Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.
1999-01-01
This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.
2003-01-01
Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
Methods for reducing pollutant emissions from jet aircraft
NASA Technical Reports Server (NTRS)
Butze, H. F.
1971-01-01
Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.
Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.
Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz
2002-10-04
Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).
A Chandra High-Resolution X-ray Image of Centaurus A.
Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin
2000-03-01
We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.
NASA Astrophysics Data System (ADS)
Dasyra, K. M.; Bostrom, A. C.; Combes, F.; Vlahakis, N.
2015-12-01
We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the passage of the jet plasma or cocoon within an area of ˜1 kpc2. Concrete evidence that the interaction of the jet with the gas causes the gas to accelerate comes from the detection of outflows in four different regions along the jet trail: near the two radio lobes, between the radio emission tip and the optical narrow-line-region cone, and at a region with diffuse 17.8 GHz emission midway between the nucleus and the north radio lobe. The outflow in the latter region is biconical, centered 240 pc away from the nucleus, and oriented perpendicularly to the jet trail. The diffuse emission that is observed as a result of the gas entrainment or scattering unfolds around the trail and away from the nucleus with increasing velocity. It overall extends for ≳700 pc parallel and perpendicular to the trail. Near the outflow starting points, the gas has a velocity excess of 600-1200 km s-1 with respect to ordered motions, as seen in [Fe ii], {Pa}α , or {{{H}}}2 lines. High {{{H}}}2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.
Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.
2003-01-01
Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.
Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)
NASA Technical Reports Server (NTRS)
Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.
The Detection of Diffuse Extended Structure in 3C 273: Implications for Jet Power
NASA Astrophysics Data System (ADS)
Punsly, Brian; Kharb, Preeti
2016-12-01
We present deep Very Large Array imaging of 3C 273 in order to determine the diffuse, large scale radio structure of this famous radio-loud quasar. Diffuse extended structure (radio lobes) is detected for the first time in these observations as a consequence of high dynamic range in the 327.5 and 1365 MHz images. This emission is used to estimate a time averaged jet power, 7.2 × 1043 erg s-1 < \\overline{Q} < 3.7 × 1044 erg s-1. Brightness temperature arguments indicate consistent values of the time variability Doppler factor and the compactness Doppler factor for the inner jet, δ ≳ 10. Thus, the large apparent broadband bolometric luminosity of the jet, ˜3 × 1046 erg s-1, corresponds to a modest intrinsic luminosity ≳1042 erg s-1, or ˜1% of \\overline{Q}. In summary, we find that 3C 273 is actually a “typical” radio-loud quasar contrary to suggestions in the literature. The modest \\overline{Q} is near the peak of the luminosity distribution for radio-loud quasars and it is consistent with the current rate of dissipation emitted from millimeter wavelengths to gamma rays. The extreme core-jet morphology is an illusion from a near pole-on line of sight to a highly relativistic jet that produces a Doppler enhanced glow that previously swamped the lobe emission. 3C 273 apparently has the intrinsic kpc scale morphology of a classical double radio source, but it is distorted by an extreme Doppler aberration.
The X-ray structure of Centaurus A
NASA Technical Reports Server (NTRS)
Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.
1981-01-01
The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.
Second-Order Fermi Acceleration and Emission in Blazar Jets
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.
1997-01-01
Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient pressures. Soot concentrations were minimized by selecting conditions at low flowrates and low ambient pressures; this allows identification of actual flame sheets associated with blue emissions of CH and CO2. The present modeling effort follows that of Roper and is useful in explaining many of the trends observed.
Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Faeth, G. M.
1994-01-01
Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Ku, Jerry C.
1997-01-01
The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.
NASA Astrophysics Data System (ADS)
Bandaru, Ramarao Venkat
2000-10-01
Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid mechanical instability occurring inside the burner at a sudden expansion. Studies have shown that these flames emit up to 70% less NOx than straight jet flames. In precessing jet flames, the turbulent mixing scales are several times larger than those of straight jet flames.
Assessing Jet-Induced Spatial Mixing in a Rich, Reacting Crossflow
NASA Technical Reports Server (NTRS)
Demayo, T. N.; Leong, M. Y.; Samuelsen, G. S.
2004-01-01
In many advanced low NOx gas turbine combustion techniques, such as rich-burn/quick-mix/lean-burn (RQL), jet mixing in a reacting, hot, fuel-rich crossflow plays an important role in minimizing all pollutant emissions and maximizing combustion efficiency. Assessing the degree of mixing and predicting jet penetration is critical to the optimization of the jet injection design strategy. Different passive scalar quantities, including carbon, oxygen, and helium are compared to quantify mixing in an atmospheric RQL combustion rig under reacting conditions. The results show that the O2-based jet mixture fraction underpredicts the C-based mixture fraction due to jet dilution and combustion, whereas the He tracer overpredicts it possibly due to differences in density and diffusivity. The He-method also exhibits significant scatter in the mixture fraction data that can most likely be attributed to differences in gas density and turbulent diffusivity. The jet mixture fraction data were used to evaluate planar spatial unmixedness, which showed good agreement for all three scalars. This investigation suggests that, with further technique refinement, O2 or a He tracer could be used instead of C to determine the extent of reaction and mixing in an RQL combustor.
Diffuse γ-ray emission from misaligned active galactic nuclei
Di Mauro, M.; Calore, F.; Donato, F.; ...
2013-12-20
Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. Here, we calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Furthermore, a correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with uppermore » limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. These results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.« less
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.
Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,
Jet multiplicity in the proto-binary system NGC 1333-IRAS4A. The detailed CALYPSO IRAM-PdBI view
NASA Astrophysics Data System (ADS)
Santangelo, G.; Codella, C.; Cabrit, S.; Maury, A. J.; Gueth, F.; Maret, S.; Lefloch, B.; Belloche, A.; André, Ph.; Hennebelle, P.; Anderl, S.; Podio, L.; Testi, L.
2015-12-01
Context. Owing to the paucity of sub-arcsecond (sub)mm observations required to probe the innermost regions of newly forming protostars, several fundamental questions are still being debated, such as the existence and coevality of close multiple systems. Aims: We study the physical and chemical properties of the jets and protostellar sources in the NGC 1333-IRAS4A proto-binary system using continuum emission and molecular tracers of shocked gas. Methods: We observed NGC 1333-IRAS4A in the SiO(6-5), SO(65-54), and CO(2-1) lines and the continuum emission at 1.3, 1.4, and 3 mm using the IRAM Plateau de Bure Interferometer in the framework of the CALYPSO large program. Results: We clearly disentangle for the first time the outflow emission from the two sources A1 and A2. The two protostellar jets have very different properties: the A1 jet is faster, has a short dynamical timescale (≲103 yr), and is associated with H2 shocked emission, whereas the A2 jet, which dominates the large-scale emission, is associated with diffuse emission, bends, and emits at slower velocities. The observed bending of the A2 jet is consistent with the change of propagation direction observed at large scale and suggests jet precession on very short timescales (~200-600 yr). In addition, a chemically rich spectrum with emission from several complex organic molecules (e.g. HCOOH, CH3OCHO, CH3OCH3) is only detected towards A2. Finally, very high-velocity shocked emission (~50 km s-1) is observed along the A1 jet. An LTE analysis shows that SiO, SO, and H2CO abundances in the gas phase are enhanced up to (3-4)×10-7, (1.4-1.7)×10-6, and (3-7.9)×10-7, respectively. Conclusions: The intrinsic different properties of the jets and driving sources in NGC 1333-IRAS4A suggest different evolutionary stages for the two protostars, with A1 being younger than A2, in a very early stage of star formation previous to the hot-corino phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org
X-ray inverse Compton emission from the radio halo of M87
NASA Technical Reports Server (NTRS)
Feigelson, E. D.
1984-01-01
A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths.
Smoke Point in Co-flow Experiment
NASA Technical Reports Server (NTRS)
Urban, David L.; Sunderland, Peter B.; Yuan, Zeng-Guang
2009-01-01
The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest.
STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.
2016-07-20
We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less
Radiation from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi
2007-01-01
The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.
NASA Astrophysics Data System (ADS)
Tanuma, S.; Shibata, K.
2005-07-01
Space solar missions such as Yohkoh and RHESSI observe the hard X- and gamma-ray emission from energetic electrons in impulsive solar flares. Their energization mechanism, however, is unknown. In this Letter, we suggest that the internal shocks are created in the reconnection jet and that they are possible sites of particle acceleration. We examine how magnetic reconnection creates the multiple shocks by performing two-dimensional resistive magnetohydrodynamic simulations. In this Letter, we use a very small grid to resolve the diffusion region. As a result, we find that the current sheet becomes thin due to the tearing instability, and it collapses to a Sweet-Parker sheet. The thin sheet becomes unstable to the secondary tearing instability. Fast reconnection starts by the onset of anomalous resistivity immediately after the secondary tearing instability. During the bursty, time-dependent magnetic reconnection, the secondary tearing instability continues in the diffusion region where the anomalous resistivity is enhanced. As a result, many weak shocks are created in the reconnection jet. This situation produces turbulent reconnection. We suggest that multiple fast shocks are created in the jet and that the energetic electrons can be accelerated by these shocks.
NASA Technical Reports Server (NTRS)
Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.;
2007-01-01
A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.
Turbulent structure and emissions of strongly-pulsed jet diffusion flames
NASA Astrophysics Data System (ADS)
Fregeau, Mathieu
This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)
An experimental and numerical study of gas jet diffusion flames enveloped by a cascade of venturis
NASA Astrophysics Data System (ADS)
Qubbaj, Ala Rafat
1999-06-01
A new technique to control carbon monoxide, nitric oxide, and soot emissions of a propane diffusion flame by modifying the air infusion rate into the flame was developed. In this study, the effectiveness of the ``venturi-cascading'' technique was experimentally as well numerically investigated. Propane jet diffusion flames at three burner-exit Reynolds numbers ( 3600, 5100 and 6500) corresponding to burner-rim-attached, undergoing transition from attached to lifted, and fully-lifted configurations were examined with several sets of venturis of different sizes and spacing arrangements. Temperature, and the concentrations of carbon dioxide, oxygen, carbon monoxide and nitric oxide in the exhaust products were measured before and after the modification, and optimal conditions to minimize pollutant emissions were obtained. The optimal value of venturi throat/burner-exit diameter ratio (D/d) was 32 +/- 3, which corresponded to an approximate clearance of 5 +/- 2 mm between the venturi throat and the burning jet width at the mid-flame height. The venturi-cascading technique at its optimal conditions resulted in a decrease of 87% and 33% in CO and NO emission indices along with a 24% decrease in soot emission from a propane jet flame, compared to the baseline condition (same flame without venturis). The reduction of NO without increasing CO was the main attraction of this technique. The temperature and composition measurements, at the optimal conditions, showed that, in the near-burner region, the venturi-cascaded flame had lower temperature and CO2 concentration by an average of 5% and 7%, respectively, than the baseline flame. However, in the mid-flame and far-burner regions, it has higher temperature by 13% and 12%, and higher CO2 concentration by 16% and 13%, in average values, respectively. Laser Induced Fluorescence (LIF) measurements, in the near-burner region of the venturi-cascaded flame, indicated an average decrease of 18%, 24% and 12% in OH, CH and CN radical species, respectively, along with 11% drop in soot precursors (PAR), from their baseline values. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The CO and NO concentrations were determined through CFD-POST, a post processing utility program for CFD-ACE+. The final simulated results were compared with the experimental data. Good agreement was found in the near-burner region. (Abstract shortened by UMI.)
An X-ray investigation of the unusual supernova remnant CTB 80
NASA Technical Reports Server (NTRS)
Wang, Z. R.; Seward, F. D.
1984-01-01
The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.
NASA Technical Reports Server (NTRS)
Schreier, E. J.; Feigelson, E.; Delvaille, J.; Giacconi, R.; Grindlay, J.; Schwartz, D. A.; Fabian, A. C.
1979-01-01
The X-ray source at the center of the radio galaxy Centaurus A has been resolved into the following components with the imaging detectors on board the Einstein X-ray Observatory: (1) a point source coincident with the infrared nucleus; (2) diffuse X-ray emission coinciding with the inner radio lobes; (3) a 4-arcmin extended region of emission about the nucleus; and (4) an X-ray jet between the nucleus and the NE inner radio lobe. The 2 x 10 to the 39th ergs/s detected from the radio lobes probably arises from inverse Compton scattering of the microwave background. The average magnetic field in the SW lobe is determined to be not less than 4 microgauss. The extended region may be due to emission by a cloud of hot gas, cosmic-ray scattering, or stellar sources. The jet provides strong evidence for the continuous resupply of energy to the lobes from the nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric
2015-01-20
We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained bymore » the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.« less
SOFIA/FORCAST Resolves 30 - 40 μm Extended Emission in Nearby AGN
NASA Astrophysics Data System (ADS)
Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ichikawa, Kohei; Togi, Aditya
2018-06-01
We present arcsecond-scale observations in the 30 - 40 μm range of seven nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the 31.5 and 37.1 μm filters of the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We find extended diffuse emission in the 37.1 μm images in our sample, and isolate this from unresolved torus emission. Using Spitzer/IRS spectra, we determine the dominant mid-infrared (MIR) emission source and attribute it to dust in the narrow line region (NLR) or star formation. We compare the optical NLR and radio jet axes to the extended 37.1 μm emission and find coincident axes for three sources.
NASA Astrophysics Data System (ADS)
Rolland, Joran; Achatz, Ulrich
2017-04-01
The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).
An extended source for CN jets in Comet P/Halley
NASA Technical Reports Server (NTRS)
Klavetter, James Jay; A'Hearn, Michael F.
1994-01-01
We examined radial intensity profiles of CN jets in comparison with the diffuse, isotropic component of the CN coma of Comet P/Halley. All images were bias-subtracted, flat-fielded, and continuum-subtracted. We calculated the diffuse profiles by finding the azimuthal mean of the coma least contaminated by jets yielding profiles similar to those of vectorial and Haser models of simple photodissociation. We found the jet profiles by calculating a mean around a Gaussian-fitted center in r-theta space. There is an unmistakable difference between the profiles of the CN jets and the profiles of the diffuse CN. Spatial derivatives of these profiles, corrected for geometrical expansion, show that the diffuse component is consistent with a simple photodissociation process, but the jet component is not. The peak production of the jet profile occurs 6000 km from the nucleus at a heliocentric distance of 1.4 AU. Modeling of both components of the coma indicate results that are consistent with the diffuse CN photochemically produced, but the CN jets need an additional extended source. We found that about one-half of the CN in the coma of Comet P/Halley originated from the jets, the rest from the diffuse component. These features, along with the width of the jet being approximately constant, are consistent with a CHON grain origin for the jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowitz, A.; Takahashi, T.; Watanabe, S.
2007-06-27
A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and frommore » Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.« less
Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.
2004-01-01
The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).
Buoyancy Effects in Strongly-pulsed, Turbulent Diffusion Flames
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.
2004-01-01
The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 x 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).
Accretion Signatures on Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.
2015-01-01
We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.
Structural aspects of coaxial oxy-fuel flames
NASA Astrophysics Data System (ADS)
Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.
Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.
Probing the diffuse optical-IR background with TeV blazars detected with the MAGIC Telescopes
NASA Astrophysics Data System (ADS)
Prandini, Elisa; Domínguez, Alberto; Fallah Ramazani, Vandad; Hassan, Tarek; Mazin, Daniel; Moralejo, Abelardo; Nievas Rosillo, Mireia; Vanzo, Gaia; Vazquez Acosta, Monica
2017-11-01
Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV). To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs) such as MAGIC, H.E.S.S. and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL) leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011) is constrained to be 0.95 (+0.11, -0.12)_{stat} (+0.16, -0.07)_{sys}, where a value of 1 means the perfect match with the model.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
2017-06-01
We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.
Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling
2016-03-17
Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.
Laser-Excited Luminescent Tracers for Planar Concentration Measurements in Gaseous Jets
NASA Astrophysics Data System (ADS)
Lozano, Antonio
Tracers currently used in planar laser-induced fluorescence concentration measurements are not ideal for some experimental conditions, e.g., non-reacting turbulent gaseous flows at standard temperature and pressure. In this work, a number of chemicals have been evaluated, through consideration of their physical and photophysical properties, for use as luminescent concentration markers in turbulent gaseous flows. Two selected substances, biacetyl and acetone, have been studied in more detail. Acetone PLIF concentration images have been acquired in a non-reacting air jet, and the results have been compared to similar images obtained seeding with biacetyl. Acetone has proven to be a superior tracer when imaging fluorescence emission. Acetone has also been used as a fuel marker in hydrogen and methane diffusion flames. This single -laser technique enables simultaneous recording of the acetone and OH fluorescence emissions, as well as Mie scattering from ambient air dust particles. Acetone-sensitized, collisionally-induced biacetyl phosphorescence has been used to visualize molecular mixing in gaseous flows. Initial attempts to produce quantitative results with this method through simultaneous imaging of acetone fluorescence and collisionally-induced biacetyl emission, are described. Using laser-induced biacetyl phosphorescence imaging, a data set of cross-cut concentration images has been acquired in a nitrogen coflowing jet (Re = 5,000). The images have been statistically analyzed. Very simple models of the instantaneous concentration profile have been compared to the experimental data. Of all the tested models, a paraboloid has resulted to be the best approximation to the instantaneous 2-D profile. Finally, an experiment to study jet mixing in crossflow using acetone PLIF imaging has been designed. The flow facility has been constructed, and preliminary images obtained with a high quantum efficiency, thinned CCD detector have revealed the presence of jet structures inside the wake region that appear to be dependent on the jet/crossflow velocity ratio.
Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2000-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Dai, Zi-Gao; Mészáros, Peter, E-mail: dzg@nju.edu.cn
2017-07-01
High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work, we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwhile, possible dissipation mechanisms (e.g., internal shocks or magnetic reconnection) could accelerate cosmic-rays (CRs) to ultra-high energies and then produce neutrinos via hadronuclear and photohadronic processes, which are referred to as prompt neutrinos . In this paper, we obtain the prompt neutrino spectrum of a single GRB within a self-consistent analytical framework, in which the jet-cocoon structure and possible collimation effects are included. Wemore » investigate a possible neutrino signal from the cocoon, which has been ignored in the previous studies. We show that if a GRB event happens at a distance of the order of Mpc, there is a great chance to observe the neutrino emission from the cocoon by IceCube, which is even more promising than jet neutrinos, as the opening angle of the cocoon is much larger. We also determine the diffuse neutrino flux of GRB cocoons and find that it could be comparable with that of the jets. Our results are consistent with the latest result reported by the IceCube collaboration that no significant correlation between neutrino events and observed GRBs is seen in the new data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jester, Sebastian; /Fermilab; Harris, D.E.
2006-05-01
The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering ofmore » cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.« less
CMB-induced radio quenching of high-redshift jetted AGNs with highly magnetic hotspots
NASA Astrophysics Data System (ADS)
Wu, Jianfeng; Ghisellini, Gabriele; Hodges-Kluck, Edmund; Gallo, Elena; Ciardi, Benedetta; Haardt, Francesco; Sbarrato, Tullia; Tavecchio, Fabrizio
2017-06-01
In an effort to understand the cause of the apparent depletion in the number density of radio-loud active galactic nuclei (AGNs) at z > 3, this work investigates the viability of the so-called cosmic microwave background (CMB) quenching mechanism of intrinsically jetted, high-z AGNs, whereby inverse Compton scattering of CMB photons off electrons within the extended lobes results in a substantial dimming of the lobe synchrotron emission at GHz frequencies, while simultaneously boosting their diffuse X-ray signal. We focus on five z > 3.5 radio galaxies that have sufficiently deep Chandra exposure (>50 ks) to warrant a meaningful investigation of any extended X-ray emission. For those objects with evidence for statistically significant extended X-ray lobes (4C 41.17 and 4C 03.24), we combine the Chandra measurements with literature data at lower frequencies to assemble the systems' spectral energy distributions (SEDs), and utilize state-of-the-art SED modelling - including emission from the disc, torus, jet, hotspots and lobes - to infer their physical parameters. For both radio galaxies, the magnetic energy density in the hotspots is found to exceed the energy density in CMB photons, whereas the opposite is true for the lobes. This implies that any extended synchrotron emission likely originates from the hotspots themselves, rather than the lobes. Conversely, inverse Compton scattering of CMB photons dominates the extended X-ray emission from the lobes, which are effectively 'radio-quenched'. As a result, CMB quenching is effective in these systems in spite of the fact that the observed X-ray to radio luminosity ratio does not bear the signature (1 + z)4 dependence of the CMB energy density.
Pulsed Turbulent Diffusion Flames in a Coflow
NASA Astrophysics Data System (ADS)
Usowicz, James E.; Hermanson, James C.; Johari, Hamid
2000-11-01
Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.
PIV Measurements in Weakly Buoyant Gas Jet Flames
NASA Technical Reports Server (NTRS)
Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William
2001-01-01
Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.
The 300 Kpc Long X-Ray Jet in PKS 1127-145, Z=1.18 Quasar: Constraining X-Ray Emission Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemiginowska, Aneta; /Harvard-Smithsonian Ctr. Astrophys.; Stawarz, Lukasz
2006-11-20
We present a {approx} 100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS 1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitudemore » going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with {alpha}{sub x} = 0.66 {+-} 0.15 and steep in the outer jet with {alpha}{sub x} = 1.0 {+-} 0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ''one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.« less
Coma morphology of comet 67P controlled by insolation over irregular nucleus
NASA Astrophysics Data System (ADS)
Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.
2018-05-01
While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.
An Experiment Investigation of Fully-Modulated, Turbulent Diffusion Flames in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Stocker, D. P.; Nagashima, T.; Obata, S.
1999-01-01
Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The ultimate objective of this program is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This can give rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. In addition, the fully-modulated injection approach avoids the strong acoustic forcing present in pulsed combustion devices, significantly simplifying the mixing and combustion processes. Relatively little is known of the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. The goal of this Flight-Definition experiment (PUFF, for PUlsed-Fully Flames) is to establish the behavior of fully-modulated, turbulent diffusion flames under microgravity conditions. Fundamental issues to be addressed in this experiment include the mechanisms responsible for the flame length decrease for fully-modulated, turbulent diffusion flames compared with steady flames, the impact of buoyancy on the mixing and combustion characteristics of these flames, and the characteristics of turbulent flame puffs under fully momentum-dominated conditions.
Prediction and validation of blowout limits of co-flowing jet diffusion flames -- effect of dilution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasi, M.; Wierzba, I.
1996-10-01
The blowout limits of a co-flowing turbulent methane jet diffusion flame with addition of diluent in either jet fuel or surrounding air stream is studied both analytically and experimentally. Helium, nitrogen and carbon dioxide were employed as the diluents. Experiments indicated that an addition of diluents to the jet fuel or surrounding air stream decreased the stability limit of the jet diffusion flames. The strongest effect was observed with carbon dioxide as the diluent followed by nitrogen and then by helium. A model of extinction based on recognized criterion of the mixing time scale to characteristic combustion time scale ratiomore » using experimentally derived correlations is proposed. It is capable of predicting the large reduction of the jet blowout velocity due to a relatively small increase in the co-flow stream velocity along with an increase in the concentration of diluent in either the jet fuel or surrounding air stream. Experiments were carried out to validate the model. The predicted blowout velocities of turbulent jet diffusion flames obtained using this model are in good agreement with the corresponding experimental data.« less
3D relativistic MHD numerical simulations of X-shaped radio sources
NASA Astrophysics Data System (ADS)
Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.
2017-10-01
Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.
Study of the propagation of a plane turbulent jet in flow-through chamber workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laigna, K.Yu.; Potter, E.A.
1988-05-01
The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less
Recent development of a jet-diffuser ejector
NASA Technical Reports Server (NTRS)
Alperin, M.; Wu, J. J.
1980-01-01
The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.
Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-05-01
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Whitten, G. Z.; Hogo, H.
1976-01-01
Jet aircraft emissions data from the literature were used as initial conditions for a series of computer simulations of photochemical smog formation in static air. The chemical kinetics mechanism used in these simulations was an updated version which contains certain parameters designed to account for hydrocarbon reactivity. These parameters were varied to simulate the reaction rate constants and average carbon numbers associated with the jet emissions. The roles of surface effects, variable light sources, NO/NO2 ratio, continuous emissions, and untested mechanistic parameters were also assessed. The results of these calculations indicate that the present jet emissions are capable of producing oxidant by themselves. The hydrocarbon/nitrous oxides ratio of present jet aircraft emissions is much higher than that of automobiles. These two ratios appear to bracket the hydrocarbon/nitrous oxides ratio that maximizes ozone production. Hence an enhanced effect is seen in the simulation when jet exhaust emissions are mixed with automobile emissions.
NASA Astrophysics Data System (ADS)
Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.
1991-08-01
The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.
NASA Astrophysics Data System (ADS)
Aloy, Miguel-Angel; Gómez, José-Luis; Ibáñez, José-María; Martí, José-María; Müller, Ewald
2000-01-01
We present the first radio emission simulations from high-resolution three-dimensional relativistic hydrodynamic jets; these simulations allow us to study the observational implications of the interaction between the jet and the external medium. This interaction gives rise to a stratification of the jet in which a fast spine is surrounded by a slow high-energy shear layer. The stratification (in particular, the large specific internal energy and slow flow in the shear layer) largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear), the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer or if it presents a change in velocity. The asymmetry is more prominent in the polarized flux because of field cancellation (or amplification) along the line of sight. Recent observations of jet cross section emission asymmetries in the blazar 1055+018 can be explained by assuming the existence of a shear layer with a helical magnetic field.
NASA Astrophysics Data System (ADS)
Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua
2018-04-01
The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.
Newly Uncovered Large-Scale Component of the Northern Jet in R Aqr
NASA Astrophysics Data System (ADS)
Montez, Rodolfo; Karovska, Margarita; Nichols, Joy S.; Kashyap, Vinay
2017-06-01
R Aqr is a symbiotic system comprised a compact white dwarf and Mira giant star. The interaction of these stars is responsible for the presence of a two-sided jet structure that is seen across the electromagnetic spectrum. X-ray emission from the jet was first discovered in 2000 with an observation by the Chandra X-ray Observatory. Since then follow-up observations have traced the evolution of the X-ray emission from the jet and a central compact source. In X-rays, the NE jet is brighter than the SW jet, but the full extent of the SW jet was larger - before it began fading below the detection threshold. However, we have uncovered evidence for large-scale emission associated with the NE jet that matches the extent of the SW jet. The emission has escaped previous identification because it is near the detection threshold, but it has been present since the first 2000 observation and clearly evolves in subsequent observations. We present our study of the emission from this component of the NE jet, its relationship to multiwavelength observations, and how it impacts our interpretation of the jet-phenomenon in R Aqr.
High-energy neutrinos from FR0 radio galaxies?
NASA Astrophysics Data System (ADS)
Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.
2018-04-01
The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.
Faint Object Camera imaging and spectroscopy of NGC 4151
NASA Technical Reports Server (NTRS)
Boksenberg, A.; Catchpole, R. M.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.
1995-01-01
We describe ultraviolet and optical imaging and spectroscopy within the central few arcseconds of the Seyfert galaxy NGC 4151, obtained with the Faint Object Camera on the Hubble Space Telescope. A narrowband image including (O III) lambda(5007) shows a bright nucleus centered on a complex biconical structure having apparent opening angle approximately 65 deg and axis at a position angle along 65 deg-245 deg; images in bands including Lyman-alpha and C IV lambda(1550) and in the optical continuum near 5500 A, show only the bright nucleus. In an off-nuclear optical long-slit spectrum we find a high and a low radial velocity component within the narrow emission lines. We identify the low-velocity component with the bright, extended, knotty structure within the cones, and the high-velocity component with more confined diffuse emission. Also present are strong continuum emission and broad Balmer emission line components, which we attribute to the extended point spread function arising from the intense nuclear emission. Adopting the geometry pointed out by Pedlar et al. (1993) to explain the observed misalignment of the radio jets and the main optical structure we model an ionizing radiation bicone, originating within a galactic disk, with apex at the active nucleus and axis centered on the extended radio jets. We confirm that through density bounding the gross spatial structure of the emission line region can be reproduced with a wide opening angle that includes the line of sight, consistent with the presence of a simple opaque torus allowing direct view of the nucleus. In particular, our modelling reproduces the observed decrease in position angle with distance from the nucleus, progressing initially from the direction of the extended radio jet, through our optical structure, and on to the extended narrow-line region. We explore the kinematics of the narrow-line low- and high-velocity components on the basis of our spectroscopy and adopted model structure.
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2001-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.
1988-01-01
A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.
Soot and Radiation Measurements in Microgravity Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.
1996-01-01
The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good agreements between model predictions and experimental data for laminar and turbulent flames under both normal and reduced gravity. We have also tested in the laboratory the techniques of rapid-insertion fine-wire thermocouples and emission pyrometry for temperature measurements. These techniques as well as laser Doppler velocimetry and spectral radiative intensity measurement have been proposed to provide valuable data and improve the modeling analyses.
NASA Astrophysics Data System (ADS)
Yan, Dahai; Zeng, Houdun; Zhang, Li
2012-08-01
The detections of X-ray emission from the kiloparsec-scale jets of blazars and radio galaxies could imply the existence of high-energy electrons in these extended jets, and these electrons could produce high-energy emission through the inverse Compton (IC) process. In this paper, we study the non-variable hard TeV emission from a blazar. The multiband emission consists of two components: (i) the traditional synchrotron self-Compton (SSC) emission from the inner jet; (ii) the emission produced via SSC and IC scattering of cosmic microwave background (CMB) photons (IC/CMB) and extragalactic background light (EBL) photons by relativistic electrons in the extended jet under the stochastic acceleration scenario. Such a model is applied to 1ES 1101-232. The results indicate the following. (i) The non-variable hard TeV emission of 1ES 1101-232, which is dominated by IC/CMB emission from the extended jet, can be reproduced well by using three characteristic values of the Doppler factor (δD = 5, 10 and 15) for the TeV-emitting region in the extended jet. (ii) In the cases of δD = 15 and 10, the physical parameters can achieve equipartition (or quasi-equipartition) between the relativistic electrons and the magnetic field. In contrast, the physical parameters largely deviate from equipartition for the case of δD = 5. Therefore, we conclude that the TeV emission region of 1ES 1101-232 in the extended jet should be moderately or highly beamed.
NASA Technical Reports Server (NTRS)
Stute, Matthias; Sahai, Raghvendra
2007-01-01
In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.
Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios
NASA Technical Reports Server (NTRS)
Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.
1994-01-01
Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.
STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PeV NEUTRINO FACTORIES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavecchio, Fabrizio; Ghisellini, Gabriele; Guetta, Dafne
2014-09-20
The origin of high-energy neutrinos (0.1–1 PeV range) detected by IceCube remains a mystery. In this work, we explore the possibility that efficient neutrino production can occur in structured jets of BL Lac objects, characterized by a fast inner spine surrounded by a slower layer. This scenario has been widely discussed in the framework of the high-energy emission models for BL Lac objects and radio galaxies. One of the relevant consequences of a velocity structure is the enhancement of the inverse Compton emission caused by the radiative coupling of the two zones. We show that a similar boosting could occurmore » for the neutrino output of the spine through the photo-meson reaction of high-energy protons scattering off the amplified soft target photon field of the layer. Assuming the local density and the cosmological evolution of γ-ray BL Lac object derived from Fermi Large Area Telescope data, we calculate the expected diffuse neutrino intensity, which can match the IceCube data for a reasonable choice of parameters.« less
A MULTIWAVELENGTH STUDY OF THREE HYBRID BLAZARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, E. C.; Lister, M. L.; Kharb, P.
2015-07-01
We present multiwavelength imaging observations of PKS 1045−188, 8C 1849+670, and PKS 2216−038, three radio-loud active galactic nuclei from the MOJAVE-Chandra Sample that straddle the Fanaroff-Riley (FR) boundary between low- and high-power jets. These hybrid sources provide an excellent opportunity to study jet emission mechanisms and the influence of the external environment. We used archival VLA observations, and new Hubble and Chandra observations to identify and study the spectral properties of five knots in PKS 1045−188, two knots in 8C 1849+670, and three knots in PKS 2216−038. For the seven X-ray visible knots, we constructed and fit the broadband spectramore » using synchrotron and inverse Compton/cosmic microwave background (IC/CMB) emission models. In all cases, we found that the lack of detected optical emission ruled out the X-ray emission from the same electron population that produces radio emission. All three sources have high total extended radio power, similar to that of FR II sources. We find this is in good agreement with previously studied hybrid sources, where high-power hybrid sources emit X-rays via IC/CMB and the low-power hybrid sources emit X-rays via synchrotron emission. This supports the idea that it is total radio power rather than FR morphology that determines the X-ray emission mechanism. We found no significant asymmetries in the diffuse X-ray emission surrounding the host galaxies. Sources PKS 1045−188 and 8C 1849+670 show significant differences in their radio and X-ray termination points, which may result from the deceleration of highly relativistic bulk motion.« less
NASA Technical Reports Server (NTRS)
Hunczak, Henry R
1952-01-01
An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.
Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.
First Optical observation of a microquasar at sub-milliarsec scale: SS 433 resolved by VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Petrucci, P.; Waisberg, I.; Lebouquin, J.; Dexter, J.; Dubus, G.; Perraut, K.; Kervella, P.; Gravity Collaboration
2017-10-01
We present the first Optical observation at sub-milliarcsec (mas) scale of the famous microquasar SS 433 obtained with the GRAVITY instrument on the VLTI interferometer. This observation reveals the SS 433 inner regions with unprecedent details: The K-band continuum emitting region is dominated by a marginally resolved point source (< 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The significant visibility drop across the jet lines present in the K-band spectrum, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by < 0.5 mas from the continuum source and resolved in the direction of propagation, with a size of ˜2 mas. Jet emission so close to the central binary system implies that line locking, if relevant to explain the 0.26c jet velocity, operates on elements heavier than hydrogen. Concerning The Brγ line, it is better resolved than the continuum and the S-shape phase signal present across the line suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin. This observation show the potentiality of Optical interferometry to constrain the inner regions of high energy sources like microquasars.
Relativistic inverse Compton scattering of photons from the early universe.
Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H
2017-12-05
Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.
Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae
NASA Astrophysics Data System (ADS)
Senno, Nicholas; Murase, Kohta; Mészáros, Peter
2018-01-01
There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliori, Giulia; Siemiginowska, Aneta; Celotti, Annalisa, E-mail: migliori@cfa.harvard.edu
2012-04-20
We present the X-ray analysis of a deep ({approx}200 ks) Chandra observation of the compact steep spectrum radio-loud quasar 3C 186 (z = 1.06) and investigate the contribution of the unresolved radio jet to the total X-ray emission. The spectral analysis is not conclusive on the origin of the bulk of the X-ray emission. In order to examine the jet contribution to the X-ray flux, we model the quasar spectral energy distribution, adopting several scenarios for the jet emission. For the values of the main physical parameters favored by the observables, a dominant role of the jet emission in themore » X-ray band is ruled out when a single-zone (leptonic) scenario is adopted, even including the contribution of the external photon fields as seed photons for inverse Compton emission. We then consider a structured jet, with the blazar component that-although not directly visible in the X-ray band-provides an intense field of seed synchrotron photons Compton-scattered by electrons in a mildly relativistic knot. In this case, the whole X-ray emission can be accounted for if we assume a blazar luminosity within the range observed from flat spectrum radio quasars. The X-ray radiative efficiency of such a (structured) jet is intimately related to the presence of a complex velocity structure. The jet emission can provide a significant contribution in X-rays if it decelerates within the host galaxy on kiloparsec scales. We discuss the implications of this model in terms of jet dynamics and interaction with the ambient medium.« less
A Three Parsec-Scale Jet-Driven Outflow from Sgr A
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.
2012-01-01
The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified
Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Xu, F.; Dai, Z.; Faeth, G. M.
2001-01-01
Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.
2015-07-13
2004.08.272) 13. Ohisa H, Kimura I, Horisawa H. 1999 Control of soot emission of a turbulent diffusion flame by DC or AC corona discharges . Combust. Flame 116...References 1. Bozhenkov SA, Starikovskaia SM, Starikovskii AY. 2003 Nanosecond gas discharge ignition of H2- and CH4-containing mixtures. Combust. Flame...s10573-005-0047-6) 7. Kim W, Do H, Mungal MG, Cappelli MA. 2008 Optimal discharge placement in plasma-assisted combustion of a methane jet in cross
NASA Astrophysics Data System (ADS)
de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.
2016-06-01
Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.
Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets
NASA Astrophysics Data System (ADS)
Brownell, C. J.; Su, L. K.
2008-03-01
Planar laser Rayleigh scattering yields quantitative, two-dimensional measurements of differential diffusion in a turbulent propane-helium jet issuing into air. The jet exit Reynolds number ranges from 1000 to 3000, corresponding to estimated outer-scale Reynolds numbers from 4300 to 13 000. Using a technique originally proposed by Bilger and Dibble [Combust. Sci. Technol. 28, 161 (1982)], the imaging measurements allow direct determination of a normalized scalar difference quantity ξ. For the lower Re, significant differential diffusion develops in the pretransitional portion of the flow. Downstream of the turbulent transition, radial profiles of mean ξ take on a characteristic form, with an excess of the less-diffusive propane on the jet boundary. This characteristic form is independent of Reynolds number, and is thus apparently independent of the degree of differential diffusion in the pretransition range. Evolution of the ξ fields in the turbulent part of the flow is surprisingly consistent with the mixing of conventional scalar quantities. Fluctuation profiles of ξ have a self-similar, bimodal shape for each Re, and power spectra of ξ are monotonically decreasing, with a distinct k-5/3 inertial range. This spectral form is at odds with prior analytical and computational results in isotropic turbulence, which predicted that the spectrum would show a peak intermediate between the diffusive cutoffs of the individual scalars. The discrepancy appears to be due to the forcing applied in the simulations; the differential diffusion in the experiments preferentially develops in the jet near field, so the resulting evolution is more akin to a decay process. This is further emphasized by the observation that the thickness of ξ structures in the jet decreases with downstream distance. The present results indicate that consideration of differential diffusion must account for the details of the flow configuration, particularly the uniformity of turbulence levels. This has important implications for reacting flows, where local laminarization by heat release can be significant.
An Investigation of Fully Modulated, Turbulent Diffusion Flames in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Sangras, R.; Stocker, D. P.; Hegde, U. G.; Nagashima, T.; Obata, S.
2001-01-01
Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this Flight-Definition experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. The fully-modulated injection approach also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Relatively little is known about the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. Fundamental issues addressed in this experiment include the impact of buoyancy on the fuel/air mixing and combustion characteristics of fully-modulated flames. It is also important for the planned space experiments to establish the effects of confinement and oxidizer co-flow on these flames.
Characteristics of transitional and turbulent jet diffusion flames in microgravity
NASA Technical Reports Server (NTRS)
Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.
1995-01-01
This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Chen, Ruey-Hung
2007-08-01
Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.
Prediction of the blowout of jet diffusion flames in a coflowing stream of air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasi, M.; Wierzba, I.
1995-12-31
The blowout limits of a lifted diffusion flame in a coflowing stream of air are estimated using a simple model for extinction, for a range of fuels, jet diameters and co-flowing stream velocities. The proposed model uses a parameter which relates to the ratio of a time associated with the mixing processes in a turbulent jet to a characteristic chemical time. The Kolmogorov microscale of time is used as time scale in this model. It is shown that turbulent diffusion flames are quenched by excessive turbulence for a critical value of this parameter. The predicted blowout velocity of diffusion flamesmore » obtained using this model is in good agreement with the available experimental data.« less
Prompt emission from the counter jet of a short gamma-ray burst
NASA Astrophysics Data System (ADS)
Yamazaki, Ryo; Ioka, Kunihito; Nakamura, Takashi
2018-03-01
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB jets are detectable. We calculate the prompt emission from the counter jet of an sGRB and show that it is typically 23-26 mag in the optical-infrared band 10-10^3 s after the GWs for an sGRB 170817A-like event, which is brighter than the early macronova (or kilonova) emission and detectable by LSST in the near future. We also propose a new method to constrain the unknown jet properties, such as the Lorentz factor, opening angle, emission radii, and jet launch time, by observing both the forward and counter jets. To scrutinize the counter jets, space GW detectors like DECIGO are powerful in forecasting the merger time (≲ 1 s) and position (≲ 1 arcmin) (˜ a week) before the merger.
OFF-AXIS THERMAL AND SYNCHROTRON EMISSION FOR SHORT GAMMA RAY BURST
NASA Astrophysics Data System (ADS)
Xie, Xiaoyi
2018-01-01
We present light curves of photospheric and synchrotron emission from a relativistic jet propagating through the ejecta cloud of a neutron star merger. We use a moving-mesh relativistic hydrodynamics code with adaptive mesh refinement to compute the continuous evolution of jet over 13 orders of magnitude in radius from the scale of the central merger engine all the way through the late afterglow phase. As the jet propagates through the cloud it forms a hot cocoon surrounding the jet core. We find that the photospheric emission released by the hot cocoon is bright for on-axis observers and is detectable for off-axis observers at a wide range of observing angles for sufficiently close sources. As the jet and cocoon drive an external shock into the surrounding medium we compute synchrotron light curves and find bright emission for off-axis observers which differs from top-hat Blandford-McKee jets, especially for lower explosion energies.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.
NASA Technical Reports Server (NTRS)
Holdemann, James D.; Chang, Clarence T.
2008-01-01
This study was motivated by a goal to understand the mixing and emissions in the Rich-burn/Quick-mix/Lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported herein was a reacting jet-in-crossflow experiment at atmospheric pressure. The jets were injected from the perimeter of a cylindrical duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of J = 57. The size of individual orifices was decreased as the number of orifices increased to maintain a constant total area; the jet-to-mainstream mass-flow ratio was constant at MR = 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer might not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheating both main and jet air did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of an RQL combustor may comprise over 70 percent of the total air flow, the overall NOx emission levels were found to be more sensitive to main stream air preheat than to jet stream air preheat.
Hard X-ray Emission From A Flare-related Jet
NASA Astrophysics Data System (ADS)
Bain, Hazel; Fletcher, L.
2009-05-01
Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)
Kiloparsec Jet Properties of Hybrid, Low-, and High-Synchrotron-Peaked Blazars
NASA Astrophysics Data System (ADS)
Stanley, Ethan C.
Blazars are a rare class of active galactic nucleus (AGN) with relativistic jets closely aligned with the line of sight. Many aspects of the environments and kiloparsec-scale jet structure are not fully understood. Hybrid and high synchrotron peaked (HSP) blazars are two types of blazar that provide unique opportunities to study these jets. Hybrid blazars appear to have jets of differing morphology on each side of their core, suggesting that external factors shape their jet morphology. Three hybrid sources were investigated in radio, optical, and X-ray wavelengths: 8C 1849+670, PKS 2216-038, and PKS 1045-188. For all three, X-ray emission was detected only from the approaching jet. All three had jet radio flux densities and emission mechanisms similar to higher-power FR II sources, but two had approaching jets similar to lower-power FR I sources. None of the three showed definitive signs of asymmetry in their external environments. These results agree with previous multiwavelength studies of hybrid sources that show a dominance of FR I approaching jets and FR II emission mechanisms. With the addition of these three hybrid sources, 13 have been studied in total. Eleven have FR I approaching jets, and eight of those have FR II emission mechanisms. These trends may be due to small number statistics, or they may indicate other factors are creating hybrid-like appearances. High synchrotron peaked blazars are defined by the frequency of the peak of their jet synchrotron emission. Some have shown extreme variability which would imply incredibly-powerful and well-aligned jets, but VLBA observations have measured only modest jet speeds. A radio survey was performed to measure the extended radio luminosity of a large sample of HSP sources. These sources were compared to the complete radio flux density limited MOJAVE 1.5 Jy sample. Flat spectrum radio quasars (FSRQs) showed significant overlap with low synchrotron peaked (LSP) BL Lacs in multiple parameters, which may suggest that many FSRQs are "masquerading'' as LSP BL Lacs. HSP BL Lacs showed slightly lower extended radio luminosities and significantly lower maximum apparent jet speeds, suggesting that they are intrinsically weaker sources. There was a good correlation between maximum apparent jet speed and extended radio luminosity, which supports using the extended radio luminosity as a measure of intrinsic jet power. There was a lack of TeV-detected sources with higher extended radio luminosities, which suggests TeV emission may favor low power jets or high synchrotron peak frequencies. The apparent low power of HSP sources and TeV-detected sources questions any model of TeV emission and variability that depends on the jet (or a part of it) being intrinsically powerful.
Hydrogen enrichment for low-emission jet combustion
NASA Technical Reports Server (NTRS)
Clayton, R. M.
1978-01-01
Simultaneous gaseous pollutant emission indexes (g pollutant/kg fuel) for a research combustor with inlet air at 120,900 N/sq m (11.9 atm) pressure and 727 K (849 F) temperature are as low as 1.0 for NOx and CO and 0.5 for unburned HC. Emissions data are presented for hydrogen/jet fuel (JP-5) mixes and for jet fuel only for premixed equivalence ratios from lean blowout to 0.65. Minimized emissions were achieved at an equivalence ratio of 0.38 using 10-12 mass percent hydrogen in the total fuel to depress the lean blowout limit. They were not achievable with jet fuel alone because of the onset of lean blowout at an equivalence ratio too high to reduce the NOx emission sufficiently.
Detection of radio emission from the jet in Centaurus A
NASA Technical Reports Server (NTRS)
Schreier, E. J.; Burns, J. O.; Feigelson, E. D.
1981-01-01
The VLA has detected radio emission from the X-ray jet in Centaurus A, at 20 and 6 cm, whose radio morphology is similar to that of the X-ray jet. It is suggested that the same population of relativistic electrons is responsible for both radio and X-ray synchrotron emission, in which case in situ acceleration of electrons in the knots would be mandatory. The relativistic beam may alternatively heat the surrounding gas, resulting in X-ray emission. The static confinement of the knots of the jet seems to be accomplished by the presence of the ambient hot gas in the galaxy. The galaxy's nucleus has an inverted spectrum at radio frequencies, and it is noted that the jet is as bright as the nucleus at low frequencies.
Multiple Mode Actuation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2001-01-01
The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
The effect of soot modeling on thermal radiation in buoyant turbulent diffusion flames
NASA Astrophysics Data System (ADS)
Snegirev, A.; Kokovina, E.; Tsoy, A.; Harris, J.; Wu, T.
2016-09-01
Radiative impact of buoyant turbulent diffusion flames is the driving force in fire development. Radiation emission and re-absorption is controlled by gaseous combustion products, mainly CO2 and H2O, and by soot. Relative contribution of gas and soot radiation depends on the fuel sooting propensity and on soot distribution in the flame. Soot modeling approaches incorporated in big commercial codes were developed and calibrated for momentum-dominated jet flames, and these approaches must be re-evaluated when applied to the buoyant flames occurring in fires. The purpose of this work is to evaluate the effect of the soot models available in ANSYS FLUENT on the predictions of the radiative fluxes produced by the buoyant turbulent diffusion flames with considerably different soot yields. By means of large eddy simulations, we assess capability of the Moss-Brooks soot formation model combined with two soot oxidation submodels to predict methane- and heptane-fuelled fires, for which radiative flux measurements are available in the literature. We demonstrate that the soot oxidation models could be equally important as soot formation ones to predict the soot yield in the overfire region. Contribution of soot in the radiation emission by the flame is also examined, and predicted radiative fluxes are compared to published experimental data.
Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun
2014-01-01
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Slugs and Snails and Puppy Dog Tails: jets from an unconventional angle
NASA Astrophysics Data System (ADS)
Harris, D. E.
2015-03-01
We discuss some aspects of extragalactic jets originating from super massive black holes in the centres of active galaxies (and quasars). We start with a short review of sizes and flavors and then argue that the emission we detect across the electromagnetic spectrum does not come from the essence of the jet, but is rather a product of the jet. We go on to discuss some topics concerning synchrotron emission from jets, mainly aspects of knots. Finally we discuss the emission processes for the X-rays and describe a current experiment with LOFAR designed to test a requirement of inverse Compton models.
Jet activity in the symbiotic variable R Aquarii
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hollis, J. M.; Kafatos, M.
1986-01-01
Low-resolution ultraviolet spectra of the R Aquarii jet have been obtained with the International Ultraviolet Explorer (IUE). The most recent IUE observations indicate the ionization state of the jet is increasing. Subarcsecond, Very Large Array observations of R Aquarii have resolved the radio-continuum structure into discrete parcels of emission that are extended and nearly collinear. R Aquarii provides evidence that indicates stellar jet activity is not unique to objects associated with high-energy emission processes alone. Rather, the nature of the aligned radio-optical features that comprise the R Aquarii jet indicate that directional mass expulsion, in the form of discrete-collimated ejecta, probably reflect a general, underlying, physical process associated with a wide variety of peculiar stellar objects. As such, the R Aquarii jet constitutes a prototype for jet activity in composite or peculiar emission stars.
NASA Astrophysics Data System (ADS)
Shila, Jacob Joshua Howard
The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731 and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these estimates may be used to estimate the levels of PM emissions for other similar engines. Additional measurements steps such as heating of the sampling line, sampling dilution application, sampling line loss estimates, and calculations of the sampling line PM residence times will also be useful future results.
Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow
Orosa, John
2014-03-11
An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-24
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Tao, Ling; Wang, Michael
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-01
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.
Relativistic Hydrodynamics and Spectral Evolution of GRB Jets
NASA Astrophysics Data System (ADS)
Cuesta-Martínez, C.
2017-09-01
In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of the Christmas burst. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. We also find that the synchrotron emission of the forward shock of the jet is dominant during the early phases of the evolution, along which that shock is still moderately relativistic. The contribution of the reverse shock is of the same magnitude as that of the forward shock during the first 80 min after the GRB. Later, it quickly fades because the jet/environment interaction chokes the ultrarelativistic jet beam and effectively dumps the reverse shock. We highlight that, in agreement with observations, we obtain rather flat light curves during the first 2 days after the GRB, and a spectral evolution consistent with the observed reddening of the system. Besides, we obtain that this spectral inversion and reddening happening at about 2 days in the Christmas burst can be related to the time at which the massive shell, ejected in an early phase of the common-envelope evolution of the progenitor system, is completely ablated by the ultrarelativistic jet. In the second part of this thesis, we study more canonical progenitor systems of GRBs, namely single massive stars on the brink of collapse. Motivated by the many associations of GRBs with energetic SN explosions, we study the propagation of relativistic jets within the progenitor star and the circumstellar medium. Particular attention is paid to the interaction between the jets and a SN shock wave launched briefly before the jets start to propagate. We have followed the dynamical evolution in one spatial dimension (1D) of the SN ejecta alone. Employing 2D axisymmetric relativistic hydrodynamic simulations we have explored the dynamical evolution of jets running into the medium left behind by the SN shock. For completeness, we have studied also the case in which no SN has formed. Based on analytic considerations and verified with an extensive set of simulations, we have estimated a threshold intrinsic jet luminosity, L_j^{thr}. For the stellar model under consideration here it is L_j^{thr} ≳ 1E49 erg s^{-1}. The observed equivalent isotropic γ-ray luminosity, L_{iso,γ} - 4 ɛ_γ L_j / θ_{BO}^2, crucially depends on the jet opening angle after breakout, θ_{BO}, and on the efficiency in converting the intrinsic jet luminosity into γ-radiation, ɛ_γ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond these theoretical analysis, we show how the presence of a SN shock wave modifies the jet propagation. One of the main goals of this chapter was studying the emission with SPEV at the breakout of the jet or the SN ejecta. However this part suffered from technical problems, in particular excessive numerical diffusion caused by a lack of numerical resolution. Due to computing time restrictions, we could not properly obtain long-time light curves and spectra and could only compute the thermal emission. Therefore, our conclusions have to be considered preliminary. We have obtained rather low luminosities inconsistent with previous calculations in the literature. We find that the SN flash of our models is ≳ 1000 times dimmer than that of one of the prototype examples of GRB/SNe (GRB 060218/SN 2006aj) or X-ray flashes (XRF) associated to SNe (XRF 080109/SN 2008D). However, observations of GRB/SNe show heterogeneous properties, with cases in which the bolometric luminosity is orders of magnitude smaller than in the previous examples. Besides, X-ray peak times of 10 s are theoretically expected for compact WR progenitors. Both facts, make our models partly consistent with the existing phenomenology. From the analysis of the asymptotic Lorentz factor in the whole cavity blown by the different jets, we foresee that the high-energy transients we may produce will be more similar to XRF than to GRBs. Indeed, our jet events display their peak specific luminosity in the extreme UV band, rather than in the X-ray band, and clearly a fainter γ-ray luminosity ( 2-4 orders of magnitude smaller than in the X-ray band). Finally, we find that the very early observational signature of our different jet models (prior to the luminosity peak) below the γ-ray band is very similar comparing jets with the same intrinsic luminosity. This happens in spite of the substantially different hydrodynamic evolution of models which either interact with a pre-existing SN ejecta or propagate through the unmodified stellar progenitor. We expect this similarity lasting for time scales of the order of the light-crossing time of the transversal size of the emitting region ( 1-2 s). Thus, we shall continue our models for even longer evolutionary times and, as argued above, employing a finer grid resolution.
The X-Ray Emission of the Centaurus A Jet.
Birk; Lesch
2000-02-20
The extended nonthermal X-ray emission of extragalactic jets like Centaurus A can only be explained by in situ particle acceleration. The only energy source in the entire jet region is the magnetic field. Magnetic reconnection can convert the free energy stored in the helical configuration to particle kinetic energy. In the collisionless magnetized jet plasma, the inertia-driven reconnection is operating in a highly filamentary magnetic flux rope, and this results in a continuously charged particle acceleration. The synchrotron radiation of these particles can cause the observed X-ray emission in Centaurus A.
Jet Engines as High-Capacity Vacuum Pumps
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.
1983-01-01
Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.
A possible origin of gamma rays from the Fermi Bubbles
NASA Astrophysics Data System (ADS)
Thoudam, Satyendra
2014-11-01
One of the most exciting discoveries of recent years is a pair of gigantic gamma-ray emission regions, the so-called Fermi bubbles, above and below the Galactic center. The bubbles, discovered by the Fermi space telescope, extend up to ∼50° in Galactic latitude and are ∼40° wide in Galactic longitude. The gamma-ray emission is also found to correlate with radio, microwave and X-rays emission. The origin of the bubbles and the associated non-thermal emissions are still not clearly understood. Possible explanations for the non-thermal emission include cosmic-ray injection from the Galactic center by high speed Galactic winds/jets, acceleration by multiple shocks or plasma turbulence present inside the bubbles, and acceleration by strong shock waves associated with the expansion of the bubbles. In this paper, I will discuss the possibility that the gamma-ray emission is produced by the injection of Galactic cosmic-rays mainly protons during their diffusive propagation through the Galaxy. The protons interact with the bubble plasma producing π°-decay gamma rays, while at the same time, radio and microwave synchrotron emissions are produced by the secondary electrons/positrons resulting from the π± decays.
Life-cycle analysis of bio-based aviation fuels.
Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q
2013-12-01
Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Nature of the Optical "Jets" in the Spiral Galaxy NGC 1097
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Keel, William C.; Jones, Dayton L.
1997-01-01
We present new observations of the jet features in the barred spiral galaxy NGC 1097, including optical spectroscopy of the brightest jet features, two-color optical imagery, new VLA mapping at 327 MHz, and archival 1.4 GHz VLA data reprocessed for improved sensitivity. No optical emission lines appear to an equivalent width limit of 15-30 A (depending on the line wavelength). The jets are uniformly blue, with B - V = 0.45 for the two well-observed jets R1 and R2. No radio emission from the jets is detected at either frequency; the 327-MHz data set particularly stringent limits on "fossil" emission from aging synchrotron electrons. The morphology of the jets is shown to be inconsistent with any conical distribution of emission enhanced by edge-brightening; their combination of transverse profile and relative narrowness cannot be reproduced with cone models. The optical colors, lack of radio emission, and morphology of the features lead us to conclude that they are tidal manifestations, perhaps produced by multiple encounters of the small elliptical companion NGC 1097A with the disk of NGC 1097. We present photometric and morphological comparisons to the tail of NGC 465 1, which is similar in scale and morphology to the northeast "dogleg" feature R1 in NGC 1097.
Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.
2002-01-01
This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.
GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817
NASA Astrophysics Data System (ADS)
Lamb, Gavin P.; Kobayashi, Shiho
2018-05-01
Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-10-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.
Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs
NASA Technical Reports Server (NTRS)
Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael
2012-01-01
Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.
Prompt and Afterglow Emission from Short GRB Cocoons
NASA Astrophysics Data System (ADS)
Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba
2018-01-01
We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.
A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.
2014-03-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.
Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae
NASA Astrophysics Data System (ADS)
Pratim Basumallick, Partha; Gupta, Nayantara
2017-07-01
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.
Numerical study of influence of molecular diffusion in the Mild combustion regime
NASA Astrophysics Data System (ADS)
Mardani, Amir; Tabejamaat, Sadegh; Ghamari, Mohsen
2010-09-01
In this paper, the importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H2/methane jet flame. The importance of molecular diffusion for various O2 levels, jet Reynolds numbers and H2 fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H2 in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.
NASA Technical Reports Server (NTRS)
Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric; Stecker, Floyd W.
2004-01-01
We propose a method for estimating the composition, i.e. the relative amounts of leptons and protons, of extragalactic jets which exhibit Chandra - detected knots in their kpc scale jets. The method relies on measuring, or setting upper limits on, the component of the Cosmic Microwave Background (CMB) radiation that is bulk-Comptonized by the cold electrons in the relativistically flowing jet. These measurements, along with modeling of the broadband knot emission that constrain the bulk Lorentz factor GAMMA of the jets, can yield estimates of the jet power carried by protons and leptons. We provide an explicit calculation of the spectrum of the bulk-Comptonized (BC) CMB component and apply these results to PKS 0637 - 752 and 3C 273, two superluminal quasars with Chandra - detected large scale jets. What makes these sources particularly suited for such a procedure is the absence of significant non-thermal jet emission in the 'bridge', the region between the core and the first bright jet knot, which guarantees that most of the electrons are cold there, leaving the BC scattered CMB radiation as the only significant source of photons in this region. At lambda = 3.6 - 8.0 microns, the most likely band to observe the BC scattered CMB emission, the Spitzer angular resolution (approximately 1" - 3") is considerably smaller than the the 'bridges' of these jets (approximately 10"), making it possible to both measure and resolve this emission.
NASA Astrophysics Data System (ADS)
Lee, Shiu-Hang; Maeda, Keiichi; Kawanaka, Norita
2018-05-01
Neutron star mergers (NSMs) eject energetic subrelativistic dynamical ejecta into circumbinary media. Analogous to supernovae and supernova remnants, the NSM dynamical ejecta are expected to produce nonthermal emission by electrons accelerated at a shock wave. In this paper, we present the expected radio and X-ray signals by this mechanism, taking into account nonlinear diffusive shock acceleration (DSA) and magnetic field amplification. We suggest that the NSM is unique as a DSA site, where the seed relativistic electrons are abundantly provided by the decays of r-process elements. The signal is predicted to peak at a few 100–1000 days after the merger, determined by the balance between the decrease of the number of seed electrons and the increase of the dissipated kinetic energy, due to the shock expansion. While the resulting flux can ideally reach the maximum flux expected from near-equipartition, the available kinetic energy dissipation rate of the NSM ejecta limits the detectability of such a signal. It is likely that the radio and X-ray emission are overwhelmed by other mechanisms (e.g., an off-axis jet) for an observer placed in a jet direction (i.e., for GW170817). However, for an off-axis observer, to be discovered once a number of NSMs are identified, the dynamical ejecta component is predicted to dominate the nonthermal emission. While the detection of this signal is challenging even with near-future facilities, this potentially provides a robust probe of the creation of r-process elements in NSMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Chang, Clarence T.
2007-01-01
This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.
Thermal and Non-thermal emission in the Jets and Lobes of Cygnus A
NASA Astrophysics Data System (ADS)
De Vries, Martijn; Wise, Michael; Huppenkothen, Daniela; Nulsen, Paul; Snios, Bradford; Hardcastle, Martin
2017-08-01
We present a spatially-resolved, spectral analysis aimed at detecting and characterizing the non-thermal X-ray emission from the jets and lobes in the powerful radio galaxy Cygnus A based on a new, deep 1 Msec Chandra exposure. These jets and lobes are believed to be a primary means by which energy liberated by accretion onto the central supermassive black hole is transported into the outer galaxy and are integral to understanding the mechanisms that drive AGN feedback. Despite being well-studied over the years, we still do not understand how this energy is transported, the connection between the X-ray and radio structures, and the underlying emission mechanisms that produce them. The X-ray jets in Cygnus A show a clear misalignment with the radio and it has been proposed that they are either inverse Compton-emitting relics or a separate electron population emitting X-ray synchrotron emission. Previous X-ray studies of the jets and lobes have been unsuccessful in distinguishing between these possibilities largely due to the difficulty of separating any non-thermal components from thermal emission in the surrounding hot ICM at CCD spectral resolutions.In this presentation, we report on a new statistical analysis using MCMC sampling and Bayesian model selection to characterize the X-ray emission in the jets and lobes of Cygnus A. The model includes a mixture of thermal ICM emission and distinct non-thermal components from both the eastern and western jets and lobes. Our analysis clearly favors the presence of non-thermal emission and we find a distinct asymmetry with the western lobe roughly 20% fainter and with a much steeper photon index. Combining existing radio data with our X-ray fluxes and photon indices, we determine the energy densities and pressures for both synchrotron and inverse Compton (IC) emission models. For the IC model, we derive energy densities in the lobes consistent with the external pressure; however, both the eastern and western jets would be over-pressured by almost an order of magnitude arguing strongly for a synchrotron origin. We discuss these results in the context of the evolution of the jets and lobes and their connection to the ongoing feedback process in Cygnus A.
Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)
2000-01-01
Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.
Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
Orosa, John; Montgomery, Matthew
2014-02-11
An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.
Jet Power and Black Hole Assortment Revealed in New Chandra Image
NASA Astrophysics Data System (ADS)
2008-01-01
A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle acceleration in this part of the jet is unknown. Hundreds of point-like sources are also seen in the Chandra image. Many of these are X-ray binaries that contain a stellar-mass black hole and a companion star in orbit around one another. Determining the population and properties of these black holes should help scientists better understand the evolution of massive stars and the formation of black holes. Another surprise was the detection of two particularly bright X-ray binaries. These sources may contain stellar mass black holes that are unusually massive, and this Chandra observation might have caught them gobbling up material at a high rate. In this image, low-energy X-rays are colored red, intermediate-energy X-rays are green, and the highest-energy X-rays detected by Chandra are blue. The dark green and blue bands running almost perpendicular to the jet are dust lanes that absorb X-rays. This dust lane was created when Centaurus A merged with another galaxy perhaps 100 million years ago. This research was presented at the American Astronomical Society meeting on January 9th by Gregory Sivakoff (The Ohio State University). Other team members include Ralph Kraft (Harvard-Smithsonian Center for Astrophysics), Martin Hardcastle (University of Hertfordshire), Diana Worrall (University of Bristol), and Andres Jordan (Smithsonian Astrophysical Observatory). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
Wind-jet interaction in high-mass X-ray binaries
NASA Astrophysics Data System (ADS)
Zdziarski, Andrzej
2016-07-01
Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.
NASA Astrophysics Data System (ADS)
Lanz, L.; Ogle, P. M.; Evans, D.; Appleton, P. N.; Guillard, P.; Emonts, B.
2015-03-01
We present a 70 ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2/LX˜ 1 and MH2/MX˜ 1, whereas MOHEGs that are BCGs have LH2/LX˜ 0.01 and MH2/MX˜ 0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX˜ 1 in the Spiderweb BCG at z = 2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.
A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess
2014-06-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.
Evaluation of speciated VOC emission factors for Air Force hush houses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, P.D.; Stevens, D.K.
1997-12-31
Data published in: ``Engine and Hush House Emissions from a TF30-P109 Jet Engine Tested at Cannon Air Force Base, NM`` by Radian Corporation and ``Aircraft Emissions. Characterization: TF41-A2, TF30-P103 , and TF30-P109 Engines`` by Battelle are reviewed and compared. Specifically CO, NO{sub x}, and VOC emission factors using EPA Method 19 are addressed, with comparisons between JP-4 and JP-8 jet fuels. CO and NO{sub x} emissions for JP-4 and JP-8 jet fuels were found to be essentially the same. VOC emission data exhibited high variability. Problems inherent in speciated VOC emission testing are discussed. A limiting of speciated VOC emissionmore » testing, with emission factor estimation based on fuel content is proposed.« less
Design and Testing of Scaled Ejector-Diffusers for Jet Engine Test Facility Applications.
1983-09-01
the test cell such that the exhaust will be vented into an augmenting tube which acts as an ejector -diffuser assembly. 11 The kinetic energy of the...OF STANDARDS-1963-A ..’I -Dy , - 77 *4********* Z 7.77- NAVAL POSTGRADUATE SCHOOL Monterey, California W I THESIS DESIGN AND TESTING OF SCALED EJECTOR ...PERIOD COVERED Design and Testing of Scaled Ejector - "flglfeerls Thesis~ Diffusers for Jet Engine Test Facility Spebr18 S. PERFORMING ORG. REPORT
Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection
NASA Technical Reports Server (NTRS)
Georganopoulos, Markos; Kazanas, Demosthenes
2004-01-01
A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.
1989-01-01
An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.
NASA Technical Reports Server (NTRS)
Pellett, Gerald
2005-01-01
Recent detailed articles by Twarowski indicate that small quantities of phosphorus oxides and acids in the fuel-rich combustion products of H2 + phosphine (PH3) + air should significantly catalyze H, OH and O recombination kinetics during high-speed nozzle expansions -- to reform H2O, release heat, and approach equilibrium more rapidly and closely than uncatalyzed kinetics. This paper is an initial feasibility study to determine (a) if addition of phosphoric acid vapor (H3PO4) to a H2 fuel jet -- which is much safer than using PH3 -- will allow combustion in a high-speed scramjet engine test without adverse effects on localized flameholding, and (b) if phosphorus-containing exhaust emissions are environmentally acceptable. A well-characterized axisymmetric straight-tube opposed jet burner (OJB) tool is used to evaluate H3PO4 addition effects on the air velocity extinction limit (flame strength) of a H2 versus air counterflow diffusion flame. Addition of nitric oxide (NO), also believed to promote catalytic H-atom recombination, was evaluated for comparison. Two to five mass percent H3PO4 in the H2 jet increased flame strength 4.2%, whereas airside addition decreased it 1%. Adding 5% NO to the H2 caused a 2% decrease. Products of H-atom attack on H3PO4 produced an intense green chemiluminescence near the stagnation point. The resultant exothermic production of phosphorus oxides and acids, with accelerated H-atom recombination, released sufficient heat near the stagnation point to increase flame strength. In conclusion, the addition of H3PO4 vapor (or more reactive P sources) to hydrogen in scramjet engine tests may positively affect flameholding stability in the combustor and thrust production during supersonic expansion -- a possible dual benefit with system design / performance implications. Finally, a preliminary assessment of possible environmental effects indicates that scramjet exhaust emissions should consist of phosphoric acid aerosol, with gradual conversion to phosphate aerosol. This is compared to various natural abundances and sources.
A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC
NASA Astrophysics Data System (ADS)
Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.
2006-12-01
We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.
Time-dependent models for blazar emission with the second-order Fermi acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range ofmore » Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.« less
New Probe of Early Phases of Jet Formation and Evolution using Stellar Tidal Disruption Flares
NASA Astrophysics Data System (ADS)
Ranga Reddy Pasham, Dheeraj; van Velzen, Sjoert
2018-01-01
The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3-1 keV) and 16 GHz radio flux of Rosetta Stone tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of about 13 days. This demonstrates that soft X-ray emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. I will show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power. I will also discuss how future tidal disruption events can help us understand how jets form and evolve in general.
Jet or shock breakout? The low-luminosity GRB 060218
NASA Astrophysics Data System (ADS)
Irwin, Christopher M.; Chevalier, Roger A.
2016-08-01
We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.
QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka
2012-08-10
Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less
Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.
Exhaust gas emissions of a vortex breakdown stabilized combustor
NASA Technical Reports Server (NTRS)
Yetter, R. A.; Gouldin, F. C.
1976-01-01
Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1995-01-01
Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.
Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars
NASA Technical Reports Server (NTRS)
Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.
2012-01-01
We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.
Confining hot spots in 3C 196 - Implications for QSO-companion galaxies
NASA Technical Reports Server (NTRS)
Brown, R. L.; Broderick, J. J.; Mitchell, K. J.
1986-01-01
VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions.
Resolving the Inner Arcsecond of the RY Tau Jet with HST
NASA Astrophysics Data System (ADS)
Skinner, Stephen L.; Schneider, P. Christian; Audard, Marc; Güdel, Manuel
2018-03-01
Faint X-ray emission from hot plasma (T x > 106 K) has been detected extending outward a few arcseconds along the optically delineated jets of some classical T Tauri stars including RY Tau. The mechanism and location where the jets are heated to X-ray temperatures are unknown. We present high spatial resolution Hubble Space Telescope (HST) far-ultraviolet long-slit observations of RY Tau with the slit aligned along the jet. The primary objective was to search for C IV emission from warm plasma at T C IV ∼ 105 K within the inner jet (<1″) that cannot be fully resolved by X-ray telescopes. Spatially resolved C IV emission is detected in the blueshifted jet extending outward from the star to 1″ and in the redshifted jet out to 0.″5. C IV line centroid shifts give a radial velocity in the blueshifted jet of ‑136 ± 10 km s‑1 at an offset of 0.″29 (39 au) and deceleration outward is detected. The deprojected jet speed is subject to uncertainties in the jet inclination, but values ≳200 km s‑1 are likely. The mass-loss rate in the blueshifted jet is at least {\\dot{M}}jet,{blue}}=2.3× {10}-9 M ⊙ yr‑1, consistent with optical determinations. We use the HST data along with optically determined jet morphology to place meaningful constraints on candidate jet-heating models including a hot-launch model in which the jet is heated near the base to X-ray temperatures by an unspecified (but probably magnetic) process, and downstream heating from shocks or a putative jet magnetic field.
NASA Astrophysics Data System (ADS)
Nagai, H.; Chida, H.; Kino, M.; Orienti, M.; D'Ammando, F.; Giovannini, G.; Hiura, K.
2016-02-01
Re-started jet activity occurred in the bright nearby radio source 3C 84 in about 2005. The re-started jet is forming a prominent component (namely C3) at the tip of jet. The component has showed an increase in radio flux density for more than 7 years while the radio spectrum remains optically thin. This suggests that the component is the head of a radio lobe including a hotspot where the particle acceleration occurs. Thus, 3C 84 is a unique laboratory to study the physical properties at the very early stage of radio source evolution. Another important aspect is that high energy and very high energy γ-ray emissions are detected from this source. The quest for the site of γ-ray emission is quite important to obtain a better understanding of γ-ray emission mechanisms in radio galaxies. In this paper, we review the observational results from very long baseline interferometry (VLBI) monitoring of 3C 84 reported in series of our previous papers. We argue the nature of re-started jet/radio lobe and its relation with high-energy emission.
Radio-loud AGN Variability from Propagating Relativistic Jets
NASA Astrophysics Data System (ADS)
Li, Yutong; Schuh, Terance; Wiita, Paul J.
2018-06-01
The great majority of variable emission in radio-loud AGNs is understood to arise from the relativistic flows of plasma along two oppositely directed jets. We study this process using the Athena hydrodynamics code to simulate propagating three-dimensional relativistic jets for a wide range of input jet velocities and jet-to-ambient matter density ratios. We then focus on those simulations that remain essentially stable for extended distances (60-120 times the jet radius). Adopting results for the densities, pressures and velocities from these propagating simulations we estimate emissivities from each cell. The observed emissivity from each cell is strongly dependent upon its variable Doppler boosting factor, which depends upon the changing bulk velocities in those zones with respect to our viewing angle to the jet. We then sum the approximations to the fluxes from a large number of zones upstream of the primary reconfinement shock. The light curves so produced are similar to those of blazars, although turbulence on sub-grid scales is likely to be important for the variability on the shortest timescales.
NASA Astrophysics Data System (ADS)
Elkady, Ahmed M.
2006-04-01
The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.
Shock-heated NH3 in a Molecular Jet Associated with a High-Mass Young Star.
Zhang; Hunter; Sridharan; Cesaroni
1999-12-20
We present the discovery of shock-excited NH3 in a well-collimated jet associated with the extremely young high-mass star IRAS 20126+4104. The NH3 (3, 3) and (4, 4) emission is dominated by three clumps along the SiO jet. At the end of the jet, there exists strong and broad (+/-10 km s-1) NH3 (3, 3) emission. With typical brightness temperatures greater than 500 K, the overall emission indicates a weakly inverted population and appears in an arc, consistent with the excitation by bow shocks. There are two bright spots in the NH3 (3, 3) emission with brightness temperatures of approximately 2000 K. The narrow line width (1.5 km s-1 FWHM), the small sizes (<0&farcs;3), and the unusually high brightness temperature of the features are indicative of maser emission. Our observations provide clear evidence that NH3 (3, 3) masers are excited in shock regions in molecular outflows.
Fermi rules out the IC/CMB model for the Large-Scale Jet X-ray emission of 3C 273
NASA Astrophysics Data System (ADS)
Georganopoulos, Markos; Meyer, E. T.
2014-01-01
The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background (IC/CMB) photons and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the gamma-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the Fermi upper limit constraints the Doppler beaming factor delta <5.
Review of jet engine emissions
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1972-01-01
A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.
Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A
NASA Astrophysics Data System (ADS)
de Vries, M. N.; Wise, M. W.; Huppenkothen, D.; Nulsen, P. E. J.; Snios, B.; Hardcastle, M. J.; Birkinshaw, M.; Worrall, D. M.; Duffy, R. T.; McNamara, B. R.
2018-06-01
We present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 71_{-10}^{+10} nJy and 24_{-4}^{+4} nJy, and photon indices of 1.72_{-0.03}^{+0.03} and 1.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 50_{-13}^{+12} nJy and 13_{-5}^{+5} nJy, and photon indices of 1.97_{-0.10}^{+0.23} and 1.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.
DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay L.
We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet,more » and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.« less
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark
2016-01-01
The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.
A transient radio jet in an erupting dwarf nova.
Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom
2008-06-06
Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.
Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A
NASA Technical Reports Server (NTRS)
Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2002-01-01
The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.
Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)
2001-01-01
The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.
Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K
NASA Technical Reports Server (NTRS)
Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.
Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D
2012-06-05
We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.
The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations
NASA Astrophysics Data System (ADS)
Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.
2018-03-01
Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be most visible at very low radio frequencies.
Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.
2014-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213
The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273.
NASA Astrophysics Data System (ADS)
Georganopoulos, Markos; Meyer, Eileen T.
2013-12-01
The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB) and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the γ-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ <9, assuming equipartition fields, and possibly as low as δ <5 assuming no major deceleration of the jet from knots A through D1.
ALMA finds dew drops in the dusty spider's web
NASA Astrophysics Data System (ADS)
Gullberg, Bitten; Lehnert, Matthew D.; De Breuck, Carlos; Branchu, Steve; Dannerbauer, Helmut; Drouart, Guillaume; Emonts, Bjorn; Guillard, Pierre; Hatch, Nina; Nesvadba, Nicole P. H.; Omont, Alain; Seymour, Nick; Vernet, Joël
2016-06-01
We present 0.̋5 resolution ALMA detections of the observed 246 GHz continuum, [CI] 3P2→3P1 fine structure line ([CI]2-1), CO(7-6), and H2O lines in the z = 2.161 radio galaxy MRC1138-262, the so-called Spiderweb galaxy. We detect strong [CI]2-1 emission both at the position of the radio core, and in a second component ~4 kpc away from it. The 1100 km s-1 broad [CI]2-1 line in this latter component, combined with its H2 mass of 1.6 × 1010 M⊙, implies that this emission must come from a compact region <60 pc, possibly containing a second active galactic nucleus (AGN). The combined H2 mass derived for both objects, using the [CI]2-1 emission, is 3.3 × 1010 M⊙. The total CO(7-6)/[CI]2-1 line flux ratio of 0.2 suggests a low excitation molecular gas reservoir and/or enhanced atomic carbon in cosmic ray dominated regions. We detect spatially-resolved H2O 211-202 emission - for the first time in a high-z unlensed galaxy - near the outer radio lobe to the east, and near the bend of the radio jet to the west of the radio galaxy. No underlying 246 GHz continuum emission is seen at either position. We suggest that the H2O emission is excited in the cooling region behind slow (10-40 km s-1) shocks in dense molecular gas (103-5 cm-3). The extended water emission is likely evidence of the radio jet's impact on cooling and forming molecules in the post-shocked gas in the halo and inter-cluster gas, similar to what is seen in low-z clusters and other high-z radio galaxies. These observations imply that the passage of the radio jet in the interstellar and inter-cluster medium not only heats gas to high temperatures, as is commonly assumed or found in simulations, but also induces cooling and dissipation, which can lead to substantial amounts of cold dense molecular gas. The formation of molecules and strong dissipation in the halo gas of MRC1138-262 may explain both the extended diffuse molecular gas and the young stars observed around MRC1138-262. The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A73
The inner radio structure of Centaurus A - Clues to the origin of the jet X-ray emission
NASA Technical Reports Server (NTRS)
Burns, J. O.; Feigelson, E. D.; Schreier, E. J.
1983-01-01
VLA observations at 1.4 and 4.9 GHz of the jet and inner lobes of the nearby radio galaxy Centaurus A have been used to construct maps of total intensity and polarization at resolutions of 31 x 10 and 3.6 x 1.1 arcsec. Surface brightness and pressure distributions in the jet, combined with the apparent X-ray emission from the ISM of NGC 5128, indicate that it is thermally confined. A comparison of the radio structure and the optical galaxy shows that the jet in Cen A emerges nearly along the major axis of the elliptical stellar component that is parallel to the angular momentum vector of the dust lane. The outer radio structure bends toward the galaxy minor axis. Evidence is found for a common synchrotron radiation origin of the full spectrum jet emission.
Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi
2015-03-01
Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.
2017-03-01
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-01-01
Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.
Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharb, P.; Vaddi, S.; Subramanian, S.
We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with thismore » interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.« less
Jet or Shock Breakout? The Low-Luminosity GRB 060218
NASA Astrophysics Data System (ADS)
Irwin, Christopher; Chevalier, Roger
2016-01-01
We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.
Uncovering Nature’s 100 TeV Particle Accelerators in the Large-Scale Jets of Quasars
NASA Astrophysics Data System (ADS)
Georganopoulos, Markos; Meyer, Eileen; Sparks, William B.; Perlman, Eric S.; Van Der Marel, Roeland P.; Anderson, Jay; Sohn, S. Tony; Biretta, John A.; Norman, Colin Arthur; Chiaberge, Marco
2016-04-01
Since the first jet X-ray detections sixteen years ago the adopted paradigm for the X-ray emission has been the IC/CMB model that requires highly relativistic (Lorentz factors of 10-20), extremely powerful (sometimes super-Eddington) kpc scale jets. R I will discuss recently obtained strong evidence, from two different avenues, IR to optical polarimetry for PKS 1136-135 and gamma-ray observations for 3C 273 and PKS 0637-752, ruling out the EC/CMB model. Our work constrains the jet Lorentz factors to less than ~few, and leaves as the only reasonable alternative synchrotron emission from ~100 TeV jet electrons, accelerated hundreds of kpc away from the central engine. This refutes over a decade of work on the jet X-ray emission mechanism and overall energetics and, if confirmed in more sources, it will constitute a paradigm shift in our understanding of powerful large scale jets and their role in the universe. Two important findings emerging from our work will also discussed be: (i) the solid angle-integrated luminosity of the large scale jet is comparable to that of the jet core, contrary to the current belief that the core is the dominant jet radiative outlet and (ii) the large scale jets are the main source of TeV photon in the universe, something potentially important, as TeV photons have been suggested to heat up the intergalactic medium and reduce the number of dwarf galaxies formed.
Measuring the density of a molecular cluster injector via visible emission from an electron beam.
Lundberg, D P; Kaita, R; Majeski, R; Stotler, D P
2010-10-01
A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces H(α) emission that is viewed by a fast camera. The high density of the jet, several 10(16) cm(-3), results in substantial electron depletion, which attenuates the H(α) emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.
1999-01-01
Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.
NASA Astrophysics Data System (ADS)
Pasham, Dheeraj R.; van Velzen, Sjoert
2018-03-01
The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. Here we report a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3–1 keV) and 16 GHz radio flux of the tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of {12}-5+6 days. This demonstrates that the soft X-ray-emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. We show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Zhang, Cheng; Yan, Ping
2015-09-28
A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tailmore » and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.« less
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin
2017-01-01
The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielecki, J.; Scholz, M.; Drozdowicz, K.
A method of tomographic reconstruction of the neutron emissivity in the poloidal cross section of the Joint European Torus (JET, Culham, UK) tokamak was developed. Due to very limited data set (two projection angles, 19 lines of sight only) provided by the neutron emission profile monitor (KN3 neutron camera), the reconstruction is an ill-posed inverse problem. The aim of this work consists in making a contribution to the development of reliable plasma tomography reconstruction methods that could be routinely used at JET tokamak. The proposed method is based on Phillips-Tikhonov regularization and incorporates a priori knowledge of the shape ofmore » normalized neutron emissivity profile. For the purpose of the optimal selection of the regularization parameters, the shape of normalized neutron emissivity profile is approximated by the shape of normalized electron density profile measured by LIDAR or high resolution Thomson scattering JET diagnostics. In contrast with some previously developed methods of ill-posed plasma tomography reconstruction problem, the developed algorithms do not include any post-processing of the obtained solution and the physical constrains on the solution are imposed during the regularization process. The accuracy of the method is at first evaluated by several tests with synthetic data based on various plasma neutron emissivity models (phantoms). Then, the method is applied to the neutron emissivity reconstruction for JET D plasma discharge #85100. It is demonstrated that this method shows good performance and reliability and it can be routinely used for plasma neutron emissivity reconstruction on JET.« less
Augmenting ejector endwall effects. [V/STOL aircraft
NASA Technical Reports Server (NTRS)
Porter, J. L.; Squyers, R. A.
1979-01-01
Rectangular inlet ejectors which had multiple hypermixing nozzles for their primary jets were investigated for the effects of endwall blowing on thrust augmentation performance. The ejector configurations tested had both straight wall and active boundary layer control type diffusers. Endwall flows were energized and controlled by simple blowing jets suitably located in the ejector. Both the endwall and boundary layer control diffuser blowing rates were varied to determine optimum performance. High area ratio diffusers with insufficient endwall blowing showed endwall separation and rapid degradation of thrust performance. Optimized values of diffuser boundary layer control and endwall nozzle blowing rates in an ejector augmenter were shown to achieve high levels of augmentation performance for maximum compactness.
Transitional Gas Jet Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)
2000-01-01
Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.
NASA Astrophysics Data System (ADS)
Tychoniec, Łukasz; Tobin, John J.; Karska, Agata; Chandler, Claire; Dunham, Michael M.; Li, Zhi-Yun; Looney, Leslie W.; Segura-Cox, Dominique; Harris, Robert J.; Melis, Carl; Sadavoy, Sarah I.
2018-01-01
Centimeter continuum emission from protostars offers insight into the innermost part of the outflows, as shock-ionized gas produces free–free emission. We observed a complete population of Class 0 and I protostars in the Perseus molecular cloud at 4.1 and 6.4 cm with resolution and sensitivity superior to previous surveys. From a total of 71 detections, eight sources exhibit resolved emission at 4.1 cm and/or 6.4 cm. In this paper, we focus on this subsample, analyzing their spectral indices along the jet and their alignment with respect to the large-scale molecular outflow. Spectral indices for fluxes integrated toward the position of the protostar are consistent with free–free thermal emission. The value of the spectral index along a radio jet decreases with distance from the protostar. For six sources, emission is well aligned with the outflow central axis, showing that we observe the ionized base of the jet. This is not the case for two sources, where we note misalignment of the emission with respect to the large-scale outflow. This might indicate that the emission does not originate in the radio jet, but rather in an ionized outflow cavity wall or disk surface. For five of the sources, the spectral indices along the jet decrease well below the thermal free–free limit of ‑0.1 with > 2σ significance. This is indicative of synchrotron emission, meaning that high-energy electrons are being produced in the outflows close to the disk. This result can have far-reaching implications for the chemical composition of the embedded disks.
Fermi-LAT and Suzaku observations of the radio galaxy Centaurus B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, J.; Tanaka, Y. T.; Stawarz, Ł.
2013-01-28
Centaurus B is a nearby radio galaxy positioned in the southern hemisphere close to the Galactic plane. Here, in this work, we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the γ-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies and analyze the extension and variability of the γ-ray source in the LAT dataset, in which it appears as a steady γ-ray emitter. The X-ray core of Centaurus B is detected as a bright source of amore » continuum radiation. We do not detect, however, any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and γ-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed γ-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. In conclusion, by means of synchrotron self-Compton modeling, we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.« less
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.
2010-01-01
Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Goldsmith, P. F.; Li, D.; Velusamy, T.; Yorke, H. W.
2009-01-01
Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory (HSO) Key Program to study the diffuse interstellar medium by sampling the C+ fine structure line emission at 1.9 THz (158 microns) in the Galactic disk. Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about properties of the diffuse atomic and diffuse molecular gas clouds. The 158-micron CII line is an important tracer of diffuse regions, and C+ is a major ISM coolant, the Galaxy's strongest emission line virtually unobscured by dust, with a total luminosity about a 1000 times that of CO J=1-0. The GOT C+ program will obtain high spectral resolution CII spectra using the Heterodyne Instrument for the Far Infrared (HIFI) receiver. It will employ deep integrations, wide velocity coverage (350 km/s) with 0.22 km/s resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource to determine the properties of the atomic gas, in the (a) overall Galactic disk, (b) central 300pc of the Galactic center, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). These spectra will provide the astronomical community with a rich statistical database of diffuse cloud properties, especially those of the atomic gas, sampled throughout the Galaxy for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale Galactic C+ surveys. This research was conducted at the Jet Propulsion Laboratory and is supported by a NASA grant.
NASA Technical Reports Server (NTRS)
Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der
2001-01-01
Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for simulation of flame lift-off and blowout.
TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.
2014-09-01
Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpretmore » this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.« less
Air-jet power ultrasonic field applied to electrical discharge
NASA Astrophysics Data System (ADS)
Balek, Rudolf; Pekarek, Stanislav
2010-01-01
We describe a new setup of the Hartmann air-jet ultrasonic generator combined with electrical discharge in the nozzle-resonator gap. Using the schlieren visualization of air jet and ultrasonic field we investigated the shape and structure of the discharge and we determined relationship among the acoustic field in the nozzle-resonator gap, generator ultrasonic emission and discharge behavior. Apart of the fact that the discharge in the nozzle-resonator gap is stabilized and becomes more uniform, it increases its volume when the generator works in the regime of ultrasonic emission. At the same time the discharge light emission distribution is more over uniform in the gap. In the regime without the ultrasonic emission the discharge light emission is fragmented. We also found that the impedance of the discharge is decreased in case when the generator works in the regime of ultrasonic emission.
2003-07-25
This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. http://photojournal.jpl.nasa.gov/catalog/PIA04624
The relativistic jet of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342
NASA Astrophysics Data System (ADS)
Kynoch, Daniel; Landt, Hermine; Ward, Martin J.; Done, Chris; Gardner, Emma; Boisson, Catherine; Arrieta-Lobo, Maialen; Zech, Andreas; Steenbrugge, Katrien; Pereira Santaella, Miguel
2018-03-01
The detection of several radio-loud narrow-line Seyfert 1 (NLS1) galaxies by the Fermi Gamma-Ray Space Telescope hints at the existence of a rare, new class of γ-ray emitting active galactic nuclei with low black hole masses. Like flat spectrum radio quasars (FSRQs), their γ-ray emission is thought to be produced via the external Compton mechanism whereby relativistic jet electrons upscatter a photon field external to the jet, e.g. from the accretion disc, broad line region (BLR), and dusty torus, to higher energies. Here we study the origin of the γ-ray emission in the lowest-redshift candidate among the currently known γ-ray emitting NLS1s, 1H 0323+342, and take a new approach. We observationally constrain the external photon field using quasi-simultaneous near-infrared, optical, and X-ray spectroscopy. Applying a one-zone leptonic jet model, we simulate the range of jet parameters for which this photon field, when Compton scattered to higher energies, can explain the γ-ray emission. We find that the site of the γ-ray emission lies well within the BLR and that the seed photons mainly originate from the accretion disc. The jet power that we determine, 1.0 × 1045 erg s-1, is approximately half the accretion disc luminosity. We show that this object is not simply a low-mass FSRQ, its jet is intrinsically less powerful than predicted by scaling a typical FSRQ jet by black hole mass and accretion rate. That γ-ray-emitting NLS1s appear to host underpowered jets may go some way to explaining why so few have been detected to date.
The Spectacular Radio-Near-IR-X-Ray Jet of 3C 111: the X-Ray Emission Mechanism and Jet Kinematics
NASA Technical Reports Server (NTRS)
Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos; Lister, Matthew L.; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L.; Hogan, Brandon M.; Kazanas, Demos
2016-01-01
Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the subparsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near- IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope (HST) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.
THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos
2016-08-01
Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new,more » deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.« less
NASA Alternative Aviation Fuel Research
NASA Astrophysics Data System (ADS)
Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.
2015-12-01
We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging exhaust plumes, but did not clearly impact contrail formation or microphysics.
NASA Astrophysics Data System (ADS)
Gottlieb, Ore; Nakar, Ehud; Piran, Tsvi
2018-01-01
Short gamma-ray bursts are believed to arise from compact binary mergers (either neutron star-neutron star or black hole-neutron star). If so, their jets must penetrate outflows that are ejected during the merger. As a jet crosses the ejecta, it dissipates its energy, producing a hot cocoon that surrounds it. We present here 3D numerical simulations of jet propagation in mergers' outflows, and we calculate the resulting emission. This emission consists of two components: the cooling emission, the leakage of the thermal energy of the hot cocoon, and the cocoon macronova that arises from the radioactive decay of the cocoon's material. This emission gives a brief (∼1 h) blue, wide angle signal. While the parameters of the outflow and jet are uncertain, for the configurations we have considered, the signal is bright (∼-14 to -15 absolute magnitude) and outshines all other predicted ultraviolet-optical signals. The signal is brighter when the jet breakout time is longer, and its peak brightness does not depend strongly on the highly uncertain opacity. A rapid search for such a signal is a promising strategy to detect an electromagnetic merger counterpart. A detected candidate could be then followed by deep infrared searches for the longer but weaker macronova arising from the rest of the ejecta.
Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations
NASA Astrophysics Data System (ADS)
Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo
2016-10-01
Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary
1989-01-01
Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.
2016-11-01
Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
NASA Astrophysics Data System (ADS)
Russell, D. M.; Maitra, D.; Dunn, R. J. H.; Fender, R. P.
2011-09-01
It is now established that thermal disc emission and non-thermal jet emission can both play a role at optical/infrared (OIR) wavelengths in X-ray transients. The spectra of the jet and disc components differ, as do their dependence on mass accretion properties. Here we demonstrate that the OIR colour-magnitude diagrams (CMDs) of the evolution of the X-ray transient XTE J1550-564 in outburst can be used to separate the disc from the jet. Monitoring in two wavebands is all that is required. This outburst in 2000 was well studied, and both disc and jet were known to contribute. During the outburst the data follow a well-defined path in the CMD, describing what would be expected from a heated single-temperature blackbody of approximately constant area, except when the data appear redder than this track. This is due to the non-thermal jet component which dominates the OIR moreso during hard X-ray states at high luminosities, and which is quenched in the soft state. The CMD therefore shows state-dependent hysteresis, in analogy with (but not identical to) the well-established X-ray hardness-intensity diagram of black hole transients. The blackbody originates in the X-ray illuminated, likely unwarped, outer accretion disc. We show that the CMD can be approximately reproduced by a model that assumes various correlations between X-ray, OIR disc and OIR jet fluxes. We find evidence for the OIR jet emission to be decoupled from the disc near the peak of the hard state.
Radio and X-ray properties of the source G29.37+0.1 linked to HESS J1844-030
NASA Astrophysics Data System (ADS)
Castelletti, G.; Supan, L.; Petriella, A.; Giacani, E.; Joshi, B. C.
2017-06-01
Aims: We report on the first detailed multiwavelength study of the radio source G29.37+0.1, which is an as-yet-unclassified object linked to the very-high-energy γ-emitting source HESS J1844-030. The origin of the multiwavelength emission toward G29.37+0.1 has not been clarified so far, leaving open the question about the physical relationship between these sources. Methods: Using observations carried out with the Giant Metrewave Radio Telescope (GMRT), we performed high-quality full-synthesis imaging at 610 MHz of the field containing G29.37+0.1. The obtained data, combined with observations at 1400 MHz from The Multi-Array Galactic Plane Imaging Survey (MAGPIS) were used to investigate in detail the properties of its radio emission. Additionally, we reprocessed archival data obtained with the XMM-Newton and Chandra observatories in order to get a multiwavelength view of this unusual source. Results: The radio source G29.37+0.1 mainly consists of a bright twisted structure, named the S-shaped feature. The high sensitivity of the new GMRT observations allowed the identification of potential lobes, jets, and a nuclear central region in the S-shaped morphology of G29.37+0.1. We also highlight the detection of diffuse and low surface brightness emission enveloping the brightest emitting regions. The brightest emission in G29.37+0.1 has a radio synchrotron spectral index α = 0.59 ± 0.09. Variations in the spectral behaviour are observed across the whole radio source with the flattest spectral features in the central nuclear and jets components (α 0.3). These results lead us to conclude that the brightest radio emission from G29.37+0.1 likely represents a newly recognized radio galaxy. The identification of optical and infrared counterparts to the emission arising from the core of G29.37+0.1 strengthens our interpretation of an extragalactic origin of the radio emission. We performed several tests to explain the physical mechanism responsible for the observed X-ray emission, which appears overlapping the northeastern part of the radio emission. Our spectral analysis demonstrated that a non-thermal origin for the X-ray emission compatible with a pulsar wind nebula is quite possible. The analysis of the spatial distribution of the CO gas revealed the presence of a complex of molecular clouds located in projection adjacent to the radio halo emission and probably interacting with it. We propose that the faint halo represents a composite supernova remnant with a pulsar powered component given by the diffuse X-ray emission superimposed along the line of sight to the radio galaxy. Further broadband observations of HESS J1844-030 are needed to disentangle its origin, although its shape and position suggest an extragalactic origin connected to G29.37+0.1. The reduced GMRT image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A31
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Mundell, Carole G.; Karovska, Margarita; Zezas, Andreas
2011-07-01
We have studied the X-ray emission within the inner ~150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that >~ 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is <~ 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.
ALMA detection of a disk wind from HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, Pamela; Juhasz, Attila; Mathews, Geoffrey; Mottram, Joseph; De Gregorio-Monsalvo, Itziar; van Dishoeck, Ewine; Takahashi, Satoko; Akiyama, Eiji; Chapillon, Edwige; Espada, Daniel; Hales, Antonio; Hogerheijde, Michiel; Rawlings, Mark; Schmalzl, Markus; Testi, Leonardo
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star, signaling the end of the main accretion phase.
Examining the High-energy Radiation Mechanisms of Knots and Hotspots in Active Galactic Nucleus Jets
NASA Astrophysics Data System (ADS)
Zhang, Jin; Du, Shen-shi; Guo, Sheng-Chu; Zhang, Hai-Ming; Chen, Liang; Liang, En-Wei; Zhang, Shuang-Nan
2018-05-01
We compile the radio–optical–X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high-energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of 1 hotspot and 22 knots is well explained as synchrotron radiation under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton process, but the derived jet powers (P jet) are not correlated with L k and most of them are larger than L k, with more than three orders of magnitude, where L k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process for the cosmic microwave background photons (IC/CMB). In this scenario, the derived P jet of knots and hotspots are correlated with and comparable to L k. These results suggest that the IC/CMB model may be a promising interpretation of the X-ray emission. In addition, a tentative knot–hotspot sequence in the synchrotron peak-energy–peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to the different cooling mechanisms of electrons.
NASA Technical Reports Server (NTRS)
Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern
2011-01-01
We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotationalmore » instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.« less
The relation of turbulence to diffusion in open-channel flows
Keefer, Thomas N.
1971-01-01
The exponent in the power-law equation describing the decay of scalar quantities downstream of a jet is a linear function of the shear velocity of the channel. The length of the core region of a jet is a power-law function of the jet strength with the exponent depending on boundary roughness.
NASA Astrophysics Data System (ADS)
Meng, Yan-Zhi; Geng, Jin-Jun; Zhang, Bin-Bin; Wei, Jun-Jie; Xiao, Di; Liu, Liang-Duan; Gao, He; Wu, Xue-Feng; Liang, En-Wei; Huang, Yong-Feng; Dai, Zi-Gao; Zhang, Bing
2018-06-01
The first gravitational-wave event from the merger of a binary neutron star system (GW170817) was detected recently. The associated short gamma-ray burst (GRB 170817A) has a low isotropic luminosity (∼1047 erg s‑1) and a peak energy E p ∼ 145 keV during the initial main emission between ‑0.3 and 0.4 s. The origin of this short GRB is still under debate, but a plausible interpretation is that it is due to the off-axis emission from a structured jet. We consider two possibilities. First, since the best-fit spectral model for the main pulse of GRB 170817A is a cutoff power law with a hard low-energy photon index (α =-{0.62}-0.54+0.49), we consider an off-axis photosphere model. We develop a theory of photosphere emission in a structured jet and find that such a model can reproduce a low-energy photon index that is softer than a blackbody through enhancing high-latitude emission. The model can naturally account for the observed spectrum. The best-fit Lorentz factor along the line of sight is ∼20, which demands that there is a significant delay between the merger and jet launching. Alternatively, we consider that the emission is produced via synchrotron radiation in an optically thin region in an expanding jet with decreasing magnetic fields. This model does not require a delay of jet launching but demands a larger bulk Lorentz factor along the line of sight. We perform Markov Chain Monte Carlo fitting to the data within the framework of both models and obtain good fitting results in both cases.
Origin of superluminal radio jets in microquasars
NASA Astrophysics Data System (ADS)
Yadav, J. S.; Bhandare, R. S.
In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.
Effects of Buoyancy in Hydrogen Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Agrawal, A. K.; Al-Ammar, K.; Gollahalli, S. R.; Griffin, D. W.
1999-01-01
This project was carried out to understand the effects of heat release and buoyancy on the flame structure of diffusion flames. Experiments were conducted at atmospheric pressure in both normal gravity and microgravity conditions in the NASA LeRC 2.2 s drop tower. Experiments were also conducted in a variable pressure combustion facility in normal gravity to scale buoyancy and thus, to supplement the drop tower experiments. Pure H2 or H2 mixed with He was used as the jet fluid to avoid the complexities associated with soot formation. Fuel jet burning in quiescent air was visualized and quantified by the Rainbow Schlieren Deflectometry (RSD) to obtain scalar profiles (temperature, oxygen concentration) within the flame. Burner tube diameter (d) was varied from 0.3 to 1.19 mm producing jet exit Reynolds numbers ranging from 40 to 1900, and generating flames encompassing laminar and transitional (laminar to turbulent) flow structure. Some experiments were also complemented with the CFD analysis. In a previous paper, we have presented details of the RSD technique, comparison of computed and measured scalar distributions, and effects of buoyancy on laminar and transitional H2 gas-jet diffusion flames. Results obtained from the RSD technique, variable pressure combustion chamber, and theoretical models have been published. Subsequently, we have developed a new drop rig with improved optical and image acquisition. In this set up, the schlieren images are acquired in real time and stored digitally in RAM of an onboard computer. This paper deals with laminar diffusion flames of pure H2 in normal and microgravity.
NASA Astrophysics Data System (ADS)
Lan, Chun-Kai; Chuang, Shang-I.; Bao, Qi; Liao, Yen-Ting; Duh, Jenq-Gong
2015-02-01
Atmospheric pressure Ar/N2 binary plasma jet irradiation has been introduced into the manufacturing process of lithium ions batteries as a facile, green and scalable post-fabrication treatment approach, which enhanced significantly the high-rate anode performance of lithium titanate (Li4Ti5O12). Main emission lines in Ar/N2 plasma measured by optical emission spectroscopy reveal that the dominant excited high-energy species in Ar/N2 plasma are N2*, N2+, N∗ and Ar∗. Sufficient oxygen vacancies have been evidenced by high resolution X-ray photoelectron spectroscopy analysis and Raman spectra. Nitrogen doping has been achieved simultaneously by the surface reaction between pristine Li4Ti5O12 particles and chemically reactive plasma species such as N∗ and N2+. The variety of Li4Ti5O12 particles on the surface of electrodes after different plasma processing time has been examined by grazing incident X-Ray diffraction. Electrochemical impedance spectra (EIS) confirm that the Ar/N2 atmospheric plasma treatment facilitates Li+ ions diffusion and reduces the internal charge-transfer resistance. The as-prepared Li4Ti5O12 anodes exhibit a superior capacity (132 mAh g-1) and excellent stability with almost no capacity decay over 100 cycles under a high C rate (10C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk; Tiseanu, Ion; Zoita, Vasile
The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been usedmore » to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.« less
GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekara, A. U.; Archambault, S.; Archer, A.
2015-12-20
Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet’s base. VERITAS detected gamma-ray emission up to ∼200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25more » suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths.« less
Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel
DOT National Transportation Integrated Search
2017-11-09
The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...
Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.
1983-04-01
This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate
NASA Technical Reports Server (NTRS)
Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.
1999-01-01
An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
NASA Technical Reports Server (NTRS)
Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.;
2011-01-01
Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution
Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Oechsle, Victor L.
2003-01-01
Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.
Review of Biojet Fuel Conversion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer
Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less
A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, Mariana; Velázquez, Pablo F.; De Colle, Fabio
2016-01-10
Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray)more » synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.« less
NASA Astrophysics Data System (ADS)
Gandhi, P.; Bachetti, M.; Dhillon, V. S.; Fender, R. P.; Hardy, L. K.; Harrison, F. A.; Littlefair, S. P.; Malzac, J.; Markoff, S.; Marsh, T. R.; Mooley, K.; Stern, D.; Tomsick, J. A.; Walton, D. J.; Casella, P.; Vincentelli, F.; Altamirano, D.; Casares, J.; Ceccobello, C.; Charles, P. A.; Ferrigno, C.; Hynes, R. I.; Knigge, C.; Kuulkers, E.; Pahari, M.; Rahoui, F.; Russell, D. M.; Shaw, A. W.
2017-12-01
Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched1-3. Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial4-8. Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of ≲103 Schwarzschild radii for the main inner optical emission zone above the black hole9, constraining both internal shock10 and magnetohydrodynamic11 models. Similarities with blazars12,13 suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags8,14,15, so this size scale may be a defining feature of such systems.
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
Jet noise modification by the 'whistler nozzle'
NASA Technical Reports Server (NTRS)
Hasan, M. A. Z.; Islam, O.; Hussain, A. K. M. F.
1984-01-01
The farfield noise characteristics of a subsonic whistler nozzle jet are measured as a function of Mach number (0.25, 0.37, and, 0.51), emission angle, and excitation mode. It is shown that a whistler nozzle has greater total and broadband acoustic power than an excited contraction nozzle; and that the intensity of far-field noise is a function of emission angle, Mach number, and whistler excitation stage. The whistler nozzle excitation produces broadband noise amplification with constant spectral shape; the broadband noise amplification (without associated whistler tones and harmonics) increases omnidirectionally with emission angle at all Mach numbers; and the broadband amplification factor decreases as Mach number and emission angle increase. Finally the whistler nozzle is described as a very efficient but inexpensive siren with applications in not only jet excitation but also acoustics.
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
NASA Technical Reports Server (NTRS)
2003-01-01
This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet.The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.Deng; Zhang; Zhang; ...
2016-04-11
The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the resultsmore » to model the polarization observational data of GRB prompt emission and blazar optical emission. In this article, we show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.« less
NASA Astrophysics Data System (ADS)
Tai, Y.; Watanabe, T.; Nagata, K.
2018-03-01
A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.
CYGNUS A: Hot Spots, Bow Shocks, Core Emission, and Exclusion of Cluster Gas by Radio Lobes
NASA Technical Reports Server (NTRS)
Harris, Daniel E.
1999-01-01
This report covers work preformed on three ROSAT projects: (1) Monitoring the X-ray Intensity of the Core and Jet of M87; (2) The radio-optical jet in 3C-120 and (3) A search for cluster emission at high redshift.
Hard X-ray Emission from the M87 AGN Detected with NuSTAR
NASA Astrophysics Data System (ADS)
Wong, Ka-Wah; Nemmen, Rodrigo; Irwin, Jimmy; Lin, Dacheng
2018-01-01
M87 hosts a 3–6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission above 10keV expected to primarily come from the jet or the accretion flow had never been detected from its unresolved X-ray core. We report NuSTAR detection up to 40 keV from the the central regions of M87. Together with simultaneous Chandra observations, we have constrained the dominant hard X-ray emission to be from its unresolved X-ray core, presumably in its quiescent state. The core spectrum is well fitted by a power-law. The measured flux density at 40keV is consistent with a jet origin, although emission from the advection-dominated accretion flow cannot be completely ruled out. The detected hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain emission above a GeV.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton
1987-01-01
Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.
Radio jets in NGC 4151: where eMERLIN meets HST
NASA Astrophysics Data System (ADS)
Williams, D. R. A.; McHardy, I. M.; Baldi, R. D.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Fenech, D. M.; Mundell, C. G.; Muxlow, T. W. B.; Panessa, F.; Rampadarath, H.; Westcott, J.
2017-12-01
We present high-sensitivity eMERLIN radio images of the Seyfert galaxy NGC 4151 at 1.51 GHz. We compare the new eMERLIN images to those from archival MERLIN observations in 1993 to determine the change in jet morphology in the 22 yr between observations. We report an increase by almost a factor of 2 in the peak flux density of the central core component, C4, thought to host the black hole, but a probable decrease in some other components, possibly due to adiabatic expansion. The core flux increase indicates an active galactic nucleus (AGN) that is currently active and feeding the jet. We detect no significant motion in 22 yr between C4 and the component C3, which is unresolved in the eMERLIN image. We present a spectral index image made within the 512 MHz band of the 1.51 GHz observations. The spectrum of the core, C4, is flatter than that of other components further out in the jet. We use HST emission-line images (H α, [O III] and [O II]) to study the connection between the jet and the emission-line region. Based on the changing emission-line ratios away from the core and comparison with the eMERLIN radio jet, we conclude that photoionization from the central AGN is responsible for the observed emission-line properties further than 4 arcsec (360 pc) from the core, C4. Within this region, a body of evidence (radio-line co-spatiality, low [O III]/H α and estimated fast shocks) suggests additional ionization from the jet.
Aging jets from low-mass stars
NASA Technical Reports Server (NTRS)
Graham, J. A.; Chen, W. P.
1994-01-01
An extended faint optical jet is associated with the compact emission region plus faint star known as HH 55. HH 55 is located in the Lupus 2 cloud 2 min SW of the well studied T Tauri star RU Lupi. The HH 55 jet extends 55 sec N and 35 sec S in PA 160 deg. The HH 55 star is an emission line star of spectral type M3.5. Its image in the emission lines of H-alpha and (S II) is slightly elongated by 2 sec - 3 sec to the S but in continuum light is symmetrical and pointlike ((full width at half maximum) (FWHM) = 1.7 sec). The star and jet have several features in common with the star and jet known as Sz 102 = Th 28 in the nearby Lupus 3 cloud. We suggest that these objects are representative of the late evolutionary stage of the HH jet-outflow phenomenon and point out that such objects may be quite common although difficult to detect. With L(sub bol) approximately = 0.005 solar luminosity, and log T(sub e) approximately = 3.5, the HH 55 star is close to the main sequence and evolutionary tracks suggest an age of 3 x 10(exp 7) yr.
NASA Astrophysics Data System (ADS)
Schumaker, Stephen Alexander
Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The effective density ratio was measured which allowed the flame lengths to be collapsed to the nonreacting scaling relation. The equivalence principle of Tacina and Dahm was utilized to compare the theoretical and measured effective density ratios.
Life-cycle analysis of alternative aviation fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-07-23
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Life-Cycle Analysis of Alternative Aviation Fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-06-01
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, Jonathan C.; Uzdensky, Dmitri A.
2012-03-14
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questionsmore » in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the development of self-consistent radiative compressible relativistic reconnection models.« less
Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.
2015-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.
Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Adelman, H. G.; Browning, L. H.; Pefley, R. K.
1975-01-01
A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.
Radial magnetic compression in the expelled jet of a plasma deflagration accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore
2016-02-29
A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less
Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan
2015-11-01
Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).
NASA Astrophysics Data System (ADS)
Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.
2017-07-01
Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of shocks is needed. In comparison, the molecular emission is more compact and the line ratios are better explained with slow (Vshock < 40 km s-1) C-type shocks with high pre-shock densities (104-106 cm-3), with the exception of OH lines, that are better described by J-type shocks. Disc models alone fail to reproduce the observed molecular line fluxes, but a contribution to the line fluxes from UV-illuminated discs and/or outflow cavities is expected. Far-IR lines dominate disc cooling at early stages and weaken as the star+disc system evolves from Class I to Class III, with an increasing relative disc contribution to the line fluxes. Conclusions: Models which take into account jets, discs, and their mutual interaction are needed to disentangle the different components and study their evolution. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Understanding and predicting soot generation in turbulent non-premixed jet flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hai; Kook, Sanghoon; Doom, Jeffrey
2010-10-01
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogatemore » fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.« less
Ultraviolet variability and mass expulsion from R Aquarii
NASA Technical Reports Server (NTRS)
Kafatos, M.; Michalitsianos, A. G.; Hollis, J. M.
1986-01-01
Ultraviolet spectra in the 1200-3200 A range indicate that the extended nebular features which resemble a jet in the peculiar variable R Aquarii (M7e + pec) increased in excitation in 1985. The emission properties of the compact H II region that surrounds the unresolved binary, and those of the extended nebular jet, have been analyzed from low-resolution IUE spectra of these regions. In particular, the UV line intensities observed in the jet appear variable on a time scale of about 1.5 yr. A new accretion disk model is proposed that explains the kinematic and ionization properties of discrete components which comprise the jet emission nebulosity, the appearance of the jet in the 1980s, and morphology that uniquely characterizes the R Aquarii system at radio, optical, UV, and X-ray wavelengths.
Rapid mix concepts for low emission combustors in gas turbine engines
NASA Technical Reports Server (NTRS)
Talpallikar, Milind V.; Smith, Clifford E.; Lai, Ming-Chia
1990-01-01
NASA LeRC has identified the Rich burn/Quick mix/Lean burn (RQL) combustor as a potential gas turbine combustor concept to reduce NOx emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NOx levels, NASA LeRC soon will test a flametube version of an RQL combustor. The critical technology needed for the RQL combustor is a method of quickly mixing combustion air with rich burn gases. Two concepts were proposed to enhance jet mixing in a circular cross-section: the Asymmetric Jet Penetration (AJP) concept; and the Lobed Mixer (LM) concept. In Phase 1, two preliminary configurations of the AJP concept were compared with a conventional 12-jet radial-inflow slot design. The configurations were screened using an advanced 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Both non-reacting and reacting analyses were performed. For an objective comparison, the conventional design was optimized by parametric variation of the jet-to-mainstream momentum flux (J) ratio. The optimum J was then employed in the AJP simulations. Results showed that the three-jet AJP configuration was superior in overall mixedness compared to the conventional design. However, in regards to NOx emissions, the AJP configuration was inferior. The higher emission level for AJP was caused by a single hot spot located in the wake of the central jet as it entered the combustor. Ways of maintaining good mixedness while eliminating the hot spot were identified for Phase 2 study. Overall, Phase 1 showed the viability of using CFD analyses to evaluate quick-mix concepts. A high probability exists that advancing mixing concepts will reduce NOx emissions in RQL combustors, and should be explored in Phase 2, by parallel numerical and experimental work.
Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-03-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-07-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility
NASA Technical Reports Server (NTRS)
Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.
2012-01-01
Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.
NASA Astrophysics Data System (ADS)
Potter, William J.
2018-01-01
Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.
Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin
2018-04-17
The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.
The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E. C.; Frank, A.; Hartigan, P.
High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of thesemore » bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.« less
Formation and Destruction of Jets in X-ray Binaries
NASA Technical Reports Server (NTRS)
Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.
2011-01-01
Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.
CFD analysis of jet mixing in low NOx flametube combustors
NASA Technical Reports Server (NTRS)
Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.
CFD analysis of jet mixing in low NO(x) flametube combustors
NASA Technical Reports Server (NTRS)
Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has been identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3D CFD analyses for optimizing jet mixing was demonstrated.
Observations of diffusion-limited aggregation-like patterns by atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Chiu, Ching-Yang; Chu, Hong-Yu
2017-11-01
We report on the observations of diffusion-limited aggregation-like patterns during the thin film removal process by an atmospheric plasma jet. The fractal patterns are found to have various structures like dense branching and tree-like patterns. The determination of surface morphology reveals that the footprints of discharge bursts are not as random as expected. We propose a diffusion-limited aggregation model with a few extra requirements by analogy with the experimental results, and thereby present the beauty of nature. We show that the model simulates not only the shapes of the patterns similar to the experimental observations, but also the growing sequences of fluctuating, oscillatory, and zigzag traces.
[CII] emission from NGC 4258 with SOFIA/FIFI-LS
NASA Astrophysics Data System (ADS)
Fadda, Dario; Appleton, Philip N.; Diaz Santos, Tanio; Togi, Aditya; Ogle, Patrick
2018-06-01
We present the [CII]157.7μm map of the NGC 4258 (M106) galaxy obtained with the FIFI-LS spectrometer onboard SOFIA.M106 contains an active nucleus classified as type 1.9 Seyfert with a warped inner rotating disk of water-vapor masers which allowed for the first high accuracy measurements of the mass of a supermassive black hole in any galaxy. A relativistic jet is thought to be responsible for anomalous radio-continuum spiral arms, which appear several kpc from the center, and extend outwards through the outer disk. These arms do not correlate with the galaxy's underlying stellar spiral structure, and their presence suggest that in the past, the jet has strongly interacted with the galaxy's outer disk , exciting synchrotron radiation. Since that time, a new burst of activity seems to have occurred, creating a compact jet at the core of the galaxy, and two radio hotspots further out associated with optical "bow-shocks". The position angle of this new "active" jet is different from that needed to excited the outer radio arms, presumably because the jet has precessed, perhaps as a result of precession of the axis of the inner warped accretion disk.Our observations reveal three main sources of [CII] emission: two associated with large regions of gas at the ends of the active jet, and a third minor axis filament associated with linear clumps of star formation and dust seen in HST images offset from the nucleus. We combine the SOFIA observations with previous Spitzer mid-IR, Chandra X-ray and VLA radio observations to explore the nature of the detected [CII] emission. In regions along the northern active jet, we see a significant deficiency in the [CII]/FIR ratio, and higher ratios near the ends of the jet. This implies that the jet has changed the conditions of the gas along its length. In several places near the jet, the [CII] emission shows very broad lines, suggestive of enhanced turbulence. Additionally, the minor-axis filament we discovered may represent gas in-falling towards the nucleus perpendicular to the jet. The results provide clues about how radio jets in active galaxies can influence the star formation properties of their host galaxies.
Flame Radiation, Structure, and Scalar Properties in Microgravity Laminar Fires
NASA Technical Reports Server (NTRS)
Feikema, Douglas; Lim, Jongmook; Sivathanu, Yudaya
2007-01-01
Results from microgravity combustion experiments conducted in the Zero Gravity Research Facility (ZGF) 5.18 second drop facility are reported. The results quantify flame radiation, structure, and scalar properties during the early phase of a microgravity fire. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in microgravity laminar methane/air, ethylene/nitrogen/air and ethylene/air jet flames. The measured peak mole fractions for water vapor and carbon dioxide are found to be in agreement with state relationship predictions for hydrocarbon/air combustion. The ethylene/air laminar flame conditions are similar to previously reported results including those from the flight project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long-duration microgravity laminar diffusion flames as demonstrated in this report.
Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.
1999-01-01
Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.
NASA Astrophysics Data System (ADS)
Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.
2018-05-01
Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Ringler, Todd D.
Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less
NASA Technical Reports Server (NTRS)
Bulzan, Dan
2007-01-01
An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.
ALMA detection of the rotating molecular disk wind from the young star HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, P. D.; Juhasz, A.; Mathews, G. S.; Mottram, J. C.; De Gregorio-Monsalvo, I.; van Dishoeck, E. F.; Takahashi, S.; Akiyama, E.; Chapillon, E.; Espada, D.; Hales, A.; Hogerheijde, M. R.; Rawlings, M.; Schmalzl, M.; Testi, L.
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA science verification data of CO J = 2-1 and J = 3-2 emission, which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km s-1. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet that is moving at much higher velocities. We show that the J = 3-2 emission is likely heavily filtered by the interferometer, but the J = 2-1 emission suffers less due to the larger beam and sensitivity to larger scale structures. Excitation analysis suggests temperatures exceeding 900 K in these compact features, with the wind mass, momentum and energy being of order 10-5 M⊙, 10-4 M⊙ km s-1 and 1040 erg, respectively. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star.
High resolution simulations of a variable HH jet
NASA Astrophysics Data System (ADS)
Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.
2007-04-01
Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.
Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.
Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A
2014-12-16
This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.
NASA Astrophysics Data System (ADS)
Harris, Andrew J. L.; Ripepe, Maurizio; Hughes, Elizabeth A.
2012-06-01
Using high frame rate (33 Hz) thermal video data we describe and parameterize the emission and ascent dynamics of a mixed plume of gas and particles emitted during a normal explosion at Stromboli (Aeolian Islands, Italy). Analysis of 34 events showed that 31 of them were characterized by a first phase characterized by an initial diffuse spray of relatively small (lapilli-sized) particles moving at high velocities (up to 213 m s- 1; average 66-82 m s- 1). This was followed, typically within 0.1 s, by a burst comprising a mixture of ash and lapilli, but dominated by larger bomb-sized particles, moving at lower exit velocities of up to 129 m s- 1, but typically 46 m s- 1. We interpret these results as revealing initial emission of a previously unrecorded high velocity gas-jet phase, to which the lapilli are coupled. This is followed by emission of slower moving larger particles that are decoupled from the faster moving gas-phase. Diameters for particles carried by the gas phase are typically around 4 cm, but can be up to 9 cm, with the diameter of the particles carried by the gas jet (D) decreasing with increased density and velocity of the erupted gas cloud (ρgas and Ugas). Data for 101 particles identified as moving with the gas jet during 32 eruptions allow us to define a new relation, whereby Ugas = Uparticle + a [ρgas√{D}]b. Here, Uparticle is the velocity of bombs whose motion is decoupled from that of the gas cloud, and a and b are two empirically-derived coefficients. This replaces the old relation, whereby Ugas = Uparticle + k √{D}; a relation that requires a constant gas density for each eruption. This is an assumption that we show to be invalid, with gas density potentially varying between 0.04 kg m- 3 and 9 kg m- 3 for the 32 cases considered, so that k varies between 54 m1/2 s- 1 and 828 m1/2 s- 1, compared with the traditionally used constant of 150 m1/2 s- 1.
NASA Astrophysics Data System (ADS)
Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei
2014-07-01
It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.
NASA Astrophysics Data System (ADS)
Potter, William J.
2017-02-01
We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.
Parametric performance of a turbojet engine combustor using jet A and A diesel fuel
NASA Technical Reports Server (NTRS)
Butze, H. F.; Humenik, F. M.
1979-01-01
The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.
Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.
Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-12-11
Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.
Flame deformation and entrainment associated with an isothermal transverse fuel jet
NASA Technical Reports Server (NTRS)
Jenkins, D. W.; Karagozian, A. R.
1992-01-01
This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.
Investigating the temporal domain of massive ionized jets - I. A pilot study
NASA Astrophysics Data System (ADS)
Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Cunningham, N.
2018-03-01
We present sensitive (σ < 10 μJy beam- 1), radio continuum observations using the Australian Telescope Compact Array at frequencies of 6 and 9 GHz towards four massive young stellar objects (MYSOs). From a previous, less sensitive work, these objects are known to harbour ionized jets associated with radio lobes, which result from shock processes. In comparison with that work, further emission components are detected towards each MYSO. These include extended, direct, thermal emission from the ionized jet's stream, new radio lobes indicative of shocks close (<105 au) to the MYSO, three radio Herbig-Haro objects separated by up to 3.8 pc from the jet's launching site, and an IR-dark source coincident with CH3OH maser emission. No significant, integrated flux variability is detected towards any jets or shocked lobes, and only one proper motion is observed (1806± 596{{ km}{ s}^{-1}{ }} parallel to the jet axis of G310.1420+00.7583A). Evidence for precession is detected in all four MYSOs with precession periods and angles within the ranges 66-15 480 yr and 6°-36°, respectively. Should precession be the result of the influence from a binary companion, we infer orbital radii of 30-1800 au.
Fossil shell emission in dying radio loud AGNs
NASA Astrophysics Data System (ADS)
Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.
2016-02-01
We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA
Modeling of hydrogen-air diffusion flame
NASA Technical Reports Server (NTRS)
Isaac, K. M.
1988-01-01
Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.
An X-Ray Imaging Survey of Quasar Jets: The Complete Survey
NASA Astrophysics Data System (ADS)
Marshall, H. L.; Gelbord, J. M.; Worrall, D. M.; Birkinshaw, M.; Schwartz, D. A.; Jauncey, D. L.; Griffiths, G.; Murphy, D. W.; Lovell, J. E. J.; Perlman, E. S.; Godfrey, L.
2018-03-01
We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γ x , whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04 ‑0.05 and dispersion of 0.15+0.04 ‑0.03. We show that the distribution of α rx , the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 ± 0.012 and dispersion of 0.077 ± 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet’s relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+α . We fit Q ∝ (1 + z) a , finding a = 0.88 ± 0.90, and reject at 99.5% confidence the hypothesis that the average α rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2–3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, Thangasamy; Langer, William D.; Goldsmith, Paul; Li, Di; Yorke, Harold
The GOT C+ a HIFI Herschel Key Project, studies the diffuse ISM throughout the Galactic Plane, using C+ as cloud tracer. The C+ line at 1.9 THz traces a so-far poorly studied stage in ISM cloud evolution -the transitional clouds going from atomic HI to molecular H2. This transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. The C+ line is also an excellent tracer of the warm diffuse gas and the warm, dense gas in the Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. We present our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO) along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 25 degrees, taken during the HIFI Priority Science Phase. Comparisons of the high spectral resolution ( 1 km/s) HIFI data on C+ with HI, 12CO, and 13CO spectra allow us to separate out the different ISM components along each line of sight. Our results provide detailed information about the transition of diffuse atomic to molecular gas clouds needed to understand star formation and the lifecycle of the interstellar gas. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoctoral associate.
Lobo, Prem; Hagen, Donald E; Whitefield, Philip D
2011-12-15
Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.
NASA Technical Reports Server (NTRS)
Colantonio, Renato Olaf
1993-01-01
An investigation was conducted to develop appropriate technologies for a low-NO(x), liquid-fueled combustor. The combustor incorporates an effervescent atomizer used to inject fuel into a premixing duct. Only a fraction of the combustion air is used in the premixing process to avoid autoignition and flashback problems. This fuel-rich mixture is introduced into the remaining combustion air by a rapid jet-shear-layer-mixing process involving radial fuel-air jets impinging on axial air jets in the primary combustion zone. Computational analysis was used to provide a better understanding of the fluid dynamics that occur in jet-shear-layer mixing and to facilitate a parametric analysis appropriate to the design of an optimum low-NO(x) combustor. A number of combustor configurations were studied to assess the key combustor technologies and to validate the modeling code. The results from the experimental testing and computational analysis indicate a low-NO(x) potential for the jet-shear-layer combustor. Key parameters found to affect NO(x) emissions are the primary combustion zone fuel-air ratio, the number of axial and radial jets, the aspect ratio and radial location of the axial air jets, and the radial jet inlet hole diameter. Each of these key parameters exhibits a low-NO(x) point from which an optimized combustor was developed. Using the parametric analysis, NO(x) emissions were reduced by a factor of 3 as compared with the emissions from conventional, liquid-fueled combustors operating at cruise conditions. Further development promises even lower NO(x) with high combustion efficiency.
Jet engine noise and infrared plume correlation field campaign
NASA Astrophysics Data System (ADS)
Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy
2015-09-01
Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John E. Dec; Peter L. Kelly-Zion
Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation andmore » oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Y.; Kataoka, J.; Takahashi, Y.
2012-04-10
We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is wellmore » fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.« less
EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo, E-mail: fyuan@shao.ac.cn
2016-10-20
Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emissionmore » originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.« less
Magnetic Fields in Blazar Jets: Jet-Alignment of Radio and Optical Polarization over 20-30 Years
NASA Astrophysics Data System (ADS)
Wills, Beverley J.; Aller, M. F.; Caldwell, C.; Aller, H. D.
2012-01-01
Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: some quasars with strong broad emission lines, and BL Lac objects with weak or undetected broad lines. We have compiled optical linear polarization measurements of more than 100 blazars, including archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks, enabling quasi-simultaneous comparison of optical and radio polarization position angles (EVPAs). We also collected data on jet direction -- position angles of the jet component nearest the radio core. The project is unique in examining the polarization and jet behavior over many years. BL Lac objects tend to have stable optically thin EVPA in the jet direction, meaning magnetic field is perpendicular to jet flow, often interpreted as the magnetic field compressed by shocks. In quasar-blazars optical and radio EVPA often changes between parallel or perpendicular to the jet direction, even in the same object. The underlying B field of the jet is is parallel to the flow, with approximately 90 degree changes resulting from shocks. For both BL Lac objects & quasars, the scatter in EVPA usually increases from low frequencies (4.8 GHz) through 14.5 GHz through optical. The wide optical-radio frequency range allows us to investigate optical depth effects and the spatial origin of radio and optical emission.
NASA Astrophysics Data System (ADS)
Kozak, Brian John
This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.
GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line
NASA Astrophysics Data System (ADS)
Langer, William
2012-01-01
The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei
2018-01-01
Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.
3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.
Zhu, Q; Kato, S; Murakami, S; Ito, K
2007-06-01
This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.
Analysis of opposed jet hydrogen-air counter flow diffusion flame
NASA Technical Reports Server (NTRS)
Ho, Y. H.; Isaac, K. M.
1989-01-01
A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.
Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike
2008-11-01
The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Evidence for Ultra-Energetic Particles in Jet from Black Hole
NASA Astrophysics Data System (ADS)
2006-06-01
New Haven, Conn. -- An international team of astronomers led by researchers at Yale has obtained key infrared observations that reveal the nature of quasar particle jets that originate just outside super-massive black holes at the center of galaxies and radiate across the spectrum from radio to X-ray wavelengths; a complementary study of jet X-ray emission led by astronomers at the University of Southampton, reaches the same conclusion. Composite of 3C273's jet Chandra, Hubble, and Spitzer composite of 3C273 Credit: NASA/JPL-Caltech/Yale Univ. Press Image and Caption Both studies involve the jet of the quasar 3C273, famous since its identification in 1963 as the first quasar. It now appears that the most energetic radiation from this jet arises through direct radiation from extremely energetic particles, and not in the way expected by most astronomers based on the previously available data. The two reports, available now online in the Astrophysical Journal, will appear in print in the September 10 issue. "Quasar jets, although extremely luminous, are so distant as to be relatively faint and difficult to observe. Thanks to the sensitivity of NASA's Great Observatories, we have been able to map the 3C273 jet in infrared, visible light and X-rays," said C. Megan Urry, Israel Munson Professor of Physics and Astronomy at Yale, and an author on one study. "These combined data strongly suggest that ultra-energetic particles in the 3C273 jet are producing their light via synchrotron radiation." Composite showing the relation between the quasar 3C273 and the jet Composite showing the relation between the quasar 3C273 (top left; the quasar is a very small and bright source, the fuzz apparently surrounding it is an artifact that appears when taking a picture of a very bright source with a camera and telescope for very faint things) and the jet. The color coding is the same as in the image above. Credit: NASA/NRAO, S.Jester, D.E.Harris, H.L.Marshall, K.Meisenheimer, H.-J.Röser, & R.Perley Jpeg | Tiff There have been two competing theories of how emissions arise from the particles -- the "Inverse-Compton" theory proposing that the emissions occur when jet particles scatter cosmic microwave background photons, and the "Synchrotron Radiation" theory postulating a separate population of extremely energetic electrons or protons that cause the high-energy emission. "The Yale team used the Spitzer Space Telescope to observe 3C273 because it is located in space and is more sensitive to faint infrared jet emission than any previous telescope," said Yasunobu Uchiyama, a team leader and former postdoctoral fellow at the Yale Center for Astronomy. Spitzer observations enabled the team, with collaborators at Stanford, University of Southampton, Goddard Space Flight Center, and the Brera Observatory in Milan, to determine the infrared spectrum for the first time and thus to realize its close connection to the X-ray emission. Sebastian Jester, now at the University of Southampton, led a complementary study that used the Chandra X-ray Observatory. This team, with collaborators at MIT Kavli Institute for Astrophysics and Space Research and the Smithsonian Astrophysical Observatory (SAO) in Cambridge, MA, and at the Max Planck Institute for Astronomy in Heidelberg, obtained the first detailed study of energy distribution of X-rays from the jet, which also supported the synchrotron theory. Composite of 3C273's jet Composite of 3C273's jet, showing in which wavelength region the emission peaks: X-rays (observed with Chandra) in blue, optical light (observed with HST) in green, radio waves (observed with the VLA) in red. Yellow indicates that both optical and radio emission are strong. jpg | tif According to the researchers, while the lifetime of the X-ray producing particles is only about 100 years, the data indicate that the visibly brightest part of the jet has a length of about 100,000 light years. Since there would be insufficient time for the particles to shoot out from the black hole at close to the speed of light and then release their energy as radiation as far out as they are seen, the particles have to be accelerated locally, where they produce their emission. Both teams also used data from the third of NASA's Great Observatories, the Hubble Space Telescope, and the radio telescopes of the Very Large Array (VLA). The three space telescopes and the VLA "see" emission of different wavelengths from celestial objects, and the combined data was essential to reveal the new comprehensive perspective on the jets. "The new observations show that the flow structure of this jet is more complicated than had been assumed previously," Jester explains. "That the present evidence favors the synchrotron model deepens the mystery of how jets produce the ultra-energetic particles that radiate at X-ray wavelengths." "Our results call for a radical rethink of the physics of relativistic jets that black holes drive," said Uchiyama. "But, we now have a crucial new clue to solving one of the major mysteries in high-energy astrophysics." Other authors on the papers include Jeffrey Van Duyne and Paolo Coppi at Yale; C.C. Cheung at Stanford University; Rita Sambruna at NASA/GSFC, Greenbelt, MD; Tadayuki Takahashi at ISAS/JAXA, Japan; Laura Maraschi and Fabrizio Tavecchio at the Osservatorio Astronomico di Brera, Milan; Dan Harris from the SAO; Herman Marshall at MIT; and Klaus Meisenheimer at Max Planck Institute for Astronomy in Heidelberg. Grant and contract funding from NASA supported the research. Additional images and background material are available at: http://www.astro.soton.ac.uk/~jester/3C273.html and http://www.astro.isas.jaxa.jp/~uchiyama/Site2/Spitzer_3C273.html
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufferand, H.; Tosatto, L.; La Mantia, B.
2009-08-15
The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less
A pulsed plasma jet with the various Ar/N2 mixtures
NASA Astrophysics Data System (ADS)
Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.
2017-12-01
In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.
Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients
NASA Technical Reports Server (NTRS)
Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip
2011-01-01
Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.
NASA Astrophysics Data System (ADS)
Zhu, W.; Wang, R.
2017-08-01
An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.
Dynamics of an Unsteady Diffusion Flame: Effects of Heat Release and Gravity
1990-09-27
UNSTEADY DIFFUSION FLAME: EFFECTS OF HEAT RELEASE AND GRAVITY INTRODUCTION Experiments on laminar diffusion flames have shown that gravity affects the flame ... length and width as well as its extinction characteristics (1-4). These studies have been conducted in drop towers and have focused on fuel jets with
Jet-driven and jet-less fireballs from compact binary mergers
NASA Astrophysics Data System (ADS)
Salafia, O. S.; Ghisellini, G.; Ghirlanda, G.
2018-02-01
During a compact binary merger involving at least one neutron star (NS), a small fraction of the gravitational energy could be liberated in such a way to accelerate a small fraction (˜10-6) of the NS mass in an isotropic or quasi-isotropic way. In presence of certain conditions, a pair-loaded fireball can form, which undergoes accelerated expansion reaching relativistic velocities. As in the standard fireball scenario, internal energy is partly transformed into kinetic energy. At the photospheric radius, the internal radiation can escape, giving rise to a pulse that lasts for a time equal to the delay time since the merger. The subsequent interaction with the interstellar medium can then convert part of the remaining kinetic energy back into radiation in a weak isotropic afterglow at all wavelengths. This scenario does not require the presence of a jet: the associated isotropic prompt and afterglow emission should be visible for all NS-NS and BH-NS mergers within 90 Mpc, independent of their inclination. The prompt emission is similar to that expected from an off-axis jet, either structured or much slower than usually assumed (Γ ˜ 10), or from the jet cocoon. The predicted afterglow emission properties can discriminate among these scenarios.
Supersonic jet noise generated by large scale instabilities
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.
1982-01-01
The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
Quantifying residual, eddy, and mean flow effects on mixing in an idealized circumpolar current
Wolfram, Phillip J.; Ringler, Todd D.
2017-07-13
Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less
Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.
1993-01-01
Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.
ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1982-01-01
A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.
High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations
NASA Astrophysics Data System (ADS)
Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.
2011-05-01
We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.
Induced velocity field of a jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1978-01-01
An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.
Effects of buoyancy on gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Edelman, Raymond B.
1993-01-01
The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.
1999-01-01
Gerard M. Faeth, University of Michigan, principal investigator in combustion science experiments, including Flow/Soot-Formation in Nonbuoyant Laminar Diffusion Flames, investigation of Laminar Jet Diffusion Flames in Microgravity: A Paradigm for Soot Processes in Turbulent Flames, and Soot Processes in Freely-Propagating Laminar Premixed Flames.
NASA Astrophysics Data System (ADS)
González-García, B.; Manoj, P.; Watson, D. M.; Vavrek, R.; Megeath, S. T.; Stutz, A. M.; Osorio, M.; Wyrowski, F.; Fischer, W.; Tobin, J. J.; Sánchez-Portal, M.; Diaz Rodriguez, A. K.; Wilson, T. L.
2016-11-01
We present the first detection of a jet in the far-IR [O I] lines from an intermediate mass protostar. This jet was detected in a Herschel/PACS spectral mapping study in the [O I] lines of OMC-2 FIR 3 and FIR 4, two of the most luminous protostars in Orion outside of the Orion Nebula. The spatial morphology of the fine structure line emission reveals the presence of an extended photodissociation region (PDR) and a narrow, but intense jet connecting the two protostars. The jet seen in [O I] emission is spatially aligned with the Spitzer/IRAC 4.5 μm jet and the CO (6-5) molecular outflow centered on FIR 3. The mass-loss rate derived from the total [O I] 63 μm line luminosity of the jet is 7.7 × 10-6M⊙ yr-1, more than an order of magnitude higher than that measured for typical low-mass class 0 protostars. The implied accretion luminosity is significantly higher than the observed bolometric luminosity of FIR 4, indicating that the [O I] jet is unlikely to be associated with FIR 4. We argue that the peak line emission seen toward FIR 4 originates in the terminal shock produced by the jet driven by FIR 3. The higher mass-loss rate that we find for FIR 3 is consistent with the idea that intermediate-mass protostars drive more powerful jets than their low-mass counterparts. Our results also call into question the nature of FIR 4. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The final reduced Herschel data used in this paper (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A26
NASA Astrophysics Data System (ADS)
Jourdain, E.; Roques, J. P.; Chauvin, M.
2014-07-01
During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.
The Jet REMPI (Resonance Enhanced Multiphoton Ionization) monitor was tested on a hazardous waste firing boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real time instrument capable of highly selec...
PERFORMANCE RESULTS OF JET-REMPI AS A REAL-TIME PCDD/F EMISSION MONITOR
The Jet REMPI monitor was recently tested on a hazardous-waste firing boiler for its ability to determine real time concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI consists of a laser system coupled with a time of flight mass spectrometer ...
A Precessing Jet in the CH Cyg Symbiotic System
NASA Astrophysics Data System (ADS)
Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.
2010-02-01
Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1974-01-01
An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
The Highest Resolution X-ray View of the Nuclear Region of NGC 4151
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-09-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.
Quasar Astrophysics with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
Molecular line emission models of Herbig-Haro objects. I - H2 emission
NASA Technical Reports Server (NTRS)
Wolfire, Mark G.; Konigl, Arieh
1991-01-01
A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.
Discovery of radio emission from the symbiotic X-ray binary system GX 1+4
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-02-01
We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.
Chandra enables study of x-ray jets
Schwartz, Daniel
2010-01-01
The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839
A MODEL OF TURBULENT DIFFUSION FLAMES AND NITRIC OXIDE GENERATION
The report describes a new view of mixing and chemical reactions in turbulent fuel jets discharging into air. Review of available fundamental data from jet flames leads to the idea that mixing begins with a large scale, inviscid intertwining of entrained air and fuel throughout t...
Sub-mm Jet Properties of the X-Ray Binary Swift J1745-26
NASA Astrophysics Data System (ADS)
Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Curran, P. A.; Russell, T. D.; Coulson, I. M.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Petitpas, G. R.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Sarazin, C. L.
2015-05-01
We present the results of our observations of the early stages of the 2012-2013 outburst of the transient black hole X-ray binary (BHXRB), Swift J1745-26, with the Very Large Array, Submillimeter Array, and James Clerk Maxwell telescope (SCUBA-2). Our data mark the first multiple-band mm and sub-mm observations of a BHXRB. During our observations the system was in the hard accretion state producing a steady, compact jet. The unique combination of radio and mm/sub-mm data allows us to directly measure the spectral indices in and between the radio and mm/sub-mm regimes, including the first mm/sub-mm spectral index measured for a BHXRB. Spectral fitting revealed that both the mm (230 GHz) and sub-mm (350 GHz) measurements are consistent with extrapolations of an inverted power law from contemporaneous radio data (1-30 GHz). This indicates that, as standard jet models predict, a power law extending up to mm/sub-mm frequencies can adequately describe the spectrum, and suggests that the mechanism driving spectral inversion could be responsible for the high mm/sub-mm fluxes (compared to radio fluxes) observed in outbursting BHXRBs. While this power law is also consistent with contemporaneous optical data, the optical data could arise from either jet emission with a jet spectral break frequency of {{ν }break}≳ 1× {{10}14} Hz or the combination of jet emission with a lower jet spectral break frequency of {{ν }break}≳ 2× {{10}11} Hz and accretion disk emission. Our analysis solidifies the importance of the mm/sub-mm regime in bridging the crucial gap between radio and IR frequencies in the jet spectrum, and justifies the need to explore this regime further.
Control of radial propagation and polarity in a plasma jet in surrounding Ar
NASA Astrophysics Data System (ADS)
Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.
2018-01-01
In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
NASA Astrophysics Data System (ADS)
Mooley, K. P.; Nakar, E.; Hotokezaka, K.; Hallinan, G.; Corsi, A.; Frail, D. A.; Horesh, A.; Murphy, T.; Lenc, E.; Kaplan, D. L.; de, K.; Dobie, D.; Chandra, P.; Deller, A.; Gottlieb, O.; Kasliwal, M. M.; Kulkarni, S. R.; Myers, S. T.; Nissanke, S.; Piran, T.; Lynch, C.; Bhalerao, V.; Bourke, S.; Bannister, K. W.; Singer, L. P.
2018-02-01
GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817.
Mooley, K P; Nakar, E; Hotokezaka, K; Hallinan, G; Corsi, A; Frail, D A; Horesh, A; Murphy, T; Lenc, E; Kaplan, D L; De, K; Dobie, D; Chandra, P; Deller, A; Gottlieb, O; Kasliwal, M M; Kulkarni, S R; Myers, S T; Nissanke, S; Piran, T; Lynch, C; Bhalerao, V; Bourke, S; Bannister, K W; Singer, L P
2018-02-08
GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.
1992-01-01
A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Disentangling the outflow and protostars in HH 900 in the Carina Nebula
NASA Astrophysics Data System (ADS)
Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay
2015-04-01
HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de
The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parametersmore » applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.« less
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Ionised Jets Associated With Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Purser, Simon John Derek
2017-09-01
This thesis focuses on the phenomena of ionised jets associated with massive young stellar objects. Firstly a study was conducted with the aim to establish a statistical sample of such objects. Radio observations towards a sample of 49 MYSOs resulted in the detection of 28 objects classified as ionised jets. The jets’ radio luminosities scaled with their MYSOs’ bolometric luminosities in the same way as for low-mass examples. This infers that the jet launching and collimation mechanisms of high-mass jets are very similar to that in their low-mass counterparts and they are ejected for the last ≤65000 yr of the MYSO phase. Interestingly non-thermal emission was regularly detected towards spatially distinct radio lobes (associated with ˜50% of the jets), suggesting the presence of synchrotron emission and therefore, magnetic fields. With an average spectral index of ¯α=‑0. 55 (indicative of the 1st order Fermi acceleration mechanism) it is concluded these lobes are the result of shocks in the jets’ stream. My second science chapter is a study of radio variability, precession and proper motions towards a subset of objects from the first chapter. Over a two year time period, no significant variability and only one example of proper motion (1800±600 km s‑1) was detected. Precession was found to be commonplace however and if it arises as the result of binary interactions, we infer orbital radii between 30 and 1800 au for the binary companions. Lastly, high-resolution, VLA observations at C and Q-bands were analysed to extend the known sample of MYSOs harbouring ionised jets into the northern hemisphere. Only 3 radio sources were detected possessing jet-like characteristics towards the work’s sub-sample of 8 IRDCs containing 44 mm-cores (in our field of view), highlighting the radio-quiet (≳30μJy) nature of this early phase in massive star formation. Towards the RMS survey derived sample of 48 MYSOs, a total of 38 radio sources with jet-like characteristics were detected, of which 14 were bona-fide jets (10 of which were associated with shock-ionised lobes). Comparing the analysis of the MYSO sample to statistical surveys of molecular outflows, it was inferred from their total momenta that the jets alone are mechanically capable of entraining the outflows. Measurement of the physical extent of the radio emission showed no evolution of the opening angle with bolometric luminosity, and that a trapped Hii region alone was not enough to explain the radio emission. Most interestingly, jets associated with shock ionised lobes were found to occupy later evolutionary IR colours than those without, suggesting them to be an evolutionary stage in ionised jet, and MYSO, evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auchettl, Katie; Guillochon, James; Ramirez-Ruiz, Enrico
We perform a comprehensive study of the X-ray emission from 70 transient sources that have been classified as tidal disruption events (TDEs) in the literature. We explore the properties of these candidates, using nearly three decades of X-ray observations to quantify their properties and characteristics. We find that the emission from X-ray TDEs increase by two to three orders of magnitude, compared to pre-flare constraints. These emissions evolve significantly with time, and decay with power-law indices that are typically shallower than the canonical t {sup −5/3} decay law, implying that X-ray TDEs are viscously delayed. These events exhibit enhanced (relativemore » to galactic) column densities and are quite soft in nature, with no strong correlation between the amount of detected soft and hard emission. At their peak, jetted events have an X-ray to optical ratio ≫1, whereas non-jetted events have a ratio ∼1, which suggests that these events undergo reprocessing at different rates. X-ray TDEs have long T {sub 90} values, consistent with what would be expected from a viscously driven accretion disk formed by the disruption of a main-sequence star by a black hole with a mass <10{sup 7} M {sub ⊙}. The isotropic luminosities of X-ray TDEs are bimodal, such that jetted and non-jetted events are separated by a “reprocessing valley” that we suggest is naturally populated by optical/UV TDEs that most likely produce X-rays, but this emission is “veiled” from observations due to reprocessing. Our results suggest that non-jetted X-ray TDEs likely originate from partial disruptions and/or disruptions of low-mass stars.« less
Test of electical resistivity and current diffusion modelling on MAST and JET
NASA Astrophysics Data System (ADS)
Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET
2018-01-01
Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.
The Jet Heated X-Ray Filament in the Centaurus A Northern Middle Radio Lobe
NASA Astrophysics Data System (ADS)
Kraft, R. P.; Forman, W. R.; Hardcastle, M. J.; Birkinshaw, M.; Croston, J. H.; Jones, C.; Nulsen, P. E. J.; Worrall, D. M.; Murray, S. S.
2009-06-01
We present results from a 40 ks XMM-Newton observation of the X-ray filament coincident with the southeast edge of the Centaurus A Northern Middle Radio Lobe (NML). We find that the X-ray filament consists of five spatially resolved X-ray knots embedded in a continuous diffuse bridge. The spectrum of each knot is well fitted by a thermal model with temperatures ranging from 0.3 to 0.7 keV and subsolar elemental abundances. In four of the five knots, nonthermal models are a poor fit to the spectra, conclusively ruling out synchrotron or IC/CMB mechanisms for their emission. The internal pressures of the knots exceed that of the ambient interstellar medium or the equipartition pressure of the NML by more than an order of magnitude, demonstrating that they must be short lived (~3 × 106 yr). Based on energetic arguments, it is implausible that these knots have been ionized by the beamed flux from the active galactic nucleus of Cen A or that they have been shock heated by supersonic inflation of the NML. In our view, the most viable scenario for the origin of the X-ray knots is that they are the result of cold gas shock heated by a direct interaction with the jet. The most plausible model of the NML is that it is a bubble from a previous nuclear outburst that is being re-energized by the current outburst. The northeast inner lobe and the large-scale jet are lossless channels through which the jet material rapidly travels to the NML in this scenario. We also report the discovery of a large-scale (at least 35 kpc radius) gas halo around Cen A.
NLO vertex for a forward jet plus a rapidity gap at high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice
Here we present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).
NLO vertex for a forward jet plus a rapidity gap at high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice
We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)
NASA Technical Reports Server (NTRS)
Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.
2002-01-01
This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also found that soot surface oxidation rates were relatively independent of fuel type, were not correlated with O2, CO2, H2O and O collision rates but were correlated with the collision rates of OH with a collision efficiency of 0.14, in agreement with the early measurements in premixed flames of Neoh et al. (1980), after allowing for oxidation by O2 via the classical rate expression of Nagle and Strickland-Constable (1962).
Investigating the emission mechanisms of the jet in the quasar PKS 1127-145
NASA Astrophysics Data System (ADS)
Duffy, Ryan T.; Siemiginowska, A.; Kashyap, V.; Stein, N.; Migliori, G.
2014-01-01
There is currently uncertainty surrounding the emission mechanism for X-ray photons in quasar jets, with both Inverse Compton Scattering from the Cosmic Microwave Background (IC/CMB) and synchrotron models considered possibilities. We use a 100 ks observation (Siemiginowska et al 2007) of the redshift z=1.18, radio-loud quasar PKS 1127-145 taken by the Chandra X-ray Observatory, with the hope of accurately measuring the offsets between radio and X-ray radiation peaks in order to establish the emission process for this jet. PKS 1127-145 is a bright quasar with a long jet which has several bright knots and complex morphology, making it a perfect source for this investigation. We use a Bayesian statistical method called Low-Count Image Restoration and Analysis (LIRA, Connors & van Dyk 2007, Esch et al 2004) to investigate the quasar jet. This fits the parameters of a multiscale model to the data by employing a Markov Chain Monte Carlo process. LIRA has shown the location of some jet X-ray components, although further simulations must be undertaken to determine whether these are statistically significant. We also study these jet X-ray components in both hard and soft X-ray bands in order to gain more information on the energy of the emitted photons. References: Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A. 2004, ApJ, 610, 1213 Siemiginowska, A., Stawarz, L., Cheung, C.C., et al. 2007, ApJ, 657, 145
NASA Astrophysics Data System (ADS)
Jester, Sebastian; Meisenheimer, Klaus; Martel, André R.; Perlman, Eric S.; Sparks, William B.
2007-09-01
We present far-ultraviolet (far-UV) observations at ~150 nm of the jet of quasar 3C273 obtained with the Advanced Camera for Surveys (ACS) Solar Blind Channel onboard the Hubble Space Telescope. While the jet morphology is very similar to that in the optical and near-UV, the spectral energy distributions of the jet's subregions show an upturn in νfν at 150nm compared to 300nm everywhere in the jet. Moreover, the 150-nm flux is compatible with extrapolating the X-ray power law down to the UV region. This constitutes strong support for a common origin of the jet's far-UV and X-ray emission. It implies that even a substantial fraction of the visible light in the X-ray brightest parts of the jet arises from the same spectral component as the X-rays, as had been suggested earlier based on Spitzer Space Telescope observations. We argue that the identification of this UV/X-ray component opens up the possibility to establish the synchrotron origin of the X-ray emission by optical polarimetry. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with HST programme GO-9814. This work was begun at the Particle Astrophysics Center, Fermilab, Batavia, IL 60510, USA. ‡ E-mail: jester@mpia.de
ALMA and VLA observations of emission from the environment of Sgr A*
NASA Astrophysics Data System (ADS)
Yusef-Zadeh, F.; Schödel, R.; Wardle, M.; Bushouse, H.; Cotton, W.; Royster, M. J.; Kunneriath, D.; Roberts, D. A.; Gallego-Cano, E.
2017-10-01
We present 44 and 226 GHz observations of the Galactic Centre within 20 arcsec of Sgr A*. Millimetre continuum emission at 226 GHz is detected from eight stars that have previously been identified at near-IR and radio wavelengths. We also detect a 5.8 mJy source at 226 GHz coincident with the magnetar SGR J1745-29 located 2.39 arcsec SE of Sgr A* and identify a new 2.5 arcsec × 1.5 arcsec halo of mm emission centred on Sgr A*. The X-ray emission from this halo has been detected previously and is interpreted in terms of a radiatively inefficient accretion flow. The mm halo surrounds an EW linear feature that appears to arise from Sgr A* and coincides with the diffuse X-ray emission and a minimum in the near-IR extinction. We argue that the millimetre emission is produced by synchrotron emission from relativistic electrons in equipartition with an ˜1.5 mG magnetic field. The origin of this is unclear but its coexistence with hot gas supports scenarios in which the gas is produced by the interaction of winds either from the fast moving S-stars, the photoevaporation of low-mass YSO discs or by a jet-driven outflow from Sgr A*. The spatial anti-correlation of the X-ray, radio and mm emission from the halo and the low near-IR extinction provides a compelling evidence of an outflow sweeping up the interstellar material, creating a dust cavity within 2 arcsec of Sgr A*. Finally, the radio and mm counterparts to eight near-IR identified stars within ˜10 arcsec of Sgr A* provide accurate astrometry to determine the positional shift between the peak emission at 44 and 226 GHz.
Relativistic baryonic jets from an ultraluminous supersoft X-ray source.
Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri
2015-12-03
The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.
Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.
Neilsen, Joseph; Lee, Julia C
2009-03-26
Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.
Liquid Spray Characterization in Flow Fields with Centripetal Acceleration
2014-03-27
25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further
Multifunctional Fuel Additives for Reduced Jet Particulate Emissions
2006-06-01
additives, turbine engine emissions, particulates, chemical kinetics, combustion, JP-8 chemistry 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism ...................114 Figure 64. Comparison of...calculated jet flame benzene mole fraction contours from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism
The Gamma-Ray Properties of Radio-Selected Extragalactic Jets
2010-06-01
Interferometry (VLBI) techniques. This information is important to understand the broad-band emission mechanism of these sources. In this work we... relativistic speed, thus the emission is Doppler boosted (Blandford & Rees, 1978; Maraschi et a!., 1992). This model is supported by the apparent... superluminal motion which is typically found in the inner radio-jets of blazars (Lister et al., 2009b, , and therein). Since 2008 August 11: the sky
PARSEC-SCALE SHOCKS IN THE KILOPARSEC-SCALE JET OF CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingay, S. J.; Lenc, E.
2009-09-15
High angular resolution very long baseline interferometry (VLBI) observations of Centaurus A have been undertaken that allow access to a wide field of view, encompassing both the well-studied parsec-scale jet and the inner part of the kiloparsec-scale jet. The VLBI observations have detected compact regions of synchrotron emission in the kiloparsec-scale jet that coincide with three stationary features identified from previous VLA monitoring observations. Each of these stationary features is associated with strong localized X-ray emission. The VLBI results strengthen arguments made by previous authors suggesting that the stationary features may be the result of stellar objects or gas cloudsmore » traversing the jet flow, intercepting the jet and causing strong shocks. The VLBI data show that the most strongly shocked regions in these features are resolved but have extents no larger than a few pc, reducing the required mass of the typical intercepting object by a factor of {approx}10 relative to previous estimates, making explanations based on high mass-loss stars or low-density gas clouds more plausible.« less
NASA Technical Reports Server (NTRS)
Maestrello, L.
1973-01-01
By measurement and analysis, the relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field intensity is considered. The physical quantity used is the gradient of the pressure evaluated on a geometrical plane at the smallest possible radial distance from the jet axis, but outside the vortical region, in the area where the homogeneous wave equation is reasonably well satisfied. The numerical and experimental procedures involved have been checked out by using a known source. Results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number.
High energy radiation from jets and accretion disks near rotating black holes
NASA Astrophysics Data System (ADS)
O'Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.
2017-01-01
We model the low/hard state in X-ray binaries as a magnetically arrested accretion flow, and calculate the resulting radiation using a general-relativistic radiative transport code. Firstly, we investigate the origin of the high-energy emission. We find the following indications of a significant jet contribution at high energies: (i) a pronounced γ-ray peak at ˜ 1023 Hz, (ii) a break in the optical/UV band where the spectrum changes from disk to jet dominated, and (iii) a low-frequency synchrotron peak ≲ 1014 Hz implies that a significant fraction of any observed X-ray and γ-ray emission originates in the jet. Secondly, we investigate the effects of black hole spin on the high-energy emission. We find that the X-ray and γ-ray power depend strongly on spin and inclination angle. Surprisingly, this dependence is not a result of the Blandford-Znajek mechanism, but instead can be understood as a redshift effect. For rapidly rotating black holes, observers with large inclinations see deeper into the hot, dense, highly-magnetized inner regions of the accretion flow. Since the lower frequency emission originates at larger radii, it is not significantly affected by the spin. Therefore, the ratio of the X-ray to near-infrared power is an observational probe of black hole spin.
NASA Astrophysics Data System (ADS)
Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.
2018-02-01
This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
X-ray Variability In Extragalactic Jets as Seen by Chandra
NASA Astrophysics Data System (ADS)
Trevor, Max; Meyer, Eileen; Georganopoulos, Markos; Aubin, Sam; Hewitt, Jennifer; DeNigris, Natalie; Whitley, Kevin
2018-01-01
The unrivaled spatial resolution of Chandra has lead to the detection of over 100 extragalactic jetsemitting X-rays on kiloparsec scales, far from the central AGN. These jets are understood to be powerful redistributors of energy on galactic and extragalactic scales, with important effects on galaxy evolution and cluster heating. However, we lack an understanding of many important jet properties, including the particle makeup, particle acceleration characteristics, and total energy content, and even how fast the jet is at kpc scales. In the most powerful jets, a persistently open question is the nature of the emission mechanism for the Chandra-observed X-rays. While inverse Compton upscattering of CMB photons (IC/CMB) by a still-relativistic jet is widely adopted, our group has very recently ruled it out in several cases, suggesting that the X-rays from powerful sources, like the low-power jets, have a synchrotron origin, albeit one with unknown origins, requiring in-situ lepton acceleration at least up to 100 TeV. A very efficient way to extend this result to many more sources is to check for variability of the large scale jet X-ray emission, something that is definitively not expected in the case of IC/CMB due to the extremely long cooling times of the electrons responsible for the emission, but it is plausible if the X-rays are of synchrotron nature. Based on previously published observations of X-ray variability in the jets of M87 and Pictor A, as well as preliminary results suggesting variability in two more powerful jets, we have examined archival observations of over 40 jets which have been imaged twice or more with Chandra for variability, with timescales of a few to nearly 14 years. This analysis has two main goals, namely (i) to confirm a synchrotron origin for the X-rays in powerful sources, as variability is inconsistent with the competing IC/CMB model and (ii) to use the timescales and characteristics (e.g., spectral changes) of any detected X-ray variability to place limits on the emitting region size and magnetic field.
Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri
The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less
Marginally fast cooling synchrotron models for prompt GRBs
NASA Astrophysics Data System (ADS)
Beniamini, Paz; Barniol Duran, Rodolfo; Giannios, Dimitrios
2018-05-01
Previous studies have considered synchrotron as the emission mechanism for prompt gamma-ray bursts (GRBs). These works have shown that the electrons must cool on a time-scale comparable to the dynamic time at the source in order to satisfy spectral constraints while maintaining high radiative efficiency. We focus on conditions where synchrotron cooling is balanced by a continuous source of heating, and in which these constraints are naturally satisfied. Assuming that a majority of the electrons in the emitting region are contributing to the observed peak, we find that the energy per electron has to be E ≳ 20 GeV and that the Lorentz factor of the emitting material has to be very large 103 ≲ Γem ≲ 104, well in excess of the bulk Lorentz factor of the jet inferred from GRB afterglows. A number of independent constraints then indicate that the emitters must be moving relativistically, with Γ΄ ≈ 10, relative to the bulk frame of the jet and that the jet must be highly magnetized upstream of the emission region, σup ≳ 30. The emission radius is also strongly constrained in this model to R ≳ 1016 cm. These values are consistent with magnetic jet models where the dissipation is driven by magnetic reconnection that takes place far away from the base of the jet.
CAP - JET PROPULSION LABORATORY CONTAMINATION ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Millard, J. M.
1994-01-01
The Jet Propulsion Laboratory Contamination Analysis Program (CAP) is a generalized transient executive analysis computer code which solves realistic mass transport problems in the free molecular flow environment. These transport problems involve mass flux from surface source emission and re-emission, venting, and engine emission. CAP solution capability allows for one-bounce mass reflections if required. CAP was developed to solve thin-film contamination problems in the free molecular flow environment, the intent being to provide a powerful analytic tool for evaluating spacecraft contamination problems. The solution procedure uses an enclosure method based on a lumped-parameter multinodal approach with mass exchange between nodes. Transient solutions are computed by the finite difference Euler method. First-order rate theory is used to represent surface emission and reemission (user care must be taken to insure the problem is appropriate for such behavior), and all surface emission and reflections are assumed diffuse. CAP does not include the effects of post-deposition chemistry or interaction with the ambient atmosphere. CAP reads in a model represented by a multiple-block data stream. CAP allows the user to edit the input data stream and stack sequential editing operations (or cases) in order to make complex changes in behavior (surface temperatures, engine start-up and shut-down, etc.) in a single run if desired. The eight data blocks which make up the input data stream consist of problem control parameters, nodal data (area, temperature, mass, etc.), engine or vent distribution factors (based upon plume definitions), geometric configuration factors (diffuse surface emission), surface capture coefficient tables, source emission rate constant tables, reemission rate constant tables, and partial node to body collapse capability (for deposition rates only). The user must generate this data stream, since neither the problem-specific geometric relationships, the constituents involved, nor plume distribution functions are a part of CAP. Instead, these are used to generate the data stream model CAP solves. Outputs vary from individual deposition rates of exchange, on an internodal basis and on a constituent basis as a function of time, to deposition on each surface on a constituent basis as a function of time. The type of outputs may be user-specified by control parameters. CAP allows the user to select output intervals within the solution interval and to generate restart nodal data blocks. CAP is composed of several FORTRAN subroutines which serve specific functions and can be easily edited. The code is relatively small (2152 statements), and contains comment statements for all operations. It is written in relatively generic FORTRAN to be adaptable to a variety of computers. CAP was implemented on a DEC VAX 11/780 computer, and is distributed on a 9-track DEC VAX BACKUP format magnetic tape. Virtual memory required is 4.6 MB, which corresponds to a 900 node model capacity. CAP was originally developed under contract for NASA/Goddard Space Flight Center in 1979 by JPL, and was subsequently modified as required for project support at JPL. CAP is a copyrighted work with all copyright vested in NASA.
Mapping jet-ISM interactions in X-ray binaries with ALMA: a GRS 1915+105 case study
NASA Astrophysics Data System (ADS)
Tetarenko, A. J.; Freeman, P.; Rosolowsky, E. W.; Miller-Jones, J. C. A.; Sivakoff, G. R.
2018-03-01
We present Atacama Large Millimetre/Sub-Millimetre Array (ALMA) observations of IRAS 19132+1035, a candidate jet-interstellar medium (ISM) interaction zone near the black hole X-ray binary (BHXB) GRS 1915+105. With these ALMA observations (combining data from the 12 m array and the Atacama Compact Array), we map the molecular line emission across the IRAS 19132+1035 region. We detect emission from the 12CO [J = 2 - 1], 13CO [ν = 0, J = 2 - 1], C18O [J = 2 - 1], H2CO [J = 30, 3 - 20, 2], H2CO [J = 32, 2 - 22, 1], H2CO [J = 32, 1 - 22, 0], SiO [ν = 0, J = 5 - 4], CH3OH [J = 42, 2 - 31, 2], and CS [ν = 0, J = 5 - 4] transitions. Given the morphological, spectral, and kinematic properties of this molecular emission, we present several lines of evidence that support the presence of a jet-ISM interaction at this site, including a jet-blown cavity in the molecular gas. This compelling new evidence identifies this site as a jet-ISM interaction zone, making GRS 1915+105, the third Galactic BHXB with at least one conclusive jet-ISM interaction zone. However, we find that this interaction occurs on much smaller scales than was postulated by previous work, where the BHXB jet does not appear to be dominantly powering the entire IRAS 19132+1035 region. Using estimates of the ISM conditions in the region, we utilize the detected cavity as a calorimeter to estimate the time-averaged power carried in the GRS 1915+105 jets of (8.4^{+7.7}_{-8.1})× 10^{32} erg s^{-1}. Overall, our analysis demonstrates that molecular lines are excellent diagnostic tools to identify and probe jet-ISM interaction zones near Galactic BHXBs.
Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Pearson, John T.; Maynes, Daniel; Webb, Brent W.
2012-09-01
Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We > 100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5 ≤ We ≤ 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115 ≤ We ≤ 265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.
NASA Technical Reports Server (NTRS)
Joy, Marshall; Harvey, P. M.; Tollestrup, E. V.; Mcgregor, P. J.; Hyland, A. R.
1990-01-01
In the present study, higher resolution near infrared images of the visually-obscured central region of Centaurus A were obtained in order to investigate the effects of the active nucleus on the surrounding galaxy. Researchers present J(1.25 microns), H(1.65 microns), and K(2.2 microns) images of the central 40 seconds of the galaxy, taken with the Univ. of Texas InSb array camera on the Anglo Australian 3.9 meter telescope. These images reveal a jet extending approx. 10 arcseconds to the northeast of the nucleus at the same position angle as the x ray and radio jets. The infrared jet is most prominent at the shortest wavelength (1.25 microns), where its brightness surpasses that of the nucleus. The blue appearance of the infrared jet is remarkable considering the heavy obscuration that is evident at visual wavelengths. The amount of reddening in the vicinity of the jet is determined from the measured colors of the stellar core of the galaxy, and this value is used to generate an extinction-corrected energy distribution. In contrast to previously studied optical and infrared jets in active nuclei, the short-wavelength prominence of the Cen A jet indicates that it cannot be attributed to synchrotron emission from a beam of relativistic electrons. The remaining viable mechanisms involve an interaction between the interstellar medium and the active nucleus: the infrared radiation from the jet may be due to emission from interstellar gas that has been entrained and heated by the flow of relativistic particles from the nucleus; alternatively, luminous blue stars may have been created by compression of interstellar material by the relativistic plasma. To investigate these proposed mechanisms, near-infrared spectroscopic studies of Cen A are in progress to look for collisionally excited molecular hydrogen emission lines and recombination lines from ionized gas.
Flux Cancelation: The Key to Solar Eruptions
NASA Technical Reports Server (NTRS)
Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv
2017-01-01
Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDOAIA and SDOHIM data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs. We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.
Flux Cancelation: The Key to Solar Eruptions
NASA Technical Reports Server (NTRS)
Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv
2017-01-01
Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scale filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA and SDO/HMI data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV images of coronal and transition-region emission, we find clear evidence that flux cancellation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scale filament eruptions that make flares and CMEs. We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancellation is the fundamental process for the buildup and triggering of solar eruptions of all sizes.
Chandra Takes on Heavy Jets and Massive Winds in 4U 1630-47
NASA Astrophysics Data System (ADS)
Neilsen, Joey
2014-11-01
Recently, Díaz Trigo et al. reported the discovery of relativistic baryons in a jet in XMM/ATCA observations of the 2012 outburst of the black hole 4U 1630-47. We present a search for a similarly massive jet earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. Despite a detection of radio emission with ATCA, we find no evidence of a heavy jet in the X-ray spectrum, with tight upper limits on the relativistic emission lines seen by Díaz Trigo eight months later. Instead, we find deep absorption lines from a massive, highly ionized disk wind, whose properties can be probed with detailed photoionization models. We explore several scenarios to explain the two modes of massive outflow in this remarkable black hole system.
Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism
NASA Astrophysics Data System (ADS)
Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer
2017-11-01
Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.
Expandable mixing section gravel and cobble eductor
Miller, Arthur L.; Krawza, Kenneth I.
1997-01-01
In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.
NASA Astrophysics Data System (ADS)
Mather, Daniel Kelly
1998-11-01
The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.
Heinold, B; Knippertz, P; Marsham, JH; Fiedler, S; Dixon, NS; Schepanski, K; Laurent, B; Tegen, I
2013-01-01
[1] Convective cold pools and the breakdown of nocturnal low-level jets (NLLJs) are key meteorological drivers of dust emission over summertime West Africa, the world’s largest dust source. This study is the first to quantify their relative contributions and physical interrelations using objective detection algorithms and an off-line dust emission model applied to convection-permitting simulations from the Met Office Unified Model. The study period covers 25 July to 02 September 2006. All estimates may therefore vary on an interannual basis. The main conclusions are as follows: (a) approximately 40% of the dust emissions are from NLLJs, 40% from cold pools, and 20% from unidentified processes (dry convection, land-sea and mountain circulations); (b) more than half of the cold-pool emissions are linked to a newly identified mechanism where aged cold pools form a jet above the nocturnal stable layer; (c) 50% of the dust emissions occur from 1500 to 0200 LT with a minimum around sunrise and after midday, and 60% of the morning-to-noon emissions occur under clear skies, but only 10% of the afternoon-to-nighttime emissions, suggesting large biases in satellite retrievals; (d) considering precipitation and soil moisture effects, cold-pool emissions are reduced by 15%; and (e) models with parameterized convection show substantially less cold-pool emissions but have larger NLLJ contributions. The results are much more sensitive to whether convection is parameterized or explicit than to the choice of the land-surface characterization, which generally is a large source of uncertainty. This study demonstrates the need of realistically representing moist convection and stable nighttime conditions for dust modeling. Citation: Heinold, B., P. Knippertz, J. H. Marsham, S. Fiedler, N. S. Dixon, K. Schepanski, B. Laurent, and I. Tegen (2013), The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations, J. Geophys. Res. Atmos., 118, 4385–4400, doi:10.1002/jgrd.50402. PMID:25893153
OJ287: Deciphering the "Rosetta stone of blazars★"
NASA Astrophysics Data System (ADS)
Britzen, S.; Fendt, C.; Witzel, G.; Qian, S.-J.; Pashchenko, I. N.; Kurtanidze, O.; Zajacek, M.; Martinez, G.; Karas, V.; Aller, M.; Aller, H.; Eckart, A.; Nilsson, K.; Arévalo, P.; Cuadra, J.; Subroweit, M.; Witzel, A.
2018-04-01
OJ287 is the best candidate Active Galactic Nucleus (AGN) for hosting a supermassive binary black hole (SMBBH) at very close separation. We present 120 Very Long Baseline Array (VLBA) observations (at 15 GHz) covering the time between Apr. 1995 and Apr. 2017. We find that the OJ287 radio jet is precessing on a timescale of ˜ 22 yr. In addition, our data are consistent with a jet-axis rotation on a yearly timescale. We model the precession (24±2 yr) and combined motion of jet precession and jet-axis rotation. The jet motion explains the variability of the total radio flux-density via viewing angle changes and Doppler beaming. Half of the jet-precession timescale is of the order of the dominant optical periodicity timescale. We suggest that the optical emission is synchrotron emission and related to the jet radiation. The jet dynamics and flux-density light curves can be understood in terms of geometrical effects. Disturbances of an accretion disc caused by a plunging black hole do not seem necessary to explain the observed variability. Although the SMBBH model does not seem necessary to explain the observed variability, a SMBBH or Lense-Thirring precession (disc aSround single black hole) seem to be required to explain the timescale of the precessing motion. Besides jet rotation also nutation of the jet axis could explain the observed motion of the jet axis. We find a strikingly similar scaling for the timescales for precession and nutation as indicated for SS433 with a factor of roughly 50 times longer in OJ287.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.
1999-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Y.; Hegde, U.; Stocker, D. P.
1999-01-01
The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebata, T.; Ito, M.
1992-04-16
This paper reports the intramolecular vibrational redistribution (IVR) of the jet-cooled p-alkylphenols and p-alkylanilines in S{sub 0} state by using stimulated emission ion dip and stimulated raman-UV optical double-resonance spectroscopy. The IVR rate constants of several vibrational levels localized in the benzene ring are estimated. 31 refs., 12 figs., 4 tabs.
Some Operating Experience and Problems Encountered During Operation of a Free-jet Facility
NASA Technical Reports Server (NTRS)
Mcaulay, John E; Prince, William R
1957-01-01
During a free-jet investigation of a 28-inch ram-jet engine at a Mach number of 2.35, flow pulsation at the engine inlet were discovered which proved to have an effect on the engine performance and operational characteristics, particularly the engine rich blowout limits. This report discusses the finding of the flow pulsations, their elimination, and effect. Other facility characteristics, such as the establishment of flow simulation and the degree of subcritical operation of the diffuser, are also explained.
NASA Astrophysics Data System (ADS)
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2017-12-01
The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.
Atmospheric nonequilibrium mini-plasma jet created by a 3D printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamatsu, Toshihiro, E-mail: toshihiro@plasma.es.titech.ac.jp; Tokyo Institute of Technology, Department of Energy Sciences, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502; Kawano, Hiroaki
2015-07-15
In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generatingmore » the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.« less
Ten per cent polarized optical emission from GRB 090102.
Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C
2009-12-10
The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.
Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
Characterizing G-Loading, Swirl Direction, and Rayleigh Losses in an Ultra Compact Combustor
2013-07-01
temperature, pressure, and emission measurements, and liquid fuel and Jet Cat control. The code layout and functionality was simple in comparison to...84 3.6.4. Cavity Air Jet Diameter Influence on g-Loading...21 Figure 15. Cavity air injection jet diameter relationship to g-loading and tangential velocity [4] 22 Figure
Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets
NASA Astrophysics Data System (ADS)
Kuo, Cheng-Ling; Chou, J. K.; Tsai, L. Y.; Chen, A. B.; Su, H. T.; Hsu, R. R.; Cummer, S. A.; Frey, H. U.; Mende, S. B.; Takahashi, Y.; Lee, L. C.
2009-04-01
This article reports the first high time resolution measurements of gigantic jets from the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment. The velocity of the upward propagating fully developed jet stage of the gigantic jets was ˜107 m s-1, which is similar to that observed for downward sprite streamers. Analysis of spectral ratios for the fully developed jet emissions gives a reduced E field of 400-655 Td and average electron energy of 8.5-12.3 eV. These values are higher than those in the sprites but are similar to those predicted by streamer models, which implies the existence of streamer tips in fully developed jets. The gigantic jets studied here all contained two distinct photometric peaks. The first peak is from the fully developed jet, which steadily propagates from the cloud top (˜20 km) to the lower ionosphere at ˜90 km. We suggest that the second photometric peak, which occurs ˜1 ms after the first peak, is from a current wave or potential wave-enhanced emissions that originate at an altitude of ˜50 km and extend toward the cloud top. We propose that the fully developed jet serves as an extension of the local ionosphere and produces a lowered ionosphere boundary. As the attachment processes remove the charges, the boundary of the local ionosphere moves up. The current in the channel persists and its contact point with the ionosphere moves upward, which produces the upward surging trailing jets. Imager and photometer data indicate that the lightning activity associated with the gigantic jets likely is in-cloud, and thus the initiation of the gigantic jets is not directly associated with cloud-to-ground discharges.
NASA Astrophysics Data System (ADS)
Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.
2017-10-01
We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.
NASA Astrophysics Data System (ADS)
Sturgess, G. J.; Syed, S. A.
1982-06-01
A numerical simulation is made of the flow in the Wright Aeronautical Propulsion Laboratory diffusion flame research combustor operating with a strong central jet of carbon dioxide in a weak and removed co-axial jet of air. The simulation is based on a finite difference solution of the time-average, steady-state, elliptic form of the Reynolds equations. Closure for these equations is provided by a two-equation turbulence model. Comparisons between measurements and predictions are made for centerline axial velocities and radial profiles of CO2 concentration. Earlier findings for a single specie, constant density, single jet flow that a large expansion ratio confined jet behaves initially as if it were unconfined, are confirmed for the multiple-specie, variable density, multiple-jet system. The lack of universality in the turbulence model constants and the turbulent Schmidt/Prandtl number is discussed.
Io's Sodium Cloud (Clear Filter and Green-Yellow Filter with Intensity Contours)
NASA Technical Reports Server (NTRS)
1997-01-01
This picture contains two images of Jupiter's moon Io and its surrounding sky. The original frame was exposed twice, once through a clear filter and once through a green-yellow filter. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io in the top half of the frame, and a green-yellow filter image of Io in the bottom half of the frame. This picture shows the entire original frame with the addition of intensity contours and false color. East is to the right.
Most of Io's visible surface is in shadow, though part of a white crescent can be seen on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e., sunlight reflected off Jupiter). Near Io's eastern equatorial edge is a burst of white light which shows up best in the lower image. This sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.The sky is full of diffuse light, some of which is scattered light from Prometheus' plume and Io's lit crescent (particularly in the half of the frame dominated by the clear filter). However, much of the diffuse emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight into both the clear and green-yellow filters at a wavelength of about 589 nanometers.The intensity contours help to illustrate that: (i) significant diffuse emission is present all the way to the eastern edge of the frame (indeed, the Sodium Cloud is known to extend far beyond that edge); (ii) the diffuse emission exhibits a directional feature at about four o'clock relative to Io's center (similar features have been seen in the Sodium Cloud at greater distances from Io).The upper image of Io exhibits a roundish white spot in the bottom half of Io's shadowed side. This corresponds to thermal emission from the volcano Pele. The lower image bears a much smaller trace of this emission because the clear filter is far more sensitive than the green-yellow filter to those relatively long wavelengths where thermal emission is strongest.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.Herbig-Haro objects as the heads of radiative jets
NASA Technical Reports Server (NTRS)
Blondin, John M.; Konigl, Arieh; Fryxell, Bruce A.
1989-01-01
The interpretation of certain HH objects as the heads of nonadiabatic supersonic jets is examined using two-dimensional numerical simulations. It is found that radiative jets develop a dense shell between the jet shock and the leading bow shock when the cooling distance behind either one of these shocks is smaller than the jet radius. It is proposed that the radiatively cooling shell may account for the variable emission pattern from objects like HH 1. Also, it is suggested that HH objects with measured space velocities that exceed the spectroscopically inferred shock velocities could correspond to heavy jets in which the bow shock is effectively adiabatic. Low-excitation objects in which these velocities are comparable may represent light jets where the jet shock is nonradiative.
Search for X-ray jets from high redshift radio sources.
NASA Astrophysics Data System (ADS)
Schwartz, Daniel A.; Cheung, Teddy; Gobeille, Doug; Marshall, Herman L.; Migliori, Giulia; Siemiginowska, Aneta; Wardle, John F. C.; Worrall, Diana M.; Birkinshaw, Mark
2018-06-01
We are conducting a Chandra "snapshot" survey of 14 radio quasars at redshifts z>3. These are selected to have one sided, arc-sec scale structure, either a jet or lobe, and come from a complete, objectively-defined sample of sources with radio flux density > 70 mJy, and with a spectroscopic redshift from the SDSS. Our objectives are to find X-ray emitting jets, compare the X-ray and radio morphology, and detect X-ray emission arising from inverse Compton scattering of the cosmic microwave background even for those cases where the radio emission is no longer detectable. For this meeting, we expect 5 of the 14 sources to have been observed.
Experimental study of the transient hydrogen jet - Using a fast response probe
NASA Astrophysics Data System (ADS)
Tanabe, H.; Ohnishi, M.; Sato, G. T.; Fujimoto, H.
Mixing processes of a transient hydrogen jet, such as those of a hydrogen-injection internal combustion engine, are studied by means of a concentration probe having a response time of less than 200 microsec. Hydrogen was injected into quiescent air by means of (1) a single-shot device, in order to study the air interactions of the jet with schlieren photography and smoke wire methods, and (2) a hydrogen diesel engine injection nozzle to determine jet shape with high speed schlieren photography. The concentration probe's response time was found to be adequate for the very short injection period, and it was determined that air-hydrogen mixing in the case of high jet momentum is governed by eddy diffusion.
Prompt gamma-ray emission of GRB 170817A associated to GW 170817: A consistent picture
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2018-05-01
The short GRB 170817A associated to the first detection of gravitation waves from a Binary Neutron Star (BNS) merger was in many ways unusual. Possible explanations are emission from a cocoon or cocoon break out, off-axis view of a structured or uniform jet, and on-axis ultra-relativistic jet with reduced density and Lorentz factor. Here we use a phenomenological model of shock evolution and synchrotron/self-Compton emission to simulate the prompt emission of GRB 170817A and to test above proposals. We find that synchrotron emission from a mildly relativistic cocoon with a Lorentz factor of 2-3, as considered in the literature, generates a too soft, too long, and too bright prompt emission. Off-axis view of an structured jet with a Lorentz factor of about 10 can reproduce observations, but needs a very efficient transfer of kinetic energy to electrons in internal shocks, which is disfavored by particle in cell simulations. We also comment on cocoon breakout as a mechanism for generation of the prompt gamma-ray. A relativistic jet with a Lorentz factor of about 100 and a density lower than typical short GRBs seems to be the most plausible model and we conclude that GRB 170817A was intrinsically faint. Based on this result and findings of relativistic magnetohydrodynamics simulations of BNS merger in the literature we discuss physical and astronomical conditions, which may lead to such faint short GRBs. We identify small mass difference of progenitor neutron stars, their old age and reduced magnetic field, and anti-alignment of spin-orbit angular momentum induced by environmental gravitational disturbances during the lifetime of the BNS as causes for the faintness of GRB 170817A. We predict that BNS mergers at lower redshifts generate on average fainter GRBs.
NASA Astrophysics Data System (ADS)
Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.
2018-05-01
We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.
Detection of helicoidal motion in the optical jet of PKS 0521-365
NASA Astrophysics Data System (ADS)
Jiménez-Andrade, E. F.; Chavushyan, V.; León-Tavares, J.; Patiño-Álvarez, V. M.; Olguín-Iglesias, A.; Kotilainen, J.; Falomo, R.; Hyvönen, T.
2017-09-01
The jet activity of active galactic nuclei (AGNs), and its interaction with the interstellar medium, may play a pivotal role in the processes that regulate the growth and star formation of its host galaxy. Observational evidence that pinpoints the conditions of such interaction is paramount to unveil the physical processes involved. We report on the discovery of extended emission-line regions exhibiting an S-shaped morphology along the optical jet of the radio-loud AGN PKS 0521-365 (z = 0.055), by using long-slit spectroscopic observations obtained with FOcal Reducer/low dispersion Spectrograph 2 on the Very Large Telescope. The velocity pattern derived from the [O II] λ3727 Å, H β λ4861 Å and [O III] λλ4959, 5007 Å emission lines is well fitted by a sinusoidal function of the form: v(r) = αr1/2sin(βr1/2 + γ), suggesting helicoidal motions along the jet up to distances of 20 kpc. We estimate a lower limit for the mass of the outflowing ionized gas along the jet of ˜104 M⊙. Helical magnetic fields and jet precession have been proposed to explain helicoidal paths along the jet at pc scales; nevertheless, it is not clear yet whether these hypotheses may hold at kpc scales.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion flames provides potential for significant computational simplifications for modeling purposes in many instances, allowing for effects of finite-rate chemistry while avoiding time-consuming computations of Arrhenius expressions.
Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen
2012-06-21
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.
1989-06-01
FLUE GAS DESULFURIZATION EVALUATION A-1/A-2 3-1. 3 BOILER STACK EMISSION CONTROL WITH...Appendices A - BACT Flue Gas Desulfurization Evaluation B - BACT Off- Gas Refrigeration Evaluation v LIST OF FIGURES Figure Page 1. Material Balance for...2. Desulfurize the flue gases from the Riley boilers when firing with high sulfur oils or lignite. Options in this category include commercial wet
A dc non-thermal atmospheric-pressure plasma microjet
NASA Astrophysics Data System (ADS)
Zhu, WeiDong; Lopez, Jose L.
2012-06-01
A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.
Risk factors of jet fuel combustion products.
Tesseraux, Irene
2004-04-01
Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.
External inverse-Compton emission from jetted tidal disruption events
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan
2016-05-01
The recent discoveries of Sw J1644+57 and Sw J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the photons from the accretion disc and wind (external radiation field). Motivated by observations of thermal optical-UV spectra in Sw J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 1045-1048 erg s- 1 in the X/γ-ray band. This model of thermal plus inverse-Compton radiation is applied to Sw J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disc. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum are consistent with the inverse-Compton emission, under the following conditions: (1) the jet Lorentz factor is Γ ≃ 5-10; (2) electrons in the jet have a power-law distribution dN_e/dγ _e ∝ γ _e^{-p} with γmin ˜ 1 and p = 2.4; (3) the wind is mildly relativistic (Lorentz factor ≳ 1.5) and has isotropic-equivalent mass-loss rate ˜ 5 M⊙ yr- 1. We describe the implications for jet composition and the radius where jet energy is converted to radiation.
The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur
2018-04-01
Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long-duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spin-down power by reconnection in the striped equatorial wind, providing a guaranteed source of `thermal' emission to power the supernova. The remaining unthermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient ultraviolet (UV) cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer lived optical/UV signal may originate from a mildly relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of `jetted-tidal disruption events', in coincidence with a small subset of SLSNe.
Flux Cancelation: The Key to Solar Eruptions
NASA Technical Reports Server (NTRS)
Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv
2017-01-01
Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA (Solar Dynamics Observatory / Atmospheric Imaging Assembly) and SDO/HIM (Solar Dynamics Observatory / Helioseismic and Magnetic Imager) data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV (Extreme Ultra-Violet) images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs (Coronal Mass Ejections). We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.
HIgh-speed flickering and jet formation in GRS 1915+105
NASA Astrophysics Data System (ADS)
Lasso Cabrera, Nestor M.
In this dissertation we study the different phenomena of accretion and relativistic jet formation observed in the microquasar GRS 1915+105. Our final goal is to understand the processes producing the relativistic outflows, as well as their relation with the inflow mechanisms. Initially, we analyze X-ray emission (RXTE PCA and HEXTE) from GRS 1915+105 during and after an X-ray/radio plateau epoch. The high signal-to-noise levels in our observations allow the first published measurement of quasi-periodic oscillations (QPO) RMS values using RXTE/HEXTE data. We find that the spectral energy distribution of the QPO strongly indicates an origin in the hard non-thermal emission component, suggesting a second spectral component to the hard non-thermal X-ray emission. Given the association of the QPOs with the observed jet activity in GRS 1915+105, we suggest that this additional non-thermal X-ray spectral component may be directly linked to the relativistic jet formation process. We also analyze simultaneous X-ray (RXTE/PCA) and near-IR (Palomar 200-inch) observations from the microquasar GRS 1915+105 during two similar low/hard state epochs and two different high X-ray variability epochs -- X-ray classes alpha and beta. The X-ray to IR cross-correlation function (CCF) shows that both low/hard state observations as well as the class beta observations present little or null interaction between the X-ray and IR fluxes, while the class alpha observations present a strong correlation between the X-ray (inner accretion disk) and the IR (compact jet) light curves. We also use the X-ray to IR CCF to study the relative evolution of the two signals and find no significant evolutionary track in any of the epochs. Simulated IR light curves confirm the results of the CCF, showing a flickering IR emission during the class beta high X-ray variability period that strengthens ˜10 s after every X-ray subflare. The existence of a flickering IR emission with frequencies in the range 0.1 to 0.3 Hz that is strongly correlated with the X-ray emission allow us to place the origin of the IR emission in a synchrotron emitting relativistic jet with the IR launch site located at ˜0.02 AU from the accretion disk. These results will be especially relevant for constraining the current models of relativistic jet production in GRS 1915+105 and other microquasars. The second part of this work is dedicated to overcoming the limitation in the acquisition of high time resolution infrared data of microquasars. We introduce the Canarias InfraRed Camera Experiment (CIRCE), a new IR instrument for the 10-meter Gran Telescopio Canarias (GTC). Among other properties, CIRCE is specifically designed for the observation of relativistic jet events in microquasars, and along with the capabilities of the GTC, will enable us to observe any microquasar in the J, H, and K IR bands, with a time resolution of ˜12 Hz and a signal-to-noise level never achieved before. We plan to use CIRCE in the future to confirm the final results of the jet production study of this dissertation. We present the electronics design of CIRCE, including the housekeeping electronics, the Logic Control Unit (LCU), and the readout electronics. We also present the result of the analysis of the image quality tests performed on the CIRCE optical system.
The unique, optically-dominated quasar jet of PKS 1421-490
NASA Astrophysics Data System (ADS)
Gelbord, J. M.; Marshall, H. L.; Worrall, D. M.; Birkinshaw, M.; Lovell, J. E. J.; Ojha, R.; Godfrey, L.; Schwartz, D. A.; Perlman, E. S.; Georganopoulos, M.; Murphy, D. W.; Jauncey, D. L.
2004-12-01
The unique, optically-dominated quasar jet of PKS 1421-490 We report the discovery of extremely strong optical and X-ray emission associated with a knot in the radio jet of PKS 1421-490. The SDSS g' = 17.8 magnitude makes this the second-brightest optical jet known. The jet-to-core flux ratio in the X-ray band is unusually large (3.7), and the optical flux ratio ( ˜300) is unprecedented. The broad-band spectrum of the knot is flat from the radio through the optical bands, and has a similar slope with a lower normalization in the X-ray band. This emission is difficult to interpret without resorting to extreme model parameters or physically unlikely scenarios (flat electron distributions, non-equipartition magnetic fields, huge Doppler factors, etc.). We discuss several alternative models for the radio-to-X-ray continuum, including pure synchrotron, synchrotron plus inverse Compton scattering of cosmic microwave background photons, and a decelerating jet. JMG was supported under Chandra grant GO4-5124X to MIT from the CXC. HLM was supported under NASA contract SAO SV1-61010 for the Chandra X-Ray Center (CXC).
Extreme particle acceleration in the microquasar Cygnus X-3.
Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L
2009-12-03
Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.
Constraint on the black hole spin of M87 from the accretion-jet model
NASA Astrophysics Data System (ADS)
Feng, Jianchao; Wu, Qingwen
2017-09-01
The millimetre bump, as found in high-resolution multiwaveband observations of M87 by Prieto et al., most possibly comes from the synchrotron emission of thermal electrons in advection-dominated accretion flow (ADAF). It is possible to constrain the accretion rate near the horizon if both the nuclear millimetre emission and its polarization are produced by the hot plasma in the accretion flow. The jet power of M87 has been extensively explored, which is around 8_-3^{+7}× 10^{42} erg s-1 based on the analysis of the X-ray cavity. The black hole (BH) spin can be estimated if the jet power and the accretion rate near the horizon are known. We model the multiwavelength spectral energy distribution (SED) of M87 with a coupled ADAF-jet model surrounding a Kerr BH, where the full set of relativistic hydrodynamical equations of the ADAF are solved. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. We find that the SMBH should be fast rotating with a dimensionless spin parameter a_{*}˜eq 0.98_-0.02^{+0.012}.
Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures
NASA Astrophysics Data System (ADS)
Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.
2018-02-01
In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.
GRB060218 as a Tidal Disruption of a White Dwarf by an Intermediate-mass Black Hole
NASA Astrophysics Data System (ADS)
Shcherbakov, Roman V.; Pe'er, Asaf; Reynolds, Christopher S.; Haas, Roland; Bode, Tanja; Laguna, Pablo
2013-06-01
The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate \\dot{M}(t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 104 M ⊙ in three independent estimates: (1) fitting the tidal disruption \\dot{M}(t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.
THE KINEMATICS AND IONIZATION OF NUCLEAR GAS CLOUDS IN CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicknell, Geoffrey V.; Sutherland, Ralph S.; Neumayer, Nadine, E-mail: Geoff.Bicknell@anu.edu.au, E-mail: Ralph.Sutherland@anu.edu.au, E-mail: nadine.neumayer@universe-cluster.de
2013-03-20
Neumayer et al. established the existence of a blueshifted cloud in the core of Centaurus A, within a few parsecs of the nucleus and close to the radio jet. We propose that the cloud has been impacted by the jet, and that it is in the foreground of the jet, accounting for its blueshifted emission on the southern side of the nucleus. We consider both shock excitation and photoionization models for the excitation of the cloud. Shock models do not account for the [Si VI] and [Ca VIII] emission line fluxes. However, X-ray observations indicate a source of ionizing photonsmore » in the core of Centaurus A; photoionization by the inferred flux incident on the cloud can account for the fluxes in these lines relative to Brackett-{gamma}. The power-law slope of the ionizing continuum matches that inferred from synchrotron models of the X-rays. The logarithm of the ionization parameter is -1.9, typical of that in Seyfert galaxies and consistent with the value proposed for dusty ionized plasmas. The model cloud density depends upon the Lorentz factor of the blazar and the inclination of our line of sight to the jet axis. For acute inclinations, the inferred density is consistent with expected cloud densities. However, for moderate inclinations of the jet to the line of sight, high Lorentz factors imply cloud densities in excess of 10{sup 5} cm{sup -3} and very low filling factors, suggesting that models of the gamma-ray emission should incorporate jet Lorentz factors {approx}< 5.« less
NASA Technical Reports Server (NTRS)
Clayton, R. M.
1976-01-01
Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.
Diffuse X-ray Emission from M101
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)
2002-01-01
The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.
NASA Astrophysics Data System (ADS)
Li, Xuechen; Chu, Jingdi; Zhang, Qi; Zhang, Panpan; Jia, Pengying; Dong, Lifang
2018-04-01
A diffuse argon plume at atmospheric pressure is generated downstream of a longitudinal slit jet equipped with a dielectric barrier discharge in a quadri-electrode configuration. Results indicate that both the plume length and the spectral line intensities increase with the increase in the peak voltage. With fast photography it is found that there is a clear difference for discharges with different polarities. The positive discharge is composed of nonuniform branching filaments; however, it is fairly uniform for the negative discharge. Due to the charge overflow of the intra-electrode discharge, the streamer mechanism is involved in the plume discharge. In fact, the positive discharge and the negative one correspond to a cathode-directed streamer and an anode-directed streamer, respectively. The formation mechanisms of the branching filaments and the diffuse background are discussed at last.
Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects
NASA Astrophysics Data System (ADS)
Silva, Tiago S.; B. da Silva, Carlos; Idmec Team
2016-11-01
The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 <= Reλ <= 246 , and Schmidt numbers from 0 . 07 <= Sc <= 7 . The steepness of the scalar gradient, as observed from conditional profiles near the TNTI, increases with the Schmidt number. Conditional scalar gradient budgets show that for low and moderate Schmidt numbers a diffusive superlayer emerges at the TNTI, where the scalar gradient diffusion dominates, while the production is negligible. For low Schmidt numbers the growth of the turbulent front is commanded by the molecular diffusion, whereas the scalar gradient convection is negligible. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.
[Temperature measurement of DC argon plasma jet].
Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa
2008-01-01
The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.
Measuring medium-induced gluons via jet grooming
NASA Astrophysics Data System (ADS)
Tywoniuk, Konrad; Mehtar-Tani, Yacine
2017-11-01
Jet substructure observables and applications of jet grooming techniques in heavy-ion collisions are still in its infancy and provide new alleys for studying medium modifications of perturbative degrees of freedom. We note that these measurements, given the right transverse momentum range, can be uniquely sensitive to rare medium-induced emissions inside of the jet cone. This corresponds to an infrared enhancement that would, for instance, affect the distribution of the groomed momentum-sharing variable zg measured using the SoftDrop procedure.
Blazar emission modeling: going beyond spherical cows
NASA Astrophysics Data System (ADS)
Giannios, Dimitrios
Blazars are a subclass of Active Galactic Nuclei with non-thermal, variable emission extending over most of the electromagnetic spectrum, i.e., from radio up to gamma-rays. The blazar emission is believed to originate in relativistic jets emerging from supermassive black holes at galactic centers, when the jet points close to the line of sight. Because of their very high-energy emission and high luminosity, blazars have long been considered as prime candidates for the acceleration of ultra-high-energy cosmic rays (UHECRs). It comes as no surprise, therefore, that blazars have been the target of multiple observational campaigns. NASA satellite missions in synergy with ground-based facilities have led to huge observational progress in recent years. Yet, the theoretical understanding of the non-thermal processes responsible for the blazar emission lags far behind the observational progress. There is no reliable theory built from first principles for the energy dissipation and particle acceleration mechanisms at work in blazar jets. As a result, there exists no broadly-accepted framework for the particle distribution, geometry and magnetic field in the high-energy emitting regions in blazars. Over the past several years, Co-PI Giannios has argued that blazar emission can be understood as the result of magnetic energy dissipation via magnetic reconnection. In particular, the physical properties in the reconnection layer - where the emission is assumed to take place - can naturally reproduce the extreme energetics and timescales of the observed flaring episodes in blazars. Here, we propose to put the theory of magnetic reconnection in the context of blazar emission on a much more robust footing by capitalizing on new observational constraints and large progress in fully-kinetic particlein-cell (PIC) simulations led by Co-PI Sironi. Thanks to large-scale PIC simulations, we have recently demonstrated that reconnection can satisfy all the basic conditions for the blazar emission: efficient dissipation, extended particle distributions, and rough equipartition between particles and magnetic field in the emitting region. In addition, we have shown that quasi-spherical plasmoids (or magnetic islands) filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process, and their properties make them excellent candidates for the blobs usually invoked in blazar emission modeling. Despite this recent progress, many questions remain to be addressed: What is the composition of blazar jets and how does it relate to the observed spectra? What is the statistics of flares produced by reconnection? What is the link between the large-scale jet structure and the emitting regions? This proposal plans to address these questions and ultimately develop a self-consistent model for the blazar emission, which can be easily extended to other relativistic astrophysical outflows, including gamma-ray bursts and pulsar wind nebulae. We propose to perform a suite of two- and three-dimensional PIC simulations of reconnection with parameters relevant for blazar jets. We describe a robust method - already demonstrated in our recent papers - to extrapolate the results from the microscopic plasma scales of PIC simulations to the macroscopic scales of blazar emission. This method will determine from first principles the particle distribution, magnetic field strength, geometry and size of the emitting regions. We plan to complement this study with large-scale models of the jet structure, to pin down the location and size of the dissipation region and to better determine the amount of dissipated energy. With this information and the extensive radiative transfer experience of Co-I Petropoulou, we will be able to calculate lightcurves, polarization patterns and spectra as well as predict the UHECR acceleration and neutrino emission associated to reconnection events in blazars.
NIR Imaging Spectroscopy of the Inner Few Arcseconds of NGC 4151 with OSIRIS at Keck
NASA Technical Reports Server (NTRS)
Iserlohe, Christof; Krabbe, Alfred; Larkin, James E.; Barczys, Matthew; McElwain, Michael W.; Quirrenbach, Andreas; Weiss, Jason; Wright, Shelley A.
2013-01-01
We present H- and K-band data from the inner arcsecond of the Seyfert 1.5 galaxy NGC 4151 obtained with the adaptive optics assisted near-infrared imaging field spectrograph OSIRIS at the Keck Observatory. The angular resolution is about a few parsecs on-site and thus competes easily with optical images taken previously with the Hubble Space Telescope. We present the morphology and dynamics of most species detected but focus on the morphology and dynamics of the narrow line region (as traced by emission of [FeII]?1.644 µm), the interplay between plasma ejected from the nucleus (as traced by 21 cm continuum radio data) and hot H2 gas and characterize the detected nuclear HeI?2.058 µm absorption feature as a narrow absorption line (NAL) phenomenon. Emission from the narrow line region (NLR) as traced by [FeII] reveals a biconical morphology and we compare the measured dynamics in the [FeII] emission line with models proposing acceleration of gas in the NLR and simple ejection of gas into the NLR. In the inner 2.5 arcseconds the acceleration model reveals a better fit to our data than the ejection model.We also see evidence that the jet very locally enhances emission in [FeII] at certain positions in our field-of-view such that we were able to distinct the kinematics of these clouds from clouds generally accelerated in the NLR. Further, the radio jet is aligned with the bicone surface rather than the bicone axis such that we assume that the jet is not the dominant mechanism responsible for driving the kinematics of clouds in the NLR. The hot H2 gas is thermal with a temperature of about 1700 K. We observe a remarkable correlation between individual H2 clouds at systemic velocity with the 21 cm continuum radio jet. We propose that the radio jet is at least partially embedded in the galactic disk of NGC 4151 such that deviations from a linear radio structure are invoked by interactions of jet plasma with H2 clouds that are moving into the path of the jet because of rotation of the galactic disk of NGC 4151. Additionally, we observe a correlation of the jet as traced by the radio data, with gas as traced in Br? and H2, at velocities between systemic and +/- 200 km/s at several locations along the path of the jet. The HeI?2.058 µm line in NGC 4151 appears in emission with a blueshifted absorption component from an outflow. The emission (absorption) component has a velocity offset of 10 km/s (-280 km/s) with a Gaussian (Lorentzian) full-width (half-width) at half maximum of 160 km/s (440 km/s). The absorption component remains spatially unresolved and its kinematic measures differ from that of UV resonance absorption lines. From the amount of absorption we derive a lower limit of the HeI 2S column density of 1 × 10(exp 14) cm-2 with a covering factor along the line-of-sight of C(sub los) approximately equal to 0.1.
The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993
NASA Astrophysics Data System (ADS)
Wu, Qingwen; Feng, Jianchao; Fan, Xuliang
2018-03-01
NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.
40 CFR 61.122 - Emission standard.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions From Elemental Phosphorus Plants § 61.122 Emission standard. Emissions of polonium-210 to the ambient air from all calciners and nodulizing kilns at an elemental phosphorus plant shall not exceed a... elemental phosphorus plant: (a) Installs a Hydro-Sonic ® Tandem Nozzle Fixed Throat Free-Jet Scrubber System...
40 CFR 61.122 - Emission standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions From Elemental Phosphorus Plants § 61.122 Emission standard. Emissions of polonium-210 to the ambient air from all calciners and nodulizing kilns at an elemental phosphorus plant shall not exceed a... elemental phosphorus plant: (a) Installs a Hydro-Sonic ® Tandem Nozzle Fixed Throat Free-Jet Scrubber System...
Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion
NASA Technical Reports Server (NTRS)
Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.
2012-01-01
We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.
Sw1644+57: a relativistic jet that switched on and is now switching off
NASA Astrophysics Data System (ADS)
Tanvir, Nial
2011-09-01
Sw-J1644+57 was detected as a long-lived gamma-ray outburst in Mar 2011. Its unique H-E properties and location in the nucleus of a small galaxy at z=0.35, suggested it was due to the tidal disruption of a star by a 1-10 million Mo black-hole producing a relativistic jet. The super-Eddington luminosity is understood by the jet pointing towards us. Subsequent monitoring has shown the emission to decline roughly at the expected -5/3 power-law for TDE fall-back, till a few weeks ago when it abruptly "switched off". Our recent XMM data fixes the decline to be a factor ~100 over only ~60d. Such a rapid shut-down of accretion (~t^-25) seems implausible, so likely it represents the jet launching mechanism turning off. We request a CXO observation, several weeks after the XMM visit, to to establish whether the flux continues to decline, or stabilises at a low level (eg. due to emission directly from the accretion disk), thus shedding light on the poorly understood process of jet production.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, V. R.
2006-01-01
Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, Viswanath R.
2007-01-01
Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Is the High-Energy Emission from Centaurus A Compton-Scattered Jet Radiation?
1994-01-01
Is the High-Energy Emission from Centaurus A Compton-Scattered Jet Radiation? J. G. Skibo1, C. D. Dermer and R. L. Kinzer E. O. Hulburt Center for... Centaurus A is beamed radiation from the active nucleus which is Compton-scattered into our line- of-sight. We derive the spectrum and degree of...the scattering medium. We t the OSSE data from Centaurus A with this model and nd that if the scatterers are not moving relativistically, then the
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Trócsányi, Zoltán
2008-08-01
In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.
Wind-Tunnel Investigation of the Effect of Jet-Motor Operation on Stability
1944-07-01
authorized group requiring them for the war effort. They were pre- viously held under a security status but are PPT y»",i««<Hl«d. Some of these reports...gas turbine and le finally ejected as a high- velocity hlgh-tcmperature jet. In general, the diffusion of such e. jet is the result of the...is to remain constant, the decrepse in velocity must be accompanied by an increase in ma3S flow . This means, of course, that part of the fluid in
Chandra High Resolution Imaging of NGC 1365 and NGC 4151
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.
2010-07-01
We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.
Photoexcitation Cascade and Quantum-Relativistic Jets in Graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-02-01
In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here we show that the decays are unblocked and the bottleneck is relieved by subtle many-body effects involving multiple off-shell e -h pairs. The decays result from a collective behavior due to simultaneous emission of many soft pairs. We discuss characteristic signatures of the off-shell pathways, in particular the sharp angular distribution of secondary carriers, resembling relativistic jets in high-energy physics. The jets can be directly probed using solid-state equivalent of particle detectors. Collinear scattering enhances carrier multiplication, allowing for emission of as many as ˜10 secondary carriers per single absorbed photon.
Kinematics and the origin of the internal structures in HL Tauri jet (HH 151)
NASA Astrophysics Data System (ADS)
Movsessian, T. A.; Magakian, T. Yu.; Moiseev, A. V.
2012-05-01
Context. Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. Aims: We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20'' from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. Methods: We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perót interferometer. Two epochs of the observations of the HL/XZ Tau region in Hα emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. Results: The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Hα emission only. Conclusions: We conclude that the high- and low-velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau. Based on observations collected with the 6 m telescope of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences (RAS), operated under the financial support of the Science Department of Russia (registration number 01-43).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing
GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with amore » model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.« less
NASA Astrophysics Data System (ADS)
Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Xie, Wei; Lu, Rui-Jing; Liang, En-Wei
2017-11-01
GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (˜180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ˜300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, I.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.
Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile
NASA Technical Reports Server (NTRS)
Labus, T. L.; Symons, E. P.
1972-01-01
An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.
Environmental cost-benefit analysis of ultra low sulfur jet fuel.
DOT National Transportation Integrated Search
2011-12-01
Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...
NASA Astrophysics Data System (ADS)
Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.
2015-12-01
We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.
Studies of Be migration in the JET tokamak using AMS with 10Be marker
NASA Astrophysics Data System (ADS)
Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.
2016-03-01
The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.
NASA Astrophysics Data System (ADS)
Tamura, Hideki; Itaya, Masanobu
2000-09-01
Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.
Minifilament Eruption as the Source of a Blowout Jet, C-class Flare, and Type-III Radio Burst
NASA Astrophysics Data System (ADS)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Li, Haidong; Xu, Zhe
2017-01-01
We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by Hα images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory. The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology when the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND/WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.
MINIFILAMENT ERUPTION AS THE SOURCE OF A BLOWOUT JET, C-CLASS FLARE, AND TYPE-III RADIO BURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan
We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by H α images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory . The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology whenmore » the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND /WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.« less
JET-SHOCKED H{sub 2} AND CO IN THE ANOMALOUS ARMS OF MOLECULAR HYDROGEN EMISSION GALAXY NGC 4258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, P. M.; Lanz, L.; Appleton, P. N., E-mail: ogle@ipac.caltech.edu
2014-06-20
We present a Spitzer Infrared Spectrograph map of H{sub 2} emission from the nearby galaxy NGC 4258 (Messier 106). The H{sub 2} emission comes from 9.4 ± 0.4 × 10{sup 6} M {sub ☉} of warm molecular hydrogen heated to 240-1040 K in the inner anomalous arms, a signature of jet interaction with the galaxy disk. The spectrum is that of a molecular hydrogen emission galaxy (MOHEG), with a large ratio of H{sub 2} over 7.7 μm polycyclic aromatic hydrocarbon emission (0.37), characteristic of shocked molecular gas. We find close spatial correspondence between the H{sub 2} and CO emission from the anomalousmore » arms. Our estimate of cold molecular gas mass based on CO emission is 10 times greater than our estimate of 1.0 × 10{sup 8} M {sub ☉} based on dust emission. We suggest that the X {sub CO} value is 10 times lower than the Milky Way value because of high kinetic temperature and enhanced turbulence. The H{sub 2} disk has been overrun and is being shocked by the jet cocoon, and much of the gas originally in the disk has been ejected into the galaxy halo in an X-ray hot outflow. We measure a modest star formation rate of 0.08 M {sub ☉} yr{sup –1} in the central 3.4 kpc{sup 2} that is consistent with the remaining gas surface density.« less
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin; Liu, B. F.
2015-04-01
The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.
MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.
We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges,more » sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.« less
A KPC-Scale X-Ray Jet in the BL Lac Source S5 2007+777
NASA Technical Reports Server (NTRS)
Sambruna, Rita M.; Donato, Davide; Cheung, C.C.; Tavecchio, F.; Maraschi, L.
2008-01-01
X-ray jets in AGN are commonly observed in FRII and FRI radiogalaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACISS observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index gamma(sub x) approximately 1. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta= 13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.
Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team
2017-10-01
Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.
1984-01-01
The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.
The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-12-16
We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less
Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-12-18
The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, C.; Mutel, R. L.; Gayley, K. G.
2013-03-20
The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization ismore » consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.« less
Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.
Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf
2004-01-01
Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.
Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.
Bailis, Robert E; Baka, Jennifer E
2010-11-15
This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO₂e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO₂e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO₂e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.
Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets
NASA Astrophysics Data System (ADS)
Fuentes, Antonio; Gómez, José L.; Martí, José M.; Perucho, Manel
2018-06-01
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.
Ten thousand cloud makers: Is airplane exhaust altering earth`s climate?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monastersky, R.
1996-07-06
The small Saberliner jet carrying Bruce E. Anderson rolled almost completely upside down, when his plane entered the wake of a DC-8 jet just a few miles ahead. The backwash-a tight horizontal tornado whirling at more than 100 miles per hour-spun the light Saberliner 140{degrees} and sent it into a dive, causing Anderson, his food, and everything else in the plane to go temporarily weightless. When they recovered, they nosed up behind the DC-8 for some more punishment. Although it sounds like military flight training, Anderson and his colleagues were actually conducting a high-tech emissions check-measuring the gases and particlesmore » spewing out of jet engines. Their mission resembles the pollution tests that states routinely perform on cars, except that the NASA-run experiment happened at 400 miles per hour, 40,000 feet above the ground. And whereas car emissions are well understood, scientists have little information on the pollution from jet engines. Toward that end, NASA gathered four planes and 120 scientists in Kansas during April and May to make the most detailed measurements yet of jet engine exhaust at cruising altitude. This project and future ones are addressing the question of whether aircraft emissions are increasing the number of clouds and are perturbing atmospheric chemistry, both of which could affect weather on earth. This article describes the project, what lead to it, what has been learned and where it is going in the future.« less
Gamma rays from clumpy wind-jet interactions in high-mass microquasars
NASA Astrophysics Data System (ADS)
de la Cita, V. M.; del Palacio, S.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Romero, G. E.; Khangulyan, D.
2017-07-01
Context. The stellar winds of the massive stars in high-mass microquasars are thought to be inhomogeneous. The interaction of these inhomogeneities, or clumps, with the jets of these objects may be a major factor in gamma-ray production. Aims: Our goal is to characterize a typical scenario of clump-jet interaction, and calculate the contribution of these interactions to the gamma-ray emission from these systems. Methods: We use axisymmetric, relativistic hydrodynamical simulations to model the emitting flow in a typical clump-jet interaction. Using the simulation results we perform a numerical calculation of the high-energy emission from one of these interactions. The radiative calculations are performed for relativistic electrons locally accelerated at the jet shock, and the synchrotron and inverse Compton radiation spectra are computed for different stages of the shocked clump evolution. We also explore different parameter values, such as viewing angle and magnetic field strength. The results derived from one clump-jet interaction are generalized phenomenologically to multiple interactions under different wind models, estimating the clump-jet interaction rates, and the resulting luminosities in the GeV range. Results: If particles are efficiently accelerated in clump-jet interactions, the apparent gamma-ray luminosity through inverse Compton scattering with the stellar photons can be significant even for rather strong magnetic fields and thus efficient synchrotron cooling. Moreover, despite the standing nature or slow motion of the jet shocks for most of the interaction stage, Doppler boosting in the postshock flow is relevant even for mildly relativistic jets. Conclusions: For clump-to-average wind density contrasts greater than or equal to ten, clump-jet interactions could be bright enough to match the observed GeV luminosity in Cyg X-1 and Cyg X-3 when a jet is present in these sources, with required non-thermal-to-total available power fractions greater than 0.01 and 0.1, respectively.
Radio emission from an ultraluminous x-ray source.
Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas
2003-01-17
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.
Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.
2015-08-03
Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less
NASA Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS) Flight Experiments
NASA Astrophysics Data System (ADS)
Anderson, B. E.; Moore, R.; Beyersdorf, A. J.; Thornhill, K. L., II; Shook, M.; Winstead, E.; Ziemba, L. D.; Bulzan, D. L.; Brown, A.; Beaton, B.; Schlager, H.
2014-12-01
Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of ~2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground-test venues.
Triple Oxygen Isotope Measurement of Nitrate to Analyze Impact of Aircraft Emissions
NASA Astrophysics Data System (ADS)
Chan, Sharleen
With 4.9% of total anthropogenic radiative forcing attributed to aircraft emissions, jet engines combust copious amounts of fuel producing gases including: NOx (NO + NO2), SOx, VOC's and fine particles [IPCC (1999), IPCC (2007), Lee et al., 2009]. The tropospheric non-linear relationships between NOx, OH and O3 contribute uncertainties in the ozone budget amplified by poor understanding of the NOx cycle. In a polluted urban environment, interaction of gases and particles produce various new compounds that are difficult to measure with analytical tools available today [Thiemens, 2006]. Using oxygen triple isotopic measurement of NO3 to investigate gas to particle formation and chemical transformation in the ambient atmosphere, this study presents data obtained from aerosols sampled at NASA's Dryden Aircraft Operations Facility (DAOF) in Palmdale, CA during January and February, 2009 and Los Angeles International Airport (LAX) during Fall 2009, Winter 2010, and Spring 2010. The aerosols collected from jet aircraft exhaust in Palmdale exhibit an oxygen isotope anomaly (Delta17O =delta 17O -0.52 delta18O) increase with photochemical age of particles (-0.22 to 26.41‰) while NO3 concentration decreases from 53.76 - 5.35ppm with a radial distance from the jet dependency. Bulk aerosol samples from LAX exhibit seasonal variation with Delta17 O and NO3 concentration peaking in winter suggesting multiple sources and increased fossil fuel burning. Using oxygen triple isotopes of NO3, we are able to distinguish primary and secondary nitrate by aircraft emissions allowing new insight into a portion of the global nitrogen cycle. This represents a new and potentially important means to uniquely identify aircraft emissions on the basis of the unique isotopic composition of jet aircraft emissions.
Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment
NASA Technical Reports Server (NTRS)
Anderson, Bruce E.
2015-01-01
Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.
Constraints on high-energy neutrino emission from SN 2008D
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Ben Zvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hül, J. P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K. H.; Kappes A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-03-01
SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to ~100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.
Coupled nonequilibrium flow, energy and radiation transport for hypersonic planetary entry
NASA Astrophysics Data System (ADS)
Frederick, Donald Jerome
An ever increasing demand for energy coupled with a need to mitigate climate change necessitates technology (and lifestyle) changes globally. An aspect of the needed change is a decrease in the amount of anthropogenically generated CO2 emitted to the atmosphere. The decrease needed cannot be expected to be achieved through only one source of change or technology, but rather a portfolio of solutions are needed. One possible technology is Carbon Capture and Storage (CCS), which is likely to play some role due to its combination of mature and promising emerging technologies, such as the burning of hydrogen in gas turbines created by pre-combustion CCS separation processes. Thus research on effective methods of burning turbulent hydrogen jet flames (mimicking gas turbine environments) are needed, both in terms of experimental investigation and model development. The challenge in burning (and modeling the burning of) hydrogen lies in its wide range of flammable conditions, its high diffusivity (often requiring a diluent such as nitrogen to produce a lifted turbulent jet flame), and its behavior under a wide range of pressures. In this work, numerical models are used to simulate the environment of a gas turbine combustion chamber. Concurrent experimental investigations are separately conducted using a vitiated coflow burner (which mimics the gas turbine environment) to guide the numerical work in this dissertation. A variety of models are used to simulate, and occasionally guide, the experiment. On the fundamental side, mixing and chemistry interactions motivated by a H2/N2 jet flame in a vitiated coflow are investigated using a 1-D numerical model for laminar flows and the Linear Eddy Model for turbulent flows. A radial profile of the jet in coflow can be modeled as fuel and oxidizer separated by an initial mixing width. The effects of species diffusion model, pressure, coflow composition, and turbulent mixing on the predicted autoignition delay times and mixture composition at ignition are considered. We find that in laminar simulations the differential diffusion model allows the mixture to autoignite sooner and at a fuel-richer mixture than the equal diffusion model. The effect of turbulence on autoignition is classified in two regimes, which are dependent on a reference laminar autoignition delay and turbulence time scale. For a turbulence timescale larger than the reference laminar autoignition time, turbulence has little influence on autoignition or the mixture at ignition. However, for a turbulence timescale smaller than the reference laminar timescale, the influence of turbulence on autoignition depends on the diffusion model. Differential diffusion simulations show an increase in autoignition delay time and a subsequent change in mixture composition at ignition with increasing turbulence. Equal diffusion simulations suggest the effect of increasing turbulence on autoignition delay time and the mixture fraction at ignition is minimal. More practically, the stabilizing mechanism of a lifted jet flame is thought to be controlled by either autoignition, flame propagation, or a combination of the two. Experimental data for a turbulent hydrogen diluted with nitrogen jet flame in a vitiated coflow at atmospheric pressure, demonstrates distinct stability regimes where the jet flame is either attached, lifted, lifted-unsteady, or blown out. A 1-D parabolic RANS model is used, where turbulence-chemistry interactions are modeled with the joint scalar-PDF approach, and mixing is modeled with the Linear Eddy Model. The model only accounts for autoignition as a flame stabilization mechanism. However, by comparing the local turbulent flame speed to the local turbulent mean velocity, maps of regions where the flame speed is greater than the flow speed are created, which allow an estimate of lift-off heights based on flame propagation. Model results for the attached, lifted, and lifted-unsteady regimes show that the correct trend is captured. Additionally, at lower coflow equivalence ratios flame propagation appears dominant, while at higher coflow equivalence ratios autoignition appears dominant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kino, Motoki; Ito, Hirotaka; Kawakatu, Nozomu
We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobemore » and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.« less
Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets
NASA Astrophysics Data System (ADS)
Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka
2016-06-01
We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.
Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas
2016-01-05
Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.
SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows
NASA Technical Reports Server (NTRS)
Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.;
2007-01-01
We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.
Afterglow Observations Shed New Light on the Nature of X-ray Flashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granot, J
X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission,more » and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the observed prompt emission arises. Future observations with Swift could help test this unification scheme in which GRBs, XRGRBs and XRFs share the same basic physics and differ only by their orientation relative to our line of sight.« less
A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux
Hooper, Dan
2016-09-01
Here, we present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes ofmore » neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.« less
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...
2016-07-18
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
Black Hole Jets Make Shock Waves
2014-07-02
A composite image of the spiral galaxy NGC 4258 showing X-ray emission observed with NASA Chandra X-ray Observatory blue and infrared emission observed with NASA Spitzer Space Telescope red and green.
NASA Astrophysics Data System (ADS)
Kalashnikov, I.; Chardonnet, P.; Chechetkin, V.; Dodin, A.; Krauz, V.
2018-06-01
This paper presents the results of numerical simulation of the propagation of a sequence of plasma knots in laboratory conditions and in the astrophysical environment. The physical and geometric parameters of the simulation have been chosen close to the parameters of the PF-3 facility (Kurchatov Institute) and the jet of the star RW Aur. We found that the low-density region formed after the first knot propagation plays an important role in the collimation of the subsequent ones. Assuming only the thermal expansion of the subsequent emissions, qualitative estimates of the time taken to fill this area with the surrounding matter and the angle of jet scattering have been made. These estimates are consistent with observations and results of our modeling.
Neutrinos from Choked Jets Accompanied by Type-II Supernovae
NASA Astrophysics Data System (ADS)
He, Hao-Ning; Kusenko, Alexander; Nagataki, Shigehiro; Fan, Yi-Zhong; Wei, Da-Ming
2018-04-01
The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it hard to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.
NASA Astrophysics Data System (ADS)
Melnikov, Stanislav; Stute, Matthias; Eislöffel, Jochen
2018-04-01
Context. R Aqr is a symbiotic binary system consisting of a Mira variable with a pulsation period of 387 days and a hot companion which is presumably a white dwarf with an accretion disk. This binary system is the source of a prominent bipolar gaseous outflow. Aims: We use high spatial resolution and sensitive images from the Hubble Space Telescope (HST) to identify and investigate the different structural components that form the complex morphology of the R Aqr jet. Methods: We present new high-resolution HST WFC3/UVIS narrow-band images of the R Aqr jet obtained in 2013/14 using the [OIII]λ5007, [OI]λ6300, [NII]λ6583, and Hα emission lines. These images also allow us to produce detailed maps of the jet flow in several line ratios such as [OIII]λ5007/[OI]λ6300 and [NII]λ6583/[OI]λ6300 which are sensitive to the outflow temperature and its hydrogen ionisation fraction. The new emission maps together with archival HST data are used to derive and analyse the proper motion of prominent emitting features which can be traced over 20 years with the HST observations. Results: The images reveal the fine gas structure of the jet out to distances of a few tens of arcseconds from the central region, as well as in the innermost region, within a few arcseconds around the stellar source. They reveal for the first time the straight, highly collimated jet component which can be traced to up to 900 AU in the NE direction. Images in [OIII]λ5007, [OI]λ6300, and [NII]λ6583 clearly show a helical pattern in the jet beams which may derive from the small-scale precession of the jet. The highly collimated jet is accompanied by a wide opening angle outflow which is filled by low excitation gas. The position angles of the jet structures as well as their opening angles are calculated. Our measurements of the proper motions of some prominent emission knots confirm the scenario of gas acceleration during the propagation of the outflow. Finally, we produce several detailed line ratio maps which present a mosaic combined from the large field and the PSF-subtracted inner region. Conclusions: The high signal-to-noise HST WFC3/UVIS images provide powerful tools for the study of the jet morphology and also bring detailed information about the physical jet gas conditions. The simultaneous observations of [OIII], [OI], [NII], and [SII] would allow us to measure basic parameters of the ionised gas in the R Aqr outflow such as electron density, electron temperature and hydrogen ionisation fraction, and compare them with other stellar jets.
The structure of the electron diffusion region during asymmetric anti-parallel magnetic reconnection
NASA Astrophysics Data System (ADS)
Swisdak, M.; Drake, J. F.; Price, L.; Burch, J. L.; Cassak, P.
2017-12-01
The structure of the electron diffusion region during asymmetric magnetic reconnection is ex- plored with high-resolution particle-in-cell simulations that focus on an magnetopause event ob- served by the Magnetospheric Multiscale Mission (MMS). A major surprise is the development of a standing, oblique whistler-like structure with regions of intense positive and negative dissipation. This structure arises from high-speed electrons that flow along the magnetosheath magnetic sepa- ratrices, converge in the dissipation region and jet across the x-line into the magnetosphere. The jet produces a region of negative charge and generates intense parallel electric fields that eject the electrons downstream along the magnetospheric separatrices. The ejected electrons produce the parallel velocity-space crescents documented by MMS.
Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton
1988-01-01
The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.
Vrućinić, Milan; Matthiesen, Clemens; Sadhanala, Aditya; Divitini, Giorgio; Cacovich, Stefania; Dutton, Sian E; Ducati, Caterina; Atatüre, Mete; Snaith, Henry; Friend, Richard H; Sirringhaus, Henning; Deschler, Felix
2015-09-01
Radiative recombination in thin films of the archetypical, high-performing perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 shows localized regions of increased emission with dimensions ≈500 nm. Maps of the spectral emission line shape show narrower emission lines in high emission regions, which can be attributed to increased order. Excited states do not diffuse out of high emission regions before they decay, but are decoupled from nearby regions, either by slow diffusion rates or energetic barriers.
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.
2014-05-01
High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
Particulate sizing and emission indices for a jet engine exhaust sampled at cruise
NASA Astrophysics Data System (ADS)
Hagen, D.; Whitefield, P.; Paladino, J.; Trueblood, M.; Lilenfeld, H.
Particle size and emission indices measurements for jet engines, primarily the Rolls Royce RB211 engines on a NASA 757 aircraft are reported. These data were used to estimate the fraction of fuel sulfur that was converted to particulates. These measurements were made in-situ with the sampling aircraft several kilometers behind the source. Some complimentary ground measurements on the same source aircraft and engines are also reported. Significant differences are seen between the ground observations and the in-situ observations, indicating that plume processes are changing the aerosol's characteristics.
Development of PIV for Microgravity Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.
2003-01-01
Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.
Polydisperse effects in jet spray flames
NASA Astrophysics Data System (ADS)
Weinberg, Noam; Greenberg, J. Barry
2018-01-01
A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta
2009-11-10
We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less
NASA Astrophysics Data System (ADS)
Valan, Vlasta; Larsson, Josefin; Ahlgren, Björn
2018-02-01
The early X-ray afterglows of gamma-ray bursts (GRBs) are usually well described by absorbed power laws. However, in some cases, additional thermal components have been identified. The origin of this emission is debated, with proposed explanations including supernova shock breakout, emission from a cocoon surrounding the jet, as well as emission from the jet itself. A larger sample of detections is needed in order to place constraints on these different models. Here, we present a time-resolved spectral analysis of 74 GRBs observed by Swift X-ray Telescope in a search for thermal components. We report six detections in our sample, and also confirm an additional three cases that were previously reported in the literature. The majority of these bursts have a narrow range of blackbody radii around ˜2 × 1012 cm, despite having a large range of luminosities (Lpeak ˜ 1047-1051 erg s-1). This points to an origin connected to the progenitor stars, and we suggest that emission from a cocoon breaking out from a thick wind may explain the observations. For two of the bursts in the sample, an explanation in terms of late prompt emission from the jet is instead more likely. We also find that these thermal components are preferentially detected when the X-ray luminosity is low, which suggests that they may be hidden by bright afterglows in the majority of GRBs.
`Orphan' afterglows in the Universal structured jet model for γ-ray bursts
NASA Astrophysics Data System (ADS)
Rossi, Elena M.; Perna, Rosalba; Daigne, Frédéric
2008-10-01
The paucity of reliable achromatic breaks in γ-ray burst afterglow light curves motivates independent measurements of the jet aperture. Serendipitous searches of afterglows, especially at radio wavelengths, have long been the classic alternative. These survey data have been interpreted assuming a uniformly emitting jet with sharp edges (`top-hat' jet), in that case the ratio of weakly relativistically beamed afterglows to GRBs scales with the jet solid angle. In this paper, we consider, instead, a very wide outflow with a luminosity that decreases across the emitting surface. In particular, we adopt the universal structured jet (USJ) model, which is an alternative to the top-hat model for the structure of the jet. However, the interpretation of the survey data is very different: in the USJ model, we only observe the emission within the jet aperture and the observed ratio of prompt emission rate to afterglow rate should solely depend on selection effects. We compute the number and rate of afterglows expected in all-sky snapshot observations as a function of the survey sensitivity. We find that the current (negative) results for OA searches are in agreement with our expectations. In radio and X-ray bands, this was mainly due to the low sensitivity of the surveys, while in the optical band the sky coverage was not sufficient. In general, we find that X-ray surveys are poor tools for OA searches, if the jet is structured. On the other hand, the Faint Images of the Radio Sky at Twenty-cm radio survey and future instruments like the Allen Telescope Array (in the radio band) and especially GAIA, Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope (in the optical band) will have chances to detect afterglows.
Large-Scale Outflows in Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Baum, S. A.
1995-12-01
\\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.
The AGN-driven shock in NGC 4472
NASA Astrophysics Data System (ADS)
Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke
2016-04-01
Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.
Herschel Observations of C+ in the Vicinity of Star Forming Complexes in the Galactic Plane
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, T.; Langer, W.; Goldsmith, P.; Li, D.; Yorke, H.
2010-05-01
The CII fine-structure line at 158 um, is an excellent tracer of the warm diffuse gas and the hot, dense Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. Here we present the first results from the Galactic Observations of Terahertz C+ (GOT C+), a Herschel Key Project study of CII fine structure emission in the vicinity of star forming complexes. In the Priority Science Phase of HIFI observations, the GOT C+ project collects data along a dozen lines of sight passing near star forming regions in the inner Galaxy from longitude 310 degrees to 25 degrees. We discuss our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO). This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoc.
Observational and Model Analysis of a Two-ribbon Flare Possibly Induced by a Neighboring Blowout Jet
NASA Astrophysics Data System (ADS)
Joshi, Bhuwan; Thalmann, Julia K.; Mitra, Prabir K.; Chandra, Ramesh; Veronig, Astrid M.
2017-12-01
In this paper, we present unique observations of a blowout coronal jet that possibly triggered a two-ribbon confined C1.2 flare in bipolar solar active region NOAA 12615 on 2016 December 5. The jet activity initiates at chromospheric/transition region heights with a small brightening that eventually increases in volume, with well-developed standard morphological jet features, viz., base and spire. The spire widens up with a collimated eruption of cool and hot plasma components, observed in the 304 and 94 Å channels of AIA, respectively. The speed of the plasma ejection, which forms the jet’s spire, was higher for the hot component (˜200 km s-1) than the cooler one (˜130 km s-1). The NLFF model of coronal fields at the pre- and post-jet phases successfully reveals openings of previously closed magnetic field lines with a rather inclined/low-lying jet structure. The peak phase of the jet emission is followed by the development of a two-ribbon flare that shows coronal loop emission in HXRs up to ˜25 keV energy. The coronal magnetic fields rooted at the location of EUV flare ribbons, derived from the NLFF model, demonstrate the pre-flare phase to exhibit an “X-type” configuration, while the magnetic fields at the post-flare phase are more or less oriented parallel. Comparisons of multi-wavelength measurements with the magnetic field extrapolations suggest that the jet activity likely triggered the two-ribbon flare by perturbing the field in the interior of the active region.
Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X
NASA Astrophysics Data System (ADS)
Corbel, Stéphane
2009-05-01
In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.
Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines
NASA Technical Reports Server (NTRS)
Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)
2001-01-01
Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.
Curtain eruptions from Enceladus' south-polar terrain.
Spitale, Joseph N; Hurford, Terry A; Rhoden, Alyssa R; Berkson, Emily E; Platts, Symeon S
2015-05-07
Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called 'tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.
Curtain eruptions from Enceladus' south-polar terrain
NASA Astrophysics Data System (ADS)
Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.
2015-05-01
Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja
2016-07-15
In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency,more » and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.« less
Jet-noise reduction through liquid-base foam injection.
NASA Technical Reports Server (NTRS)
Manson, L.; Burge, H. L.
1971-01-01
An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.
Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.
Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith
2013-01-10
A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1995-01-01
Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.