signal length without any assumption on the medium velocity. The instantaneous phase is computed using the Hilbert transform of the signal. For each stations pair, we measure the phase difference between successive correlation functions calculated for 10 minutes of ambient noise. We then fit the instantaneous phase shift using a first-order polynomial function. The measure of the velocity variation corresponds to the slope of this fit. Compared to other techniques, the advantage of IPV is a very fast procedure which efficiently provides the measure of velocity variation on large data sets. Both experimental results and numerical tests on synthetic signals will be presented to assess the reliability of the IPV technique, with comparison to the doublet and stretching methods.
Frankel, Arthur
1994-01-01
Fourteen GEOS seismic recorders were deployed in the San Bernardino Valley to study the propagation of short-period (T ≈ 1 to 3 sec) surface waves and Moho reflections. Three dense arrays were used to determine the direction and speed of propagation of arrivals in the seismograms. The seismograms for a shallow (d ≈ 1 km) M 4.9 aftershock of the Big Bear earthquake exhibit a very long duration (60 sec) of sustained shaking at periods of about 2 sec. Array analysis indicates that these late arrivals are dominated by surface waves traveling in various directions across the Valley. Some energy is arriving from a direction 180° from the epicenter and was apparently reflected from the edge of the Valley opposite the source. A close-in aftershock (Δ = 25 km, depth = 7 km) displays substantial short-period surface waves at deep-soil sites. A three-dimensional (3D) finite difference simulation produces synthetic seismograms with durations similar to those of the observed records for this event, indicating the importance of S-wave to surface-wave conversion near the edge of the basin. Flat-layered models severely underpredict the duration and spectral amplification of this deep-soil site. I show an example where the coda wave amplitude ratio at 1 to 2 Hz between a deep-soil and a rock site does not equal the S-wave amplitude ratio, because of the presence of surface waves in the coda of the deep-soil site. For one of the events studied (Δ ≈ 90 km), there are sizable phases that are critically reflected from the Moho (PmP and SmS). At one of the rock sites, the SmS phase has a more peaked spectrum that the direct S wave.
NASA Astrophysics Data System (ADS)
Sawazaki, K.; Kimura, H.; Uchida, N.; Takagi, R.; Snieder, R.
2012-12-01
Using deconvolutions of vertical array of KiK-net (nationwide strong-motion seismograph digital network in Japan) records and applying coda wave interferometry (CWI) to Hi-net (high-sensitivity seismograph network in Japan; collocated with a borehole receiver of KiK-net) borehole records, we constrain the responsible depth of the medium changes associated with the 2011 Tohoku earthquake (MW9.0). There is a systematic reduction in VS up to 6% in the shallow subsurface which experienced strong dynamic strain by the Tohoku earthquake. In contrast, both positive and negative changes are observed for VP, which are less than 2% for both directions. We propose that this discrepancy between the changes of VS and VP is explained by the behavior of shear and bulk moduli of a porous medium exposed to an increase of excess pore fluid pressure. At many stations, VS recovers proportional to logarithm of the lapse time after the mainshock, and mostly recovers to the reference value obtained before the mainshock in one year. However, some stations that have been exposed by additional strong motions of aftershocks and/or other earthquakes take much longer time for the recovery. The CWI technique applied to horizontal components of S-coda reveals a velocity reduction up to 0.2% widely along the coastline of northeastern Japan. For the vertical component of P-coda, however, the velocity change is mostly less than 0.1% at the same region. From single scattering model including P-S and S-P conversion scatterings, we verify that both components are sensitive to VS change around the source, but the vertical component of P-coda is sensitive to VP change around the receiver. Consequently, the difference in velocity changes revealed from the horizontal and vertical components represents the difference of VS and VP changes near the receiver. As the conclusion, VS reduction ratio in the deep lithosphere is smaller than that at the shallow ground by 1 to 2 orders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julia, J; Nyblade, A; Gok, R
2009-07-06
In this project, we are developing and exploiting a unique seismic dataset to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from three deep gold mines in South Africa recorded on in-mine networks (< 1 km) composed of tens of high-frequency sensors, a network of four broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) frommore » the mines. Data acquisition has now been completed and includes: (1) {approx}2 years (2007 and 2008) of continuous recording by the surface broadband array, and (2) tens of thousands of mine tremors in the -3.4 < ML < 4.4 local magnitude range. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes of 3.0 and larger are seen at regional distances (up to {approx} 600 km) in high-pass filtered recordings. We have now completed the quality control of the in-mine data gathered at the three gold mines included in this project. The quality control consisted of: (1) identification and analysis of outliers among the P- and S-wave travel-time picks reported by the in-mine network operator and (2) verification of sensor orientations. The outliers have been identified through a 'Wadati filter' that searches for the largest subset of P- and S-wave travel-time picks consistent with a medium of uniform wave-speed. They have observed that outliers are generally picked at a few select stations. They have also detected that trigger times were mistakenly reported as origin times by the in-mine network operator, and corrections have been obtained from the intercept times in the Wadati diagrams. Sensor orientations have been verified through rotations into the local ray-coordinate system and, when possible, corrected by correlating waveforms obtained from theoretical and empirical rotation angles. Full moment tensor solutions have been obtained for selected events within the Savuka network volume, with moment magnitudes in the 0.5 < M{sub W} < 2.6 range. The solutions were obtained by inverting P-, SV-, and SH-spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. Most of the solutions have a non-zero implosive contribution (47 out of 76), while a small percentage is purely deviatoric (10 out of 76). The deviatoric moment tensors range from pure double couple to pure non-double couple mechanisms. We have also calibrated the regional stations for seismic coda-derived source spectra and moment magnitude using the envelope methodology of Mayeda et al. (2003). they tie the coda M{sub w} to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking with previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with the depth of burial (Murphy et al., 2009).« less
The Use of Barker Coded Signal on the Measurement of Wave Velocity of Rock
NASA Astrophysics Data System (ADS)
Zhu, W.; Wu, H.
2016-12-01
The wave velocity of the rock is important petro physics parameters; it can be used to calculate the elastic parameters, monitor the variations in the stress suffered by rock; and the velocity anisotropy reflects the rock anisotropy. Furthermore, since the coda wave is more sensitive to the change in rock properties, its velocity variation has been applied to monitor the variations in rock structures caused by varying temperature, stress, water saturation and other factors. However, the measurements of velocities heavily depend on signal-to-noise ratio (SNR) of the signals, because low signal-to-noise ratio would result in the difficulty in the identification of information. Fortunately coded excitation technique, widely used in radar, and medical system, just can solve the problem above. Although this technique can effectively improve the SNR and resolution of received signal, there exits very high sidelobes after traditional matched filter. So a pseudo inverse filter was successfully applied to suppress the side lobes. After comparing different coded signals, Barker coded signal are selected to measure the velocity of P wave of Plexiglas, sandstone, granite, marble with automatic measurement method, which are compared with the measurement results of single pulse; the results showed that the measurement of coded signals is more closely to the manual measurement. Moreover, coda wave measurement of loading granite was also made with Barker coded signal, the results of which also showed that the detection result of coded signals is better than that of the single pulse. In conclusion, the experiments verify the effectiveness and reliability of coded signals used on the measurement of wave velocity of rock.
Monitoring Unstable Glaciers with Seismic Noise Interferometry
NASA Astrophysics Data System (ADS)
Preiswerk, L. E.; Walter, F.
2016-12-01
Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.
CSDP: The seismology of continental thermal regimes
NASA Astrophysics Data System (ADS)
Aki, K.
1991-05-01
The past year continued to be extremely productive following up two major breakthroughs made in the preceding year. One of the breakthroughs was the derivation of an integral equation for time-dependent power spectra, which unified all the existing theories on seismic scattering including the radiative transfer theory for total energy and single-multiple scattering theories based on the ray approach. We successfully applied the method to the data from the United States Geological Survey (USGS) regional seismic arrays in central California, Long Valley and Island of Hawaii, and obtained convincing results on the scattering Q(sup -1) and intrinsic Q(sup -1) in these areas for the frequency range from 1 Hz to 20 Hz. The frequency dependence of scattering Q(sup -1) is, then, interpreted in terms of random medium with continuous or discrete scatterers. The other breakthrough was the application of T-matrix formulation to the seismic scattering problem. We are currently working on two dimensional inclusions with high and low velocity contrast with the surrounding medium. In addition to the above two main lines of research, we were able to use so-called 'T-phase' observed on the Island of Hawaii to map the Q value with a good spatial resolution. The T-phase is seismic waves converted from acoustic waves propagated through the sofar channel of the ocean. We found that we can eliminate remarkably well the frequency dependent recording site effect from the T-phase amplitude using the amplification factor for coda waves, further confirming the fundamental separability of source, path and site effects for coda waves, and proving the effectiveness of stochastic modeling of high-frequency seismic waves.
Observation and modeling of source effects in coda wave interferometry at Pavlof volcano
Haney, M.M.; van, Wijik K.; Preston, L.A.; Aldridge, D.F.
2009-01-01
Sorting out source and path effects for seismic waves at volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path effects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifice (Wegler and Luhr, 2001). As a result, both source and path effects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. The challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. ?? 2009 Society of Exploration Geophysicists.
Coda: The Slow Fuse of Change--Obama, the Schools, Imagination, and Convergence
ERIC Educational Resources Information Center
Greene, Maxine
2009-01-01
The author began writing this essay the day after waves of euphoria swept over what appeared to be a profoundly altered public space. Americans had seen the most diverse gathering of people coming freely together to affirm a common purpose no one could quite yet define. No one had instructed them to come out in the cold of that inauguration…
Using the Seismic Amplitude Decay of Low-Frequency Events to Constrain Magma Properties.
NASA Astrophysics Data System (ADS)
Smith, P. J.; Neuberg, J. W.
2007-12-01
Low-frequency events are considered a key part of volcanic monitoring, as they are one of the few tools available that can link surface observations directly to internal volcanic processes and properties. Our model for their generation on the Soufrière Hills Volcano, Montserrat, is brittle fracturing of the magma at the conduit walls, providing the seismic trigger mechanism, followed by conduit resonance. The attenuation of seismic waves in a viscous magma is highly dependent on the properties of the attenuating material, in particular the viscous friction, controlled by the melt viscosity, gas content and diffusivity. Therefore we can use the seismicity to gain information on these magma properties. This research uses a two-dimensional viscoelastic finite-difference model, with the attenuative behaviour of the magma parameterised by an array of Standard Linear Solids. By examining the relationship between the amplitude decay of the synthetic low-frequency events, the intrinsic attenuation and the elastic parameter contrast, this research aims to link observables such as amplitude decay of the coda directly to properties such as the magma viscosity.
Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry
NASA Astrophysics Data System (ADS)
Shen, Z.; Zhan, Z.
2017-12-01
It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Xiaodong; Xia, Han H.
2015-03-01
The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.
NASA Astrophysics Data System (ADS)
Fan, W.; Shearer, P. M.
2017-12-01
Fan and Shearer [2016] analyzed the 2012 Mw 7.2 Sumatra earthquake and reported that the earthquake dynamically triggered early aftershock/aftershocks 150 km away from the mainshock and 50 s later. The early aftershock/aftershocks were detected with teleseismic P-wave back-projection, coincided with passing surface waves, and showed observable seismic waveforms in a wide frequency range (0.02—5 Hz). Recently, however, Yue et al. [2017] interpreted these coda arrivals as water reverberations from the mainshock, based mostly on EGF analysis of a nearby M6 earthquake and a water-phase synthetic test. Here, we show detailed back-projection and waveform analysis of three M6 earthquakes within 100km of the Mw 7.2 earthquake, including the EGF event analyzed in Yue et al. [2017]. In addition, we examine the waveforms of three M5.5 reverse faulting earthquakes close to our detected early aftershock landward of the trench. Our results show that the coda energy in question is more likely caused by a separate earthquake near the trench than by a mainshock water reverberation phase, thus supporting our earlier conclusion that the detected coherent radiators are likely to be dynamically triggered early aftershock/aftershocks.
Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America
NASA Astrophysics Data System (ADS)
Escudero Ayala, Christian Rene
I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. Coda Q present a great correlation with tectonic and geology setting, as well as the crustal thickness. I analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. I use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw ¿ 7) earthquakes, I first identify local earthquakes that occurred before and after the mainshocks. I then group the local earthquakes within a cluster radius between 75 to 200 km. I obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Based on the lateral variations of the dip along the subducted oceanic plate, I divide the Mexican subduction zone into four segments. I then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes passage of surface waves. I identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. I find no dependence of seismicity changes on mainshock focal mechanism.
Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology
2010-12-01
Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium and Arakan-Yuma Zone (BAZ) : Qc= 301 f 0.87, Shillong Plateau Zone (SPZ): Qc=126 fo 0.85. It indicates Northeastern India is seismically active but comparing of all zones in the study region the Shillong Plateau Zone (SPZ): Qc= 126 f 0.85 is seismically most active. Where as the Bengal Alluvium and Arakan-Yuma Zone (BAZ) are less active and out of three the Tibetan Plateau Zone (TPZ)is intermediate active. This study may be useful for the seismic hazard assessment. The estimated seismic moments (Mo), range from 5.98×1020 to 3.88×1023 dyne-cm. The source radii(r) are confined between 152 to 1750 meter, the stress drop ranges between 0.0003×103 bar to 1.04×103 bar, the average radiant energy is 82.57×1018 ergs and the strain drop for the earthquake ranges from 0.00602×10-9 to 2.48×10-9 respectively. The estimated stress drop values for NE India depicts scattered nature of the larger seismic moment value whereas, they show a more systematic nature for smaller seismic moment values. The estimated source parameters are in agreement to previous works in this type of tectonic set up. Key words: Coda wave, Seismic source parameters, Lapse time, single back scattering model, Brune's model, Stress drop and North East India.
Attenuation Characteristics of High Frequency Seismic Waves in Southern India
NASA Astrophysics Data System (ADS)
Sivaram, K.; Utpal, Saikia; Kanna, Nagaraju; Kumar, Dinesh
2017-07-01
We present a systematic study of seismic attenuation and its related Q structure derived from the spectral analysis of P-, S-waves in the southern India. The study region is separated into parts of EDC (Eastern Dharwar Craton), Western Dharwar Craton (WDC) and Southern Granulite Terrain (SGT). The study is carried out in the frequency range 1-20 Hz, using a single-station spectral ratio technique. We make use of about 45 earthquakes, recorded in a network of about 32 broadband 3-component seismograph-stations, having magnitudes ( M L) varying from 1.6 to 4.5, to estimate the average seismic body wave attenuation quality factors; Q P and Q S. Their estimated average values are observed to be fitting to the power law form of Q = Q 0 f n . The averaged power law relations for Southern Indian region (as a whole) are obtained as Q P = (95 ± 1.12) f (1.32±0.01); Q S = (128 ± 1.84) f (1.49±0.01). Based on the stations and recorded local earthquakes, for parts of EDC, WDC and SGT, the average power law estimates are obtained as: Q P = (97 ± 5) f (1.40±0.03), Q S = (116 ± 1.5) f (1.48±0.01) for EDC region; Q P = (130 ± 7) f (1.20±0.03), Q S = (103 ± 3) f (1.49±0.02) for WDC region; Q P = (68 ± 2) f (1.4±0.02), Q S = (152 ± 6) f (1.48±0.02) for SGT region. These estimates are weighed against coda Q ( Q C) estimates, using the coda decay technique, which is based on a weak backscattering of S-waves. A major observation in the study of body wave analysis is the low body wave Q ( Q 0 < 200), moderately high value of the frequency-exponent, ` n' (>0.5) and Q S/ Q P ≫ 1, suggesting lateral stretches of dominant scattering mode of seismic wave propagation. This primarily could be attributed to possible thermal anomalies and spread of partially fluid-saturated rock-masses in the crust and upper mantle of the southern Indian region, which, however, needs further laboratory studies. Such physical conditions might partly be correlated to the active seismicity and intraplate tectonism, especially in SGT and EDC regions, as per the observed low- Q P and Q S values. Additionally, the enrichment of coda waves and significance of scattering mechanisms is evidenced in our observation of Q C > Q S estimates. Lapse time study shows Q C values increasing with lapse time. High Q C values at 40 s lapse times in WDC indicate that it may be a relatively stable region. In the absence of detailed body wave attenuation studies in this region, the frequency dependent Q relationships developed here are useful for the estimation of earthquake source parameters of the region. Also, these relations may be used for the simulation of earthquake strong ground motions which are required for the estimation of seismic hazard, geotechnical and retrofitting analysis of critical structures in the region.
Modeling the blockage of Lg waves from 3-D variations in crustal structure
NASA Astrophysics Data System (ADS)
Sanborn, Christopher J.; Cormier, Vernon F.
2018-05-01
Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.
NASA Astrophysics Data System (ADS)
Kromskii, S. D.; Pavlenko, O. V.; Gabsatarova, I. P.
2018-03-01
Based on the Anapa (ANN) seismic station records of 40 earthquakes ( M W > 3.9) that occurred within 300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth's crust ( Q( f)) and upper mantle are estimated for the S-waves in the 1-8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q( f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q( f) = 90 × f1.0 for r > 120 km. The established Q( f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9-5.6; however, the radiation of the high-frequency components ( f > 4-5 Hz) is enhanced with the depth of the source (down to h 60 km). The estimates Q( f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q( f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth's crust in the other regions of the Northern Caucasus.
Lateral variation of seismic attenuation in Sikkim Himalaya
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo
2017-01-01
We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.
Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda
Earle, P.S.; Shearer, P.M.
2001-01-01
We present stacked record sections of Global Seismic Network data that image the average amplitude and polarization of the high-frequency Pdiff coda and investigate their implications on the depth extent of fine-scale (~10 km) mantle heterogeneity. The extended 1-Hz coda lasts for at least 150 sec and is observed to a distance of 130??. The coda's polarization angle is about the same as the main Pdiff arrival (4.4 sec/deg) and is nearly constant with time. Previous studies show that multiple scattering from heterogeneity restricted to the lowermost mantle generates an extended Pdiff coda with a constant polarization. Here we present an alternative model that satisfies our Pdiff observations. The model consists of single scattering from weak (~1%) fine-scale (~2 km) structures distributed throughout the mantle. Although this model is nonunique, it demonstrates that Pdiff coda observations do not preclude the existence of scattering contributions from the entire mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julia, J; Nyblade, A A; Gok, R
2008-07-08
In this project, we are developing and exploiting a unique seismic data set to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from 3 deep gold mines in South Africa recorded on inmine networks (< 1 km) comprised of tens of high-frequency sensors, a network of 4 broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km)more » from the mines. After 1 year of seismic monitoring of mine activity (2007), over 10,000 events in the range -3.4 < ML < 4.4 have been catalogued and recorded by the in-mine networks. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes 3.0 and larger are seen at regional distances (up to {approx}600 km) in high-pass filtered recordings. We have analyzed in-mine recordings in detail at one of the South African mines (Savuka) to (i) improve on reported hypocentral locations, (ii) verify sensor orientations, and (iii) determine full moment tensor solutions. Hypocentral relocations on all catalogued events have been obtained from P- and S-wave travel-times reported by the mine network operator through an automated procedure that selects travel-times falling on Wadati lines with slopes in the 0.6-0.7 range; sensor orientations have been verified and, when possible, corrected by correlating P-, SV-, and SH-waveforms obtained from theoretical and empirical (polarization filter) rotation angles; full moment tensor solutions have been obtained by inverting P-, SV-, and SH- spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. The relocation procedure has revealed that origin times often necessitate a negative correction of a few tenths of second and that hypocentral locations may move a few hundreds of meters. The full moment tensor determination has revealed that the most common focal mechanism (47 out of 82 solutions for events in the 0.2 < ML < 4.1 range) consists of a similar percentage of isotropic (implosive) and deviatoric components, with a normal fault-type best double couple. We have also calibrated the regional stations for seismic coda derived source spectra and moment magnitude using the envelope methodology of Mayeda et al (2003). We tie the coda Mw to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with depth of burial (Murphy et al., 2008).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, Pierpaolo; Daley, Thomas; Ajo-Franklin, Jonathan
Monitoring of time-varying reservoir properties, such as the state of stress, is a primary goal of geophysical investigations, including for geological sequestration of CO 2, enhanced hydrocarbon recovery (EOR), and other subsurface engineering activities. In this work, we used Continuous Active-Source Seismic Monitoring (CASSM), with cross-well geometry, to measure variation in seismic coda amplitude, as a consequence of effective stress change (in the form of changes in pore fluid pressure). To our knowledge, the presented results are the first in-situ example of such crosswell measurement at reservoir scale and in field conditions. Data compliment the findings of our previous workmore » which investigated the relationship between pore fluid pressure and seismic velocity (velocity-stress sensitivity) using the CASSM system at the same field site (Marchesini et al., 2017, in review). We find that P-wave coda amplitude decreases with decreasing pore pressure (increasing effective stress).« less
Near Source Contributions to Teleseismic P Wave Coda and Regional Phases
1991-04-27
Pasadena, CA 91-125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton...Station S-CUBED University of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O.Box 1620 La Jolla, CA 92038-1620 2 Prof. William ...Geosciences- Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington
Maïonchi-Pino, Norbert; de Cara, Bruno; Ecalle, Jean; Magnan, Annie
2012-04-01
In this study, the authors queried whether French-speaking children with dyslexia were sensitive to consonant sonority and position within syllable boundaries to influence a phonological syllable-based segmentation in silent reading. Participants included 15 French-speaking children with dyslexia, compared with 30 chronological age-matched and reading level-matched controls. Children were tested with an audiovisual recognition task. A target pseudoword (TOLPUDE) was simultaneously presented visually and auditorily and then was compared with a printed test pseudoword that either was identical or differed after the coda deletion (TOPUDE) or the onset deletion (TOLUDE). The intervocalic consonant sequences had either a sonorant coda-sonorant onset (TOR.LADE), sonorant coda-obstruent onset (TOL.PUDE), obstruent coda-sonorant onset (DOT.LIRE), or obstruent coda-obstruent onset (BIC.TADE) sonority profile. All children processed identity better than they processed deletion, especially with the optimal sonorant coda-obstruent onset sonority profile. However, children preserved syllabification (coda deletion; TO.PUDE) rather than resyllabification (onset deletion; TO.LUDE) with intervocalic consonant sequence reductions, especially when sonorant codas were deleted but the optimal intersyllable contact was respected. It was surprising to find that although children with dyslexia generally exhibit phonological and acoustic-phonetic impairments (voicing), they showed sensitivity to the optimal sonority profile and a preference for preserved syllabification. The authors proposed a sonority-modulated explanation to account for phonological syllable-based processing. Educational implications are discussed.
Attenuation of coda waves in the Aswan Reservoir area, Egypt
NASA Astrophysics Data System (ADS)
Mohamed, H. H.; Mukhopadhyay, S.; Sharma, J.
2010-09-01
Coda attenuation characteristics of Aswan Reservoir area of Egypt were analyzed using data recorded by a local earthquake network operated around the reservoir. 330 waveforms obtained from 28 earthquakes recorded by a network of 13 stations were used for this analysis. Magnitude of these earthquakes varied between 1.4 and 2.5. The maximum epicentral distance and depth of focus of these earthquakes were 45 km and 16 km respectively. Single back-scattering method was used for estimation of coda Q ( Qc). The Q0 values ( Qc at 1 Hz) vary between 54 and 100 and frequency dependence parameter " n" values vary between 1 and 1.2 for lapse time varying between 15 s and 60 s. It is observed that coda Q ( Qc) and related parameters are similar at similar lapse times to those observed for those for Koyna, India, where reservoir induced seismicity is also observed. For both regions these parameters are also similar to those observed for tectonically active regions of the world, although Aswan is located in a moderately active region and Koyna is located in a tectonically stable region. However, Qc does not increase uniformly with increasing lapse time, as is observed for several parts of the world. Converting lapse time to depth/distance it is observed that Qc becomes lower or remains almost constant at around 70 to 90 km and 120 km depth/distance. This indicates presence of more attenuative material at those depth levels or distances compared to their immediate surroundings. It is proposed that this variation indicates presence of fluid filled fractures and/or partial melts at some depths/distance from the area of study. The Qc values are higher than those obtained for the Gulf of Suez and Al Dabbab region of Egypt at distances greater than 300 km from the study area by other workers. The turbidity decreases with depth in the study area.
NASA Astrophysics Data System (ADS)
Vinciguerra, S.; King, T. I.; Benson, P. M.; De Siena, L.
2017-12-01
In recent years, 3D and 4D seismic tomography have unraveled medium changes during the seismic cycle or before eruptive events. As our resolving power increases, however, complex structures increasingly affect images. Being able to interpret and understand these features requires a multi-discipline approach combining different methods, each sensitive to particular properties of the sub-surface. Rock deformation laboratory experiments can relate seismic properties to the evolving medium quantitatively. Here, an array of 1 MHz Piezo-Electric Transducers has recorded high-quality low-noise acoustic emission (AE) data during triaxial compressional experiments. Samples of Carrara Marble, Darley Dale Sandstone and Westerly Granite were deformed in saturated conditions representative of a depth of about 1 km until brittle failure. Using a time window around sample failure, AE data were filtered between 5 and 75 KHz and processed using a 3D P-coda attenuation-tomography method. Ratios of P-direct to P-coda energies calculated for each source-receiver path were inverted using the coda normalisation method for values of Q (P-wave quality factor). The results show Q-variation with respect to an average Q. Q is a combination of the effects of scattering attenuation (Qs) and intrinsic attenuation Q (Qi), which can be correlated to the sample structure. Qs primary controls energy dissipation in the presence at acoustic impedance (AI) surfaces and at fracture tips, independently of rock type, while pore fluid effects dissipate energy (Qi). Damaged zones appear as high-Q and low-Q anomalies in unsaturated and saturated samples, respectively. We have attributed frequency-dependent high-Q to resonance in the presence of AI surfaces. Low Q areas appear behind AI surfaces and are interpreted as energy shadows. These shadows can affect attenuation tomography imaging at field scale.
Transitioning the Coda Methodology to Full 2-D for P and S Codas (Postprint)
2011-12-30
had great success at local and near-regional distances for simple regions, for crustal S transitioning to Lg coda types, and at longer distances for...coda. This effect was critical for yield estimation work and will be equally critical in other areas of low crustal Q and Lg blockage, such as Iran...for making a change to the methodology is quite simple. First, regions of monitoring interest are rarely tectonically simple, and in fact, most
NASA Astrophysics Data System (ADS)
Gillet, K.; Margerin, L.; Calvet, M.; Monnereau, M.
2017-01-01
We report measurements of the attenuation of short period seismic waves in the Moon based on the quantitative analysis of envelope records of lunar quakes. Our dataset consists of waveforms corresponding to 62 events, including artificial and natural impacts, shallow moonquakes and deep moonquakes, recorded by the four seismometers deployed during Apollo missions 12, 14, 15 and 16. To quantify attenuation and distinguish between elastic (scattering) and inelastic (absorption) mechanisms we measure the time of arrival of the maximum of energy tmax and the coda quality factor Qc . The former is controlled by both scattering and absorption, while the latter is an excellent proxy for absorption. Consistent with the strong broadening of seismogram envelopes in the Moon, we employ diffusion theory in spherical geometry to model the propagation of seismic energy in depth-dependent scattering and absorbing media. To minimize the misfit between predicted and observed tmax for deep moonquakes and impacts, we employ a genetic algorithm and explore a large number of depth-dependent attenuation models quantified by the scattering quality factor Qsc or equivalently the wave diffusivity D, and the absorption quality factor Qi . The scattering and absorption profiles that best fit the data display very strong scattering attenuation (Qsc ≤ 10) or equivalently very low wave diffusivity (D ≈ 2 km2/s) in the first 10 km of the Moon. These values correspond to the most heterogeneous regions on Earth, namely volcanic areas. Below this surficial layer, the diffusivity rises very slowly up to a depth of approximately 80 km where Qsc and D exhibit an abrupt increase of about one order of magnitude. Below 100 km depth, Qsc increases rapidly up to approximately 2000 at a depth of about 150 km, a value similar to the one found in the Earth's mantle. By contrast, the absorption quality factor on the Moon Qi ≈ 2400 is about one order or magnitude larger than on Earth. Our results suggest the existence of an approximately 100 km thick megaregolith, which is much larger than what was previously thought. The rapid decrease of scattering attenuation below this depth is compatible with crack healing through viscoelastic mechanisms. Using our best attenuation model, we invert for the depth of shallow moonquakes based on the observed variation of tmax with epicentral distance. On average, they are found to originate from a depth of about 50 km ± 20 km, which suggests that these earthquakes are caused by the failure of deep faults in the brittle part of the Moon.
Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field
NASA Astrophysics Data System (ADS)
King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio
2017-04-01
This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.
NASA Astrophysics Data System (ADS)
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (<1 s) seismograms are strongly affected by small-scale (<10 km) heterogeneities in the lithosphere. In general, short-period seismograms are analysed based on the statistical method by considering the interaction between seismic waves and randomly distributed small-scale heterogeneities. Statistical properties of the random heterogeneities have been estimated by analysing short-period seismograms. However, generally, the small-scale random heterogeneity is not taken into account for the modelling of long-period (>2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Coda Wave Attenuation Characteristics for North Anatolian Fault Zone, Turkey
NASA Astrophysics Data System (ADS)
Sertcelik, Fadime; Guleroglu, Mehmet
2017-10-01
North Anatolian Fault Zone, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda wave quality factor (Qc) for each of the five sub regionsthat were determined according to the fault rupture of these large earthquakes and along the fault. 978 records have been analyzed for 1.5, 3, 6, 9, 12 and 18 Hz frequencies by Single Backscattering Method. Along the fault, the variations in the Qc with lapse time are determined via, Qc = (136±25)f(0.96±0.027), Qc = (208±22)f(0.85±0.02) Qc = (307±28)f(0.72±0.025) at 20, 30, 40 sec lapse times, respectively. The estimated average frequency-dependence quality factor for all lapse time are; Qc(f) = (189±26)f(0.86±0.02) for Karliova-Tokat region; Qc(f) = (216±19)f(0.76±0.018) for Tokat-Çorum region; Qc(f) = (232±18)f(0.76±0.019) for Çorum-Adapazari region; Qc(f) = (280±28)f(0.79±0.021) for Adapazari-Yalova region; Qc(f) = (252±26)f(0.81±0.022) for Yalova-Gulf of Saros region. The coda wave quality factor at all the lapse times and frequencies is Qc(f) = (206±15)f(0.85±0.012) in the study area. The most change of Qc with lapse time is determined at Yalova-Saros region. The result may be related to heterogeneity degree of rapidly decreases towards the deep crust like compared to the other sub region. Moreover, the highest Qc is calculated between Adapazari - Yalova. It was interpreted as a result of seismic energy released by 1999 Kocaeli Earthquake. Besides, it couldn't be established a causal relationship between the regional variation of Qc with frequency and lapse time associated to migration of the big earthquakes. These results have been interpreted as the attenuation mechanism is affected by both regional heterogeneity and consist of a single or multi strands of the fault structure.
Continent-Wide Maps of Lg Coda Q Variation and Rayleigh-wave Attenuation Variation for Eurasia
2007-01-30
lithosphere and crustal strain lead us to infer that fluids, originating by hydrothermal release from subducting lithosphere or other upper mantle heat...relatively low Qo values in the Arabian Peninsula are produced by fluids that have been released in the upper mantle by hydrothermal processes and have...Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution, Geophys. J. Int., 132, 412–434. Talebian, M
Scattering - a probe to Earth's small scale structure
NASA Astrophysics Data System (ADS)
Rost, S.; Earle, P.
2009-05-01
Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
..., LLC dba CODA Forwarding, Great American Alliance Insurance Company, Avalon Risk Management, HAPAG... Logistics, LLC dba Coda Forwarding (Dacon); Great American Alliance Insurance Company; Avalon Risk Management; Hapag Lloyd America, Inc. (Hapag Lloyd); and Mitsui OSK Lines (Mitsui), hereinafter ``Respondents...
Dahan, Delphine
2016-01-01
We investigate the hypothesis that duration and spectral differences in vowels before voiceless versus voiced codas originate from a single source, namely the reorganization of articulatory gestures relative to one another in time. As a test case, we examine the American English diphthong /aɪ/, in which the acoustic manifestations of the nucleus /a/ and offglide /ɪ/ gestures are relatively easy to identify, and we use the ratio of nucleus-to-offglide duration as an index of the temporal distance between these gestures. Experiment 1 demonstrates that, in production, the ratio is smaller before voiceless codas than before voiced codas; this effect is consistent across speakers as well as changes in speech rate and phrasal position. Experiment 2 demonstrates that, in perception, diphthongs with contextually incongruent ratios delay listeners’ identification of target words containing voiceless codas, even when the other durational and spectral correlates of voicing remain intact. This, we argue, is evidence that listeners are sensitive to the gestural origins of voicing differences. Both sets of results support the idea that the voicing contrast triggers changes in timing: gestures are close to one another in time before voiceless codas, but separated from one another before voiced codas. PMID:26966337
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick
2017-04-01
Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an irreversible relative decrease in velocity of several percent associated with the presence of new thermal microcracks. Our data suggest that few new microcracks were formed when the same sample was subject to subsequent identical heating/cooling cycles as changes in the elastic wave velocity are near-reversible. Our results shed light on the temperature conditions required for thermal microcracking and the influence of temperature on elastic wave velocity with applications to a wide variety of geoscientific disciplines.
TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods
NASA Astrophysics Data System (ADS)
Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten
2017-04-01
The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible arrival to any part later in the seismic wave train. As an independent proxy of the scattering strength along the ray path, we measure the peak delay time of a direct P-wave, which is well correlated with the coda energy ratio. As a result the distribution of heterogeneities around Etna could be visualized as the projection of the observation in directions of incident rays at the stations. Increased seismic scattering could be detected in the volcano and east of it. The strong heterogeneous zone towards the east coast of Sicily supports earlier observations, and is interpreted as a potential signature of the eastward sliding volcano flank. Beside the investigation of P-wave scattering the new seismic tomography software PARTOS (Passive Active Ray Tomography Software) has been developed based on a joint inversion of active and passive seismic sources. With PARTOS real data inversion has been carried out using three different subsets: i) active data; ii) passive data; and iii) joint dataset, permitting to obtain a new tomographic approach of that region.
Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.
2005-12-01
Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.
The California Oak Disease and Arthropod (CODA) Database
Tedmund J. Swiecki; Elizabeth A. Bernhardt; Richard A. Arnold
1997-01-01
The California Oak Disease and Arthropod (CODA) host index database is a compilation of information on agents that colonize or feed on oaks in California. Agents in the database include plant-feeding insects and mites, nematodes, microorganisms, viruses, and abiotic disease agents. CODA contains summarized information on hosts, agents, information sources, and the...
The Spanish of Ponce, Puerto Rico: A Phonetic, Phonological, and Intonational Analysis
ERIC Educational Resources Information Center
Luna, Kenneth Vladimir
2010-01-01
This study investigates four aspects of Puerto Rican Spanish as represented in the Autonomous Municipality of Ponce: the behavior of coda /[alveolar flap]/, the behavior of /r/, the different realizations of coda /s/, and its intonational phonology. Previous studies on Puerto Rican Spanish report that coda /[alveolar flap]/ is normally realized as…
Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J
2017-11-01
The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, R E; Mayeda, K; Walter, W R
2008-07-08
The objectives of this study are to improve low-magnitude (concentrating on M2.5-5) regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge at small magnitudes (i.e., m{sub b}more » < {approx} 4.0) is poorly resolved, and source scaling remains a subject of on-going debate in the earthquake seismology community. Recently there have been a number of empirical studies suggesting scaling of micro-earthquakes is non-self-similar, yet there are an equal number of compelling studies that would suggest otherwise. It is not clear whether different studies obtain different results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods that both make use of empirical Green's function (EGF) earthquakes to remove path effects. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But finding well recorded earthquakes with 'perfect' EGF events for direct wave analysis is difficult, limits the number of earthquakes that can be studied. We begin with closely-located, well-correlated earthquakes. We use a multi-taper method to obtain time-domain source-time-functions by frequency division. We only accept an earthquake and EGF pair if they are able to produce a clear, time-domain source pulse. We fit the spectral ratios and perform a grid-search about the preferred parameters to ensure the fits are well constrained. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We analyze three clusters of aftershocks from the well-recorded sequence following the M5 Au Sable Forks, NY, earthquake to obtain some of the first accurate source parameters for small earthquakes in eastern North America. Each cluster contains a M{approx}2, and two contain M{approx}3, as well as smaller aftershocks. We find that the corner frequencies and stress drops are high (averaging 100 MPa) confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We also demonstrate that a scaling breakdown suggested by earlier work is simply an artifact of their more band-limited data. We calculate radiated energy, and find that the ratio of Energy to seismic Moment is also high, around 10{sup -4}. We estimate source parameters for the M5 mainshock using similar methods, but our results are more doubtful because we do not have a EGF event that meets our preferred criteria. The stress drop and energy/moment ratio for the mainshock are slightly higher than for the aftershocks. Our improved, and simplified coda wave analysis method uses spectral ratios (as for the direct waves) but relies on the averaging nature of the coda waves to use EGF events that do not meet the strict criteria of similarity required for the direct wave analysis. We have applied the coda wave spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks, and also to several sequences in Italy with M{approx}6 mainshocks. The Italian earthquakes have higher stress drops than the Hector Mine sequence, but lower than Au Sable Forks. These results show a departure from self-similarity, consistent with previous studies using similar regional datasets. The larger earthquakes have higher stress drops and energy/moment ratios. We perform a preliminary comparison of the two methods using the M5 Au Sable Forks earthquake. Both methods give very consistent results, and we are applying the comparison to further events.« less
NASA Astrophysics Data System (ADS)
Takemura, Shunsuke; Maeda, Takuto; Furumura, Takashi; Obara, Kazushige
2016-05-01
In this study, the source location of the 30 May 2015 (Mw 7.9) deep-focus Bonin earthquake was constrained using P wave seismograms recorded across Japan. We focus on propagation characteristics of high-frequency P wave. Deep-focus intraslab earthquakes typically show spindle-shaped seismogram envelopes with peak delays of several seconds and subsequent long-duration coda waves; however, both the main shock and aftershock of the 2015 Bonin event exhibited pulse-like P wave propagations with high apparent velocities (~12.2 km/s). Such P wave propagation features were reproduced by finite-difference method simulations of seismic wave propagation in the case of slab-bottom source. The pulse-like P wave seismogram envelopes observed from the 2015 Bonin earthquake show that its source was located at the bottom of the Pacific slab at a depth of ~680 km, rather than within its middle or upper regions.
NASA Astrophysics Data System (ADS)
Schmidt, J. P.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.
2017-12-01
The Socorro Magma Body (SMB) is a thin, sill-like intrusion with a top at 19 km depth covering approximately 3400 km2 within the Rio Grande Rift. InSAR studies show crustal uplift patterns linked to SMB inflation with deformation rates of 2.5 mm/yr in the area of maximum uplift with some peripheral subsidence. Our understanding of the emplacement history and shallow structure above the SMB is limited. We use a large seismic deployment to explore seismicity and crustal attenuation in the SMB region, focusing on the area of highest observed uplift to investigate the possible existence of fluid/magma in the upper crust. We would expect to see shallower earthquakes and/or higher attenuation if high heat flow, fluid or magma is present in the upper crust. Over 800 short period vertical component geophones situated above the northern portion of the SMB were deployed for two weeks in 2015. This data is combined with other broadband and short period seismic stations to detect and locate earthquakes as well as to estimate seismic attenuation. We use phase arrivals from the full dataset to relocate a set of 33 local/regional earthquakes recorded during the deployment. We also measure amplitude decay after the S-wave arrival to estimate coda attenuation caused by scattering of seismic waves and anelastic processes. Coda attenuation is estimated using the single backscatter method described by Aki and Chouet (1975), filtering the seismograms at 6, 9 and 12 Hz center frequencies. Earthquakes occurred at 2-13 km depth during the deployment, but no spatial patterns linked with the high uplift region were observed over this short duration. Attenuation results for this deployment suggest Q ranging in values of 130 to 2000, averaging around Q of 290, comparable to Q estimates of other studies of the western US. With our dense station coverage, we explore attenuation over smaller scales, and find higher attenuation for stations in the area of maximum uplift relative to stations outside of the maximum uplift, which could indicate upper crustal heterogeneities with shallow process above the magma body in this area.
Coda Q and its Frequency Dependence in the Eastern Himalayan and Indo-Burman Plate Boundary Systems
NASA Astrophysics Data System (ADS)
Mitra, S.; Kumar, A.
2015-12-01
We use broadband waveform data for 305 local earthquakes from the Eastern Himalayan and Indo-Burman plate boundary systems, to model the seismic attenuation in NE India. We measure the decay in amplitude of coda waves at discreet frequencies (between 1 and 12Hz) to evaluate the quality factor (Qc) as a function of frequency. We combine these measurements to evaluate the frequency dependence of Qc of the form Qc(f)=Qof η, where Qo is the quality factor at 1Hz and η is the frequency dependence. Computed Qo values range from 80-360 and η ranges from 0.85-1.45. To study the lateral variation in Qo and η, we regionalise the Qc by combining all source-receiver measurements using a back-projection algorithm. For a single back scatter model, the coda waves sample an elliptical area with the epicenter and receiver at the two foci. We parameterize the region using square grids. The algorithm calculates the overlap in area and distributes Qc in the sampled grids using the average Qc as the boundary value. This is done in an iterative manner, by minimising the misfit between the observed and computed Qc within each grid. This process is repeated for all frequencies and η is computed for each grid by combining Qc for all frequencies. Our results reveal strong variation in Qo and η across NE India. The highest Qo are in the Bengal Basin (210-280) and the Indo-Burman subduction zone (300-360). The Shillong Plateau and Mikir Hills have intermediate Qo (~160) and the lowest Qo (~80) is observed in the Naga fold thrust belt. This variation in Qo demarcates the boundary between the continental crust beneath the Shillong Plateau and Mikir Hills and the transitional to oceanic crust beneath the Bengal Basin and Indo-Burman subduction zone. Thick pile of sedimentary strata in the Naga fold thrust belt results in the low Qo. Frequency dependence (η) of Qc across NE India is observed to be very high, with regions of high Qo being associated with relatively higher η.
Acquisition of Codas in Spanish as a First Language: The Role of Accuracy, Markedness and Frequency
ERIC Educational Resources Information Center
Polo, Nuria
2018-01-01
Studies on the acquisition of Spanish as a first language do not agree on the patterns and factors relevant for coda development. In order to shed light on the questions involved, a longitudinal study of coda development in Northern European Spanish was carried out to explore the relationship between accuracy, markedness and frequency. The study…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S R; Dreger, D S; Phillips, W S
2008-07-16
Inversions for regional attenuation (1/Q) of Lg are performed in two different regions. The path attenuation component of the Lg spectrum is isolated using the coda-source normalization method, which corrects the Lg spectral amplitude for the source using the stable, coda-derived source spectra. Tomographic images of Northern California agree well with one-dimensional (1-D) Lg Q estimated from five different methods. We note there is some tendency for tomographic smoothing to increase Q relative to targeted 1-D methods. For example in the San Francisco Bay Area, which contains high attenuation relative to the rest of it's region, Q is over-estimated bymore » {approx}30. Coda-source normalized attenuation tomography is also carried out for the Yellow Sea/Korean Peninsula (YSKP) where output parameters (site, source, and path terms) are compared with those from the amplitude tomography method of Phillips et al. (2005) as well as a new method that ties the source term to the MDAC formulation (Walter and Taylor, 2001). The source terms show similar scatter between coda-source corrected and MDAC source perturbation methods, whereas the amplitude method has the greatest correlation with estimated true source magnitude. The coda-source better represents the source spectra compared to the estimated magnitude and could be the cause of the scatter. The similarity in the source terms between the coda-source and MDAC-linked methods shows that the latter method may approximate the effect of the former, and therefore could be useful in regions without coda-derived sources. The site terms from the MDAC-linked method correlate slightly with global Vs30 measurements. While the coda-source and amplitude ratio methods do not correlate with Vs30 measurements, they do correlate with one another, which provides confidence that the two methods are consistent. The path Q{sup -1} values are very similar between the coda-source and amplitude ratio methods except for small differences in the Da-xin-anling Mountains, in the northern YSKP. However there is one large difference between the MDAC-linked method and the others in the region near stations TJN and INCN, which point to site-effect as the cause for the difference.« less
Inner core boundary topography explored with reflected and diffracted P waves
NASA Astrophysics Data System (ADS)
deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai
2018-03-01
The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.
Time reversal seismic imaging using laterally reflected surface waves in southern California
NASA Astrophysics Data System (ADS)
Tape, C.; Liu, Q.; Tromp, J.; Plesch, A.; Shaw, J. H.
2010-12-01
We use observed post-surface-wave seismic waveforms to image shallow (upper 10 km) lateral reflectors in southern California. Our imaging technique employs the 3D crustal model m16 of Tape et al. (2009), which is accurate for most local earthquakes over the period range 2-30 s. Model m16 captures the resonance of the major sedimentary basins in southern California, as well as some lateral surface wave reflections associated with these basins. We apply a 3D Gaussian smoothing function (12 km horizontal, 2 km vertical) to model m16. This smoothing has the effect of suppressing synthetic waveforms within the period range of interest (3-10 s) that are associated with reflections (single and multiple) from these basins. The smoothed 3D model serves as the background model within which we propagate an ``adjoint wavefield'' comprised of time-reversed windows of post-surface-wave coda waveforms that are initiated at the respective station locations. This adjoint wavefield constructively interferes with the regular wavefield in the locations of potential reflectors. The potential reflectors are revealed in an ``event kernel,'' which is the time-integrated volumetric field for each earthquake. By summing (or ``stacking'') the event kernels from 28 well-recorded earthquakes, we identify several reflectors using this imaging procedure. The most prominent lateral reflectors occur in proximity to: the southernmost San Joaquin basin, the Los Angeles basin, the San Pedro basin, the Ventura basin, the Manix basin, the San Clemente--Santa Cruz--Santa Barbara ridge, and isolated segments of the San Jacinto and San Andreas faults. The correspondence between observed coherent coda waveforms and the imaged reflectors provides a solid basis for interpreting the kernel features as material contrasts. The 3D spatial extent and amplitude of the kernel features provide constraints on the geometry and material contrast of the imaged reflectors.
NASA Astrophysics Data System (ADS)
Fan, Wenyuan; Shearer, Peter M.
2018-04-01
Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.
NASA Astrophysics Data System (ADS)
Spica, Z. J.; Perton, M.; Calo, M.; Cordoba-Montiel, F.; Legrand, D.; Iglesias, A.
2015-12-01
Standard application of the seismic ambient noise tomography considers the existence of synchronous records at stations for green's functions retrieval. More recent theoretical and experimental observations showed the possibility to apply correlation of coda of noise correlation (C3) to obtain green's functions between stations of asynchronous seismic networks making possible to dramatically increase databases for imagining the Earth's interior. However, this possibility has not been fully exploited yet, and right now the data C3 are not included into tomographic inversions to refine seismic structures. Here we show for the first time how to incorporate the data of C1 and C3 to calculate dispersion maps of Rayleigh waves in the range period of 10-120s, and how the merging of these datasets improves the resolution of the structures imaged. Tomographic images are obtained for an area covering Mexico, the Gulf of Mexico and the southern U.S. We show dispersion maps calculated using both data of C1 and the complete dataset (C1+C3). The latter provide new details of the seismic structure of the region allowing a better understanding of their role on the geodynamics of the study area. The resolving power obtained in our study is several times higher than in previous studies based on ambient noise. This demonstrates the new possibilities for imaging the Earth's crust and upper mantle using this enlarged database.
Regional variation of coda Q in Kopili fault zone of northeast India and its implications
NASA Astrophysics Data System (ADS)
Bora, Nilutpal; Biswas, Rajib; Dobrynina, Anna A.
2018-01-01
Kopili fault has been experiencing higher seismic and tectonic activity during the recent years. These kind of active tectonics can be inspected by examining coda-wave attenuation and its dependence with frequency. Exploiting single back-scattering model, we have endeavored to measure coda Q and its associated parameters such as frequency dependent factor (n) and attenuation coefficient (γ) covering seven lapse-time windows spanning from 30 to 90 s and central frequencies 1.5, 3.5, 6, 9 and 12 Hz. The average estimated values of QC increases with frequency and lapse time window from 114 at frequency 1.5 Hz to 1563 at frequency 12 Hz for 30 s window length, and from 305 at frequency 1.5 Hz to 2135 at frequency 12 Hz for 90 s window length. The values of Q0 and n are also estimated for the entire Kopili fault zone. For this study region, the Q0 values vary from 62 to 348 and n varies from 0.57 to 1.51 within the frequency range 1.5 to 12 Hz. Furthermore, depth variation of attenuation of this region reveals that there is velocity anomaly at depth 210-220 km as there arises sharp changes in γ and n which are supported by available data, reported by other researcher for this region. Finally, we have tried to separate the intrinsic and scattering attenuation for this area. It is observed that the entire region is dominated by mainly scattering attenuation, but we can see an increase in intrinsic attenuation with depths in two stations namely TZR and BKD. Furthermore, the obtained results are comparable with the available global data.
Variation of coda wave attenuation in the Alborz region and central Iran
NASA Astrophysics Data System (ADS)
Rahimi, H.; Motaghi, K.; Mukhopadhyay, S.; Hamzehloo, H.
2010-06-01
More than 340 earthquakes recorded by the Institute of Geophysics, University of Tehran (IGUT) short period stations from 1996 to 2004 were analysed to estimate the S-coda attenuation in the Alborz region, the northern part of the Alpine-Himalayan orogen in western Asia, and in central Iran, which is the foreland of this orogen. The coda quality factor, Qc, was estimated using the single backscattering model in frequency bands of 1-25 Hz. In this research, lateral and depth variation of Qc in the Alborz region and central Iran are studied. It is observed that in the Alborz region there is absence of significant lateral variation in Qc. The average frequency relation for this region is Qc = 79 +/- 2f1.07+/-0.08. Two anomalous high-attenuation areas in central Iran are recognized around the stations LAS and RAZ. The average frequency relation for central Iran excluding the values of these two stations is Qc = 94 +/- 2f0.97+/-0.12. To investigate the attenuation variation with depth, Qc value was calculated for 14 lapse times (25, 30, 35,... 90s) for two data sets having epicentral distance range R < 100 km (data set 1) and 100 < R < 200 km (data set 2) in each area. It is observed that Qc increases with depth. However, the rate of increase of Qc with depth is not uniform in our study area. Beneath central Iran the rate of increase of Qc is greater at depths less than 100 km compared to that at larger depths indicating the existence of a high attenuation anomalous structure under the lithosphere of central Iran. In addition, below ~180 km, the Qc value does not vary much with depth under both study areas, indicating the presence of a transparent mantle under them.
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke; Saito, Tatsuhiko; Urata, Yumi; Asano, Youichi; Hasegawa, Akira
2017-12-01
In this study, we investigated temporal variations in stress drop and b-value in the earthquake swarm that occurred at the Yamagata-Fukushima border, NE Japan, after the 2011 Tohoku-Oki earthquake. In this swarm, frictional strengths were estimated to have changed with time due to fluid diffusion. We first estimated the source spectra for 1,800 earthquakes with 2.0 ≤ MJMA < 3.0, by correcting the site-amplification and attenuation effects determined using both S waves and coda waves. We then determined corner frequency assuming the omega-square model and estimated stress drop for 1,693 earthquakes. We found that the estimated stress drops tended to have values of 1-4 MPa and that stress drops significantly changed with time. In particular, the estimated stress drops were very small at the beginning, and increased with time for 50 days. Similar temporal changes were obtained for b-value; the b-value was very high (b 2) at the beginning, and decreased with time, becoming approximately constant (b 1) after 50 days. Patterns of temporal changes in stress drop and b-value were similar to the patterns for frictional strength and earthquake occurrence rate, suggesting that the change in frictional strength due to migrating fluid not only triggered the swarm activity but also affected earthquake and seismicity characteristics. The estimated high Q-1 value, as well as the hypocenter migration, supports the presence of fluid, and its role in the generation and physical characteristics of the swarm.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wei, S.; Wu, W.; Ni, S.
2017-12-01
Among various types of 3D heterogeneity in the Earth, trench might be the most complex systems, which includes rapidly varying bathymetry and usually thick sediment below water layer. These structure complexities can cause substantial waveform complexities on seismograms, but their corresponding impact on the earthquake source studies has not yet been well understood. Here we explore those effects via studies of two moderate aftershocks (one near the coast while the other close to the Peru-Chile trench axis) in the 2015 Illapel earthquake sequence. The horizontal locations and depths of these two events are poorly constrained and the reported results of various agencies display substantial variations. Thus, we first relocated the epicenters using the P-wave first arrivals and determined other parameters by waveform fitting. In a jackknifing way, we found that the trench event has large differences between regional and teleseismic solutions, in particular for depth, while the coastal event shows consistent results. The teleseismic P/Pdiff waves between these two events also display distinctly different features. More specifically, the trench event has more complex P/Pdiff waves and stronger coda waves, in terms of amplitude and duration (longer than 100s). The coda waves are coherent across stations at different distances and azimuths, indicating a more likely origin of scattering waves due to 3D heterogeneity near trench. To quantitatively model those 3D effects, we adopted a hybrid waveform simulation approach that computes the 3D wavefield in the source region by the Spectral Element Method (SEM) and then propagates the wavefield to teleseismic and shadow zone distances through the Direct Solution Method (DSM). We incorporated the GEBCO bathymetry and water layer into the SEM simulations and assumed the IASP91 1D model for DSM computation. Comparing with the poor 1D synthetics fitting to the data, we do obtain dramatic improvement in 3D waveform fittings across a series of frequency bands. With sensitivity tests of 3D waveform modeling, the centroid longitude and depth for the near trench event are refined. Our study suggests that the complex trench structure must be taken into account for a reliable analysis of shallow earthquake near trench, in particular for the shallowest tsunamigenic earthquakes.
Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Sarah; Bowman, Daniel; Rodgers, Arthur
2017-07-01
We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest thatmore » future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.« less
2D Variations in Coda Amplitudes in the Middle East
Pasyanos, Michael E.; Gok, Rengin; Walter, William R.
2016-08-16
Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.
2008-09-01
method correlate slightly with global Vs30 measurements . While the coda-source and amplitude ratio methods do not correlate with Vs30 measurements ...Ford et al., 2008), we compared 1-D methods to measure QLg and attempted to assess the error associated with the results. The assessment showed the...reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg
2D Variations in Coda Amplitudes in the Middle East
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, Michael E.; Gok, Rengin; Walter, William R.
Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.
NASA Astrophysics Data System (ADS)
Singh, Sagar; Singh, Chandrani; Biswas, Rahul; Mukhopadhyay, Sagarika; Sahu, Himanshu
2016-08-01
Attenuation characteristics of the crust in the eastern Himalaya and the southern Tibetan Plateau are investigated using high quality data recorded by Himalayan Nepal Tibet Seismic Experiment (HIMNT) during 2001-2003. The present study aims to provide an attenuation model that can address the physical mechanism governing the attenuation characteristics in the underlying medium. We have studied the Coda wave attenuation (Qc) in the single isotropic scattering model hypothesis, S wave attenuation (Qs) by using the coda normalization method and intrinsic (Qi-1) and scattering (Qsc-1) quality factors by the multiple Lapse Time Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering in a 3-D half space within the frequency range 2-12 Hz. All the values of Q exhibit frequency dependent nature for a seismically active area. At all the frequencies intrinsic absorption is predominant compared to scattering attenuation and seismic albedo (B0) are found to be lower than 0.5. The observed discrepancies between the observed and theoretical models can be corroborated by the depth-dependent velocity and attenuation structure as well as the assumption of a uniform distribution of scatterers. Our results correlate well with the existing geo-tectonic model of the area, which may suggest the possible existence of trapped fluids in the crust or its thermal nature. Surprisingly the underlying cause of high attenuation in the crust of eastern Himalaya and southern Tibet makes this region distinct from its adjacent western Himalayan segment. The results are comparable with the other regions reported globally.
Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano
NASA Astrophysics Data System (ADS)
Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.
2013-12-01
Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.
Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.
2014-01-01
In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.
The global short-period wavefield modelled with a Monte Carlo seismic phonon method
Shearer, Peter M.; Earle, Paul
2004-01-01
At high frequencies (∼1 Hz), much of the seismic energy arriving at teleseismic distances is not found in the main phases (e.g. P, PP, S, etc.) but is contained in the extended coda that follows these arrivals. This coda results from scattering off small-scale velocity and density perturbations within the crust and mantle and contains valuable information regarding the depth dependence and strength of this heterogeneity as well as the relative importance of intrinsic versus scattering attenuation. Most analyses of seismic coda to date have concentrated on S-wave coda generated from lithospheric scattering for events recorded at local and regional distances. Here, we examine the globally averaged vertical-component, 1-Hz wavefield (>10° range) for earthquakes recorded in the IRIS FARM archive from 1990 to 1999. We apply an envelope-function stacking technique to image the average time–distance behavior of the wavefield for both shallow (≤50 km) and deep (≥500 km) earthquakes. Unlike regional records, our images are dominated by P and P coda owing to the large effect of attenuation on PPand S at high frequencies. Modelling our results is complicated by the need to include a variety of ray paths, the likely contributions of multiple scattering and the possible importance of P-to-S and S-to-P scattering. We adopt a stochastic, particle-based approach in which millions of seismic phonons are randomly sprayed from the source and tracked through the Earth. Each phonon represents an energy packet that travels along the appropriate ray path until it is affected by a discontinuity or a scatterer. Discontinuities are modelled by treating the energy normalized reflection and transmission coefficients as probabilities. Scattering probabilities and scattering angles are computed in a similar fashion, assuming random velocity and density perturbations characterized by an exponential autocorrelation function. Intrinsic attenuation is included by reducing the energy contained in each particle as an appropriate function of traveltime. We find that most scattering occurs in the lithosphere and upper mantle, as previous results have indicated, but that some lower-mantle scattering is likely also required. A model with 3 to 4 per cent rms velocity heterogeneity at 4-km scale length in the upper mantle and 0.5 per cent rms velocity heterogeneity at 8-km scale length in the lower mantle (with intrinsic attenuation of Qα= 450 above 200 km depth andQα= 2500 below 200 km) provides a reasonable fit to both the shallow- and deep-earthquake observations, although many trade-offs exist between the scale length, depth extent and strength of the heterogeneity.
NASA Astrophysics Data System (ADS)
Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.
2012-12-01
After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by National Research Institute for Earth Science and Disaster Prevention Japan. This study is supported by Multidisciplinary research project for Niigata-Kobe tectonic zone promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
A model of seismic coda arrivals to suppress spurious events.
NASA Astrophysics Data System (ADS)
Arora, N.; Russell, S.
2012-04-01
We describe a model of coda arrivals which has been added to NET-VISA (Network processing Vertically Integrated Seismic Analysis) our probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. The scattered energy that follows a seismic phase arrival tends to deceive typical STA/LTA based arrival picking software into believing that a real seismic phase has been detected. These coda arrivals which tend to follow all seismic phases cause most network processing software including NET-VISA to believe that multiple events have taken place. It is not a simple matter of ignoring closely spaced arrivals since arrivals from multiple events can indeed overlap. The current practice in NET-VISA of pruning events within a small space-time neighborhood of a larger event works reasonably well, but it may mask real events produced in an after-shock sequence. Our new model allows any seismic arrival, even coda arrivals, to trigger a subsequent coda arrival. The probability of such a triggered arrival depends on the amplitude of the triggering arrival. Although real seismic phases are more likely to generate such coda arrivals. Real seismic phases also tend to generate coda arrivals with more strongly correlated parameters, for example azimuth and slowness. However, the SNR (Signal to Noise Ratio) of a coda arrival immediately following a phase arrival tends to be lower because of the nature of the SNR calculation. We have calibrated our model on historical statistics of such triggered arrivals and our inference accounts for them while searching for the best explanation of seismic events their association to the arrivals and the coda arrivals. We have tested our new model on one week of global seismic data spanning March 22, 2009 to March 29, 2009. Our model was trained on two and half months of data from April 5, 2009 to June 20, 2009. We use the LEB bulletin produced by the IDC (International Data Center) as the ground truth and computed the precision (percentage of reported events which are true) and recall (percentage of true events which are reported). The existing model has a precision of 32.2 and recall of 88.6 which changes to a precision of 50.7 and recall of 88.5 after pruning. The new model has a precision of 56.8 and recall of 86.9 without any pruning and the corresponding precision recall curve is dramatically improved. In contrast, the performance of the current automated bulletin at the IDC, SEL3, has a precision of 46.2 and recall of 69.7.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Nishida, K.; Takeda, T.
2012-12-01
Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the logarithm of the lapse time. At some stations, the estimated P-wave velocity also shows co-seismic velocity decrease and subsequent gradual recovery. However, the magnitude of estimated P-wave velocity change is much smaller than that of S-wave, and at the other stations, the magnitude of P-wave velocity change is smaller than the resolution of our analysis. Using the CCFs computed from horizontal components, we also determine the seismic anisotropy in subsurface structure, and examine its temporal change. The estimated strength of anisotropy strength shows co-seismic increase at most of stations where co-seismic velocity change is detected. Nevertheless, the direction of anisotropy after the 2011 Tohoku earthquake stays about the same as before. These results suggest that, in addition to the change in pore pressure and corresponding decrease in the rigidity, the change in the aspect ratio of pre-existing subsurface fractures/micro-crack may be another key mechanism causing the co-seismic velocity change in shallow subsurface structures.
Effects of Word Position on the Acoustic Realization of Vietnamese Final Consonants.
Tran, Thi Thuy Hien; Vallée, Nathalie; Granjon, Lionel
2018-05-28
A variety of studies have shown differences between phonetic features of consonants according to their prosodic and/or syllable (onset vs. coda) positions. However, differences are not always found, and interactions between the various factors involved are complex and not well understood. Our study compares acoustical characteristics of coda consonants in Vietnamese taking into account their position within words. Traditionally described as monosyllabic, Vietnamese is partially polysyllabic at the lexical level. In this language, tautosyllabic consonant sequences are prohibited, and adjacent consonants are only found at syllable boundaries either within polysyllabic words (CVC.CVC) or across monosyllabic words (CVC#CVC). This study is designed to examine whether or not syllable boundary types (interword vs. intraword) have an effect on the acoustic realization of codas. The results show significant acoustic differences in consonant realizations according to syllable boundary type, suggesting different coarticulation patterns between nuclei and codas. In addition, as Vietnamese voiceless stops are generally unreleased in coda position, with no burst to carry consonantal information, our results show that a vowel's second half contains acoustic cues which are available to aid in the discrimination of place of articulation of the vowel's following consonant. © 2018 S. Karger AG, Basel.
Perception of English palatal codas by Korean speakers of English
NASA Astrophysics Data System (ADS)
Yeon, Sang-Hee
2003-04-01
This study aimed at looking at perception of English palatal codas by Korean speakers of English to determine if perception problems are the source of production problems. In particular, first, this study looked at the possible first language effect on the perception of English palatal codas. Second, a possible perceptual source of vowel epenthesis after English palatal codas was investigated. In addition, individual factors, such as length of residence, TOEFL score, gender and academic status, were compared to determine if those affected the varying degree of the perception accuracy. Eleven adult Korean speakers of English as well as three native speakers of English participated in the study. Three sets of a perception test including identification of minimally different English pseudo- or real words were carried out. The results showed that, first, the Korean speakers perceived the English codas significantly worse than the Americans. Second, the study supported the idea that Koreans perceived an extra /i/ after the final affricates due to final release. Finally, none of the individual factors explained the varying degree of the perceptional accuracy. In particular, TOEFL scores and the perception test scores did not have any statistically significant association.
Children's Acquisition of English Onset and Coda /l/: Articulatory Evidence
Demuth, Katherine
2015-01-01
Purpose The goal of this study was to better understand how and when onset /l/ (leap) and coda /l/ (peel) are acquired by children by examining both the articulations involved and adults' perceptions of the produced segments. Method Twenty-five typically developing Australian English–speaking children aged 3;0 (years;months) to 7;11 participated in an elicited imitation task, during which audio, video, and lingual ultrasound images were collected. Transcribers perceptually rated audio, whereas video and ultrasound images were visually examined for the presence of adult-like articulations. Results Data from this study establish that for Australian English–learning children, coda /l/s are acquired later than onset /l/s, and older children produce greater proportions of adultlike /l/s in both onset and coda positions, roughly following established norms for American English–speaking children. However, although perceptibility of coda /l/s was correlated with their articulations, onset /l/s were nearly uniformly perceived as adultlike despite substantial variation in the articulations used to produce them. Conclusions The disparity in the production and perception of children's singleton onset /l/s is linked to both physiological and phonological development. Suggestions are made for future research to tease these factors apart. PMID:25321384
Identifying individual sperm whales acoustically using self-organizing maps
NASA Astrophysics Data System (ADS)
Ioup, Juliette W.; Ioup, George E.
2005-09-01
The Littoral Acoustic Demonstration Center (LADC) is a consortium at Stennis Space Center comprising the University of New Orleans, the University of Southern Mississippi, the Naval Research Laboratory, and the University of Louisiana at Lafayette. LADC deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summer of 2001 to study ambient noise and marine mammals. Each LADC EARS was an autonomous, self-recording buoy capable of 36 days of continuous recording of a single channel at an 11.7-kHz sampling rate (bandwidth to 5859 Hz). The hydrophone selected for this analysis was approximately 50 m from the bottom in a water depth of 800 m on the continental slope off the Mississippi River delta. This paper contains recent analysis results for sperm whale codas recorded during a 3-min period. Results are presented for the identification of individual sperm whales from their codas, using the acoustic properties of the clicks within each coda. The recorded time series, the Fourier transform magnitude, and the wavelet transform coefficients are each used separately with a self-organizing map procedure for 43 codas. All show the codas as coming from four or five individual whales. [Research supported by ONR.
NASA Astrophysics Data System (ADS)
Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.
2018-05-01
We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.
NASA Astrophysics Data System (ADS)
Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner
2017-04-01
We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in terms of near-receiver P-SH converted energy due to 3D effects. Those particular coda waves, however, do exhibit a large variability in the rotation/acceleration ratio, as a likely consequence of differences in the wavepath and/or source mechanism.
The reionization times of z=0 galaxies
NASA Astrophysics Data System (ADS)
Aubert, Dominique
2018-05-01
We study the inhomogeneity of the reionization process by comparing the reionization times of z = 0 galaxies as a function of their mass. For this purpose, we combine the results of the CODA-I AMR radiative hydrodynamics simulation of the Reionization with the halo merger trees of a pure dark matter tree-code z = 0 simulation evolved from the same set of initial conditions. We find that galaxies with M(z = 0) > 1011M⊙ are reionized earlier than the whole Universe, with e.g. MW-like haloes reionized between 100 and 300 million years before the diffuse IGM. Lighter galaxies reionized as late as the global volume, probably from external radiation.
A Study of Regional Wave Source Time Functions of Central Asian Earthquakes
NASA Astrophysics Data System (ADS)
Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.
2014-12-01
Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.
Chapter 3 – Phenomenology of Tsunamis: Statistical Properties from Generation to Runup
Geist, Eric L.
2015-01-01
Observations related to tsunami generation, propagation, and runup are reviewed and described in a phenomenological framework. In the three coastal regimes considered (near-field broadside, near-field oblique, and far field), the observed maximum wave amplitude is associated with different parts of the tsunami wavefield. The maximum amplitude in the near-field broadside regime is most often associated with the direct arrival from the source, whereas in the near-field oblique regime, the maximum amplitude is most often associated with the propagation of edge waves. In the far field, the maximum amplitude is most often caused by the interaction of the tsunami coda that develops during basin-wide propagation and the nearshore response, including the excitation of edge waves, shelf modes, and resonance. Statistical distributions that describe tsunami observations are also reviewed, both in terms of spatial distributions, such as coseismic slip on the fault plane and near-field runup, and temporal distributions, such as wave amplitudes in the far field. In each case, fundamental theories of tsunami physics are heuristically used to explain the observations.
A resource management tool for public health continuity of operations during disasters.
Turner, Anne M; Reeder, Blaine; Wallace, James C
2013-04-01
We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design's usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles.
A Resource Management Tool for Public Health Continuity of Operations During Disasters
Turner, Anne M.; Reeder, Blaine; Wallace, James C.
2014-01-01
Objective We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. Methods The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Results Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design’s usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Conclusions Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles. PMID:24618165
Morin, Aline; Ocanto, Romer; Drukteinis, Lesbia; Hardigan, Patrick C
2016-10-15
The purposes of this study were to: (1) describe the sedation protocols of postgraduate pediatric dentistry programs (PPDPs) in the U.S.; (2) evaluate how consistent they were with current American Academy of Pediatric Dentistry sedation guidelines and Commission on Dental Accreditation (CODA) sedation curriculum requirements; (3) identify barriers to and tools for implementing these guidelines; and (4) determine the independent association between PPDPs' adherence to guidelines and the program setting. In February 2015, a 40-item questionnaire was e-mailed to all postgraduate pediatric dentistry program directors (PPDPDs) of CODA-accredited programs in the U.S. (n equals 74). Data were analyzed using descriptive statistics and Kruskal-Wallis and pairwise Nemenyi tests. Fifty-two PPDPDs responded (70 percent). Since the 2013 change in CODA sedation requirements, only a limited number of PPDPs (36 percent) were found to be noncompliant with CODA standards. PPDPDs trained at hospital-based programs were found to direct programs that were more compliant with CODA sedation standards (P<.05). A major perceived barrier to increasing the number of sedation cases was the lack of a patient pool (37 percent). Further efforts should be made by teaching institutions for programs to be compliant with American Academy of Pediatric Dentistry and Commission on Dental Accreditation sedation standards.
Lithospheric structure of the southern French Alps inferred from broadband analysis
NASA Astrophysics Data System (ADS)
Bertrand, E.; Deschamps, A.
2000-11-01
Broadband receiver functions analysis is commonly used to evaluate the fine-scale S-velocity structure of the lithosphere. We analyse teleseismic P-waves and their coda from 30 selected teleseismic events recorded at three seismological stations of to the French TGRS network in the Alpes Maritimes. Receiver functions are computed in the time domain using an SVD matrix inversion method. Dipping Moho and lateral heterogeneities beneath the array are inferred from the amplitude, arrival time and polarity of locally-generated PS phases. We propose that the Moho dips 11° towards 25°±10°N below station CALF, in the outer part of the Alpine belt. At this station, we determine a Moho depth of about 20±2 km; the same depth is suggested below SAOF station also located in the fold-trust belt. Beneath station STET located in the inner part of the Alpine belt, the Moho depth increases to 30 km and dips towards the N-NW. Moreover, 1D-modelling of summed receiver function from STET station constrains a crustal structure significantly different from that observed at stations located in the outer part of the Alps. Indeed, beneath CALF and SAOF stations we need a 2 km thick shallow low velocity layer to fit best the observed receiver functions whereas this layer seems not to be present beneath STET station. Because recent P-coda studies have shown that near-receiver scattering can dominate teleseismic P-wave recordings in tectonically complicated areas, we account for effect of scattering energy in our records from array measurements. As the array aperture is wide relative to the heterogeneity scale length in the area, the array analysis produces only smooth imaging of scatterers beneath the stations.
Petersen, Tanja; De Angelis, Silvio; Tytgat, Guy; McNutt, Stephen R.
2006-01-01
We present and interpret acoustic waveforms associated with a sequence of large explosion events that occurred during the initial stages of the 2006 eruption of Augustine Volcano, Alaska. During January 11–28, 2006, 13 large explosion events created ash-rich plumes that reached up to 14 km a.s.l., and generated atmospheric pressure waves that were recorded on scale by a microphone located at a distance of 3.2 km from the active vent. The variety of recorded waveforms included sharp N-shaped waves with durations of a few seconds, impulsive signals followed by complex codas, and extended signals with emergent character and durations up to minutes. Peak amplitudes varied between 14 and 105 Pa; inferred acoustic energies ranged between 2×108 and 4×109 J. A simple N-shaped short-duration signal recorded on January 11, 2006 was associated with the vent-opening blast that marked the beginning of the explosive eruption sequence. During the following days, waveforms with impulsive onsets and extended codas accompanied the eruptive activity, which was characterized by explosion events that generated large ash clouds and pyroclastic flows along the flanks of the volcano. Continuous acoustic waveforms that lacked a clear onset were more common during this period. On January 28, 2006, the occurrence of four large explosion events marked the end of this explosive eruption phase at Augustine Volcano. After a transitional period of about two days, characterized by many small discrete bursts, the eruption changed into a stage of more sustained and less explosive activity accompanied by the renewed growth of a summit lava dome.
Moon meteoritic seismic hum: Steady state prediction
Lognonne, P.; Feuvre, M.L.; Johnson, C.L.; Weber, R.C.
2009-01-01
We use three different statistical models describing the frequency of meteoroid impacts on Earth to estimate the seismic background noise due to impacts on the lunar surface. Because of diffraction, seismic events on the Moon are typically characterized by long codas, lasting 1 h or more. We find that the small but frequent impacts generate seismic signals whose codas overlap in time, resulting in a permanent seismic noise that we term the "lunar hum" by analogy with the Earth's continuous seismic background seismic hum. We find that the Apollo era impact detection rates and amplitudes are well explained by a model that parameterizes (1) the net seismic impulse due to the impactor and resulting ejecta and (2) the effects of diffraction and attenuation. The formulation permits the calculation of a composite waveform at any point on the Moon due to simulated impacts at any epicentral distance. The root-mean-square amplitude of this waveform yields a background noise level that is about 100 times lower than the resolution of the Apollo long-period seismometers. At 2 s periods, this noise level is more than 1000 times lower than the low noise model prediction for Earth's microseismic noise. Sufficiently sensitive seismometers will allow the future detection of several impacts per day at body wave frequencies. Copyright 2009 by the American Geophysical Union.
Crustal structure of the Alps as seen by attenuation tomography
NASA Astrophysics Data System (ADS)
Mayor, Jessie; Calvet, Marie; Margerin, Ludovic; Vanderhaeghe, Olivier; Traversa, Paola
2016-04-01
We develop a simple tomographic approach exploiting the decay rate of coda waves to map the absorption properties of the crust in a region delimited approximately by the Rhine Graben to the North, the Apennines to the South, the Massif Central to the West and the Dinarides to the East. Our dataset comprises 40 000 coda records of about 2000 weak to moderate crustal earthquakes, with magnitude ranging from 2.8 to 6 and recorded by broad-band, accelerometric and short-period stations. After proper choice of a coda window minimizing the effects of variable epicentral distances, we measure the coda quality factor Qc in five non-overlapping frequency windows covering the 1-32 Hz band for all available source station pairs. These measurements are subsequently converted into maps of absorption quality factor (Qi) using a linearized, approximate relation between Qc and Qi. In practice the following procedure is applied in each frequency band: (1) we divide the target region into 40 × 40 km cells; (2) for each source-station pair, we assign the measured Qc value to each pixel intercepted by the direct ray path; (3) the results are averaged over all paths and subsequently smoothed with a 3 × 3 pixels moving window. Our approach is consistent with the high sensitivity of Qc to the value of Qi between source and station. Our tomographic approach reveals strong lateral variations of absorption with length scales ranging from 100 km to 1000 km. At low frequency (∼ 1 Hz), the correlation with the surface geology is clear, Cenozoic and Mesozoic sedimentary basins (resp. crystalline massifs) being recognized as high (resp. low)-absorption regions. Furthermore the Qi map delineates finer geological features such as the Ivrea Body, the Rhône Valley, or felsic intrusions in the central Alps. At high-frequency (>16 Hz), only the thickest Cenozoic sedimentary deposits show up as high-attenuation regions and a north/south dichotomy is apparent in the absorption structure. The limit between low-attenuation regions to the North and high-attenuation region to the South correlates geographically with the location of the Periadriatic Lineament (PL), a major late-alpine crustal- to lithospheric-scale structure. Furthermore, the attenuation structure seems to prolong the PL to the West along a line marked by large historical earthquakes. The Apennines orogenic belts exhibit a distinct frequency behavior, with high attenuation at low-frequency and low-attenuation at high-frequency. Low-frequency absorption may likely be explained by the relatively thick cover of Cenozoic sedimentary materials, as well as by shallow geothermal activity. We hypothesize that the frequency dependence of the attenuation structure, in particular in the Apennines, is caused by a change of the wavefield composition which accentuates the sensitivity of the coda to the deeper parts of the medium as the frequency increases.
McGonigle, A. J. S.; James, M. R.; Tamburello, G.; Aiuppa, A.; Delle Donne, D.; Ripepe, M.
2016-01-01
Abstract Recent gas flux measurements have shown that Strombolian explosions are often followed by periods of elevated flux, or “gas codas,” with durations of order a minute. Here we present UV camera data from 200 events recorded at Stromboli volcano to constrain the nature of these codas for the first time, providing estimates for combined explosion plus coda SO2 masses of ≈18–225 kg. Numerical simulations of gas slug ascent show that substantial proportions of the initial gas mass can be distributed into a train of “daughter bubbles” released from the base of the slug, which we suggest, generate the codas, on bursting at the surface. This process could also cause transitioning of slugs into cap bubbles, significantly reducing explosivity. This study is the first attempt to combine high temporal resolution gas flux data with numerical simulations of conduit gas flow to investigate volcanic degassing dynamics. PMID:27478285
Reflectometry diagnostics on TCV
NASA Astrophysics Data System (ADS)
Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team
2017-10-01
Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.
Generalized thermoelastic diffusive waves in heat conducting materials
NASA Astrophysics Data System (ADS)
Sharma, J. N.
2007-04-01
Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.
Children's Acquisition of English Onset and Coda /l/: Articulatory Evidence
ERIC Educational Resources Information Center
Lin, Susan; Demuth, Katherine
2015-01-01
Purpose: The goal of this study was to better understand how and when onset /l/ ("leap") and coda /l/ ("peel") are acquired by children by examining both the articulations involved and adults' perceptions of the produced segments. Method: Twenty-five typically developing Australian English-speaking children aged 3;0…
Inter-station coda wavefield studies using a novel icequake database on Erebus volcano
NASA Astrophysics Data System (ADS)
Chaput, J. A.; Campillo, M.; Roux, P.; Aster, R. C.
2013-12-01
Recent theoretical advances pertaining to the properties of multiply scattered wavefields have yielded a plethora of numerical and controlled source studies aiming to better understand what information may be derived from these otherwise chaotic signals. Practically, multiply scattered wavefields are difficult to compare to numerically derived models due to a combination of source paucity/directionality and array density limitations, particularly in passive seismology scenarios. Furthermore, in situations where data quantities are abundant, such as for ambient noise correlations, it remains very difficult to recover pseudo-Green's function symmetry in the ballistic components of the wavefield, let alone in the coda of the correlations. In this study, we use a large network of short period and broadband instruments on Erebus volcano to show that actual Green's function recovery is indeed possible in some cases. We make use of a large database of small impulsive icequakes distributed randomly on the summit plateau and, using fundamental theoretical properties of equipartitioned wavefields and interstation icequake coda correlations, are able to directly derive notoriously difficult quantities such as the bulk elastic mean free path for the volcano, demonstrations of correlation coda symmetry and its dependence on the number of icequakes used, and a theoretically predicted coherent backscattering amplification factor associated with weak localization. We furthermore show that stable equipartition and H^2/V^2 ratios may be consistently observed for icequake coda, and we perform simple depth inversions of these frequency dependent quantities to compare with known structures.
Amplification of seismic waves by the Seattle basin, Washington State
Pratt, T.L.; Brocher, T.M.; Weaver, C.S.; Creager, K.C.; Snelson, C.M.; Crosson, R.S.; Miller, K.C.; Trehu, A.M.
2003-01-01
Recordings of the 1999 Mw 7.6 Chi-Chi (Taiwan) earthquake, two local earthquakes, and five blasts show seismic-wave amplification over a large sedimentary basin in the U.S. Pacific Northwest. For weak ground motions from the Chi-Chi earthquake, the Seattle basin amplified 0.2- to 0.8-Hz waves by factors of 8 to 16 relative to bedrock sites west of the basin. The amplification and peak frequency change during the Chi-Chi coda: the initial S-wave arrivals (0-30 sec) had maximum amplifications of 12 at 0.5-0.8 Hz, whereas later arrivals (35-65 sec) reached amplifications of 16 at 0.3-0.5 Hz. Analysis of local events in the 1.0- to 10.0-Hz frequency range show fourfold amplifications for 1.0-Hz weak ground motion over the Seattle basin. Amplifications decrease as frequencies increase above 1.0 Hz, with frequencies above 7 Hz showing lower amplitudes over the basin than at bedrock sites. Modeling shows that resonance in low-impedance deposits forming the upper 550 m of the basin beneath our profile could cause most of the observed amplification, and the larger amplification at later arrival times suggests surface waves also play a substantial role. These results emphasize the importance of shallow deposits in determining ground motions over large basins.
Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Campillo, Michel
2016-03-01
Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.
NASA Astrophysics Data System (ADS)
Letort, J.; Guilhem Trilla, A.; Ford, S. R.; Sèbe, O.; Causse, M.; Cotton, F.; Campillo, M.; Letort, G.
2017-12-01
We constrain the source, depth, and rupture process of the Botswana earthquake of April 3, 2017, as well as its largest aftershock (5 April 2017, Mw 4.5). This earthquake is the largest recorded event (Mw 6.5) in the East African rift system since 1970, making one important case study to better understand source processes in stable continental regions. For the two events an automatic cepstrum analysis (Letort et al., 2015) is first applied on respectively 215 and 219 teleseismic records, in order to detect depth phase arrivals (pP, sP) in the P-coda. Coherent detections of depth phases for different azimuths allow us to estimate the hypocentral depths respectively at 28 and 23 km, suggesting that the events are located in the lower crust. A same cepstrum analysis is conducted on five other earthquakes with mb>4 in this area (from 2002 to 2017), and confirms a deep crustal seismicity cluster (around 20-30 km). The source mechanisms are then characterized using a joint inversion method by fitting both regional long-period surface-waves and teleseismic high-frequency body-waves. Combining regional and teleseismic data (as well as systematic comparisons between theoretical and observed regional surface-waves dispersion curves prior to the inversion) allows us to decrease epistemic uncertainties due to lack of regional data and poor knowledge about the local velocity structure. Focal mechanisms are both constrained as normal faulting with a northwest trending, and hypocentral depths are confirmed at 28 and 24 km. Finally, in order to study the mainshock rupture process, we originally apply a kymograph analysis method (an image processing method, commonly used in the field of cell biology for identifying motions of molecular motors, e.g. Mangeol et al., 2016). Here, the kymograph allows us to better identify high-frequency teleseismic P-arrivals inside the P-coda by tracking both reflected depth phase and direct P-wave arrivals radiated from secondary sources during the faulting process. Secondary P-arrivals are thus identified with a significant azimuthal variation of their arrival times (until 4s), allowing the localization of the source that generated these secondary waves. This analysis shows that the mainshock is probably a mix of at least two events, the second being 20-30 km further northwest along the fault.
Twenty-Four-Month-Olds' Perception of Word-Medial Onsets and Codas
ERIC Educational Resources Information Center
Wang, Yuanyuan; Seidl, Amanda
2016-01-01
Recent work has shown that children have detailed phonological representations of consonants at both word-initial and word-final edges. Nonetheless, it remains unclear whether onsets and codas are equally represented by young learners since word edges are isomorphic with syllable edges in this work. The current study sought to explore toddler's…
NASA Astrophysics Data System (ADS)
Giampiccolo, Elisabetta; Tuvè, Tiziana
2018-05-01
The Peloritani region is one of the most seismically active regions in Italy and, consequently, the quantification of attenuation of the medium plays an important role for seismic risk evaluation. Moreover, it is necessary for the prediction of earth ground motion and future seismic source studies. An in depth analysis has been made here to understand the frequency and lapse time dependence of attenuation characteristics of the region by using the coda of local earthquakes. A regionalization is likewise performed in order to investigate the spatial variation of coda Q across the whole region. Finally, our results are jointly interpreted with those obtained from recently published 3D velocity tomographies for further insights.
Diffusion by one wave and by many waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2010-03-01
Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
The Prosodic Licensing of Coda Consonants in Early Speech: Interactions with Vowel Length
ERIC Educational Resources Information Center
Miles, Kelly; Yuen, Ivan; Cox, Felicity; Demuth, Katherine
2016-01-01
English has a word-minimality requirement that all open-class lexical items must contain at least two moras of structure, forming a bimoraic foot (Hayes, 1995).Thus, a word with either a long vowel, or a short vowel and a coda consonant, satisfies this requirement. This raises the question of when and how young children might learn this…
Bimodal Bilingual Language Development of Hearing Children of Deaf Parents
ERIC Educational Resources Information Center
Hofmann, Kristin; Chilla, Solveig
2015-01-01
Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…
NASA Technical Reports Server (NTRS)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions
NASA Astrophysics Data System (ADS)
Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.
2018-07-01
Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.
Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Deng, Wubing; Morozov, Igor B.
2017-10-01
The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.
Seismic Activity at tres Virgenes Volcanic and Geothermal Field
NASA Astrophysics Data System (ADS)
Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.
2013-05-01
The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.
ERIC Educational Resources Information Center
Álvarez, Carlos J.; Taft, Marcus; Hernández-Cabrera, Juan A.
2017-01-01
A word-spotting task is used in Spanish to test the way in which polysyllabic letter-strings are parsed in this language. Monosyllabic words (e.g., "bar") embedded at the beginning of a pseudoword were immediately followed by either a coda-forming consonant (e.g., "barto") or a vowel (e.g., "baros"). In the former…
Frankel, A.D.; Carver, D.L.; Williams, R.A.
2002-01-01
We used recordings of the M 6.8 Nisqually earthquake and its ML 3.4 aftershock to study site response and basin effects for 35 locations in Seattle, Washington. We determined site amplification from Fourier spectral ratios of the recorded horizontal ground motions, referenced to a soft-rock site. Soft-soil sites (generally National Earthquake Hazard Reduction Program [NEHRP] class E) on artificial fill and young alluvium have the largest 1-Hz amplifications (factors of 3-7) for both the mainshock and aftershock. These amplifications are correlated with areas of higher damage from the mainshock to major buildings and liquefaction. There are several indications of nonlinear response at the soft-soil sites for the mainshock ground motions, despite relatively modest peak accelerations in the S waves of 15%-22%g. First, the mainshock spectral ratios do not show amplification at 2-8 Hz as do the aftershock spectral ratios. Spectral peaks at frequencies below 2 Hz generally occur at lower frequencies for the mainshock spectral ratios than for the aftershock ratios. At one soft-soil site, there is a clear shift of the resonant frequency to a lower frequency for the mainshock compared with the aftershock. The frequency of this resonance increases in the coda of the mainshock record, indicating that the site response during the weaker motions of the coda is more linear than that of the initial S wave. Three of the soft-soil sites display cusped, one-sided mainshock accelerograms after the S wave. These soft-soil sites also show amplification at 10-20 Hz in the S wave, relative to the rock site, that is not observed for the aftershock. The cusped waveforms and 10-20-Hz amplification are symptomatic of nonlinear response at the soft-soil sites. These sites had nearby liquefaction. The largest amplifications for 0.5 Hz occur at soft-soil sites on the southern portion of the Seattle Basin. Stiff-soil sites (NEHRP classes D and C) on Pleistocene-age glacial deposits display similar spectral amplification for the mainshock and aftershock, indicating approximately linear response. The stiff-soil sites generally have moderate amplification (factors of 1.1-2.4) at 0.5 and 1 Hz. Amplifications at 1 and 5 Hz for all sites generally increase with decreasing shear-wave velocity measured in the top 30 m (Vs 30). However, larger amplifications at 0.5 and 1 Hz for sites with similar Vs 30 values are observed for sites in the Seattle Basin, illustrating the amplification from the deeper (>30 m) sediments and the contribution from basin surface waves. Record sections for the mainshock and aftershock show that basin surface waves produce the peak velocities for many of the sites in the Seattle Basin and often dominate the amplitude at 1 Hz and lower frequencies.
Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors
NASA Astrophysics Data System (ADS)
Bentham, H. L. M.; Rost, S.; Thorne, M. S.
2017-08-01
Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity, supporting recent observations of mantle viscosity increases due to the iron spin transition at depths of ∼1000 km.
The Crsut Structure of Northwest Mexico Through Multipath Surface Waves Analysis
NASA Astrophysics Data System (ADS)
Hincapie, J.; Doser, D. I.; Ortega, R.
2005-12-01
The location of the crystalline basement and other crustal features in Northwestern Mexico (Sonora, and Chihuahua) is not well defined. This information is required to better understand its tectonic setting. Several researchers have carried out preliminary studies with results that show a great uncertainty about the velocity structure of the region as well. The only conclusion those studies agree upon is that the region has remarkable similarities with the southwestern U.S. Our study uses information from earthquakes originating in the Gulf of California, and recorded at broadband stations in the U.S. (Arizona, New Mexico, Texas) to determine the velocity structure of the region. Because earthquake sources occur along a 1200km long zone within the gulf, we are able to sample a variety of travel paths within Northwest Mexico. We will analyze Pnl waveforms, coda dacay, and surface waves to build a regional velocity attenuation model. The results are compared to regional gravity and magnetic maps.
Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing
2017-12-01
The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.
Visco-elastic controlled-source full waveform inversion without surface waves
NASA Astrophysics Data System (ADS)
Paschke, Marco; Krause, Martin; Bleibinhaus, Florian
2016-04-01
We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.
Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?
NASA Astrophysics Data System (ADS)
Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal
2007-02-01
We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.
ERIC Educational Resources Information Center
Leong, Che Kan
2008-01-01
The present study used the lexical decision (making YES/NO decision) and the vocalization (naming) paradigms in two reaction time experiments to examine the cohesiveness of onset-rime and peak-coda in the syllable structure of English lexical items. The aim was to study the effect of sonority hierarchy of liquids, nasals and obstruents on the…
Detonation charge size versus coda magnitude relations in California and Nevada
Brocher, T.M.
2003-01-01
Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.
NASA Astrophysics Data System (ADS)
de Lorenzo, Salvatore; Bianco, Francesca; Del Pezzo, Edoardo
2013-06-01
The coda normalization method is one of the most used methods in the inference of attenuation parameters Qα and Qβ. Since, in this method, the geometrical spreading exponent γ is an unknown model parameter, the most part of studies assumes a fixed γ, generally equal to 1. However γ and Q could be also jointly inferred from the non-linear inversion of coda-normalized logarithms of amplitudes, but the trade-off between γ and Q could give rise to unreasonable values of these parameters. To minimize the trade-off between γ and Q, an inversion method based on a parabolic expression of the coda-normalization equation has been developed. The method has been applied to the waveforms recorded during the 1997 Umbria-Marche seismic crisis. The Akaike criterion has been used to compare results of the parabolic model with those of the linear model, corresponding to γ = 1. A small deviation from the spherical geometrical spreading has been inferred, but this is accompanied by a significant variation of Qα and Qβ values. For almost all the considered stations, Qα smaller than Qβ has been inferred, confirming that seismic attenuation, in the Umbria-Marche region, is controlled by crustal pore fluids.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Townes, C. H.
The author takes the reader on a behind-the-scenes tour of his way of working. Along the way, one learns about how the author came upon his surprising findings and how he managed to avoid obstacles in his path. He introduces the reader to the wonders of the universe, from the submicroscopic, most minute - the workings of atoms and the even smaller particles that make them up - to the vast outer reaches of space. His tour takes one along paths Townes pioneered: quantum electronics, microwave spectroscopy and the frontiers of our galaxy where he explored the dark, rarefied clouds of gas and dust where new stars form. The book concludes with a uniquely personal coda in which Townes suggests that science and religion occupy the same terrain.
NASA Astrophysics Data System (ADS)
Pitarka, A.; Mellors, R. J.; Walter, W. R.
2016-12-01
Depending on emplacement conditions and underground structure, and contrary to what is theoretically predicted for isotropic sources, recorded local, regional, and teleseismic waveforms from chemical explosions often contain shear waves with substantial energy. Consequently, the transportability of empirical techniques for yield estimation and source discrimination to regions with complex underground structure becomes problematic. Understanding the mechanisms of generation and conversion of shear waves caused by wave path effects during explosions can help improve techniques used in nuclear explosion monitoring. We used seismic data from LargeN, a dense array of three and one component geophones, to analyze far-field waveforms from the underground chemical explosion recorded during shot 5 of the Source Physics Experiment (SPE-5) at the Nevada National Security Site. Combined 3D elastic wave propagation modeling and frequency-wavenumber beam-forming on small arrays containing selected stations were used to detect and identify several wave phases, including primary and secondary S waves, and Rgwaves, and determine their direction of propagation. We were able to attribute key features of the waveforms, and wave phases to either source processes or propagation path effects, such as focusing and wave conversions. We also found that coda waves were more likely generated by path effects outside the source region, rather than by interaction of source generated waves with the emplacement structure. Waveform correlation and statistical analysis were performed to estimate average correlation length of small-scale heterogeneity in the upper sedimentary layers of the Yucca Flat basin in the area covered by the array. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 699180
Anomalous plasma diffusion and the magnetopause boundary layer
NASA Technical Reports Server (NTRS)
Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond
1992-01-01
An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Sharp-front wave of strong magnetic field diffusion in solid metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian
When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Modeling Events in the Lower Imperial Valley Basin
NASA Astrophysics Data System (ADS)
Tian, X.; Wei, S.; Zhan, Z.; Fielding, E. J.; Helmberger, D. V.
2010-12-01
The Imperial Valley below the US-Mexican border has few seismic stations but many significant earthquakes. Many of these events, such as the recent El Mayor-Cucapah event, have complex mechanisms involving a mixture of strike-slip and normal slip patterns with now over 30 aftershocks with magnitude over 4.5. Unfortunately, many earthquake records from the Southern Imperial Valley display a great deal of complexity, ie., strong Rayleigh wave multipathing and extended codas. In short, regional recordings in the US are too complex to easily separate source properties from complex propagation. Fortunately, the Dec 30 foreshock (Mw=5.9) has excellent recordings teleseismically and regionally, and moreover is observed with InSAR. We use this simple strike-slip event to calibrate paths. In particular, we are finding record segments involving Pnl (including depth phases) and some surface waves (mostly Love waves) that appear well behaved, ie., can be approximated by synthetics from 1D local models and events modeled with the Cut-and-Paste (CAP) routine. Simple events can then be identified along with path calibration. Modeling the more complicated paths can be started with known mechanisms. We will report on both the aftershocks and historic events.
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1978-01-01
A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Multilevel animal societies can emerge from cultural transmission
Cantor, Maurício; Shoemaker, Lauren G.; Cabral, Reniel B.; Flores, César O.; Varga, Melinda; Whitehead, Hal
2015-01-01
Multilevel societies, containing hierarchically nested social levels, are remarkable social structures whose origins are unclear. The social relationships of sperm whales are organized in a multilevel society with an upper level composed of clans of individuals communicating using similar patterns of clicks (codas). Using agent-based models informed by an 18-year empirical study, we show that clans are unlikely products of stochastic processes (genetic or cultural drift) but likely originate from cultural transmission via biased social learning of codas. Distinct clusters of individuals with similar acoustic repertoires, mirroring the empirical clans, emerge when whales learn preferentially the most common codas (conformism) from behaviourally similar individuals (homophily). Cultural transmission seems key in the partitioning of sperm whales into sympatric clans. These findings suggest that processes similar to those that generate complex human cultures could not only be at play in non-human societies but also create multilevel social structures in the wild. PMID:26348688
Survey of upper band chorus and ECH waves: Implications for the diffuse aurora
NASA Astrophysics Data System (ADS)
Meredith, Nigel; Horne, Richard; Thorne, Richard; Anderson, Roger
2010-05-01
The origin of the diffuse aurora has been a source of controversy for many years. More recently the question has taken a new significance in view of the associated changes in atmospheric chemistry which may affect the middle atmosphere. Here we use CRRES data to assess the importance of upper band chorus and electron cyclotron harmonic (ECH) waves in the production of the diffuse aurora. Both wave modes increase with increasing geomagnetic activity, suggesting they are related to periods of enhanced convection and/or substorm activity. They are confined to the near-equatorial region which excludes the pre-noon sector from the wave survey. During active conditions intense ECH waves and upper band chorus, with amplitudes exceeding 1 mVm-1, are observed in the region 4 < L < 7 from 2100 to 0600 MLT approximately 20% and 6% of the time respectively. This suggests that both wave modes can put electrons on strong diffusion, but only during active conditions and not at all local times. Scattering rates fall below the strong diffusion limit at other times when the wave amplitudes are weaker. Fluxes of low energy electrons (100 eV < E < 30 keV) also increase with increasing geomagnetic activity in approximately the same region of geospace as the waves, suggesting that these electrons are responsible for the generation of the waves. The patterns of the upper band chorus, ECH waves and low energy electrons are similar to the global morphology of the diffuse aurora, suggesting that both wave modes play significant roles in the production of the diffuse aurora.
NASA Astrophysics Data System (ADS)
Franken, T.; Armitage, J. J.; Fuji, N.; Fournier, A.
2017-12-01
Low shear-wave velocity zones underneath margins of continental break-up are believed to be related to the presence of melt. Many models attempt to model the process of melt production and transportation during mantle upwelling, yet there is a disconnect between geodynamic models, seismic observations, and petrological studies of melt flow velocities. Geodynamic models that emulate melt retention of 2 %, suggested by shear-wave velocity anomalies (Forsyth & MELT Seismic Team, 1998), fail to adequately reproduce the seismic signal as seen in receiver functions (Rychert, 2012; Armitage et al., 2015). Furthermore, numerical models of melt migration conclude mean melt flow velocities up to 1,3 m yr-1(Weatherley & Katz, 2015), whereas Uranium isotope migration rates advocate velocities up to two orders of magnitude higher. This study aims to reconcile the diverting assertions on the partial melting process by analysing the effect of melt presence on the coda of the seismic signal. A 1D forward model has been created to emulate melt production and transportation in an upwelling mantle environment. Scenarios have been modelled for variable upwelling velocities v (1 - 100 mm yr-1), initial temperatures T0 (1200 - 1800 °C) and permeabilities k0 (10-9 - 10-5 m2). The 1D model parameters are converted to anharmonic seismic parameters using look-up tables from phase diagrams (Goes et al., 2012) to generate synthetic seismograms with the Direct Solution Method. The maximum frequency content of the synthetics is 1,25 Hz, sampled at 20 Hz with a low-pass filter of 0,1 Hz. A comparison between the synthetics and seismic observations of the La Reunion mantle plume from the RER Geoscope receiver is performed using a Monte-Carlo approach. The synthetic seismograms show highest sensitivity to the presence of melt in S-waves within epicentral distances of 0-20 degrees. In the 0-10 degree range only a time-shift is observed proportional to the melt fraction at the onset of melting. Within the 10-20 degree range the presence of melt causes an additional change in the coda of the signal compared to a no-melt model. By analysing these altered synthetic waveforms we search for a seismic signature corresponding to melt presence to form a benchmark for the comparison between the Monte-Carlo results and the seismic observations.
NASA Astrophysics Data System (ADS)
Cormier, V. F.; Attanayake, J.; Thomas, C.; Koper, K. D.; Miller, M. S.
2017-12-01
The Earth's Inner Core Boundary (ICB) is considered a uniform and sharp liquid-to-solid transition in standard Earth models such as PREM and AK135-F. By analysing seismic wave reflections emanating from the ICB, this hypothesis of a simple ICB can be tested. Observed absolute and relative amplitudes and coda of the PKiKP phase that is reflected on the topside of the ICB suggest that the ICB is neither uniform nor has a simple structure. Similarly, waves that are reflected from the underside of the ICB - PKIIKP phase - can be used to determine the physical nature of the region immediately below the ICB. Using high-frequency synthetic waveform experiments, we confirm that antipodal PKIIKP amplitudes can discriminate the state of the uppermost 10 km of the inner core: A standard liquid-to-solid ICB (high shear velocity/shear modulus discontinuity) produces a maximum PKIIKP amplitude equal to only a factor of 0.14 of the PKIKP amplitude, whereas a non-standard liquid-to-near liquid ICB (low shear velocity/shear modulus discontinuity) can produce PKIIKP amplitudes comparable to PKIKP. We searched for PKIIKP in individual and stacked array waveforms in the 170° - 180° distance range for the 2000 to 2016 time period globally to compare with our synthetic results. We attribute a lack of PKIIKP detection in the stacked array recordings due to (1) ranges closer to 170° and not 180°, where the PKIIKP signal-to-noise ratio is very poor; (2) scattered coda following PKIKP masking the PKIIKP phase; and (3) large azimuthal variations of array recordings closer to 180° preventing the formation of an accurate beam. Envelopes of individual recordings in the 178° - 180° distance range, however, clearly show energy peaks correlating with the travel time of PKIIKP phase. Our global set of PKIIKP/PKIKP energy ratio measurements vary between 0.1 and 1.1, indicating significant structural complexity immediately below the ICB. While a complex inner core anisotropy structure and ICB topography could influence these energy ratios, we favor a hypothesis of a thin transition layer of thickness < 10 km below the ICB having a laterally varying shear modulus (or shear velocity) to explain observed rapid lateral variations of PKIIKP/PKIKP energy ratios.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
NASA Astrophysics Data System (ADS)
Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru
2018-05-01
We investigate P-wave attenuation, Qp-1, in the Pacific slab beneath northeastern (NE) Japan, adopting for the first time the spectral ratio technique for intraslab earthquakes. When seismograms of two earthquakes are recorded at a station and their ray paths to the station are largely overlapped, station-dependent amplification and structural effects on the overlapped rays can be canceled out from the ratio of the spectral amplitudes of the seismograms. Therefore, adopting the spectral ratio technique for intraslab earthquakes has a great advantage for the precise evaluation of Qp-1 in the slab because the structural effects above the slab, including the high-attenuation mantle wedge, are removed. For estimating the intraslab Qp-1, we determined corner frequency of the intraslab earthquakes using the S-coda wave spectral ratio as the first step. Then, we evaluated the inter-event path attenuation, Δt*, from the ratio of the spectral amplitudes of P waves. The obtained result shows that P-wave attenuation in the Pacific slab marks Qp-1 of 0.0015 (Qp of ∼670) at depths of 50-250 km. This indicates that the P-wave attenuation in the Pacific slab is weaker than that in the mantle wedge. The relatively high-Qp-1 is correlated with the distributions of intraslab earthquakes, suggesting that the P-wave amplitude is more attenuated around active seismicity zones in the slab. Therefore, our observations likely indicate the presence of fractures, hydrous minerals, and dehydrated fluid around seismogenic zones in the slab at intermediate depths.
NASA Astrophysics Data System (ADS)
Beck, Margaret; Wayne, C. Eugene
2009-01-01
The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Dissipation of ionospheric irregularities by wave-particle and collisional interactions
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.
1982-01-01
The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.
Delay-induced wave instabilities in single-species reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Phonetic Encoding of Coda Voicing Contrast under Different Focus Conditions in L1 vs. L2 English.
Choi, Jiyoun; Kim, Sahayng; Cho, Taehong
2016-01-01
This study investigated how coda voicing contrast in English would be phonetically encoded in the temporal vs. spectral dimension of the preceding vowel (in vowel duration vs. F1/F2) by Korean L2 speakers of English, and how their L2 phonetic encoding pattern would be compared to that of native English speakers. Crucially, these questions were explored by taking into account the phonetics-prosody interface, testing effects of prominence by comparing target segments in three focus conditions (phonological focus, lexical focus, and no focus). Results showed that Korean speakers utilized the temporal dimension (vowel duration) to encode coda voicing contrast, but failed to use the spectral dimension (F1/F2), reflecting their native language experience-i.e., with a more sparsely populated vowel space in Korean, they are less sensitive to small changes in the spectral dimension, and hence fine-grained spectral cues in English are not readily accessible. Results also showed that along the temporal dimension, both the L1 and L2 speakers hyperarticulated coda voicing contrast under prominence (when phonologically or lexically focused), but hypoarticulated it in the non-prominent condition. This indicates that low-level phonetic realization and high-order information structure interact in a communicatively efficient way, regardless of the speakers' native language background. The Korean speakers, however, used the temporal phonetic space differently from the way the native speakers did, especially showing less reduction in the no focus condition. This was also attributable to their native language experience-i.e., the Korean speakers' use of temporal dimension is constrained in a way that is not detrimental to the preservation of coda voicing contrast, given that they failed to add additional cues along the spectral dimension. The results imply that the L2 phonetic system can be more fully illuminated through an investigation of the phonetics-prosody interface in connection with the L2 speakers' native language experience.
Phonetic Encoding of Coda Voicing Contrast under Different Focus Conditions in L1 vs. L2 English
Choi, Jiyoun; Kim, Sahayng; Cho, Taehong
2016-01-01
This study investigated how coda voicing contrast in English would be phonetically encoded in the temporal vs. spectral dimension of the preceding vowel (in vowel duration vs. F1/F2) by Korean L2 speakers of English, and how their L2 phonetic encoding pattern would be compared to that of native English speakers. Crucially, these questions were explored by taking into account the phonetics-prosody interface, testing effects of prominence by comparing target segments in three focus conditions (phonological focus, lexical focus, and no focus). Results showed that Korean speakers utilized the temporal dimension (vowel duration) to encode coda voicing contrast, but failed to use the spectral dimension (F1/F2), reflecting their native language experience—i.e., with a more sparsely populated vowel space in Korean, they are less sensitive to small changes in the spectral dimension, and hence fine-grained spectral cues in English are not readily accessible. Results also showed that along the temporal dimension, both the L1 and L2 speakers hyperarticulated coda voicing contrast under prominence (when phonologically or lexically focused), but hypoarticulated it in the non-prominent condition. This indicates that low-level phonetic realization and high-order information structure interact in a communicatively efficient way, regardless of the speakers’ native language background. The Korean speakers, however, used the temporal phonetic space differently from the way the native speakers did, especially showing less reduction in the no focus condition. This was also attributable to their native language experience—i.e., the Korean speakers’ use of temporal dimension is constrained in a way that is not detrimental to the preservation of coda voicing contrast, given that they failed to add additional cues along the spectral dimension. The results imply that the L2 phonetic system can be more fully illuminated through an investigation of the phonetics-prosody interface in connection with the L2 speakers’ native language experience. PMID:27242571
Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin
2018-03-01
We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈
Pinpointing the North Korea Nuclear tests with body waves scattered by surface topography
NASA Astrophysics Data System (ADS)
Wang, N.; Shen, Y.; Bao, X.; Flinders, A. F.
2017-12-01
On September 3, 2017, North Korea conducted its sixth and by far the largest nuclear test at the Punggye-ri test site. In this work, we apply a novel full-wave location method that combines a non-linear grid-search algorithm with the 3D strain Green's tensor database to locate this event. We use the first arrivals (Pn waves) and their immediate codas, which are likely dominated by waves scattered by the surface topography near the source, to pinpoint the source location. We assess the solution in the search volume using a least-squares misfit between the observed and synthetic waveforms, which are obtained using the collocated-grid finite difference method on curvilinear grids. We calculate the one standard deviation level of the 'best' solution as a posterior error estimation. Our results show that the waveform based location method allows us to obtain accurate solutions with a small number of stations. The solutions are absolute locations as opposed to relative locations based on relative travel times, because topography-scattered waves depend on the geometric relations between the source and the unique topography near the source. Moreover, we use both differential waveforms and traveltimes to locate pairs of the North Korea tests in years 2016 and 2017 to further reduce the effects of inaccuracies in the reference velocity model (CRUST 1.0). Finally, we compare our solutions with those of other studies based on satellite images and relative traveltimes.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
NASA Astrophysics Data System (ADS)
Wu, Chi-Shin; Yu, Teng-To; Peng, Wen-Fei; Yeh, Yeoin-Tein; Lin, Sih-Siao
2014-10-01
Site effect analysis has been applied to investigate soil classification, alluvium depth, and fracture detection, although the majority of previous studies have typically focused only on the response of large-scale single structures. In contrast, we investigated the site effect for small-scale cracks using a case study in southern Taiwan to provide a means of monitoring slope stability or foundation integrity in situ using only an accelerometer. We adopted both the reference site and horizontal-to-vertical spectral ratio methods. We obtained seismographs associated with the typhoon-related development of a crack set (52 m long, 5 m deep) in a steep slope and compared the resonance frequency between two conditions (with and without cracks). Moreover, we divided the seismic waves into P, S, and coda waves and examined the seismic source effect. Our results demonstrate that frequencies of 14.5-17.5 Hz are most sensitive to these cracks, particularly for the E-W component of the P-waves, which coincides with the crack’s strike. Peak ground acceleration, which is controlled by seismic moment and attenuated distance, is another important factor determining the resonance results. Our results demonstrate that the ratio of temporal seismic waves can be used to detect the existence of nearby subsurface cracks.
Plasma diffusion at the magnetopause - The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.
1991-01-01
The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.
Coronal "wave": Magnetic Footprint Of A Cme?
NASA Astrophysics Data System (ADS)
Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.
2007-05-01
We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.
Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models
Geist, Eric L.
2016-01-01
Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.
Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method
NASA Astrophysics Data System (ADS)
Li, Jiahang; Shen, Yang; Zhang, Wei
2018-02-01
At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.
Sounds of earthquakes in West Bohemia: analysis of sonic and infrasonic records
NASA Astrophysics Data System (ADS)
Fischer, Tomáš; Vilhelm, Jan; Kuna, Václav; Chum, Jaroslav; Horálek, Josef
2013-04-01
Earthquake sounds are usually observed during the occurrence of small earthquakes. The observations of audible manifestations of earthquakes date back to the ancient age and have been recently analyzed in more detail based both on macroseismic observations and audio recordings. In most cases the earthquake sounds resemble low-frequency underground thundering that is generated by seismic-acoustic conversion of P and SV waves at the earth surface. This is also supported by the fact that earthquake sounds usually precede shaking caused by S-waves. The less frequent are explosion-type sounds whose origin remains unclear. We analyze the observations of sounds associating the occurrence of earthquake swarms in the area of West Bohemia/Vogtland, Central Europe. Macroseismic data include 250 reports of sounds with 90% thundering and 10% of explosions. Additional data consist of sonic and infrasonic records acquired by microphones and microbarographs at seismic stations in the area. All the sonic and infrasonic records correspond to sounds of the thunder type; no explosions were recorded. Comparison of these records enabled to determine the seismic wave - air pressure transfer function. The measurements using a 3D microphone array confirm that in the epicentral area the sonic wave is propagating subvertically. We also compared the coda of seismograms and sonic records. It turned out that additional to seismo-acoustic coupling, a later acoustic wave of thunder type arrives at the observation site whose arrival time corresponds to sonic propagation from the epicenter. We analyse the possible generation mechanisms of this type of sonic wave.
NASA Astrophysics Data System (ADS)
Zhang, Baolong; Ni, Sidao; Sun, Daoyuan; Shen, Zhichao; Jackson, Jennifer M.; Wu, Wenbo
2018-05-01
Volumetric heterogeneities on large (∼>1000 km) and intermediate scales (∼>100 km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in the lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity within 250 km above the CMB. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.5%. We then use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbations of small-scale (∼8 km) heterogeneity in the lowermost mantle is ∼0.2-0.5% beneath regions of the China-Myanmar border area, Okhotsk Sea and South America. Whereas strong perturbations (∼1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small-scale heterogeneity in the lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.
Broadband Evaluation of DPRK Explosions, Collapse Event, and Induced Aftershocks
NASA Astrophysics Data System (ADS)
Mayeda, K.; Roman-Nieves, J. I.; Wagner, G.; Jeon, Y. S.
2017-12-01
We report on the past 6 declared DPRK nuclear explosions, a collapse event, and recent associated induced shear dislocation sources using long-period waveform modeling, direct regional phases, and stable P-coda and S-coda spectral ratios. We find that the recent September 3rd, 2017 explosion is well modeled with an MM71 explosion source model at normal scale depth, but the previous 5 smaller yield explosions exhibit much larger relative high frequency radiation, strongly suggesting they are all over buried by varying amounts. The collapse event that occurred 8 minutes following the September 3rd DPRK explosion shares significant similarities with a number of NTS collapse events for explosions of comparable yield, both in absolute amplitude and spectral fall-off. A large number of smaller sources have been observed, which from stable coda spectral analysis and waveform modeling, are consistent with shallow shear dislocations likely caused by stress redistribution following the past nuclear explosions. We conclude with testing of a new discriminant that is specific to this region.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir
Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.
2008-01-01
As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
Ceron, Marizete Ilha; Gubiani, Marileda Barichello; Oliveira, Camila Rosa de; Gubiani, Marieli Barichello; Keske-Soares, Márcia
2017-05-08
To determine the occurrence of phonological disorders by age, gender and school type, and analyze the phonological processes observed in typical and atypical phonological development across different age groups. The sample consisted of 866 children aged between 3:0 and 8:11 years, recruited from public and private schools in the city of Santa Maria/RS. A phonological evaluation was performed to analyze the operative phonological processes. 15.26% (n = 132) of the sample presented atypical phonological acquisition (phonological disorders). Phonological impairments were more frequent in public school students across all age groups. Phonological alterations were most frequent between ages 4 -to 6, and more prevalent in males than females in all but the youngest age group. The most common phonological processes in typical phonological acquisition were: cluster reduction; nonlateral liquid deletion in coda; nonlateral liquid substitution in onset; semivocalization of lateral liquids in coda; and unstressed syllable deletion. In children with phonological disorders, the most common phonological processes were: lateral and nonlateral liquid substitution in onset position; nonlateral liquid deletion; fronting of fricatives in onset position; unstressed syllable deletion; semivocalization of nonlateral liquid in coda; and nonlateral liquid deletion in coda position. Phonological processes were highly prevalent in the present sample, and occurred more often in boys than in girls. Information regarding the type and frequency of phonological processes in both typical phonological acquisition and phonological disorders may contribute to early diagnosis and increase the efficiency of treatment planning.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.
1983-01-01
In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.
Millius, Arthur; Watanabe, Naoki; Weiner, Orion D
2012-03-01
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.
Millius, Arthur; Watanabe, Naoki; Weiner, Orion D.
2012-01-01
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes. PMID:22349699
NASA Astrophysics Data System (ADS)
Niemeijer, Sander
2017-04-01
The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and analysis application for atmospheric data and can be used to visualize and analyze the data that you retrieve using the CODA and HARP interfaces. The application uses the Python language as the means through which you provide commands to the application. The Python interfaces for CODA and HARP are included so you can directly ingest product data from within VISAN. Powerful visualization functionality for 2D plots and geographical plots in VISAN will allow you to directly visualize the ingested data. All components from the ESA Atmospheric Toolbox are Open Source and freely available. Software packages can be downloaded from the BEAT website: http://stcorp.nl/beat/
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2007-01-01
We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Thorne, Richard M.
2000-03-01
It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
NASA Technical Reports Server (NTRS)
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
Response of radiation belt simulations to different radial diffusion coefficients
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.
2013-12-01
Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam
Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
NASA Astrophysics Data System (ADS)
Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.
2017-12-01
In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.
Earthquake Source Parameters Inferred from T-Wave Observations
NASA Astrophysics Data System (ADS)
Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.
2004-12-01
The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T-wave propagation.
NASA Astrophysics Data System (ADS)
Shen, Y.; Wang, N.; Bao, X.; Flinders, A. F.
2016-12-01
Scattered waves generated near the source contains energy converted from the near-field waves to the far-field propagating waves, which can be used to achieve location accuracy beyond the diffraction limit. In this work, we apply a novel full-wave location method that combines a grid-search algorithm with the 3D Green's tensor database to locate the Non-Proliferation Experiment (NPE) at the Nevada test site and the North Korean nuclear tests. We use the first arrivals (Pn/Pg) and their immediate codas, which are likely dominated by waves scattered at the surface topography near the source, to determine the source location. We investigate seismograms in the frequency of [1.0 2.0] Hz to reduce noises in the data and highlight topography scattered waves. High resolution topographic models constructed from 10 and 90 m grids are used for Nevada and North Korea, respectively. The reference velocity model is based on CRUST 1.0. We use the collocated-grid finite difference method on curvilinear grids to calculate the strain Green's tensor and obtain synthetic waveforms using source-receiver reciprocity. The `best' solution is found based on the least-square misfit between the observed and synthetic waveforms. To suppress random noises, an optimal weighting method for three-component seismograms is applied in misfit calculation. Our results show that the scattered waves are crucial in improving resolution and allow us to obtain accurate solutions with a small number of stations. Since the scattered waves depends on topography, which is known at the wavelengths of regional seismic waves, our approach yields absolute, instead of relative, source locations. We compare our solutions with those of USGS and other studies. Moreover, we use differential waveforms to locate pairs of the North Korea tests from years 2006, 2009, 2013 and 2016 to further reduce the effects of unmodeled heterogeneities and errors in the reference velocity model.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2011-01-01
Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.
The viscous lee wave problem and its implications for ocean modelling
NASA Astrophysics Data System (ADS)
Shakespeare, Callum J.; Hogg, Andrew McC.
2017-05-01
Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.
Diffusion in plasma: The Hall effect, compositional waves, and chemical spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urpin, V., E-mail: Vadim.urpin@uv.es
2017-03-15
Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.
The Fisher-KPP problem with doubly nonlinear diffusion
NASA Astrophysics Data System (ADS)
Audrito, Alessandro; Vázquez, Juan Luis
2017-12-01
The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical KPP reaction term, and appears in a number of relevant applications in biology and chemistry. It is remarkable as a mathematical model since it possesses a family of travelling waves that describe the asymptotic behaviour of a large class solutions 0 ≤ u (x , t) ≤ 1 of the problem posed in the real line. The existence of propagation waves with finite speed has been confirmed in some related models and disproved in others. We investigate here the corresponding theory when the linear diffusion is replaced by the "slow" doubly nonlinear diffusion and we find travelling waves that represent the wave propagation of more general solutions even when we extend the study to several space dimensions. A similar study is performed in the critical case that we call "pseudo-linear", i.e., when the operator is still nonlinear but has homogeneity one. With respect to the classical model and the "pseudo-linear" case, the "slow" travelling waves exhibit free boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less
Porous medium acoustics of wave-induced vorticity diffusion
NASA Astrophysics Data System (ADS)
Müller, T. M.; Sahay, P. N.
2011-02-01
A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.
Waveform tomography of crustal structure in the south San Francisco Bay region
Pollitz, F.F.; Fletcher, J.P.
2005-01-01
We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.
Ultrasonic monitoring of spontaneous imbibition experiments: Acoustic signature of fluid migration
NASA Astrophysics Data System (ADS)
David, Christian; Barnes, Christophe; Desrues, Mathilde; Pimienta, Lucas; Sarout, Joël.; Dautriat, Jérémie
2017-07-01
Capillary rise experiments (spontaneous imbibition tests) were conducted in the laboratory with ultrasonic and X-ray monitoring on the Sherwood sandstone and the Majella grainstone. The aim was to provide a direct comparison between the variation in seismic attributes (amplitude, velocity, spectral content, and energy) and the actual fluid distribution in the rock. Two pairs of ultrasonic P wave sensors located at different heights on a cylindrical rock specimen recorded every 5 s the waveforms when capillary forces make water rise up into the rock from the bottom in contact with a water tank. Simultaneously, computerized tomography scan images of a vertical cross section were also recorded. Two important results were found. (i) The amplitude of the first P wave arrival is impacted by the upward moving fluid front before the P wave velocity is, while the fluid front has not yet reached the sensors level. In contrast, the P wave velocity decreases when the fluid front reaches the Fresnel clearance zone. The spectral analysis of the waveforms shows that the peak frequency amplitude is continuously decreasing without noticeable frequency shift. (ii) A methodology based on the calculation of the analytical signal and instantaneous phase was designed to decompose each waveform into discrete wavelets associated with direct or reflected waves. The energy carried by the wavelets is very sensitive to the fluid substitution process: the coda wavelets related to reflections on the bottom end face of the specimen are impacted as soon as imbibition starts and can be used as a precursor for the arriving fluid.
NASA Astrophysics Data System (ADS)
Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.
2017-12-01
Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.
NASA Astrophysics Data System (ADS)
Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément
2017-04-01
The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.
DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, R. P.; Tripathi, A. K.; Halder, S.
The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less
Quasi-linear diffusion coefficients for highly oblique whistler mode waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2017-05-01
Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov
2016-04-15
Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies ≥1 keV, and for whistler mode chorus waves, structures appear for energies >2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.« less
Wave Augmented Diffusers for Centrifugal Compressors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Skoch, Gary J.
1998-01-01
A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.
NASA Astrophysics Data System (ADS)
Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.
2013-10-01
a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
Feet and syllables in elephants and missiles: a reappraisal.
Zonneveld, Wim; van der Pas, Brigit; de Bree, Elise
2007-01-01
Using data from a case study presented in Chiat (1989), Marshall and Chiat (2003) compare two different approaches to account for the realization of intervocalic consonants in child phonology: "coda capture theory" and the "foot domain account". They argue in favour of the latter account. In this note, we present a reappraisal of this argument using the same data. We conclude that acceptance of the foot domain account, in the specific way developed by the authors, is unmotivated for both theoretical and empirical reasons. We maintain that syllable-based coda capture is (still) the better approach to account for the relevant facts.
Sleight, C C; Prinz, P M
1985-11-01
In this study language-disordered and nondisordered children viewed a nonverbal film, wrote the story, and narrated it to language-disordered and nondisordered peers who were unfamiliar with the film. The narratives were analyzed for the use of abstracts, orientations (background information), and codas. Language-disordered children made fewer references to the orientation clauses of props and activities than nondisordered children. Neither group modified their language in the areas examined to take into account the communicative status of their listeners. Therapeutic implications for the language-disordered children are presented as are suggestions for future research.
NASA Astrophysics Data System (ADS)
Zhang, B.; Ni, S.; Sun, D.; Shen, Z.; Jackson, J. M.; Wu, W.
2017-12-01
Volumetric heterogeneity on large scales ( >1000 km) and intermediate scales ( >100km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity in the lowermost mantle. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.0%. And then we use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbation of small-scale ( 8 km) heterogeneity in the lowermost mantle is 0.2% beneath regions to the east of China-Myanmar border area, north of Okhotsk Sea and South America. The perturbation is 0.5% beneath south of Okhotsk Sea and west of China-Myanmar border area, whereas strong perturbations ( 1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small scale heterogeneity in lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.
Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens
De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan
2014-01-01
We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
NASA Astrophysics Data System (ADS)
Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.
2004-04-01
The modified extended tanh-function method were applied to the general class of nonlinear diffusion-convection equations where the concentration-dependent diffusivity, D( u), was taken to be a constant while the concentration-dependent hydraulic conductivity, K( u) were taken to be in a power law. The obtained solutions include rational-type, triangular-type, singular-type, and solitary wave solutions. In fact, the profile of the obtained solitary wave solutions resemble the characteristics of a shock-wave like structure for an arbitrary m (where m>1 is the power of the nonlinear convection term).
Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-04-28
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less
Low thermal diffusivity measurements of thin films using mirage technique
NASA Astrophysics Data System (ADS)
Wong, P. K.; Fung, P. C. W.; Tam, H. L.
1998-12-01
Mirage technique is proved to be powerful in measurements of thermal diffusivity. Its contactless nature makes it suitable for delicate samples such as thin films and single crystals. However, as the damping of the thermal wave profile increases progressively upon the decrease in thermal diffusivity of the medium, mirage technique becomes more difficult to be applied to low thermal diffusivity measurements. Moreover influences from substrate signals make analysis difficult when the samples are thermally thin. Recently a thermal-wave-coupling method for mirage signal analysis [P. K. Wong, P. C. W. Fung, H. L. Tam, and J. Gao, Phys. Rev. B 51, 523 (1995)] was reported for thermal diffusivity measurements of thin film down to 60 nm thick. In this article we apply the thermal-wave-coupling method to thin films of low thermal diffusivity, especially polymer films. A new lower limit of thermal diffusivity measurable by mirage technique has been reached.
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.
1991-01-01
A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.
Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer
NASA Astrophysics Data System (ADS)
Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.
2014-12-01
We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in-situ imaging of biofilm formation in field settings with significant implication for bioremediation and microbial enhanced oil recovery monitoring.
3D radiation belt diffusion model results using new empirical models of whistler chorus and hiss
NASA Astrophysics Data System (ADS)
Cunningham, G.; Chen, Y.; Henderson, M. G.; Reeves, G. D.; Tu, W.
2012-12-01
3D diffusion codes model the energization, radial transport, and pitch angle scattering due to wave-particle interactions. Diffusion codes are powerful but are limited by the lack of knowledge of the spatial & temporal distribution of waves that drive the interactions for a specific event. We present results from the 3D DREAM model using diffusion coefficients driven by new, activity-dependent, statistical models of chorus and hiss waves. Most 3D codes parameterize the diffusion coefficients or wave amplitudes as functions of magnetic activity indices like Kp, AE, or Dst. These functional representations produce the average value of the wave intensities for a given level of magnetic activity; however, the variability of the wave population at a given activity level is lost with such a representation. Our 3D code makes use of the full sample distributions contained in a set of empirical wave databases (one database for each wave type, including plasmaspheric hiss, lower and upper hand chorus) that were recently produced by our team using CRRES and THEMIS observations. The wave databases store the full probability distribution of observed wave intensity binned by AE, MLT, MLAT and L*. In this presentation, we show results that make use of the wave intensity sample probability distributions for lower-band and upper-band chorus by sampling the distributions stochastically during a representative CRRES-era storm. The sampling of the wave intensity probability distributions produces a collection of possible evolutions of the phase space density, which quantifies the uncertainty in the model predictions caused by the uncertainty of the chorus wave amplitudes for a specific event. A significant issue is the determination of an appropriate model for the spatio-temporal correlations of the wave intensities, since the diffusion coefficients are computed as spatio-temporal averages of the waves over MLT, MLAT and L*. The spatiotemporal correlations cannot be inferred from the wave databases. In this study we use a temporal correlation of ~1 hour for the sampled wave intensities that is informed by the observed autocorrelation in the AE index, a spatial correlation length of ~100 km in the two directions perpendicular to the magnetic field, and a spatial correlation length of 5000 km in the direction parallel to the magnetic field, according to the work of Santolik et al (2003), who used multi-spacecraft measurements from Cluster to quantify the correlation length scales for equatorial chorus . We find that, despite the small correlation length scale for chorus, there remains significant variability in the model outcomes driven by variability in the chorus wave intensities.
Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.
2005-01-01
Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.
Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R
2015-01-07
We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.
Plasma diffusion at the magnetopause? The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.
1990-01-01
The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.
Wave reflection in a reaction-diffusion system: breathing patterns and attenuation of the echo.
Tsyganov, M A; Ivanitsky, G R; Zemskov, E P
2014-05-01
Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).
Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo
NASA Astrophysics Data System (ADS)
Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.
2014-05-01
Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).
Vocal clans in sperm whales (Physeter macrocephalus).
Rendell, L E; Whitehead, H
2003-01-01
Cultural transmission may be a significant source of variation in the behaviour of whales and dolphins, especially as regards their vocal signals. We studied variation in the vocal output of 'codas' by sperm whale social groups. Codas are patterns of clicks used by female sperm whales in social circumstances. The coda repertoires of all known social units (n = 18, each consisting of about 11 females and immatures with long-term relationships) and 61 out of 64 groups (about two social units moving together for periods of days) that were recorded in the South Pacific and Caribbean between 1985 and 2000 can be reliably allocated into six acoustic 'clans', five in the Pacific and one in the Caribbean. Clans have ranges that span thousands of kilometres, are sympatric, contain many thousands of whales and most probably result from cultural transmission of vocal patterns. Units seem to form groups preferentially with other units of their own clan. We suggest that this is a rare example of sympatric cultural variation on an oceanic scale. Culture may thus be a more important determinant of sperm whale population structure than genes or geography, a finding that has major implications for our understanding of the species' behavioural and population biology. PMID:12614570
Boundary value problems for multi-term fractional differential equations
NASA Astrophysics Data System (ADS)
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Accelerated ions and self-excited Alfvén waves at the Earth's bow shock
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.
2011-07-01
The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.
Spectrum of spin waves in cold polarized gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
Chen, Kate Huihsuan; Furumura, Takashi; Rubinstein, Justin L.
2015-01-01
We observe crustal damage and its subsequent recovery caused by the 1999 M7.6 Chi-Chi earthquake in central Taiwan. Analysis of repeating earthquakes in Hualien region, ~70 km east of the Chi-Chi earthquake, shows a remarkable change in wave propagation beginning in the year 2000, revealing damage within the fault zone and distributed across the near surface. We use moving window cross correlation to identify a dramatic decrease in the waveform similarity and delays in the S wave coda. The maximum delay is up to 59 ms, corresponding to a 7.6% velocity decrease averaged over the wave propagation path. The waveform changes on either side of the fault are distinct. They occur in different parts of the waveforms, affect different frequencies, and the size of the velocity reductions is different. Using a finite difference method, we simulate the effect of postseismic changes in the wavefield by introducing S wave velocity anomaly in the fault zone and near the surface. The models that best fit the observations point to pervasive damage in the near surface and deep, along-fault damage at the time of the Chi-Chi earthquake. The footwall stations show the combined effect of near-surface and the fault zone damage, where the velocity reduction (2–7%) is twofold to threefold greater than the fault zone damage observed in the hanging wall stations. The physical models obtained here allow us to monitor the temporal evolution and recovering process of the Chi-Chi fault zone damage.
NASA Astrophysics Data System (ADS)
Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.
2017-12-01
The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.
Rg to Lg Scattering Observations and Modeling
NASA Astrophysics Data System (ADS)
Baker, G. E.; Stevens, J. L.; Xu, H.
2005-12-01
Lg is important to explosion yield estimation and earthquake/explosion discrimination, but the source of explosion generated Lg is still an area of active investigation. We investigate the contribution of Rg scattering to Lg. Common spectral nulls in vertical component Rg and Lg have been interpreted as evidence that scattered Rg is the dominant source of Lg in some areas. The nulls are assumed to result from non-spherical components of the explosion source, modeled as a CLVD located above the explosion. We compare Rg with 3-component Sg and Lg spectra in different source areas. Wavenumber synthetics and nonlinear source calculations constrain the predicted source spectra of Rg and directly generated Lg. Modal scattering calculations place bounds on the contribution of Rg to Lg relative to pS, S*, and directly generated S-waves. Rg recorded east and west of the Quartz 3 Deep Seismic Sounding explosion have persistent spectral nulls, but at different frequencies. The azimuthal dependence of the source spectra suggests that it may not be simply related to a CLVD source. The spectral nulls of Sg, Lg, and Lg coda do not correspond to the Rg spectral nulls, so for this overburied source, the spectral observations do not indicate that Rg scattering is a dominant contributor to Lg. Preliminary comparisons of Rg with Lg spectra for events from the Semipalatinsk Test Site yield a similar result. We compare Rg at 20-100 km with Lg at 650 km for Balapan and Degelen explosions with known yield and source depth. The events range from 130 to 50 percent of theoretical containment depth, so relative contributions from a CLVD are expected to vary significantly. For studied previously NTS and Kazakh depth of burial data, the use of 3-components provides further insight into scattering between components. In a complementary analysis, to assess whether S-wave generation is affected by source depth or scaled depth, we have examined regional phase amplitudes of 13 Degelen explosions with known yields and source depths. Initial Pn, the entire P wavetrain, Sn, Lg, and Lg coda have similar log amplitude vs. log yield curves. The slope of those curves varies with frequency, from approximately 0.84 at 0.6 Hz to 0.65 at 6 Hz. We will complement these results with similar observations of Balapan explosion records.
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents
NASA Astrophysics Data System (ADS)
Diez, M.; Redondo, J. M.
2009-04-01
As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997
Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave
NASA Astrophysics Data System (ADS)
Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.
2017-08-01
In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.
Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction
NASA Technical Reports Server (NTRS)
Galloway, J. J.; Crawford, F. W.
1977-01-01
The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.
A new diffusion matrix for whistler mode chorus waves
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen
2013-10-01
Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.
Dutt, Arun K
2005-09-22
We have investigated the short-wave instability due to Hopf bifurcation in a reaction-diffusion model of glycolytic oscillations. Very low values of the ratio d of the diffusion coefficient of the inhibitor (ATP) and that of the activator (ADP) do help to create short waves, whereas high values of the ratio d and the complexing reaction of the activator ADP reduces drastically the wave-instability domain, generating much longer wavelengths.
Chaotic ion motion in magnetosonic plasma waves
NASA Technical Reports Server (NTRS)
Varvoglis, H.
1984-01-01
The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Unmagnetized diffusion for azimuthally symmetric wave and particle distributions
NASA Technical Reports Server (NTRS)
Dusenbery, P. B.; Lyons, L. R.
1988-01-01
The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.
Stress Drops of Earthquakes on the Subducting Pacific Plate in the South-East off Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Saito, Y.; Yamada, T.
2013-12-01
Large earthquakes have been occurring repeatedly in the South-East of Hokkaido, Japan, where the Pacific Plate subducts beneath the Okhotsk Plate in the north-west direction. For example, the 2003 Tokachi-oki earthquake (Mw8.3 determined by USGS) took place in the region on September 26, 2003. Yamanaka and Kikuchi (2003) analyzed the slip distribution of the earthquake and concluded that the 2003 earthquake had ruptured the deeper half of the fault plane of the 1952 Tokachi-oki earthquake. Miyazaki et al. (2004) reported that a notable afterslip was observed at adjacent areas to the coseismic rupture zone of the 2003 earthquake, which suggests that there would be significant heterogeneities of strength, stress and frictional properties on the surface of the Pacific Plate in the region. In addition, some previous studies suggest that the region with a large slip in large earthquakes permanently have large difference of strength and the dynamic frictional stress level and that it would be able to predict the spatial pattern of slip in the next large earthquake by analyzing the stress drop of small earthquakes (e.g. Allmann and Shearer, 2007 and Yamada et al., 2010). We estimated stress drops of 150 earthquakes (4.2 ≤ M ≤ 5.0), using S-coda waves, or the waveforms from 4.00 to 9.11 seconds after the S wave arrivals, of Hi-net data. The 150 earthquakes were the ones that occurred from June, 2002 to December, 2010 in south-east of Hokkaido, Japan, from 40.5N to 43.5N and from 141.0E to 146.5E. First we selected waveforms of the closest earthquakes with magnitudes between 3.0 and 3.2 to individual 150 earthquakes as empirical Green's functions. We then calculated source spectral ratios of the 150 pairs of interested earthquakes and EGFs by deconvolving the individual S-coda waves. We finally estimated corner frequencies of earthquakes from the spectral ratios by assuming the omega-squared model of Boatwright (1978) and calculated stress drops of the earthquakes by using the model of Madariaga (1976). The estimated values of stress drop range from 1 to 10 MPa with a little number of outliers(Fig.(a)). Fig.(b) shows the spatial distribution of stress drops in south-east off Hokkaido, Japan. We found that earthquakes occurred around 42N 145E had larger stress drops. We are going to analyze smaller earthquakes and investigate the spatial pattern of the stress drop in the future. Fig. (a) Estimated values of stress drop with respect to seismic moments of earthquakes. (b) Spatial distribution of stress drops.
A technique to measure the thermal diffusivity of high Tc superconductors
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1991-01-01
High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Diffusing-wave polarimetry for tissue diagnostics
NASA Astrophysics Data System (ADS)
Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor
2014-03-01
We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179
NASA Astrophysics Data System (ADS)
Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.
2015-12-01
The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave packets originating from scattering from coda, by applying the seismic gradiometry to the Hi-net.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Zhao, Guangyu; Ruan, Shigui
2011-01-01
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c* are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c*. PMID:21572575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Sarah; Bowman, Daniel; Rodgers, Arthur
Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less
Albert, Sarah; Bowman, Daniel; Rodgers, Arthur; ...
2018-04-23
Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less
ULF Waves and Diffusive Radial Transport of Charged Particles
NASA Astrophysics Data System (ADS)
Ali, Ashar Fawad
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang
The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...
2015-12-22
The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less
NASA Astrophysics Data System (ADS)
Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua
2016-10-01
Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated discrete ELF/VLF waves.
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Azimuthal ULF Structure and Radial Transport of Charged Particles
NASA Astrophysics Data System (ADS)
Ali, A.; Elkington, S. R.
2015-12-01
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. There is still much to be understood about the interaction between charged particles and ULF waves in the inner magnetosphere and how they influence particle diffusion. We investigate how ULF wave power distribution in azimuth affects radial diffusion of charged particles. Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. The power profiles obtained from in situ measurements will be used to conduct particle simulations to see how well do the simulated diffusion coefficients agree with diffusion coefficients estimated directly from in situ measurements. We also look at the ULF wave power distribution across different modes. In order to use in situ point measurements from spacecraft, it is typically assumed that all of the wave power exists in m=1 mode. How valid is this assumption? Do higher modes contain a major fraction of the total power? If yes, then under what conditions? One strategy is to use the obtained realistic azimuthal power profiles from in situ measurements (such as from the Van Allen Probes) to drive simulations and see how the power distributions across modes larger than one depends on parameters such as the level of geomagnetic activity.
Lu, Guangtao; Feng, Qian; Li, Yourong; Wang, Hao; Song, Gangbing
2017-01-01
During the propagation of ultrasonic waves in structures, there is usually energy loss due to ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile, the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are usually employed to describe the characteristics of ultrasound energy diffusion. The existence of multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the help of piezoceramic transducers. The experimental results of two categories of damages at different locations reveal that the existence of damage changes the energy transport between the actuator and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately linearly with the diameter of the simulated damage. However, when two or more modes of Lamb waves are excited, due to the existence of different group velocities between the different modes, the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size of the damage. Therefore, it is recommended that only one dominant mode of Lamb wave should be excited during the characterization process, in order to ensure that the linear relationship between the damage size and the characteristic parameters is maintained. In addition, the findings from this paper demonstrate the potential of developing future damage detection algorithms using the linear relationships between damage size and the ultrasound energy diffusion coefficient or ultrasonic energy dissipation coefficient when a single dominant mode is excited. PMID:29207530
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2010-12-01
Double- or two-wave-vector diffusion-weighting experiments with short mixing times in which two diffusion-weighting periods are applied in direct succession, are a promising tool to estimate cell sizes in the living tissue. However, the underlying effect, a signal difference between parallel and antiparallel wave vector orientations, is considerably reduced for the long gradient pulses required on whole-body MR systems. Recently, it has been shown that multiple concatenations of the two wave vectors in a single acquisition can double the modulation amplitude if short gradient pulses are used. In this study, numerical simulations of such experiments were performed with parameters achievable with whole-body MR systems. It is shown that the theoretical model yields a good approximation of the signal behavior if an additional term describing free diffusion is included. More importantly, it is demonstrated that the shorter gradient pulses sufficient to achieve the desired diffusion weighting for multiple concatenations, increase the signal modulation considerably, e.g. by a factor of about five for five concatenations. Even at identical echo times, achieved by a shortened diffusion time, a moderate number of concatenations significantly improves the signal modulation. Thus, experiments on whole-body MR systems may benefit from multiple concatenations.
NASA Astrophysics Data System (ADS)
Ali, A.; Elkington, S. R.; Malaspina, D.
2014-12-01
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.
Phase transition of traveling waves in bacterial colony pattern
NASA Astrophysics Data System (ADS)
Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio
2004-05-01
Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Yang Yang; Theodore A. Endreny; David J. Nowak
2016-01-01
Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...
Lee, Jungpyo; Bonoli, Paul; Wright, John
2011-01-01
The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less
Dynamics of scroll waves with time-delay propagation in excitable media
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong
2018-06-01
Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.
Cloaking through cancellation of diffusive wave scattering
Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.
2016-01-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925
Cloaking through cancellation of diffusive wave scattering
NASA Astrophysics Data System (ADS)
Farhat, M.; Chen, P. Y.; Guenneau, S.; Bağc, H.; Salama, K. N.; Alù, A.
2016-08-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging.
NASA Astrophysics Data System (ADS)
Singh, Chandrani; Biswas, Rahul; Srijayanthi, G.; Ravi Kumar, M.
2017-10-01
The attenuation characteristics of seismic waves traversing the Andaman Nicobar subduction zone (ANSZ) are investigated using high quality data from a network of broadband stations operational since 2009. We initially studied the Coda wave attenuation (Qc-1) under the assumption of a single isotropic scattering model. Subsequently, following the multiple isotropic scattering hypothesis, we isolated the relative contributions of intrinsic (Qi-1) and scattering (Qsc-1) attenuation employing the Multiple Lapse Time Window Analysis (MLTWA) method within a frequency range 1.5-18 Hz. Results reveal a highly attenuative nature of the crust, with the values of Qc being frequency dependent. The intrinsic absorption is mostly found to be predominant compared to scattering attenuation. The dominance of Qi-1 in the crust may be attributed to the presence of fluids associated with the subducted slab. Our results are consistent with the low velocity zone reported for the region. A comparison of our results with those from other regions of the globe shows that the ANSZ falls under the category of high intrinsic attenuation zone. Interestingly, the character of ANSZ is identical to that of eastern Himalaya and southern Tibet, but entirely different from the Garhwal-Kumaun Himalaya and the source zone of Chamoli earthquake, due to the underlying mechanisms causing high attenuation.
NASA Astrophysics Data System (ADS)
Denolle, M.; Dunham, E. M.; Prieto, G.; Beroza, G. C.
2013-05-01
There is no clearer example of the increase in hazard due to prolonged and amplified shaking in sedimentary, than the case of Mexico City in the 1985 Michoacan earthquake. It is critically important to identify what other cities might be susceptible to similar basin amplification effects. Physics-based simulations in 3D crustal structure can be used to model and anticipate those effects, but they rely on our knowledge of the complexity of the medium. We propose a parallel approach to validate ground motion simulations using the ambient seismic field. We compute the Earth's impulse response combining the ambient seismic field and coda-wave enforcing causality and symmetry constraints. We correct the surface impulse responses to account for the source depth, mechanism and duration using a 1D approximation of the local surface-wave excitation. We call the new responses virtual earthquakes. We validate the ground motion predicted from the virtual earthquakes against moderate earthquakes in southern California. We then combine temporary seismic stations on the southern San Andreas Fault and extend the point source approximation of the Virtual Earthquake Approach to model finite kinematic ruptures. We confirm the coupling between source directivity and amplification in downtown Los Angeles seen in simulations.
Coherency of seismic noise, Green functions and site effects
NASA Astrophysics Data System (ADS)
Prieto, G. A.; Beroza, G. C.
2007-12-01
The newly rediscovered methodology of cross correlating seismic noise (or seismic coda) to retrieve the Green function takes advantage of the coherency of the signals across a set of stations. Only coherent signals are expected to emerge after stacking over a long enough time. Cross-correlation has a significant disadvantage for this purpose, in that the Green function recovered is convolved with the source-time function of the noise source. For seismic waves, this can mean that the microseism peak dominates the signal. We show how the use of the transfer function between sensors provides a better resolved Green function (after inverse Fourier transform), because the deconvolution process removes the effect of the noise source-time function. In addition, we compute the coherence of the seismic noise as a function of frequency and distance, providing information about the effective frequency band over which Green function retrieval is possible. The coherence may also be used in resolution analysis for time reversal as a constraint on the de-coherence length (the distance between sensors over which the signals become uncorrelated). We use the information from the transfer function and the coherence to examine wave propagation effects (attenuation and site effects) for closely spaced stations compared to a reference station.
Observations of changes in waveform character induced by the 1999 M w7.6 Chi-Chi earthquake
Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.
2011-01-01
We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 ?? 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged S wave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake. ?? 2011 by the American Geophysical Union.
Collision broadened resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-08-01
Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less
Defect imaging for plate-like structures using diffuse field.
Hayashi, Takahiro
2018-04-01
Defect imaging utilizing a scanning laser source (SLS) technique produces images of defects in a plate-like structure, as well as spurious images occurring because of resonances and reverberations within the specimen. This study developed defect imaging by the SLS using diffuse field concepts to reduce the intensity of spurious images, by which the energy of flexural waves excited by laser can be estimated. The experimental results in the different frequency bandwidths of excitation waves and in specimens with different attenuation proved that clearer images of defects are obtained in broadband excitation using a chirp wave and in specimens with low attenuation, which produce diffuse fields easily.
Diffusion of strongly magnetized cosmic ray particles in a turbulent medium
NASA Technical Reports Server (NTRS)
Ptuskin, V. S.
1985-01-01
Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.
Python based integration of GEM detector electronics with JET data acquisition system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy
2014-11-01
This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium
NASA Astrophysics Data System (ADS)
Wang, Ken Kang-Hsin; Ye, Zhen
2003-10-01
In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].
Autocrine signal transmission with extracellular ligand degradation
NASA Astrophysics Data System (ADS)
Muratov, C B; Posta, F; Shvartsman, S Y
2009-03-01
Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.
Monitoring daily and sub-daily variations in crustal strain with seismic arrays
NASA Astrophysics Data System (ADS)
Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.
2017-12-01
We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.
Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S.; Dunham, E. M.; Kozdon, J. E.
2012-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.
Existence and exponential stability of traveling waves for delayed reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian
2018-03-01
The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.
Tracking changes in volcanic systems with seismic Interferometry
Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,
2014-01-01
The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to use ambient noise tomography (ANT) to map the 3D structure of a volcanic interior (at Piton de la Fournaise). Subsequent studies have imaged volcanoes with ANT at Okmok (Masterlark et al. 2010), Toba (Stankiewicz et al. 2010), Katmai (Thurber et al. 2012), Asama (Nagaoka et al. 2012), Uturuncu (Jay et al. 2012), and Kilauea (Ballmer et al. 2013b). In addition, Ma et al. (2013) have imaged a scatterer in the volcanic region of southern Peru by applying array techniques to ambient noise correlations. Prior to and in tandem with the development of ANT, researchers discovered that repeating earthquakes, which often occur at volcanoes, could be used to monitor subtle time-dependent changes with a technique known as the doublet method or coda wave interferometry (CWI) (Poupinet et al. 1984; Roberts et al. 1992; Ratdomopurbo and Poupinet 1995; Snieder et al. 2002; Pandolfi et al. 2006; Wegler et al. 2006; Martini et al. 2009; Haney et al. 2009; De Angelis 2009; Nagaoka et al. 2010; Battaglia et al. 2012; Erdem and Waite 2005; Hotovec-Ellis et al. 2014). Chaput et al. (2012) have also used scattered waves from Strombolian eruption coda at Erebus volcano to image the reflectivity of the volcanic interior with body wave interferometry. However, CWI in its original form was limited in that repeating earthquakes, or doublets, were not always guaranteed to occur. With the widespread use of noise correlations in seismology following the groundbreaking work by Campillo and Paul (2003) and Shapiro et al. (2005), it became evident that the nature of the ambient seismic field, due to its oceanic origin, enabled the continuous monitoring of subtle, time-dependent changes at both fault zones (Wegler and Sens-Schönfelder 2007; Brenguier et al. 2008b; Wegler et al. 2009; Sawazaki et al. 2009; Tatagi et al. 2012) and volcanoes (Sens-Schönfelder and Wegler 2006; Brenguier et al. 2008a) without the need for repeating earthquakes. Seismic precursors to eruptions based on ambient noise we
High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan
NASA Astrophysics Data System (ADS)
Padhy, S.; Furumura, T.
2016-12-01
Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism of intermediate to deep earthquakes in the region.
NASA Astrophysics Data System (ADS)
Nishigami, K.
2006-12-01
It is essential to estimate the deep structure of active faults related to the earthquake rupture process as well as the crustal structure related to the propagation of seismic waves, in order to improve the accuracy of estimating strong ground motion caused by future large inland earthquakes. In the Kinki region, southwest Japan, there are several active fault zones near large cities such as Osaka and Kyoto, and the evaluation of realistic strong ground motion is an important subject. We have been carrying out the Special Project for Earthquake Disaster Mitigation in Urban Areas, in the Kinki region for these purposes. In this presentation we will show the result of estimating the fault structure model of the Biwako-seigan, Hanaore, and Arima- Takatsuki fault zones. We estimated a 3-D distribution of relative scattering coefficients in the Kinki region, also in the vicinity of each active fault zone, by inversion of coda envelopes from local earthquakes. We analyzed 758 seismograms from 52 events which occurred in 2003, recorded at 50 stations of Kyoto Univ., Hi- net, and JMA. The preliminary result shows that active fault zones can be imaged as higher scattering than the surroundings. Based on previous studies of scattering properties in the crust, we consider that the relatively weaker scattering (namely more homogeneous) part on the fault plane may act as an asperity during future large earthquakes, and also that the part with relatively stronger scattering (namely more heterogeneous part) may become an initiation point of rupture. We are also studying the detailed distribution of microearthquakes, b-values, and velocity anomalies along these active fault zones. Combining these results, we will construct a possible fault model for each of the active fault zones. This study is sponsored by the Special Project for Earthquake Disaster Mitigation in Urban Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
IRIS DMC products help explore the Tohoku earthquake
NASA Astrophysics Data System (ADS)
Trabant, C.; Hutko, A. R.; Bahavar, M.; Ahern, T. K.; Benson, R. B.; Casey, R.
2011-12-01
Within two hours after the great March 11, 2011 Tohoku earthquake the IRIS DMC started publishing automated data products through its Searchable Product Depository (SPUD), which provides quick viewing of many aspects of the data and preliminary analysis of this great earthquake. These products are part of the DMC's data product development effort intended to serve many purposes: stepping-stones for future research projects, data visualizations, data characterization, research result comparisons as well as outreach material. Our current and soon-to-be-released products that allow users to explore this and other global M>6.0 events include 1) Event Plots, which are a suite of maps, record sections, regional vespagrams and P-coda stacks 2) US Array Ground Motion Visualizations that show the vertical and horizontal global seismic wavefield sweeping across US Array including minor and major arc surface waves and their polarizations 3) back-projection movies that show the time history of short-period energy from the rupture 4) R1 source-time functions that show approximate duration and source directivity and 5) aftershock sequence maps and statistics movies based on NEIC alerts that self-update every hour in the first few days following the mainshock. Higher order information for the Tohoku event that can be inferred based on our products which will be highlighted include a rupture duration of order 150 sec (P-coda stacks, back-projections, R1 STFs) that ruptured approximately 400 km along strike primarily towards the south (back-projections, R1 STFs, aftershock animation) with a very low rupture velocity (back-projections, R1 STFs). All of our event-based products are automated and consistently produced shortly after the event so that they may serve as familiar baselines for the seismology research community. More details on these and other existing products are available at: http://www.iris.edu/dms/products/
Equatorial anisotropy of the Earth's inner-inner core
NASA Astrophysics Data System (ADS)
Song, X.; Wang, T.; Xia, H.
2015-12-01
Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Control of transversal instabilities in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald
2018-05-01
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
On the Chemical Mixing Induced by Internal Gravity Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; McElwaine, J. N.
Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less
Magmatic unrest beneath Mammoth Mountain, California
Hill, D.P.; Prejean, S.
2005-01-01
Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
A modulation wave approach to the order hidden in disorder
Withers, Ray
2015-01-01
The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.
2015-01-01
There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.
High-resolution probing of inner core structure with seismic interferometry
NASA Astrophysics Data System (ADS)
Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.
2015-12-01
Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.
NASA Astrophysics Data System (ADS)
Goto, A.; Ripepe, M.; Lacanna, G.
2014-06-01
Wideband acoustic waves, both inaudible infrasound (<20 Hz) and audible component (>20 Hz), generated by strombolian eruptions were recorded at 5 kHz and correlated with video images. The high sample rate revealed that in addition to the known initial infrasound, the acoustic signal includes an energetic high-frequency (typically >100 Hz) coda. This audible signal starts before the positive infrasound onset goes negative. We suggest that the infrasonic onset is due to magma doming at the free surface, whereas the immediate high-frequency signal reflects the following explosive discharge flow. During strong gas-rich eruptions, positively skewed shockwave-like components with sharp compression and gradual depression appeared. We suggest that successive bursting of overpressurized small bubbles and the resultant volcanic jets sustain the highly gas-rich explosions and emit the audible sound. When the jet is supersonic, microexplosions of ambient air entrained in the hot jet emit the skewed waveforms.
Sleep underpins the plasticity of language production.
Gaskell, M Gareth; Warker, Jill; Lindsay, Shane; Frost, Rebecca; Guest, James; Snowdon, Reza; Stackhouse, Abigail
2014-07-01
The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep. © The Author(s) 2014.
Chemotaxis of artificial microswimmers in active density waves
NASA Astrophysics Data System (ADS)
Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey
2016-07-01
Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.
NASA Astrophysics Data System (ADS)
Otosu, Takuhiro; Yamaguchi, Shoichi
2017-07-01
We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
Subduction zone guided waves in Northern Chile
NASA Astrophysics Data System (ADS)
Garth, Thomas; Rietbrock, Andreas
2016-04-01
Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate depths by dipping low velocity normal faults. Additionally, we show that the low velocity oceanic crust persists to depths of up to 200 km, well beyond the depth range where the eclogite transition is expected to have occurred. Our results suggest that young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.
DREAM3D simulations of inner-belt dynamics
NASA Astrophysics Data System (ADS)
Cunningham, G.
2015-12-01
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.
Relativistic Electron Precipitation: An Observational Study.
1980-01-01
al., 1970). These so-called "n + 1/2" waves (- n + 1/2) are found throughout the magnetosphere outside the plasmapause (Kennel et al., 1970; Shaw and...diffusion scattering one requires 2 L D~ . LSD - z ~.(21) 73 where aL = loss cone pitch angle D SD = coefficient for strong diffusion. Equation (20) can be...with substitutions yields a fluctuating field wave amplitude for strong electron diffusion: a." 0- x(23) and 00for f= LSD (24) LRo LRo + For ions
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
Dupont, E; Van Eeckhoudt, S; Thissen, X; Ausselet, N; Fretin, D; Stefanescu, I; Glupczynski, Y; Delaere, B
2015-10-01
Tularemia is a zoonosis caused by Francisella tularensis that can be transmitted by several ways to human being and cause different clinical manifestations. We report three clinical cases of tularemia with ulceroglandular presentation in young males acquired during outdoor activities in Southern Belgium. Confirmation of the diagnosis was established by serology. Only three cases of tularemia have been reported in Belgium between 1950 and 2012 by the National Reference Laboratory CODA-CERVA (Ref Lab CODA-CERVA) but re-emergence of tularemia is established in several European countries and F. tularensis is also well known to be present in animal reservoirs and vectors in Belgium. The diagnosis of tularemia has to be considered in case of suggestive clinical presentation associated with epidemiological risk factors.
Rulison, Kelly L; Feinberg, Mark; Gest, Scott D; Osgood, D Wayne
2015-10-01
We tested whether effects of the Strengthening Families Program for Youth 10-14 (SFP10-14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Data are from 5,449 students (51% female; mean initial age = 12.3 years) in the PROmoting School-community-university Partnerships to Enhance Resilience community intervention trial (2001-2006) who did not participate in SFP10-14 (i.e., nonparticipants). At each of five waves, students identified up to seven friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10-14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Three years post-intervention, the odds of getting drunk (odds ratio = 1.4) and using cigarettes (odds ratio = 2.7) were higher among nonparticipants with zero SFP-attending friends compared with nonparticipants with three or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: nonparticipants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10-14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that nonparticipants spent with friends), changing friends' substance use attitudes, and then changing nonparticipants' own substance use attitudes. Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Rulison, Kelly L.; Feinberg, Mark; Gest, Scott D.; Osgood, D. Wayne
2015-01-01
Purpose We tested whether effects of the Strengthening Families Program for Youth 10–14 (SFP10–14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Methods Data are from 5,449 students (51% female; mean initial age=12.3 years) in the PROSPER community intervention trial (2001–2006) who did not participate in SFP10–14 (i.e., non-participants). At each of 5 waves, students identified up to 7 friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10–14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Results Three years post-intervention, the odds of getting drunk (OR=1.4) and using cigarettes (OR=2.7) were higher among non-participants with 0 SFP-attending friends compared to non-participants with 3 or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: non-participants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10–14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that non-participants spent with friends), changing friends’ substance use attitudes, and then changing non-participants’ own substance use attitudes. Conclusions Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. PMID:26210856
Analytical treatment of particle motion in circularly polarized slab-mode wave fields
NASA Astrophysics Data System (ADS)
Schreiner, Cedric; Vainio, Rami; Spanier, Felix
2018-02-01
Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.
Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi
2018-01-01
We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have significantly different directions of incident waves to the scatterers. Furthermore, weak but coherent P-to-P scattered waves as well as S-to-P waves are observed for a few of the scatterers. These observations indicate that the locally plane scatterers also possess substantial topography.
Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films
NASA Astrophysics Data System (ADS)
Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.
2004-06-01
Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.
Properties of seismic absorption induced reflections
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2018-05-01
Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.
Inward propagating chemical waves in Taylor vortices.
Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F
2010-04-01
Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.
Synthetic Pn and Sn phases and the frequency dependence of Q of oceanic lithosphere
NASA Astrophysics Data System (ADS)
Sereno, Thomas J., Jr.; Orcutt, John A.
1987-04-01
The oceanic lithosphere is an extremely efficient waveguide for high-frequency seismic energy. In particular, the propagation of the regional to teleseismic oceanic Pn and Sn phases is largely controlled by properties of the oceanic plates. The shallow velocity gradient in the sub-Moho lithosphere results in a nearly linear travel time curve for these oceanic phases and an onset velocity near the material velocity of the uppermost mantle. The confinement of Pn/Sn to the lithosphere imposes a constraint on the maximum range that a normally refracted wave can be observed. The rapid disappearance of Sn and the discontinuous drop in Pn/Sn group velocity beyond a critical distance, dependent upon the local thickness of the lithosphere, are interpreted as a shadowing effect of the low Q asthenosphere. Wave number integration was used to compute complete synthetic seismograms for a model of oceanic lithosphere. The results were compared to data collected during the 1983 Ngendei Seismic Experiment in the southwest Pacific. The Pn/Sn coda is successfully modeled as a sum of leaky organ-pipe modes in the sediment layer and oceanic water column. While scattering is present to some degree, it is not required to explain the long duration and complicated nature of the Pn/Sn wave trains. The presence of extremely high frequencies in Pn/Sn phases and the greater efficiency of Sn than Pn propagation are interpreted in terms of an absorption band rheology. A shorter high-frequency relaxation time for P waves than for S waves results in a rheology with the property that Qα > Qβ at low frequency while Qβ > Qα at high frequency, consistent with the teleseismic Pn/Sn observations. The absorption band model is to viewed as only an approximation to the true frequency dependence of Q in the oceanic lithosphere for which analytic expressions for the material dispersion have been developed.
NASA Astrophysics Data System (ADS)
Linville, L. M.; Pankow, K. L.; Kilb, D. L.; Velasco, A. A.; Hayward, C.
2013-12-01
Because of the abundance of data from the Earthscope U.S. Transportable Array (TA), data paucity and station sampling bias in the US are no longer significant obstacles to understanding some of the physical parameters driving dynamic triggering. Initial efforts to determine locations of dynamic triggering in the US following large earthquakes (M ≥ 8.0) during TA relied on a time domain detection algorithm which used an optimized short-term average to long-term average (STA/LTA) filter and resulted in an unmanageably large number of false positive detections. Specific site sensitivities and characteristic noise when coupled with changes in detection rates often resulted in misleading output. To navigate this problem, we develop a frequency domain detection algorithm that first pre-whitens each seismogram and then computes a broadband frequency stack of the data using a three hour time window beginning at the origin time of the mainshock. This method is successful because of the broadband nature of earthquake signals compared with the more band-limited high frequency picks that clutter results from time domain picking algorithms. Preferential band filtering of the frequency stack for individual events can further increase the accuracy and drive the detection threshold to below magnitude one, but at general cost to detection levels across large scale data sets. Of the 15 mainshocks studied, 12 show evidence of discrete spatial clusters of local earthquake activity occurring within the array during the mainshock coda. Most of this activity is in the Western US with notable sequences in Northwest Wyoming, Western Texas, Southern New Mexico and Western Montana. Repeat stations (associated with 2 or more mainshocks) are generally rare, but when occur do so exclusively in California and Nevada. Notably, two of the most prolific regions of seismicity following a single mainshock occur following the 2009 magnitude 8.1 Samoa (Sep 29, 2009, 17:48:10) event, in areas with few or no known Quaternary faults and sparse historic seismicity. To gain a better understanding of the potential interaction between local events during the mainshock coda and the local stress changes induced by the passing surface waves, we juxtapose the local earthquake locations on maps of peak stress changes (e.g., radial, tangential and horizontal). Preliminary results reveal that triggering in the US is perhaps not as common as previously thought, and that dynamic triggering is most likely a more complicated interplay between physical parameters (e.g., amplitude threshold, wave orientation, tectonic environment, etc) than can be explained by a single dominant driver.
Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.
2016-12-01
The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.
USDA-ARS?s Scientific Manuscript database
Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
Transverse particle acceleration and diffusion in a planetary magnetic field
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1994-01-01
A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.
Neymotin, Samuel A.; McDougal, Robert A.; Sherif, Mohamed A.; Fall, Christopher P.; Hines, Michael L.; Lytton, William W.
2015-01-01
Calcium (Ca2+) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron’s second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3), diffusible Ca2+, IP3 receptors (IP3Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. Ca2+ is released from ER stores via IP3Rs upon binding of IP3 and Ca2+. This results in Ca2+-induced-Ca2+-release (CICR) and increases Ca2+ spread. At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50–90µm /sec). Continuous ER showed high sensitivity to IP3R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP3R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca2+ substantially increased wave speed. An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. PMID:25734493
NASA Astrophysics Data System (ADS)
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
NASA Technical Reports Server (NTRS)
Garcia, R. R.
1986-01-01
The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.
NASA Astrophysics Data System (ADS)
Tornquist, Mattias
The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift frequency within the spectral band via dynamic phases. Each mode contributes maximally at a phase reset frequency fr = 2.63fk, where fk is the mode frequency. We experiment with electron diffusion due to interaction with wave broadband spectra in MLT sectors and find the phase reset effect being strongest when there is no azimuthal wave vector (msec = 0) within the sector. DLL rapidly coheres to the local PSD as the wave number increases and, for example, at msec = 1.00+/-0.25 the effect of phase resets is only 10-30% as strong as for msec = 0. Since phase resets depend on particle drift frequencies when MLT sectors are involved, a consequence is that DLL must adjust as a function of L-shell as well. For example, from the local PSD as the sole contributor to diffusion Schulz and Lanzerotte (1979) has shown that DLL ˜ L6 , but we prove that the function becomes DLL ˜ L5 with some variations due to fd and MLT sector width. The final part of this dissertation evaluates a pre storm commencement event on November 7, 2004, when Earth's magnetopause was struck by a high-speed solar wind with a mostly northward component of interplanetary magnetic field. We obtained a global MHD field simulated by the OpenGGC model for the interval 17:00-18:40 in universal time from NASA's Community Coordinated Modeling Center. Global distribution plots of the electric and magnetic field PSD reveal strong ULF waves spanning the whole dayside sector. There are distinct electric field modes at approximately 0.9, 2.3 and 3.7-6.3 mHz within the dayside sector, which we then used in test-particle simulations and the variance calculations in order to evaluate the diffusion coefficients. To ensure diffusion by sufficient stochasticity, we run the event by repeating the interval 10 times in series for a total duration of 12 hours. For the wave electric fields, the predicted diffusion coefficient due to local PSD matches the outcome from simulated electron scattering at 0.9 and 2.3 mHz. The diffusion due to the wider frequency band at 3.7-6.3 mHz does not fit the PSD profile alone, and requires phase resets in non-resonant modes within the spectrum to yield an agreement between the calculations and the simulations. Furthermore, only msec = 1 provides the correct solution. We have thus demonstrated the importance in including both the MLT sector width and wave number as additional significant factors apart from the local PSD in determining the diffusion coefficient for a realistic wave field. (Abstract shortened by UMI.).
Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Li, Panxiao; Wu, Shi-Liang
2018-04-01
This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.
Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels
NASA Astrophysics Data System (ADS)
Shuai, J. W.; Jung, P.
2003-03-01
A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.
Air-sea fluxes of momentum and mass in the presence of wind waves
NASA Astrophysics Data System (ADS)
Zülicke, Christoph
2010-05-01
An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.
NASA Astrophysics Data System (ADS)
Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard
2010-06-01
We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.
Using MLT Composition Observations to Evaluate Transport in a Comprehensive High Top Model
NASA Astrophysics Data System (ADS)
Smith, A. K.
2016-12-01
Gravity waves play an outsized role in the MLT: driving the mean meridional circulation, exerting a large degree of control over the mean winds and seasonal variations in temperature, and leading to diffusive vertical transport of heat and trace species. These waves are represented using a parameterization in the NCAR Whole Atmosphere Community Climate Model (WACCM), as in many other GCMs. To evaluate their impact, we need to consider not just the mean temperature and wind but the distributions of trace species that are affected by advection due to resolved winds and waves and diffusion associated with gravity wave dissipation. The responses of chemical species to changes in the gravity wave forcing are complex and sometimes unexpected. Transport and diffusion simultaneously affect all species and the heat and momentum budgets; subsequent interactions, and the strong dependence of reaction rates on temperature, affect the net impact of transport on the composition. In evaluating the model, we evaluate the simulations using a range of available observations of composition, including O, O3, CO, CO2, NO, NO2, OH, and H2O.
Evidence of negative-index refraction in nonlinear chemical waves.
Yuan, Xujin; Wang, Hongli; Ouyang, Qi
2011-05-06
The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.
Convective instability and boundary driven oscillations in a reaction-diffusion-advection model
NASA Astrophysics Data System (ADS)
Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam
2017-10-01
In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.
The Construct Validity of the CODA and Repeated Sprint Ability Tests in Football Referees.
Riiser, Amund; Andersen, Vidar; Castagna, Carlo; Arne Pettersen, Svein; Saeterbakken, Atle; Froyd, Christian; Ylvisaker, Einar; Naess Kjosnes, Terje; Fusche Moe, Vegard
2018-06-14
As of 2017, the international football federation introduced the change of direction ability test (CODA) and the 5×30 m sprint test for assistant referees (ARs) and continued the 6×40 m sprint test for field referees (FRs) as mandatory tests. The aim of this study was to evaluate the association between performance in these tests and running performance during matches at the top level in Norway. The study included 9 FRs refereeing 21 matches and 19 ARs observed 53 times by a local positioning system at three stadiums during the 2016 season. Running performance during matches was assessed by high-intensity running (HIR) distance, HIR counts, acceleration distance, and acceleration counts. For the ARs, there was no association between the CODA test with high-intensity running or acceleration ( P >0.05). However, the 5×30 m sprint test was associated with HIR count during the entire match (E -12.9, 95% CI -25.4 to -0.4) and the 5-min period with the highest HIR count (E -2.02, 95% CI -3.55 to -0.49). For the FRs, the 6×40 m fitness test was not associated with running performance during matches ( P >0.05). In conclusion, performance in these tests had weak or no associations with accelerations or HIR in top Norwegian referees during match play. © Georg Thieme Verlag KG Stuttgart · New York.
Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda
2015-08-01
CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.
NASA Astrophysics Data System (ADS)
Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.
2015-09-01
Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.
NASA Astrophysics Data System (ADS)
Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.
2013-12-01
Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.
Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.
2015-01-01
Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.
Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.
2015-01-01
Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here, we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We illustrate the differences of all three methods compared to one another using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has better time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements. DTW is a new tool that may find new applications in seismology and other geophysical methods (e.g., as a waveform inversion misfit function).
Amplitude equations for breathing spiral waves in a forced reaction-diffusion system
NASA Astrophysics Data System (ADS)
Ghosh, Pushpita; Ray, Deb Shankar
2011-09-01
Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.
Galactic civilizations: Population dynamics and interstellar diffusion
NASA Technical Reports Server (NTRS)
Newman, W. I.; Sagan, C.
1978-01-01
The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.
Biktashev, V. N.; Tsyganov, M. A.
2016-01-01
Solitons, defined as nonlinear waves which can reflect from boundaries or transmit through each other, are found in conservative, fully integrable systems. Similar phenomena, dubbed quasi-solitons, have been observed also in dissipative, “excitable” systems, either at finely tuned parameters (near a bifurcation) or in systems with cross-diffusion. Here we demonstrate that quasi-solitons can be robustly observed in excitable systems with excitable kinetics and with self-diffusion only. This includes quasi-solitons of fixed shape (like KdV solitons) or envelope quasi-solitons (like NLS solitons). This can happen in systems with more than two components, and can be explained by effective cross-diffusion, which emerges via adiabatic elimination of a fast but diffusing component. We describe here a reduction procedure can be used for the search of complicated wave regimes in multi-component, stiff systems by studying simplified, soft systems. PMID:27491430
Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock
NASA Astrophysics Data System (ADS)
Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.
2016-12-01
Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.
Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis
NASA Astrophysics Data System (ADS)
McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned
2010-03-01
A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Brasseur, Guy
1988-01-01
A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.
Mode-converted diffuse ultrasonic backscatter.
Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A
2013-08-01
Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.
Sato, Makoto; Yasugi, Tetsuo; Minami, Yoshiaki; Miura, Takashi; Nagayama, Masaharu
2016-01-01
Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or “proneural wave” accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation. PMID:27535937
Solar Wind Strahl Broadening by Self-Generated Plasma Waves
NASA Technical Reports Server (NTRS)
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
NASA Astrophysics Data System (ADS)
van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.
2017-05-01
Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.
Parameterization of planetary wave breaking in the middle atmosphere
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.
1991-01-01
A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.
NASA Astrophysics Data System (ADS)
Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.
2012-06-01
The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.
Numerical Tests and Properties of Waves in Radiating Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Yamada, H; Nakagaki, T; Baker, R E; Maini, P K
2007-06-01
In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.
Application of a planetary wave breaking parameterization to stratospheric circulation statistics
NASA Technical Reports Server (NTRS)
Randel, William J.; Garcia, Rolando R.
1994-01-01
The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.
Computing the Dynamic Response of a Stratified Elastic Half Space Using Diffuse Field Theory
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Perton, M.; Molina Villegas, J. C.
2015-12-01
The analytical solution for the dynamic response of an elastic half-space for a normal point load at the free surface is due to Lamb (1904). For a tangential force, we have Chaós (1960) formulae. For an arbitrary load at any depth within a stratified elastic half space, the resulting elastic field can be given in the same fashion, by using an integral representation in the radial wavenumber domain. Typically, computations use discrete wave number (DWN) formalism and Fourier analysis allows for solution in space and time domain. Experimentally, these elastic Greeńs functions might be retrieved from ambient vibrations correlations when assuming a diffuse field. In fact, the field could not be totally diffuse and only parts of the Green's functions, associated to surface or body waves, are retrieved. In this communication, we explore the computation of Green functions for a layered media on top of a half-space using a set of equipartitioned elastic plane waves. Our formalism includes body and surface waves (Rayleigh and Love waves). These latter waves correspond to the classical representations in terms of normal modes in the asymptotic case of large separation distance between source and receiver. This approach allows computing Green's functions faster than DWN and separating the surface and body wave contributions in order to better represent Green's function experimentally retrieved.
Dependence of radiation belt simulations to assumed radial diffusion rates
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.
2017-12-01
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1999-01-01
Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.
Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion
NASA Astrophysics Data System (ADS)
Cally, Paul S.; Khomenko, Elena
2018-03-01
It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”
Plasma Waves and Structures Associated with Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Ergun, R.; Wilder, F. D.; Ahmadi, N.; Goodrich, K.; Holmes, J.; Newman, D. L.; Burch, J.; Torbert, R. B.; Le Contel, O.; Giles, B. L.; Strangeway, R. J.; Lindqvist, P. A.
2017-12-01
Space observations of magnetic reconnection indicate a variety of plasma wave modes and structures in the vicinity of the electron diffusion region including electromagnetic whistler waves, quasi-electrostatic whistler waves, electron phase-space holes, double layers, electron acoustic waves, lower hybrid waves, upper hybrid waves, and electromagnetic drift waves. These waves and plasma structures are seen in magnetotail reconnection and subsolar reconnection. The MMS mission has the unique ability to unequivocally identify the electron diffusion region and distinguish waves in the EDR from those in the extended separatrix. Such a distinction is critical since some of the observed waves may be involved the reconnection process while others may result from subsequent or associated events and do not directly influence the reconnection process. For example, some of the largest amplitude (> 100 mV/m) electrostatic waves have been identified as electron acoustic waves and upper hybrid waves. These waves are likely generated as a result of reconnection and do not appear to strongly influence the reconnection process. On the other hand, large-amplitude electrostatic whistler waves have been observed very near the X-line, are seen in simulations, and may be participating in reconnection physics. Electromagnetic drift waves almost always appear in cases of asymmetric reconnection and may lead to a more turbulent process. We summarize wave observations by MMS and discuss the relative their possible role in magnetic reconnection physics, concentrating on recent magnetotail observations.
NASA Astrophysics Data System (ADS)
Lotfy, Kh.
2018-05-01
In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.
Delay-induced Turing-like waves for one-species reaction-diffusion model on a network
NASA Astrophysics Data System (ADS)
Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio
2015-09-01
A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.
Mathematical analysis of thermal diffusion shock waves
NASA Astrophysics Data System (ADS)
Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.
2005-10-01
Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.
Influence of syllable structure on L2 auditory word learning.
Hamada, Megumi; Goya, Hideki
2015-04-01
This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a closed-syllable structure and consonant clusters. Two groups of college students (Japanese group, N = 22; and native speakers of English, N = 21) learned paired English pseudowords and pictures. The pseudoword types differed in terms of the syllable structure and consonant clusters (congruent vs. incongruent) and the position of consonant clusters (coda vs. onset). Recall accuracy was higher for the pseudowords in the congruent type and the pseudowords with the coda-consonant clusters. The syllable structure effect was obtained from both participant groups, disconfirming the hypothesized cross-linguistic influence on L2 auditory word learning.
Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.
Ghosh, Pushpita; Ray, Deb Shankar
2011-09-14
Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N. J.
2015-12-10
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a waymore » that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.« less
NASA Astrophysics Data System (ADS)
Fisch, N. J.
2015-12-01
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.
NASA Technical Reports Server (NTRS)
Dass, Amala; Oh, Woon Su; Gao, Xue-Rong; Rawashdeh, Abdel M.; Leventis, Nicholas
2004-01-01
We have published recently the effect of dissimilar diffusion coefficients on the size of the voltammetric waves from a mixture of two redox-active compounds. Similarly, at the potential range where three redox-active species, decamethylferrocene (dMeFc), ferrocene (Fc) and N-methylphenothiazine (MePTZ), are oxidized simultaneously with rates controlled by linear diffusion, electrogenerated radicals diffusing outwards from the electrode react with the original species diffusing towards the electrode from the bulk; thus, Fc(+) reacts with dMeFc producing Fc and dMeFc(+), while MePTZ(+) reacts both with dMeFc producing MePTZ and dMeFc(+), and with Fc producing MePTZ and Fc(+). These reactions replace dMeFc with Fc at the second plateau, and both dMeFc and Fc with MePTZ at the third plateau. Since the diffusion coefficients of the three species are not equal, the mass-transfer limited currents of the second and the third oxidation wave plateaus change by approx. 10%. Numerical simulations of the experimental voltamograms support this mechanism. Similar results were also obtained for a mixture of four redoxactive compounds. The implications of this non-additive nature of currents on: (a) the use of internal voltammetric standards for quantitative analysis of a mixture of redox-active compounds; and, (b) the half wave potentials (E1/2) of the 2nd, 3rd and 4th waves for qualitative analysis, will be discussed.
Maxwell, Joshua T; Blatter, Lothar A
2012-12-01
The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.
Maxwell, Joshua T; Blatter, Lothar A
2012-01-01
The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145
The Organization as a Filter of Institutional Diffusion
ERIC Educational Resources Information Center
Penuel, William R.; Frank, Kenneth A.; Sun, Min; Kim, Chong Min; Singleton, Corrine
2013-01-01
Background/Context: Institutional theories sometimes characterize the normative influence of institutions as diffusing like waves and as exerting uniform pressures on individuals. This article contributes to a growing literature on the microfoundations of institutions, investigating how intraorganizational networks mediate the diffusion of…
Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1974-01-01
The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.
Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves
NASA Astrophysics Data System (ADS)
Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.
2018-02-01
The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.
The complex fluid dynamics of simple diffusion
NASA Astrophysics Data System (ADS)
Vold, Erik
2017-11-01
Diffusion as the mass transport process responsible for mixing fluids at the atomic level is often underestimated in its complexity. An initial discontinuity between two species of different atomic masses exhibits a mass density discontinuity under isothermal pressure equilibrium implying equal species molar densities. The self-consistent kinetic transport processes across such an interface leads to a zero sum of mass flux relative to the center of mass and so diffusion alone cannot relax an initially stationary mass discontinuity nor broaden the density profile at the interface. The diffusive mixing leads to a molar imbalance which drives a center of mass velocity which moves the heavier species toward the lighter species leading to the interfacial density relaxation. Simultaneously, the species non-zero molar flux modifies the pressure profile in a transient wave and in a local perturbation. The resulting center of mass velocity has two components; one, associated with the divergence of the flow, persists in the diffusive mixing region throughout the diffusive mixing process, and two, travelling waves at the front of the pressure perturbations propagate away from the mixing region. The momentum in these waves is necessary to maintain momentum conservation in the center of mass frame. Thus, in a number of ways, the diffusive mixing provides feedback into the small scale advective motions. Numerical methods which diffuse all species assuming P-T equilibrium may not recover the subtle dynamics of mass transport at an interface. Work performed by the LANS, LLC, under USDOE Contract No. DE-AC52-06NA25396, funded by the (ASC) Program.
The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
NASA Astrophysics Data System (ADS)
Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen
2017-12-01
Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.
Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
Doster, Wolfgang; Longeville, Stéphane
2007-08-15
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels
NASA Astrophysics Data System (ADS)
Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei
2018-01-01
As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.
NASA Astrophysics Data System (ADS)
Ferragut, G.; Liu, T.; Klemperer, S. L.
2017-12-01
In recent years Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho, which uses the post-critical reflection P waves at the Moho generated by teleseismic S waves at the free surface near the receivers (SsPmp). However, observed SsPmp sometimes have significantly lower amplitude than predicted, raising doubts among the seismic community on the theoretical basis of the method. With over two decades of continuous digital broadband records and major subduction zones in the range of 30-50 degrees, the Yellowknife Array in northern Canada provides a rich opportunity for observation of post-critical SsPmp. We analyze S wave coda of events with epicenter distances of 30-50°, and pay special attention to earthquakes in a narrow azimuth range that encompasses the Kamchatka Peninsula. Among 21 events with strong direct S energy on the radial components, we observe significant variation of SsPmp energy. After associating the SsPmp energy with the virtual source location of each event, we observe a general trend of decreasing SsPmp energy from NE to SW. As the trend coincides with the transition from exposed basement of the Slave Craton to Paleozoic platform covered by Phanerozoic sediment, we interpret the decreasing SsPmp energy as a result of lower S velocity at the virtual sources, which reduces S-to-P reflection coefficients. We plan to include more events from the Aleutian Islands, the virtual sources of which are primarily located in the Paleozoic platform. This will allow us to further investigate the relationship between SsPmp amplitude and near-surface velocity.
NASA Astrophysics Data System (ADS)
Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna
2015-01-01
The deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.
Wave-Current Conditions and Navigation Safety at an Inlet Entrance
2015-06-26
effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing
NASA Astrophysics Data System (ADS)
Mandelis, Andreas
2012-11-01
A handful of early breakthroughs in photoacoustic science and engineering since its modern-day (scientific) renaissance in the 1970s has defined directions in the development of the photoacoustic, photothermal, and diffusion-wave fields in the past 40 years that have shaped modern day developments and have led to an impressive range of vibrant and unique technologies in the third millennium (technological renaissance). A power-point presentation on the ICPPP-16 opening plenary talk focuses on the historical roots of what I perceive to be some of today's most successful and unique technologies, while readily acknowledging the impossibility to be all inclusive. It can be found under the url: http://cadift.mie.utoronto.ca/History_of_Photoacoustics-Photothermics.ppt. The thematic areas in question include historical reviews selected among the following topics: Piezoelectric photoacoustic microscopy (PAM) which, along with early gas-phase PA spectroscopic studies of biomaterials such as blood haemoglobin and progress in the physics of photon diffusion waves, has led to the modern-day explosion in biomedical photoacoustic imaging technologies with future trends for photoacoustic and ultrasound co-registered imagers; Thermoreflectance, piezoelectric, and gas-phase PA imaging of semiconductors which, along with developments in photocarrier diffusion wave physics, led to photocarrier radiometry, nanolayer diagnostics, carrierographic imaging of optoelectronic materials, and devices with industrial trends in solar cell inspection and control; Photoacoustic gas-phase and infrared radiometric probing and scanning imaging NDE which led to lock-in thermography and have spawned industrial and biomedical technologies; Thermal-wave interferometry and the quest for thermal coherence which led to thermal-wave cavities, the thermal-wave radar, and derivative depth profiling technologies, and, very recently, thermal coherence tomography. This review is meant to be a growing public record of work in progress, with new materials in the given thematic areas and other thematic areas being added as more information on the rich history of the field becomes available. Direct inputs to the author by the broader photoacoustic, photothermal, and diffusion-wave community are solicited and strongly encouraged to ensure that all landmark and seminal work that shaped the state of the science and art in the field receives fair and deserving exposure and the historical review becomes truly representative and comprehensive.
Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław
2009-03-01
Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungpyo; Wright, John; Bertelli, Nicola
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...
2017-04-24
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Position paper: appropriate use of pharmacotherapeutic agents by the orofacial pain dentist.
Heir, Gary M; Haddox, J David; Crandall, Jeffrey; Eliav, Eli; Radford, Steven Graff; Schwartz, Anthony; Jaeger, Bernadette; Ganzberg, Steven; Aquino, Carlos M; Benoliel, Rafael
2011-01-01
Orofacial Pain Dentistry is concerned with the prevention, evaluation, diagnosis, treatment, and management of persistent and recurrent orofacial pain disorders. The American Dental Association, through the Commission on Dental Accreditation (CODA), now recognizes Orofacial Pain as an area of advanced education in Dentistry. It is mandated by CODA that postgraduate orofacial pain programs be designed to provide advanced knowledge and skills beyond those of the standard curriculum leading to the DDS or DMD degrees. Postgraduate programs in orofacial pain must include specific curricular content to comply with CODA standards. The intent of CODA standards is to assure that training programs develop specific educational goals and objectives that describe the student/resident’s expected knowledge and skills upon successful completion of the program. A standardized core curriculum, required for accreditation of dental orofacial pain training programs, has now been adopted.Among the various topics mandated in the curriculum are pharmacology and, specifically, pharmacotherapeutics. The American Academy of Orofacial Pain (AAOP) recommends, and the American Board of Orofacial Pain (ABOP) requires, that the minimally competent orofacial pain dentist* be knowledgeable in the management of orofacial pain conditions using medications when indicated. Basic knowledge of the appropriate use of pharmacotherapeutics is essential for the orofacial pain dentist and, therefore, constitutes part of the examination specifications of the ABOP. The minimally competent orofacial pain clinician must demonstrate knowledge, diagnostic skills, and treatment expertise in many areas, such as musculoskeletal, neurovascular, and neuropathic pain syndromes; sleep disorders related to orofacial pain; orofacial dystonias; and intraoral, intracranial, extracranial, and systemic disorders that cause orofacial pain or dysfunction. The orofacial pain dentist has the responsibility to diagnose and treat patients in pain that is often chronic, multifactorial, and complex. Failure to understand pain mechanisms can lead to inaccurate diagnoses and ineffective, delayed, or harmful treatment. It is the responsibility of the orofacial pain dentist to accurately diagnose the cause(s) of the pain and decide if treatment should be dentally, medically, or psychologically oriented, or if optimal management requires a combination of all three treatment approaches. Management may consist of a number of interdisciplinary modalities including, eg, physical medicine, behavioral medicine, and pharmacology or, in rare instances, surgical interventions. Among the essential armamentarium is the knowledge and proper use of pharmacologic agents.
NASA Astrophysics Data System (ADS)
Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.
2014-05-01
Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
NASA Astrophysics Data System (ADS)
Lamoureux, J. M.; Menke, W. H.
2017-12-01
The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.
Moment tensor and location of seismic events in the 2017 DPRK test
NASA Astrophysics Data System (ADS)
Wei, S.; Shi, Q.; Chen, Q. F.; Wang, T.
2017-12-01
The main seismic event in the 2017 DPRK test was followed by a secondary event about eight minutes later. We conducted waveform analysis on the regional broadband waveform data to better constrain the moment tensor and location of these two events, to further understand their relations. In the first place, we applied the generalized Cut-And-Paste (gCAP) method to the regional data to invert the full moment tensor solutions of the two events. Our long period (0.02-0.08 Hz for Pnl, 0.02-0.055 Hz for surface waves) inversions show that the main event was composed of large positive ISO component ( 90% of the total moment) and has a moment magnitude of 5.4. In contrast, the second event shows large negative ISO component ( 50% of the total moment) with a moment magnitude of 4.5. Although there are trade-offs between the CLVD and the ISO component for the second event, chiefly caused by the coda waves from the first event, the result is more robust if we force a small CVLD component in the inversion. We also relocated the epicenter of the second event using P-wave first arrival picks, relative to the location of the first event, which has been accurately determined from the high-resolution geodetic data. The calibration from the first event allows us to precisely locate the second event, which shows an almost identical location to the first event. After a polarity correction, their high-frequency ( 0.25 - 0.9 Hz) regional surface waves also display high similarity, supporting the similar location but opposite ISO polarity of the two events. Our results suggest that the second event was likely to be caused by the collapsing after the main event, in agreement with the surface displacement derived from geodetic observation and modeling results.
Uncertainty Analyses for Back Projection Methods
NASA Astrophysics Data System (ADS)
Zeng, H.; Wei, S.; Wu, W.
2017-12-01
So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.
Different approach to the modeling of nonfree particle diffusion
NASA Astrophysics Data System (ADS)
Buhl, Niels
2018-03-01
A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.
Evaluation of the oblique detonation wave ramjet
NASA Technical Reports Server (NTRS)
Morrison, R. B.
1978-01-01
The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.
Reaction-diffusion waves in neuronal tissue and the window of cortical excitability
NASA Astrophysics Data System (ADS)
Dahlem, M. A.; Müller, S. C.
2004-07-01
Spreading depression (SD) is a dynamic wave phenomenon occurring in all gray matter regions of the central nervous systems (CNS). It is characterized by a sudden breakdown of neuronal activity and accompanied by a massive influx and efflux of ions across the membrane of neurons. The retina is a constituent of the CNS in which one can easily observe the dynamic behavior of the SD wave fronts, because SD changes the optical properties of the tissue. There is ample evidence that SD belongs to the self-organization processes due to the coupling of reaction with diffusion in excitable medium. It is assumed that the occurrence of SD is associated with some neurological symptoms of migraine with aura. A frequently reported aura symptom is a traveling visual blind region (scotoma) with a preceding figure of scintillating line segments. The characteristic form and development of the scotoma suggests that the underlying phenomenon is a wave propagating through the primary visual cortex, most likely the cortical spreading depression. In this article we discuss similarities between SD waves and the migraine aura on the basis of properties of reaction-diffusion waves known from other excitable media. In particular, the propagation velocities, the shape and the dynamics of the waves are compared with each other. We find that the assumption of the neuronal tissue to be in a state of only weak excitability explains some properties of the migraine aura, such as the confined appearance and its propagation with a stable velocity.
de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard
2014-08-01
Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Radial transport of radiation belt electrons in kinetic field-line resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.
A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less
Radial transport of radiation belt electrons in kinetic field-line resonances
Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...
2017-07-25
A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less
Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration
NASA Astrophysics Data System (ADS)
Diamond, P. H.; Malkov, M. A.
2007-01-01
We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.
Petersen, T.
2007-01-01
In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.
NASA Astrophysics Data System (ADS)
Schlittenhardt, J.
- A comparison of regional and teleseismic log rms (root-mean-square) Lg amplitude measurements have been made for 14 underground nuclear explosions from the East Kazakh test site recorded both by the BRV (Borovoye) station in Kazakhstan and the GRF (Gräfenberg) array in Germany. The log rms Lg amplitudes observed at the BRV regional station at a distance of 690km and at the teleseismic GRF array at a distance exceeding 4700km show very similar relative values (standard deviation 0.048 magnitude units) for underground explosions of different sizes at the Shagan River test site. This result as well as the comparison of BRV rms Lg magnitudes (which were calculated from the log rms amplitudes using an appropriate calibration) with magnitude determinations for P waves of global seismic networks (standard deviation 0.054 magnitude units) point to a high precision in estimating the relative source sizes of explosions from Lg-based single station data. Similar results were also obtained by other investigators (Patton, 1988; Ringdaletal., 1992) using Lg data from different stations at different distances.Additionally, GRF log rms Lg and P-coda amplitude measurements were made for a larger data set from Novaya Zemlya and East Kazakh explosions, which were supplemented with mb(Lg) amplitude measurements using a modified version of Nuttli's (1973, 1986a) method. From this test of the relative performance of the three different magnitude scales, it was found that the Lg and P-coda based magnitudes performed equally well, whereas the modified Nuttli mb(Lg) magnitudes show greater scatter when compared to the worldwide mb reference magnitudes. Whether this result indicates that the rms amplitude measurements are superior to the zero-to-peak amplitude measurement of a single cycle used for the modified Nuttli method, however, cannot be finally assessed, since the calculated mb(Lg) magnitudes are only preliminary until appropriate attenuation corrections are available for the specific path to GRF.
NASA Technical Reports Server (NTRS)
Karimbadi, H.; Krauss-Varban, D.
1992-01-01
A novel diffusion formalism that takes into account the finite width of resonances is presented. The resonance diagram technique is shown to reproduce the details of the particle orbits very accurately, and can be used to determine the acceleration/scattering in the presence of a given wave spectrum. Ways in which the nonlinear orbits can be incorporated into the diffusion equation are shown. The resulting diffusion equation is an extension of the Q-L theory to cases where the waves have large amplitudes and/or are coherent. This new equation does not have a gap at 90 deg in cases where the individual orbits can cross the gap. The conditions under which the resonance gap at 90-deg pitch angle exits are also examined.
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
Anomalous diffusion in a dynamical optical lattice
NASA Astrophysics Data System (ADS)
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Measuring Thermal Diffusivity Of A High-Tc Superconductor
NASA Technical Reports Server (NTRS)
Powers, Charles E.; Oh, Gloria; Leidecker, Henning
1992-01-01
Technique for measuring thermal diffusivity of superconductor of high critical temperature based on Angstrom's temperature-wave method. Peltier junction generates temperature oscillations, which propagate with attenuation up specimen. Thermal diffusivity of specimen calculated from distance between thermocouples and amplitudes and phases of oscillatory components of thermocouple readings.
The Microtremor H/V Spectral Ratio: The Physical Basis of the Diffuse Field Assumption
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.
2016-12-01
The microtremor H/V spectral ratio (MHVSR) is popular to obtain the dominant frequency at a site. Despite the success of MHVSR some controversy arose regarding its physical basis. One approach is the Diffuse Field Assumption, DFA. It is then assumed that noise diffuse features come from multiple scattering within the medium. According to theory, the average of the autocorrelation is proportional to directional energy density (DED) and to the imaginary part of the Green's function for same source and receiver. Then, the square of MHVSR is a ratio of DEDs which, in a horizontally layered system, is 2xImG11/ImG33, where ImG11 and ImG33 are the imaginary parts of Green's functions for horizontal and vertical components. This has physical implications that emerge from the duality DED-force, implicit in the DFA. Consider a surface force at a half-space. The radiated energy is carried away by various wave types and the proportions of each one are precisely the fractions of the energy densities of a diffuse elastic wave field at the free surface. Thus, some properties of applied forces are also characteristics of DEDs. For example, consider a Poisson solid. For a normal point load, 67 per cent of energy is carried away by Rayleigh waves. For the tangential case, it is less well known that, 77 per cent of energy goes as shear waves. In a full space, 92 per cent of the energy is emitted as shear waves. The horizontal DED at the half-space surface implies significant emission of down-going shear waves that explains the curious stair-like resonance spectrum of ImG11. Both ImG11 and ImG33 grow linearly versus frequency and this represents wave emission. For a layered medium, besides wave emission, the ensuing variations correspond to reflected waves. For high frequencies, ImG33 depends on the properties of the top layer. Reflected body waves are very small and Rayleigh waves behave in the top layer as in a kind of mini half-space. From HVSR one can invert the velocity model using the DFA. It is possible to compute efficiently the imaginary part of the Green's functions from the integrals along the radial wavenumber k. This can be made using either the Bouchon DWN method or the Cauchy residue theorem to get the pole contributions of Rayleigh and Love surface waves in the k complex plane. This allows separating the contributions of each wave type.
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
Stability of wave processes in a rotating electrically conducting fluid
NASA Astrophysics Data System (ADS)
Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.
2018-05-01
The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.
Cloaks for suppression or enhancement of scattering of diffuse photon density waves
NASA Astrophysics Data System (ADS)
Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan
2018-07-01
Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.
Convection in a colloidal suspension in a closed horizontal cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Cherepanov, I. N.
2015-02-15
The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined.
NASA Astrophysics Data System (ADS)
Loto'Aniu, T. M.; Mann, I. R.; Ozeke, L. G.; Chan, A. A.; Dent, Z. C.; Milling, D. K.
2006-04-01
A study was undertaken to estimate the radial diffusion timescale, τLL, for relativistic electrons (2-6 MeV) to diffuse into the slot region due to drift-resonance with Pc5 ULF waves (2-10 mHz) on 29 October 2003. Large amplitude ULF waves were observed by ground-based magnetometer arrays to penetrate deep into the slot region (L ≃ 2-3) starting at 0600 UT and maximising (˜200 nT p-p) between 0930-1630 UT. Around the same time, the SAMPEX PET instrument measured an over two orders of magnitude increase in relativistic (2-6 MeV) electron flux levels in ˜24 hours within the slot region. The ground-based D-component magnetic power spectral densities (PSDδB) for 29 October were estimated for six latitudinally spaced ground stations covering L ˜ 2.3-4.3 for an observed ULF wave with central frequency ˜4 mHz. The PSDδB values were used to calculate the in situ equatorial poloidal wave electric field power spectral densities (PSDδEm) using a standing Alfvén wave model. The radial diffusion coefficients, DLL, were estimated using the PSDδEm values. The fastest τLL were 3-5 hours at L > 4, while τLL initially increased with decreasing L-value below L ≃ 4; peaking at L ≃ 3 with τLL ˜ 12-24 hours with PSDδEm estimated using a wave frequency bandwidth between Δf = 1 mHz and Δf = 2.5 mHz. The τLL over the L-range L ˜ 2.3-3.3 were consistent with the timescales observed by SAMPEX for the increase in relativistic fluxes in the slot region on 29 October. The authors believe that this is the first example of the ULF wave drift-resonance with relativistic electrons explaining a radiation belt slot region filling event.
Physics of the diffusion region in the Magnetospheric Multiscale era
NASA Astrophysics Data System (ADS)
Chen, L. J.; Hesse, M.; Wang, S.; Ergun, R.; Bessho, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Gershman, D. J.; Wilson, L. B., III; Dorelli, J.; Pollock, C. J.; Moore, T. E.; Lavraud, B.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Le Contel, O.; Avanov, L. A.
2016-12-01
Encounters of reconnection diffusion regions by the Magnetospheric Multiscale (MMS) mission during its first magnetopause scan are studied in combination with theories and simulations. The goal is to understand by first-principles how stored magnetic energy is converted into plasma thermal and bulk flow energies via particle energization, mixing and interaction with waves. The magnetosheath population having much higher density than the magnetospheric plasma is an outstanding narrator for and participant in the magnetospheric part of the diffusion region. For reconnection with negligible guide fields, the accelerated magnetosheath population (for both electrons and ions) is cyclotron turned by the reconnected magnetic field to form outflow jets, and then gyrotropized downstream. Wave fluctuations are reduced in the central electron diffusion region (EDR) and do not dominate the energy conversion there. For an event with a significant guide field to magnetize the electrons, wave fluctuations at the lower hybrid frequency dominate the energy conversion in the EDR, and the fastest electron outflow is established dominantly by a strong perpendicular electric field via the ExB flow in one exhaust and by time-of-flight effects along with parallel electric field acceleration in the other. Whether the above features are common threads to magnetopause reconnection diffusion regions is a question to be further examined.
The Trickster, the Bad Nigga, and the New Urban Ethnography: An Initial Report and Editorial Coda
ERIC Educational Resources Information Center
Milner, Richard B.
1972-01-01
The author first describes a new way of doing ethnographic research, contrasting it with the prevalent academic style, and then discusses the studies of black prostitution done by him and his wife. (JM)
Generation of Z mode radiation by diffuse auroral electron precipitation
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Lyons, L. R.
1985-03-01
The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.
Generation of Z mode radiation by diffuse auroral electron precipitation
NASA Technical Reports Server (NTRS)
Dusenbery, P. B.; Lyons, L. R.
1985-01-01
The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections
NASA Astrophysics Data System (ADS)
Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui
2016-08-01
The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.
NASA Astrophysics Data System (ADS)
Otsuka, Fumiko; Matsukiyo, Shuichi; Kis, Arpad; Nakanishi, Kento; Hada, Tohru
2018-02-01
Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory (QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well, when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to 32 keV ions match with the observational values in the event discussed in the companion paper, which contains an intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when approaching the shock significantly affects the energy dependence of the e-folding distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Ringler, Todd D.
Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less
Statistics of multiply scattered broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2003-07-25
We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.
Wave and pseudo-diffusion equations from squeezed states
NASA Technical Reports Server (NTRS)
Daboul, Jamil
1993-01-01
We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.
Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere
NASA Astrophysics Data System (ADS)
Becker, E.
2016-12-01
At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).
NASA Astrophysics Data System (ADS)
Hasanah, Intan; Syahbana, Devy Kamil; Santoso, Agus; Palupi, Indriati Retno
2017-07-01
Indonesia consists of 127 active volcanoes, that causing Indonesia has a very active seismic activity. The observed temporal variation in the complex frequency analysis of Tornillo earthquake in this study at Lokon Volcano, North Sulawesi occured during the period from January 1 to March 17, 2016. This research was conducted using the SOMPI method, with parameters of complex frequency is oscillation frequency (f) and decay coda character of wave (Q Factor). The purpose of this research was to understand the condition of dynamics of fluids inside Lokon Volcano in it's period. The analysis was based on the Sompi homogeneous equation Auto-Regressive (AR). The results of this study were able to estimate the dynamics of fluids inside Lokon Volcano and identify the content of the fluid and dynamics dimension crust. Where the Tornillo earthquake in this period has a value of Q (decay waves) are distributed under 200 and frequency distributed between 3-4 Hz. Tornillo earthquake was at a shallow depth of less than 2 km and paraded to the Tompaluan Crater. From the analysis of complex frequencies, it can be estimated if occured an eruption at Lokon Volcano in it's period, the estimated type of eruption was phreatic eruption. With an estimated composition of the fluid in the form of Misty Gas a mass fraction of gas ranging between 0-100%. Another possible fluid contained in Lokon Volcano is water vapor with the gas volume fraction range 10-90%.
New constraints on the crustal structure beneath northern Tyrrhenian Sea
NASA Astrophysics Data System (ADS)
Levin, V. L.; Park, J. J.
2009-12-01
We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern Apennines, and that a delamination or vertical "drip" of detached lithosphere would fit the observations well.
Seismic imaging of Q structures by a trans-dimensional coda-wave analysis
NASA Astrophysics Data System (ADS)
Takahashi, Tsutomu
2017-04-01
Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on a classical waveform modeling in constant Q medium, this method can be a fundamental basis for Q structure imaging in the crust.
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Arterial Wave Reflection and Aortic Valve Calcification in an Elderly Community-Based Cohort
Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S.V.; Homma, Shunichi; Sacco, Ralph L.; Di Tullio, Marco R.
2015-01-01
Background Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. Methods To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study. Participants were divided into 4 categories based on the severity and extent of AVC: 1) none or mild focal AVC; 2) mild diffuse AVC; 3) moderate-severe focal AVC; and 4) moderate-severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Results Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and eGFR), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariable logistic regression analysis revealed that augmentation pressure (odds ratio per mmHg = 1.14; 95% confidence interval, 1.02–1.27; P = .02) and augmentation index (odds ratio per percentage point = 1.07; 95% confidence interval, 1.01–1.13; P = .02) were associated with an increase risk of moderate-severe diffuse AVC, even when central blood pressure value was included in the same model. Conclusions Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. PMID:25600036
Courtin, C; Hervé, P-Y; Petit, L; Zago, L; Vigneau, M; Beaucousin, V; Jobard, G; Mazoyer, B; Mellet, E; Tzourio-Mazoyer, N
2010-09-01
"Highly iconic" structures in Sign Language enable a narrator to act, switch characters, describe objects, or report actions in four-dimensions. This group of linguistic structures has no real spoken-language equivalent. Topographical descriptions are also achieved in a sign-language specific manner via the use of signing-space and spatial-classifier signs. We used functional magnetic resonance imaging (fMRI) to compare the neural correlates of topographic discourse and highly iconic structures in French Sign Language (LSF) in six hearing native signers, children of deaf adults (CODAs), and six LSF-naïve monolinguals. LSF materials consisted of videos of a lecture excerpt signed without spatially organized discourse or highly iconic structures (Lect LSF), a tale signed using highly iconic structures (Tale LSF), and a topographical description using a diagrammatic format and spatial-classifier signs (Topo LSF). We also presented texts in spoken French (Lect French, Tale French, Topo French) to all participants. With both languages, the Topo texts activated several different regions that are involved in mental navigation and spatial working memory. No specific correlate of LSF spatial discourse was evidenced. The same regions were more activated during Tale LSF than Lect LSF in CODAs, but not in monolinguals, in line with the presence of signing-space structure in both conditions. Motion processing areas and parts of the fusiform gyrus and precuneus were more active during Tale LSF in CODAs; no such effect was observed with French or in LSF-naïve monolinguals. These effects may be associated with perspective-taking and acting during personal transfers. 2010 Elsevier Inc. All rights reserved.
Davidson, Giana H; Flum, David R; Talan, David A; Kessler, Larry G; Lavallee, Danielle C; Bizzell, Bonnie J; Farjah, Farhood; Stewart, Skye D; Krishnadasan, Anusha; Carney, Erin E; Wolff, Erika M; Comstock, Bryan A; Monsell, Sarah E; Heagerty, Patrick J; Ehlers, Annie P; DeUgarte, Daniel A; Kaji, Amy H; Evans, Heather L; Yu, Julianna T; Mandell, Katherine A; Doten, Ian C; Clive, Kevin S; McGrane, Karen M; Tudor, Brandon C; Foster, Careen S; Saltzman, Darin J; Thirlby, Richard C; Lange, Erin O; Sabbatini, Amber K; Moran, Gregory J
2017-01-01
Introduction Several European studies suggest that some patients with appendicitis can be treated safely with antibiotics. A portion of patients eventually undergo appendectomy within a year, with 10%–15% failing to respond in the initial period and a similar additional proportion with suspected recurrent episodes requiring appendectomy. Nearly all patients with appendicitis in the USA are still treated with surgery. A rigorous comparative effectiveness trial in the USA that is sufficiently large and pragmatic to incorporate usual variations in care and measures the patient experience is needed to determine whether antibiotics are as good as appendectomy. Objectives The Comparing Outcomes of Antibiotic Drugs and Appendectomy (CODA) trial for acute appendicitis aims to determine whether the antibiotic treatment strategy is non-inferior to appendectomy. Methods/Analysis CODA is a randomised, pragmatic non-inferiority trial that aims to recruit 1552 English-speaking and Spanish-speaking adults with imaging-confirmed appendicitis. Participants are randomised to appendectomy or 10 days of antibiotics (including an option for complete outpatient therapy). A total of 500 patients who decline randomisation but consent to follow-up will be included in a parallel observational cohort. The primary analytic outcome is quality of life (measured by the EuroQol five dimension index) at 4 weeks. Clinical adverse events, rate of eventual appendectomy, decisional regret, return to work/school, work productivity and healthcare utilisation will be compared. Planned exploratory analyses will identify subpopulations that may have a differential risk of eventual appendectomy in the antibiotic treatment arm. Ethics and dissemination This trial was approved by the University of Washington’s Human Subjects Division. Results from this trial will be presented in international conferences and published in peer-reviewed journals. Trial registration number NCT02800785. PMID:29146633
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy
2016-12-01
Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [˜ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ˜108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran
2018-01-01
The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.