Science.gov

Sample records for diffuse gamma radiation

  1. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  2. A localized excess of diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Chen, A.; Dwyer, J.; Kaaret, P.

    1995-01-01

    Using archival Energetic Gamma Ray Experiment Telescope (EGRET) gamma-ray data and atomic hydrogen (H I) column densities derived from 21 cm radio observations, we have found a large irregular region in the northern Galactic hemisphere extending from (l approximately 90 deg, b approximately 52 deg) to (l approximately 45 deg, b approximately 77 deg) with a significant enhancement in the gamma-ray emissivity compared to the surrounding sky. The region contains no previously identified gamma-ray point sources. The emission may arise from a localized enhancement in cosmic-ray density or from the presence of matter other than H I. If the emission is due to unseen matter, a column density enhancement equivalent to approximately 2 x 10(exp 20) H-atoms/sq cm is required.

  3. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1984-01-01

    The observed diffuse galactic gamma radiation is compared to that predicted from galactic cosmic ray interactions with galactic matter and photons, assuming that on a broad scale the galactic cosmic rays in the plane are correlated with matter density. Recent considerations of the galactic diffuse matter distribution, particularly the molecular hydrogen, the galactic photon density, and a revised cosmic ray galactic scale height, are included. The predictions are compared to the observational gamma ray longitude distributions, the latitude distribution, and energy spectrum, including the COS-B satellite results, and the COS-B background estimate. Considering the uncertainties, the agreement between the theoretical predictions and the gamma ray data seems generally reasonable, suggesting that the general concepts are likely to be correct. Both the results determined here alone and in conjunction with other work calculating source functions assuming only cosmic ray matter contributions indicate no necessity for a significant point source contribution to the diffuse gamma radiation in the energy range being considered (E(gamma)10 MeV). Previously announced in STAR as N84-18151

  4. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1984-01-01

    The observed diffuse galactic gamma radiation is compared to that predicted from galactic cosmic ray interactions with galactic matter and photons, assuming that on a broad scale the galactic cosmic rays in the plane are correlated with matter density. Recent considerations of the galactic diffuse matter distribution, particularly the molecular hydrogen, the galactic photon density, and a revised cosmic ray galactic scale height, are included. The predictions are compared to the observational gamma ray longitude distributions, the latitude distribution, and energy spectrum, including the COS-B satellite results, and the COS-B background estimate. Considering the uncertainties, the agreement between the theoretical predictions and the gamma ray data seems generally reasonable, suggesting that the general concepts are likely to be correct. Both the results determined here alone and in conjunction with other work calculating source functions assuming only cosmic ray matter contributions indicate no necessity for a significant point source contribution to the diffuse gamma radiation in the energy range being considered (E(gamma)10 MeV).

  5. The Gamma-ray galactic diffuse radiation and Cerenkov telescopes

    SciTech Connect

    Chardonnet, P. |; Salati, P. ||; Silk, J.; Grenier, I.; Smoot, G.

    1995-12-01

    By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

  6. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  7. The origin of the diffuse background gamma-radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

  8. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  9. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1982-01-01

    Assuming cosmic rays pervade the Galaxy, they necessarily produced high energy gamma-rays as they interact with the instellar matter and photons. The cosmic ray nucleon interactions five rise to gamma rays primarily through the decay of pi mesons, giving a unique spectrum with a maximum at approximately 68 MeV. Cosmic ray electrons produce gamma rays through bremsstrahlung, but with a markedly different energy spectral shape, one which decreases monotonically with energy. Cosmic ray electrons also interact with the interstellar starlight, optical and infrared photons, and the blackbody radiation through the Compton process. A model of galactic gamma ray production is discussed, and the predicted spatial distribution and energy spectra are presented. Considering the uncertainty in the point source contributions, the agreement between the theoretical predictions and the gamma ray data seems quite reasonable.

  10. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  11. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1986-01-01

    Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.

  12. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1986-01-01

    Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.

  13. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  14. Celestial diffuse gamma radiation above 30 MeV observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1973-01-01

    The Small Astronomy Satellite (SAS)-2, launched on November 15, 1972, carried into orbit a 32-deck magnetic-core digitized spark chamber gamma ray telescope to study celestial gamma radiation in the energy range above 30 MeV. In the study of several regions with b sub 2 15 deg, a finite, diffuse flux of gamma rays with a steep energy spectrum in the energy region from 35 to 200 MeV is observed. Representing the energy spectrum by a power law of the form dJ/dE = AE to - alpha power over this energy range, alpha is found along with the integral flux above 100 MeV. Combining this result with existing low energy gamma ray data yields an energy spectrum which is not a simple power law in energy, as in the X-ray region, but which demonstrates first an increase and then a decrease in slope, consistent within uncertainties with that predicted by cosmological theories, including the continuous production of high energy gamma rays primarily from neutral pi mesons throughout the history of the universe.

  15. Antibacterial properties of Au doped polycarbonate synthesized by gamma radiation assisted diffusion method

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Deore, Avinash V.; Dahiwale, S. S.; Sanjeev, Ganesh; Kanjilal, D.; Ojha, Sunil; Dhole, N. A.; Kodam, K. M.; Bhoraskar, V. N.; Dhole, S. D.

    2015-07-01

    Gold (Au)-Polycarbonate (PC) matrix was prepared by gamma radiation assisted diffusion of Au nanoparticles in PC matrix. UV-Visible spectroscopy showed the surface plasmon resonance around 550 nm which corresponds to Au and this peak shift towards lower wavelength i.e. blue shift indicating the decrease in particle size of Au. Rutherford Backscattering (RBS) experiment confirmed the diffusion of Au in PC and depth of diffusion is found to be around 0.85 μm. X-ray Diffractogram (XRD) results also revealed the diffusion of Au in PC where the peak observed at 2θ∼38.29° which correspond to the FCC structure. Scanning Electron Microscope (SEM) images showed the hexagonal shaped Au nanoparticles and average particle size is found to be around 110 nm. These samples also showed anti-bacterial properties with both gram positive and gram negative bacteria's and revealed the inhibition of the overall growth of the bacteria with gamma dose.

  16. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  17. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  18. SAS-2 observations of celestial diffuse gamma radiation above 30 MeV

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1974-01-01

    The small astronomy satellite, SAS-2, used a 32-deck magnetic core digitized spark chamber to study gamma rays with energies above 30 MeV. Data for four regions of the sky away from the galactic plane were analyzed. These regions show a finite, diffuse flux of gamma rays with a steep energy spectrum, and the flux is uniform over all the regions. Represented by a power law, the differential energy spectrum shows an index of 2.5 + or - 0.4. The steep SAS-2 spectrum and the lower energy data are reasonably consistent with a neutral pion gamma-ray spectrum which was red-shifted (such as that proposed by some cosmological theories). It is concluded that the diffuse celestial gamma ray spectrum observed presents the possibility of cosmological studies and possible evidence for a residual cosmic ray density, and supports the galactic superclusters of matter and antimatter remaining from baryon-symmetric big bang.

  19. TeV gamma rays from the blazar H 1426+428 and the diffuse extragalactic background radiation

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Barrio, J.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J.; Cornils, R.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Gonzalez, J.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Robrade, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Sevilla, I.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-03-01

    The detection of TeV gamma -rays from the blazar H 1426+428 at an integral flux level of (4 +/- 2stat +/- 1syst) x 10-12 erg cm-2 s-1 above 1 TeV with the HEGRA imaging atmospheric Cherenkov telescope system is reported. H 1426+428 is located at a redshift of z = 0.129, which makes it the most distant source detected in TeV gamma -rays so far. The TeV radiation is expected to be strongly absorbed by the diffuse extragalactic background radiation (DEBRA). The observed energy spectrum of TeV photons is in good agreement with an intrinsic power law spectrum of the source ~ E-1.9 corrected for DEBRA absorption. Statistical errors as well as uncertainties about the intrinsic source spectrum, however, do not permit strong statements about the density of the DEBRA infrared photon field.

  20. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  1. Radiation damage of contact structures with diffusion barriers exposed to irradiation with {sup 60}Co{gamma}-ray photons

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Konakova, R. V. Milenin, V. V.; Sveshnikov, Yu. N.; Sheremet, V. N.

    2010-04-15

    The effect of ionizing radiation of {sup 60}Co {gamma}-ray photons in the dose range 10{sup 4}-2 x 10{sup 9} rad on metal-semiconductor Au-ZrB{sub x}-AlGaN/GaN and Au-TiB{sub x}-Al-Ti-n-GaN contacts and Au-ZrB{sub x}-n-GaN Schottky diodes is examined. The contacts with the TiB{sub x} and ZrB{sub x} diffusion barriers do not degrade under the effect of ionizing radiation if the dose does not exceed 10{sup 8} rad. The Au-ZrB{sub x}-n-GaN Schottky diodes remain stable in the dose range 10{sup 4}-10{sup 6} rad. As the radiation dose is increased to {>=}10{sup 8} rad, the damage to the contact metallization increases and is accompanied by formation of through pores, which is conducive to accumulation of oxygen at the Au-ZrB{sub x}(TiB{sub x}) interfaces and to an increase in mass transport of atoms in contact-forming layers. In this case, irradiation-caused degradation of the Schottky diodes is observed. Possible mechanisms of radiation damage of contact structures with diffusion barriers are analyzed.

  2. The diffuse galactic gamma radiation: The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C.

    1981-01-01

    The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.

  3. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval from 10 to 90 deg in both hemispheres

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.

    1977-01-01

    An analysis of all the second Small Astronomy Satellite (SAS-2) gamma-ray data for galactic latitudes higher than 10 deg in both hemispheres has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C1 + C2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic steep spectral component which extrapolates back well to the low-energy (less than 10 MeV) diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  4. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  5. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  6. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  7. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  8. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  9. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  10. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  11. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  12. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  13. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  14. Gamma radiation from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1990-01-01

    The probable magnetospheric location and source of the gamma ray emission from some young radiopulsars is discussed. The suggested evolution of this emission as a function of pulsar period gives a diminished gamma-ray luminosity for a more rapidly spinning pre-Crab pulsar. A greatly enhanced one, similar to that of unidentified Cos B sources, is predicted for a slightly slower post-Vela pulsar, followed by a relatively rapid quenching of the gamma-ray luminosity at still longer periods. Possible anomalous exo-magnetospheric pulsed MeV and TeV-PeV radiation from the Crab pulsar is considered.

  15. Diffuse cosmic gamma rays: Present status of theory and observation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1972-01-01

    Positive diffuse gamma ray flux measurements now exist for energies up to the 100 MeV range. The totality of the observations in the 0.001 to 100 MeV range follow an E to the minus 2nd power trend in the differential isotropic photon spectrum but significant features appear. Possible theoretical interpretations of these features are discussed. New results on the diffuse flux from the galaxy substantiate the pion-decay origin hypothesis for gamma radiation above 100 MeV.

  16. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  17. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  18. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  19. Diffuse gamma rays from WIMP decay and annihilation.

    NASA Astrophysics Data System (ADS)

    Kamionkowski, M.

    The author discusses contributions to the diffuse gamma-ray background from decay and annihilation of weakly interacting massive particles (WIMPs). He first reviews the calculation of the cosmological abundance of a WIMP and shows that it is simply related to the cross section for annihilation of the WIMP into lighter particles. The diffuse extragalactic background radiation (DEBRA) from WIMP decay is then discussed. It is shown how observational upper limits to the DEBRA can be used to constrain properties of WIMPs that decay to photons, and the author presents additional new constraints that unitarity of the annihilation cross section imposes on such particles.

  20. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  1. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  2. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  3. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  4. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  5. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  6. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  7. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  8. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ν}{sup −2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  9. Stereotactic diffusion tensor imaging tractography for Gamma Knife radiosurgery.

    PubMed

    Gavin, Cormac G; Ian Sabin, H

    2016-12-01

    OBJECTIVE The integration of modern neuroimaging into treatment planning has increased the therapeutic potential and safety of stereotactic radiosurgery. The authors report their method of integrating stereotactic diffusion tensor imaging (DTI) tractography into conventional treatment planning for Gamma Knife radiosurgery (GKRS). The aim of this study was to demonstrate the feasibility of this technique and to address some of the technical limitations of previously reported techniques. METHODS Twenty patients who underwent GKRS composed the study cohort. They consisted of 1 initial test case (a patient with a vestibular schwannoma), 5 patients with arteriovenous malformations, 9 patients with cerebral metastases, 1 patient with parasagittal meningioma, and 4 patients with vestibular schwannoma. DT images were obtained at the time of standard GKRS protocol MRI (T1 and T2 weighted) for treatment, with the patient's head secured by a Leksell stereotactic frame. All studies were performed using a 1.5-T magnet with a single-channel head coil. DTI was performed with diffusion gradients in 32 directions and coregistered with the volumetric T1-weighted study. DTI postprocessing by means of commercially available software allowed tensor computation and the creation of directionally encoded color-, apparent diffusion coefficient-, and fractional anisotropy-mapped sequences. In addition, the software allowed visualized critical tracts to be exported as a structural volume and integrated into GammaPlan as an "organ at risk" during shot planning. Combined images were transferred to GammaPlan and integrated into treatment planning. RESULTS Stereotactic DT images were successfully acquired in all patients, with generation of correct directionally encoded color images. Tract generation with the software was straightforward and reproducible, particularly for axial tracts such as the optic radiation and the arcuate fasciculus. Corticospinal tract visualization was hampered by some

  10. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  11. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  12. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  13. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  14. Gamma -radiations connected to atmospheric precipitations

    NASA Astrophysics Data System (ADS)

    Vashenyuk, Eduard; Balabin, Yury; Gvozdevsky, Boris; Germanenko, Alexey

    Since 2008 we are monitoring the gamma -radiation in surface layer of atmosphere with scin-tillation gamma -spectrometers. Instruments consist of a crystal NaI (Tl), a photomultiplier and a pulse amplifier. The data are transmitted to a computer with a special card with the 4096 channel pulse-amplitude analyzer. The gamma-ray monitoring is presently carried out at two high-latitude points: Apatity (N 65.57, E 33.39) and Barentsburg, Spitsbergen(N 78.06, E 14.22). The detectors in Apatity and Barentsburg are covered from sides and bottom by metallic screen for shielding them from environmental radiations from a building and ground. Together with gamma-spectrometer in Apatity a precipitation measuring device (PMD) was installed, which allows us to estimate presence and intensity of precipitations. Information about precipitations in Barentsburg was taken from the local meteorological observatory. The observations have shown that sporadic increases of gamma -radiation registered by spectrome-ters are almost always accompanied by intensive precipitations (rain, snowfall). The measured spectrum of gamma -radiation was rather smooth and did not show peaks in a range from 1 up to 200 KeV. Two basic hypotheses of an origin of high-energy photons during precipitations are discussed. The first is probable connection with atmospheric radionuclides, which are at-tached to aerosols and are taken out from the atmosphere by precipitations (rain and snow). Against this hypothesis speaks lack of peaks on gamma-ray spectrum. The gamma-spectrum from radionuclides usually has characteristic and expressed spectral lines. The second probable cause is x-ray radiation arising at deceleration in air of free electrons, accelerated in an electric field between clouds and ground. All cases of precipitations are accompanied by dense cloudi-ness and strengthening of an atmospheric electric field. The arguments for this mechanism are resulted.

  15. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    SciTech Connect

    Srivastava, Saurabh; Kumar, A. Vinod; Aggarwal, Bharti; Singh, Arvind; Topkar, Anita

    2016-05-23

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  16. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  17. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1988-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  18. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1989-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  19. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  20. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  1. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  2. Titanium-Water Thermosyphon Gamma Radiation Effects and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  3. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  4. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  5. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  6. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  7. Inspection of cargo containers using gamma radiation

    NASA Astrophysics Data System (ADS)

    Hussein, Esam M. A.; Gokhale, Prasad; Arendtsz, Nina V.; Lawrence, Andre H.

    1997-02-01

    This paper investigate, with the aid of Monte Carlo simulations and laboratory experiments, a technique for the detection of narcotics in large cargo containers using gamma-radiation. The transmission and back-scattering of photons, at different energies, is used to provide information useful for identifying the presence of bulk quantities of commonly encountered narcotics.

  8. Celestial diffuse gamma-ray emission observed by SAS-2 and its interpretation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.; Thompson, D. J.; Gelman, H.; Ozel, M.; Tumer, T.

    1977-01-01

    A clearly established diffuse celestial gamma-ray component was seen by SAS-2 above 35 MeV, after examining several regions of the sky at different latitudes, including the north celestial pole. For energies above 100 MeV the gamma ray results are consistent with an equation of the form I(b)=C1+C2/sin b with the second term being dominant, suggesting that the radiation above 100 MeV comes largely from the local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a reasonable representation of the data, but here the two terms are comparable, with the first, or isotropic term, actually being the larger one. In addition to indicating that the diffuse radiation is partially galactic, these results imply a steepness for the energy spectrum of the diffuse isotropic component which places significant constraints on possible theoretical models of this radiation.

  9. Gamma Radiation Tolerance of Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy

    2011-10-01

    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  10. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  11. Diffuse gamma-ray emission from the Galactic center and implications of its past activities

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kimura, Shigeo S.; Murase, Kohta

    2017-01-01

    It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.

  12. Interdiffusion Behavior of Pt-Diffused gamma+gamma' Coatings on Ni-Based Superalloys

    SciTech Connect

    Zhang, Ying; Stacy, J P; Pint, Bruce A; Haynes, James A; Hazel, Brian T; Nagaraj, Ben

    2008-01-01

    Platinum-diffused {gamma} + {gamma}{prime} coatings ({approx} 20 at.% Al, {approx} 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with {approx} 7 {micro}m of Pt, followed by an annealing treatment in vacuum at 1175 C. In order to study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 C for various durations. Composition profiles of the alloying elements in the {gamma} + {gamma}{prime} coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion.

  13. Radiative striped wind model for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Pe'er, A.; Lyubarsky, Y.

    2017-05-01

    In this paper, we revisit the striped wind model in which the wind is accelerated by magnetic reconnection. In our treatment, radiation is included as an independent component, and two scenarios are considered. In the first one, radiation cannot stream efficiently through the reconnection layer, while the second scenario assumes that radiation is homogeneous in the striped wind. We show how these two assumptions affect the dynamics. In particular, we find that the asymptotic radial evolution of the Lorentz factor is not strongly modified whether radiation can stream through the reconnection layer or not. On the other hand, we show that the width, density and temperature of the reconnection layer are strongly dependent on these assumptions. We then apply the model to the gamma-ray burst context and find that photons cannot diffuse efficiently through the reconnection layer below radius r_D^{Δ } ˜ 10^{10.5} cm, which is about an order of magnitude below the photospheric radius. Above r_D^{Δ }, the dynamics asymptotes to the solution of the scenario in which radiation can stream through the reconnection layer. As a result, the density of the current sheet increases sharply, providing efficient photon production by the Bremsstrahlung process that could have profound influence on the emerging spectrum. This effect might provide a solution to the soft photon problem in gamma-ray bursts.

  14. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, K.J.

    1994-08-09

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  15. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, Kenneth J.

    1994-01-01

    A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

  16. GammaCam{trademark} radiation imaging system

    SciTech Connect

    1998-02-01

    GammaCam{trademark}, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam{trademark} in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  17. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  18. SSPM scintillator readout for gamma radiation detection

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Stapels, Christopher; Green, J. Andrew; Guise, Ronald E.; Young, Jason A.; Franks, Larry; Stokes, Britany; Wendelberger, Elizabeth

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube-based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT's sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  19. SSPM Scintillator Readout for Gamma Radiation Detection

    SciTech Connect

    Baker, S A; Wendelberger, B; Young, J A; Green, J A; Guise, R E; Franks, L; Staples, C

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube–based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT’s sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  20. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  1. Satellite observation of atmospheric nuclear gamma radiation

    NASA Technical Reports Server (NTRS)

    Letaw, John R.; Share, G. H.; Kinzer, R. L.; Silberberg, R.; Chupp, E. L.

    1989-01-01

    Satellite observations of the spectrum of gamma radiation from the earth's atmosphere in the energy interval from 300 keV to 8.5 MeV were obtained with a gamma-ray spectrometer during 1980-1983. A total of 20 atmospheric line features are superimposed on a continuum background which is modeled using a power law with an index of -1.16. The line energies and intensities are consistent with production by secondary neutrons interacting with atmospheric N-14 and O-16. The intensity and spectrum of photons at energies below the 511-keV line, in excess of a power law continuum, are explained by Compton scattering of the annihilation line photons in traversing an average of 21 g/sq cm of atmosphere.

  2. Ultrarelativistic electrons and solar flare gamma-radiation

    NASA Technical Reports Server (NTRS)

    Semukhin, P. E.; Kovaltsov, G. A.

    1985-01-01

    Ten solar flares with gamma radiation in excess of 10 MeV were observed. Almost all took place within a heliolatitude greater than 60 deg, close to the solar limb, an indication of the essential anisotropy of high-energy gamma radiation. This high-energy solar flare gamma radiation can be explained by the specific features of the bremsstrahlung of ultrarelativistic electrons trapped within the magnetic arc of the solar atmosphere, even if the acceleration of the electrons is anisotropic.

  3. Gamma radiation resistance of spin Seebeck devices

    NASA Astrophysics Data System (ADS)

    Yagmur, A.; Uchida, K.; Ihara, K.; Ioka, I.; Kikkawa, T.; Ono, M.; Endo, J.; Kashiwagi, K.; Nakashima, T.; Kirihara, A.; Ishida, M.; Saitoh, E.

    2016-12-01

    Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma (γ) rays with the total dose of around 3 × 105 Gy in order to investigate the γ-radiation resistance of the devices. To demonstrate this, Pt/Ni0.2Zn0.3Fe2.5O4/Glass and Pt/Bi0.1Y2.9Fe5O12/Gd3Ga5O12 SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the γ-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

  4. Long period grating response to gamma radiation

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Stǎncalie, Andrei; Neguţ, Daniel; Delepine-Lesoille, Sylvie; Lablonde, Laurent

    2016-04-01

    We report the evaluation of one long period grating (LPG) and one fiber Bragg grating (FBG) under gamma irradiation. The LPG was produced by the melting-drawing method based on CO2 laser assisted by a micro-flame and was engraved in a commercial single mode fiber SMF28 from Corning, grating length 25 mm, grating pitch of 720 μm. After the manufacturing of the grating, the fiber was re-coated with Acrylate and the grating was inserted into special ceramic case transparent to gamma radiation. The FBG is commercialized by Technica SA, and it is written in SMF-28 optical fiber (λ= 1546 nm; grating length of 12 mm; reflectivity > 80 %; bandwidth - BW @3 dB < 0.3 nm; side lobe suppress ratio - SLSR >15 dB; Acrylate recoating). By on-line monitoring of the LPG wavelength deep with an optical fiber interrogator during the irradiation exposure and pauses, both the irradiation induced shift (maximum 1.45 nm) and the recovery (in the range of 200 pm) phenomena were observed. Temperature sensitivity of the LPS was not affected by gamma irradiation.

  5. Radiative striped wind model for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Pe'er, A.; Lyubarsky, Y.

    2017-01-01

    In this paper we revisit the striped wind model in which the wind is accelerated by magnetic reconnection. In our treatment, radiation is included as an independent component, and two scenarios are considered. In the first one, radiation cannot stream efficiently through the reconnection layer, while the second scenario assumes that radiation is homogeneous in the striped wind. We show how these two assumptions affect the dynamics. In particular, we find that the asymptotic radial evolution of the Lorentz factor is not strongly modified whether radiation can stream through the reconnection layer or not. On the other hand, we show that the width, density and temperature of the reconnection layer are strongly dependent on these assumptions. We then apply the model to the gamma-ray burst context and find that photons cannot diffuse efficiently through the reconnection layer below radius r_D^{Δ } ˜ 10^{10.5} cm, which is about an order of magnitude below the photospheric radius. Above r_D^{Δ }, the dynamics asymptotes to the solution of the scenario in which radiation can stream through the reconnection layer. As a result, the density of the current sheet increases sharply, providing efficient photon production by the Bremsstrahlung process which could have profound influence on the emerging spectrum. This effect might provide a solution to the soft photon problem in GRBs.

  6. Gamma radiation shielding analysis of lead-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A S; Singh, Gurmel

    2014-11-04

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content - 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662keV, 1173keV and 1332keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes.

  7. Diffuse ionizing radiation within HH jets

    SciTech Connect

    Esquivel, A.; Raga, A. C. E-mail: raga@nucleares.unam.mx

    2013-12-20

    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  8. Assessment of diffuse radiation models in Azores

    NASA Astrophysics Data System (ADS)

    Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo

    2014-05-01

    Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different

  9. Orchid flowers tolerance to gamma-radiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Olivia Kimiko

    2000-03-01

    Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.

  10. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

  11. Carbohydrate based materials for gamma radiation shielding

    NASA Astrophysics Data System (ADS)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  12. Satellite observation of atmospheric nuclear gamma radiation.

    PubMed

    Letaw, J R; Share, G H; Kinzer, R L; Silberberg, R; Chupp, E L; Forrest, D J; Rieger, E

    1989-02-01

    We present a satellite observation of the spectrum of gamma radiation from the Earth's atmosphere in the energy interval from 300 keV to 8.5 MeV. The data were accumulated by the gamma ray spectrometer on the Solar Maximum Mission over 3 1/2 years, from 1980 to 1983. The excellent statistical accuracy of the data allows 20 atmospheric line features to be identified. The features are superimposed on a continuum background which is modeled using a power law with index -1.16. Many of these features contain a blend of more than one nuclear line. All of these lines (with the exception of the 511-keV annihilation line) are Doppler broadened. Line energies and intensities are consistent with production by secondary neutrons interacting with atmospheric 14N and 16O. Although we find no evidence for other production mechanisms, we cannot rule out significant contributions from direct excitation or spallation by primary cosmic ray protons. The relative intensities of the observed line features are in fair agreement with theoretical models; however, existing models are limited by the availability of neutron cross sections, especially at high energies. The intensity and spectrum of photons at energies below the 511-keV line, in excess of a power law continuum, can be explained by Compton scattering of the annihilation line photons in traversing an average of approximately 21 g cm-2 of atmosphere.

  13. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation

    SciTech Connect

    Gaikwad, Pallavi S.; Panicker, Lata; Mohole, Madhura; Sawant, Sangeeta; Mukhopadhyaya, Rita; Nath, Bimalendu B.

    2016-08-05

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. -- Highlights: •Comparison of radiation tolerant Chironomus Hb and radiation sensitive Human Hb. •Amino acid composition of midge and human heme confer differential hydrophobicity. •Heme pocket of evolutionarily ancient midge Hb provide gamma radiation resistivity.

  14. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  15. Diffuse continuum gamma rays from the Galaxy observed by COMPTEL

    NASA Technical Reports Server (NTRS)

    Strong, A. W.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Morris, D.; Schonfelder, V.; Stacy, J. G.; De Vries, C.; Varendorff, M.

    1994-01-01

    The diffuse Galactic continuum gamma-ray emission has been studied using the full Sky Survey from COMPTEL on the Compton Observatory CGRO. The diffuse emission appears to be visible in the whole 0.75-30 MeV range covered by the instrument, although a considerable contribution from unresolved point sources cannot be excluded. A correlation analysis using HI and CO surveys of the Galaxy is used to derive the Galactic emissivity spectrum, and this is consistent with a smooth continuation to the spectrum at higher energies derived by a similar analysis of COS-B data. The apparent conversion factor from integrated CO temperature to molecular hydrogen column density can also be determined from the correlation analysis. The value obtained is consistent with results from COS-B and other non-gamma-ray methods. Calculations of the emissivity spectrum from bremsstrahlung from a cosmic-ray electron spectrum based on propagation models are compared with the observations.

  16. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  17. Diffusion coefficient of hydrogen in a cast gamma titanium aluminide

    SciTech Connect

    Sundaram, P.A.; Wessel, E.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.

    1999-06-04

    Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of this short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.

  18. Diffusion of Cosmic-Rays and Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    del Pozo, E. D. C.; Torres, D. F.; Rodríguez Marrero, A. Y.

    It is commonly accepted that supernova remnants (SNR) are one of the most probable scenarios of leptonic and hadronic cosmic-ray (CR) acceleration. Such energetic CR can interact with interstellar gas to produce high-energy gamma rays, which can be detected through ground-based air Cherenkov detectors and space telescopes. Here we present a theoretical model that explains the high energy phenomenology of the neighborhood SNR IC 443, as observed with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope and the Energetic Gamma-ray Experiment Telescope (EGRET). We interpret MAGIC J0616 + 225 as delayed TeV emission of CR diffusing from IC 443, what naturally explains the displacement between EGRET and MAGIC sources.

  19. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  20. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dereli, H.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Di Bernardo, G.; Dormody, M.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F. -W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sellerholm, A.; Sgrò, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J. -L.; Stecker, F. W.; Striani, E.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  1. Characterization of supersonic radiation diffusion waves

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-07-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.

  2. The diffuse component of erythemal ultraviolet radiation.

    PubMed

    Silva, Abel A

    2015-11-01

    The diffuse (Dif) component of ultraviolet radiation (UVR) plays an important role in the daily exposure of humans to solar radiation. This study proposes a semi-empirical method to obtain the Dif component of the erythemal dose rate, or the erythemally weighted irradiance, (EDRDif) calculated from synchronized measurements of the Dif component of UVR (UVDif) and the global (G) irradiances of both UVR (UVG) and the erythemal dose rate (EDRG). Since the study was conducted in the tropics, results involve a wide range of solar zenith angles to which EDRDif is seasonally dependent. Clouds are the main atmospheric agent affecting Dif radiation. The ratio between Dif and G (Dif/G) showed a quadratic dependence on cloud cover with a coefficient of determination r(2) = 0.79. The maxima of EDRDif were mainly above the moderate range (>137.5 mW m(-2)) of the UV-Index and reached the extreme range (>262.5 mW m(-2)) for the spring-summer period. The fraction of the global daily erythemal dose (daily EDG) corresponding to Dif radiation (daily EDDif) ranged from 936 J m(-2) to 5053 J m(-2) and averaged 2673 J m(-2). Daily EDDif corresponded to at least 48% of daily EDG for a practically cloudless sky. Therefore, Dif radiation is a real threat. Lighter skin people (types I and II) can get sunburnt in a couple of minutes under such an incidence of radiation. Moreover, accumulative harm can affect all skin types.

  3. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  4. Galactic plane gamma radiation. [SAS-2 and COS-b observations

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tuner, T.; Ozel, M. E.

    1978-01-01

    Analysis of the complete data from SAS-2 accentuates the fact that the distribution of galactic gamma radiation has several similarities to that of other large-scale tracers of galactic structure. The gamma radiation shows no statistically significant variation with direction, and the spectrum seen along the plane is the same as that derived for the galactic component of the gamma radiation at high latitude. This uniformity of the energy spectrum, the smooth decrease in intensity as a function of galactic latitude, and the absence of any galactic gamma ray sources at high latitudes argue in favor of a diffuse origin for most of the galactic gamma radiation, rather than a collection of localized sources. All the localized sources identified in the SAS 2 data are associated with known compact objects on the basis of observed periodicities, except gamma195+5 Excluding those SAS 2 sources observed by COS-B and two other excesses (CG 312-1 and CG333+0) visible in the SAS 2 data associated with tangential directions of spiral arms, thera are eight remaining new sources in the COS-B catalog.

  5. Observations of the diffuse UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  6. Inactivation of rabies diagnostic reagents by gamma radiation

    SciTech Connect

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  7. Radiative Striped Wind Model for Gamma-Ray Busrts

    NASA Astrophysics Data System (ADS)

    Bégué, D. P.; Pe'er, A.; Lyubarski, Y.

    2016-10-01

    I will show how the inclusion of radiation in the striped wind model changes the dynamics and the radial evolution of the hydrodynamical parameters. I will conclude by discussing the implications for gamma-ray bursts.

  8. On gamma and neutrino radiation from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.

    1985-01-01

    The production of high energy gamma and neutrino radiation is studied for Cyg X-3. A heating model is proposed to explain the presence of only one gamma-pulse during 4.8 h period of the source. The acceleration mechanisms are discussed. High energy neutrino flux from Cyg X-3 is calculated.

  9. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  10. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  11. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  12. Measurement of background gamma radiation in the northern Marshall Islands

    PubMed Central

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of 137Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <<0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered. PMID:27274073

  13. Measurement of background gamma radiation in the northern Marshall Islands.

    PubMed

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  14. Automatic actinometric system for diffuse radiation measurement

    NASA Astrophysics Data System (ADS)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  15. Water diffusion into radiation crosslinked PVA-PVP network hydrogels

    NASA Astrophysics Data System (ADS)

    Hill, David J. T.; Whittaker, Andrew K.; Zainuddin

    2011-02-01

    A series of hydrogels comprised of crosslinked networks of poly(vinyl alcohol), PVA and poly(vinyl pyrrolidone), PVP, have been prepared using gamma radiolysis of aqueous solutions of the polymers to effect crosslinking of the polymer chains. The molecular weight of the PVA was in the range 75-105 kDa and of PVP was 360 kDa. Gel doses were measured for the polymers and found to be 11 kGy for PVA, 3.7 kGy for PVP and 4.6 kGy for a mixture of PVA and PVP with a mole fraction of PVP of 0.19. The initial water content of the gels was 87.2 wt%. Further water uptake studies were undertaken using both gravimetric and NMR imaging analyses. These studies showed that the uptake processes followed Fickian kinetics with diffusion coefficients ranging from 1.8×10 -11 for the PVA hydrogel to 4.4×10 -11 m 2 s -1 for the PVP hydrogel for radiation doses of 25 kGy and a temperature of 310 K. At 298 K the gravimetric study yielded a diffusion coefficient of 1.5×10 -11 m 2 s -1 whereas the NMR analysis yielded a slightly higher value of 2.0×10 -11 m 2 s -1 for the hydrogel with a mole fraction of PVP of 0.19 and a radiation dose of 25 kGy.

  16. Involvement of purinergic signaling in cellular response to gamma radiation.

    PubMed

    Tsukimoto, Mitsutoshi; Homma, Takujiro; Ohshima, Yasuhiro; Kojima, Shuji

    2010-03-01

    Recent studies have suggested a bystander effect in nonirradiated cells adjacent to irradiated cells; however, the mechanism is poorly understood. In this study, we investigated the involvement of both extracellular nucleotides and activation of P2 receptors in cellular responses to gamma radiation using human HaCaT keratinocytes. The concentration of ATP in culture medium was increased after gamma irradiation (0.1-1.0 Gy), suggesting that radiation induces ATP release from cells. Intracellular Ca(2+) concentration was elevated when conditioned medium from irradiated cells was transferred to nonirradiated cells, and this elevation was suppressed by apyrase (ecto-nucleotidase), indicating the involvement of extracellular nucleotides in this event. Further, we examined the activation of ERK1/2 by gamma radiation and nucleotides (ATP and UTP). Both gamma radiation and nucleotides induced activation of ERK1/2. Next, the effect of inhibitors of P2 receptors on radiation-induced activation of ERK1/2 was examined. The activation of ERK1/2 was blocked by suramin (P2Y inhibitor), MRS2578 (P2Y(6) antagonist) and apyrase. These results suggest that both released nucleotides and activation of P2Y receptors are involved in gamma-radiation-induced activation of ERK1/2. We conclude that ionizing radiation induces release of nucleotides from cells, leading to activation of P2Y receptors, which in turn would result in a variety of biological effects.

  17. {lambda}(1520) {yields} {lambda}{gamma} Radiative-Decay Width

    SciTech Connect

    Vavilov, D.V.; Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Victorov, V.A.; Golovkin, S.V.; Gorin, Yu.P.; Eroshin, O.V.; Kozhevnikov, A.P.; Konstantinov, A.S.; Kubarovsky, V.P.; Kurshetsov, V.F.; Landsberg, L.G.; Leontiev, V.M.; Molchanov, V.V.; Mukhin, V.A.; Patalakha, D.I.; Petrenko, S.V.; Petrukhin, A.I.; Kolganov, V.Z.

    2005-03-01

    The radiative decay {lambda}(1520) {yields} {lambda}{gamma} was recorded in the exclusive reaction p + N {yields} {lambda}(1520)K{sup +} + N at the SPHINX facility. The branching ratio for this decay and the corresponding partial width were found to be, respectively, Br[{lambda}(1520) {yields} {lambda}{gamma}] = (1.02 {+-} 0.21) x 10{sup -2} and {gamma}[{lambda}(1520) {yields} {lambda}{gamma}] = 159 {+-} 35 keV (the quoted errors are purely statistical, the systematic errors being within 15%)

  18. Shielding for beta-gamma radiation.

    PubMed

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  19. Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull

    NASA Astrophysics Data System (ADS)

    Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

    2011-09-01

    The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

  20. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  1. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  2. Development of a novel gamma probe for detecting radiation direction

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  3. Some Radiation Techniques Used in the GU-3 Gamma Irradiator

    SciTech Connect

    Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana; Kongjika, Efigjeni

    2007-04-23

    Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.

  4. Orbital Observatory GLAST - New Step in the Study of Cosmic Gamma Radiation: Mission Overview

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2008-01-01

    This viewgraph presentation is a overview of the Gamma-ray Large Area Space Telescope (GLAST), now named Fermi Space Telescope. The new telescope is scheduled for launch in the middle of 2008. It contains the high energy gamma-ray telescope LAT (Large Area Telescope) and the GMB (GLAST Burst Monitor). The science objectives of GLAST cover almost every area of high energy astrophysics, including Active Galactic Nuclei (AGN), including Extragalactic background light (EBL), Gamma-ray bursts (GRB), Pulsars, Diffuse gamma-radiation, EGRET unidentified sources, Solar physics, Origin of Cosmic Rays and, Dark Matter and New Physics. Also included in this overview is a discussion of the preparation to the analysis of the science data.

  5. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  6. p53 and gamma radiation in the normal breast.

    PubMed

    Liu, Yajing; Appleyard, M Virginia C L; Coates, Phillip J; Thompson, Alastair M

    2009-11-01

    With the increasing use of radiation as adjuvant therapy in breast cancer, the effects of gamma radiation on the remaining normal breast are of increasing importance. The complexities of multiple cellular types within breast tissues and the role of the pleiotropic Tumour Protein 53 (TP53, p53) protein with its downstream transcriptional targets and cellular processes may be central to the effects on residual normal breast tissues. While a detailed understanding of p53 protein-mediated responses in normal breast tissues remains elusive, p53 appears to have a pivotal role in the effects of gamma radiation on normal breast epithelium, but not stromal cells, which may account for the differing clinical effects of gamma radiation in women treated for breast cancer.

  7. Designing Equipment for Use in Gamma Radiation Environments

    SciTech Connect

    Vandergriff, K.U.

    1990-01-01

    High levels of gamma radiation are known to cause degradation in a variety of materials and components. When designing systems to operate in a high radiation environment, special precautions and procedures should be followed. This report (1) outlines steps that should be followed in designing equipment and (2) explains the general effects of radiation on various engineering materials and components. Much information exists in the literature on radiation effects upon materials. However, very little information is available to give the designer a step-by-step process for designing systems that will be subject to high levels of gamma radiation, such as those found in a nuclear fuel reprocessing facility. In this report, many radiation effect references are relied upon to aid in the design of components and systems.

  8. Gamma radiation induced resistivity changes in Iron

    NASA Astrophysics Data System (ADS)

    Tundwal, Ambika; Kumar, V.; Datta, A.

    2017-03-01

    Monte Carlo Code JA-IPU is used for estimation of Frenkel pairs and their effect on change of resistivity of Iron on irradiation by gamma spectrum of Co60. The Code includes three cascade processes of incident gamma, produced electrons and recoiled atoms and simulation of the lattice structure of the target material. Change in experimentally measured resistivity of Iron is found to vary with number of Frenkel pairs as (x - 1) ln N d .

  9. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    SciTech Connect

    Cleveland, M.; Gentile, N.

    2013-07-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  10. Angular Signatures of Dark Matter in the Diffuse Gamma Ray Spectrum

    SciTech Connect

    Hooper, Dan; Serpico, Pasquale D.; /Fermilab

    2007-02-01

    Dark matter annihilating in our Galaxy's halo and elsewhere in the universe is expected to generate a diffuse flux of gamma rays, potentially observable with next generation satellite-based experiments, such as GLAST. In this article, we study the signatures of dark matter in the angular distribution of this radiation. Pertaining to the extragalactic contribution, we discuss the effect of the motion of the solar system with respect to the cosmological rest frame, and anisotropies due to the structure of our local universe. For the gamma ray flux from dark matter in our own Galactic halo, we discuss the effects of the offset position of the solar system, the Compton-Getting effect, the asphericity of the Milky Way halo, and the signatures of nearby substructure. We explore the prospects for the detection of these features by the GLAST satellite and find that, if {approx} 10% or more of the diffuse gamma ray background observed by EGRET is the result of dark matter annihilations, then GLAST should be sensitive to anisotropies down to the 0.1% level. Such precision would be sufficient to detect many, if not all, of the signatures discussed in this paper.

  11. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  12. Response of organic liquid scintillators to fast neutrons and gamma radiation

    NASA Astrophysics Data System (ADS)

    Hoertz, Paul G.; Mills, Karmann; Davis, Lynn; Baldasaro, Nicholas; Gupta, Vijay

    2013-03-01

    Liquid organic scintillators are cocktails of aromatic fluorophores in an aromatic solvent. They find widespread use in Liquid Scintillation Counters with applications in medical diagnostics as well as fundamental nuclear and particle physics. Ultima Gold™ XR, a commercially available organic liquid scintillator from Perkin Elmer, can be used in both aqueous and non-aqueous systems and is typically used for beta detection in medical diagnostics. Its performance under gamma radiation and neutron radiation is less well-characterized. Special and normal Ultima Gold™ XR liquid scintillators were exposed in separate experiments to fast neutrons and high energy photons from a nuclear reactor and to gamma rays from a Co-60 source. To perform the measurements in the radiation chamber, a custom light collection system consisting of a fiber optic cable, spectrometer and a diffuse reflecting optical cavity was fabricated. Advanced calibration procedures, traceable to NIST standards, were developed to determine photon fluxes and flux densities of the scintillators under ionizing radiation conditions. The scintillator emission spectra under gamma radiation from a Co-60 source and neutron radiation from a pool-type nuclear reactor were recorded and compared. Results on the spectrometer design and comparison of the spectra under different exposure are presented.

  13. Reusable shielding material for neutron- and gamma-radiation

    NASA Astrophysics Data System (ADS)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  14. Effect of gamma radiation on honey quality control

    NASA Astrophysics Data System (ADS)

    Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

    2009-07-01

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  15. Gamma and neutrino radiation dose from gamma ray bursts and nearby supernovae.

    PubMed

    Karam, P Andrew

    2002-04-01

    Supernovae and gamma ray bursts are exceptionally powerful cosmic events that occur randomly in space and time in our galaxy. Their potential to produce very high radiation levels has been discussed, along with speculation that they may have caused mass extinctions noted from the fossil record. It is far more likely that they have produced radiation levels that, while not lethal, are genetically significant, and these events may have influenced the course of evolution and the manner in which organisms respond to radiation insult. Finally, intense gamma radiation exposure from these events may influence the ability of living organisms to travel through space. Calculations presented in this paper suggest that supernovae and gamma ray bursts are likely to produce sea-level radiation exposures of about I Gy with a mean interval of about five million years and sea-level radiation exposures of about 0.2 Gy every million years. Comets and meteors traveling through space would receive doses in excess of 10 Gy at a depth of 0.02 m at mean intervals of 4 and 156 million years, respectively. This may place some constraints on the ability of life to travel through space either between planets or between planetary systems. Calculations of radiation dose from neutrino radiation are presented and indicate that this is not a significant source of radiation exposure for even extremely close events for the expected neutrino spectrum from these events.

  16. Monitoring precipitation and lightning via changes in atmospheric gamma radiation

    SciTech Connect

    Greenfield, M.B.; Domondon, A.; Tsuchiya, S.; Tomiyama, G.

    2003-08-26

    Atmospheric {gamma}-radiation has been measured since 1999 and recently at three elevations 220m from the first site to ascertain position dependency and optimal elevation for observing {gamma}-rays from radon and radon-progeny found in precipitation. Radiation from time-independent and diurnal components was minimized in order to ascertain the reliability, accuracy and practicality of determining precipitation rates from correlated {gamma}-rates. Data taken with 4-12.9cm3 NaI detectors at elevations above ground of 9.91, 14.2, 15.7, and 21.4 m were fit with a model assuming a surface and/or volume deposition of radon progeny on/in water droplets during precipitation which predicts {gamma} -ray rates proportional to the 2/5 and/or 3/5 power of rain rates, respectively. With mostly surface deposition and age corrections for radon progeny, the correlation coefficients improved with elevation and reached a maximum at 0.95 around 20m. Atmospheric {gamma} radiation enables monitoring precipitation rates to 0.3 mm/h with time resolution limited only by counting statistics. High {gamma}-ray rates, decreasing with 40-minute half-life following lightning may be indirectly due to ions accelerated in electric field.

  17. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  18. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  19. Diffuse flux of galactic neutrinos and gamma rays

    NASA Astrophysics Data System (ADS)

    Carceller, J. M.; Masip, M.

    2017-03-01

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to parametrize the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 108 GeV, and we correlate the cosmic ray density with the mean magnetic field strength in the disk and the halo of our galaxy. We find that at E > 1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1–5 GeV the main source of uncertainty is the cosmic-ray spectrum out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E>1 PeV, but that at all IceCube energies it is 4 times smaller than the atmospheric flux from forward-charm decays.

  20. 77 FR 62267 - Proposed Extension of Existing Information Collection; Gamma Radiation Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    .... 1219-0039] Proposed Extension of Existing Information Collection; Gamma Radiation Surveys AGENCY: Mine...: I. Background Gamma radiation occurs where radioactive materials are present. It has been associated..., and ground water. Gamma radiation hazards may be found near radiation sources at surface operations...

  1. SEARCH FOR THE EXCLUSIVE RADIATIVE DECAYS B ---> RHO GAMMA AND B0 ---> OMEGA GAMMA

    SciTech Connect

    Convery, Mark R

    2002-07-26

    A search for the exclusive radiative decays B {yields} {rho}(770){gamma} and B{sup 0} {yields} {omega}(782){gamma} is performed on a sample of 84 million B{bar B} events collected by the BaBar detector at the PEP-II asymmetric e{sup +}e{sup -} collider. No significant signal is seen in any of the channels. They set preliminary upper limits of {Beta}[B{sup 0} {yields} {rho}{sup 0}{gamma}] < 1.4 x 10{sup -6}, {Beta}[B{sup +} {yields} {rho}{sup +}{gamma}] < 2.3 x 10{sup -6} and {Beta}[B{sup 0} {yields} {omega}{gamma}] < 1.2 x 10{sup -6} at 90% Confidence Level. Combining these into a single limit on the generic process B {yields} {rho}{gamma}, they find the preliminary limit {Beta}[B {yields} {rho}{gamma}] < 1.9 x 10{sup -6} corresponding, to a limit of {Beta}[B {yields} {rho}{gamma}]/{Beta}[B {yields} K*{gamma}] < 0.047 at 90% Confidence Level.

  2. Radiation-stimulated diffusion in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kiv, A.; Fuks, D.; Munitz, A.; Zenou, V.; Moiseenko, N.

    A di-vacancy low-temperature diffusion is proposed to explain diffusion-controlled processes in Al-Si alloys responsible for neutron-induced silicon precipitation. Ab initio calculations of potential barriers for Si atom hopping in aluminium lattice showed that in the case of di-vacancy diffusion, they are small compared with that of mono-vacancy diffusion. The low temperature diffusivity of mono-vacancies is too small to account for the measured Si diffusivities in aluminium. The dependencies of radiation-stimulated diffusion on the neutron flux and on the temperature are obtained and can be used for the experimental verification of the developed model.

  3. Influence of relaxation transitions on radiation-initiated cationic graft polymerization. [Gamma radiation

    SciTech Connect

    Kudryavtsev, V.N.; Kabanov, V.Ya.; Chalykh, A.E.; Spitsyn, V.I.

    1982-05-01

    Radiation grafting of vinyl n-butyl ether (VBE) to polyvinyl chloride (PVC) over a broad temperature range was investigated. The relaxation transitions in the PVC/VBE system were also determined. Grafting of vinyl alkyl ethers proceeds entirely by a cationic mechanism in a reaction medium that has been dried to a water concentration no greater than 0.1-1.0 ppm. In this connection, the diffusion properties of water in the temperature region were studied. Commercial films of unplasticized PVC (thickness 200 M); were subjected to swelling in two systems: in a 50% solution of VBE in benzene at 25/sup 0/C, and in the pure monomer at 40/sup 0/C. The reaction mixtures were first dried over metallic sodium in a deaerated atmosphere. The specimens were irradiated in a Co gamma-radiation unit to a dose of 10 kGy at a dose rate of 3 Gy/sec. The first reaction mixture was investigated over a range of temperatures from -60/sup 0/ to +70/sup 0/C, and the second from -15/sup 0/ to +50/sup 0/C. The degree of grafting was determined from the increase in weight of the original ungrafted film. The temperature was held to within +/-1/sup 0/C. The relaxation transitions in the swollen polymer systems were determined by two methods, thermostimulated current (TSC) and thermomechanics (TM). It was found that in the region of the glass transition of a swollen PVC-VBE system, radiation-initiated cationic graft polymerization proceeds at a maximal rate, and there are changes in state of the water molecules (the agents of breaking the ion reaction chain) and in their diffusion properties within the matrix.

  4. Measurements of background gamma radiation on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Paciesas, W. S.; Gregory, J. C.

    1987-01-01

    A nuclear radiation monitor (NRM) which was flown as part of the verification instrumentation on the Spacelab 2 mission (July 29 - August 6, 1985) recorded spectra every 20 seconds and counting rates in coarse energy bands on finer time scales. The gamma radiation environment on Spacelab is characterized by cosmic-ray and trapped proton secondary radiation in the Spacelab/Shuttle, earth albedo radiation, and delayed induced radioactivity in the detector and surrounding materials. It is found that passages through South Atlantic Anomaly protons produce a well-defined background enhancement.

  5. Hybrid radiative-transfer-diffusion model for optical tomography

    NASA Astrophysics Data System (ADS)

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Kaipio, Jari P.

    2005-02-01

    A hybrid radiative-transfer-diffusion model for optical tomography is proposed. The light propagation is modeled with the radiative-transfer equation in the vicinity of the laser sources, and the diffusion approximation is used elsewhere in the domain. The solution of the radiative-transfer equation is used to construct a Dirichlet boundary condition for the diffusion approximation on a fictitious interface within the object. This boundary condition constitutes an approximative distributed source model for the diffusion approximation in the remaining area. The results from the proposed approach are compared with finite-element solutions of the radiative-transfer equation and the diffusion approximation and Monte Carlo simulation. The results show that the method improves the accuracy of the forward model compared with the conventional diffusion model.

  6. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  7. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  8. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  9. A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro

    SciTech Connect

    Abdo, A.A.; Allen, B.; Aune, T.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hoffman, C.M.; H'untemeyer, P.H.; Kolterman, B.E.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.; Mincer, A.I.; Nemethy, I.V.Moskalenko P.

    2008-05-14

    Diffuse {gamma}-ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the Northern Hemisphere sky and for detecting diffuse {gamma}-ray emission at very high energies. Here, the spatial distribution and the flux of the diffuse {gamma}-ray emission in the TeV energy range with a median energy of 15 TeV for Galactic longitudes between 30{sup o} and 110{sup o} and between 136{sup o} and 216{sup o} and for Galactic latitudes between -10{sup o} and 10{sup o} are determined. The measured fluxes are consistent with predictions of the GALPROP model everywhere except for the Cygnus region (l {element_of} [65{sup o}, 85{sup o}]). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic ray sources accelerating hadrons which interact with the local dense interstellar medium and produce gamma rays through pion decay.

  10. Gamma radiation transmission along the multibend mazes.

    PubMed

    Kim, Sangrok

    2016-08-01

    Installing a maze on the corridor reduces much shielding materials in shielding door at the end of the pathway. In this study, gamma transmission was measured along single-, double-, and triple-bend mazes, which were applied to nondestructive test workplace by Monte Carlo method. In the facility using (192)Ir 1.85TBq, the lengths of corridors to reduce the effective dose under the limitation without shielding door were 10 and 6m in double- and triple-bend mazes, respectively.

  11. Gamma radiation stability studies of mercury fulminate

    SciTech Connect

    Fondeur, F.F.

    2000-02-17

    Mercury fulminate completely decomposed in a gamma source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to approximately 2.4 years in Tank 15H and 4 years in Tank 12H, one of the vessels of concern. Since the tanks lost the supernatant cover layer more than a decade ago, this study suggests that any mercury fulminate or closely related energetic species decomposed long ago if ever formed.

  12. Diffuse fraction of daily global radiation at Dhahran, Saudi Arabia

    SciTech Connect

    Elhadidy, M.A.; Abdel-Nabi, D.Y. )

    1991-01-01

    Relationship between the diffuse fraction of daily global solar radiation and clearness index (the ratio of global to extraterrestrial radiation) is obtained from the radiation data measured at Dhahran (26{degree}32{prime}N, 50{degree}13{prime}E), Saudia Arabia. Two years of daily radiation data calculated from measured one-minute values are used to develop the relationship. Another year of data is used to validate the relationship. Comparison between the present correlation and previous correlations is presented. The present data confirm the seasonal dependence and the location independence of the correlation reported in literature. The diffuse and global solar radiation are presented for dusty and clear days. The results show that the dust significantly increases the diffuse fraction of the global radiation. The diffuse fraction on a typical clear day in March is 0.11, while on a dusty day, in the same month, may be as high as 0.91.

  13. Gamma radiation techniques in subsurface multifluid flow and transport studies

    SciTech Connect

    Oostrom, Mart ); Dane, J H.; Wietsma, Thomas W. ); David E. Stock

    2000-01-01

    In the study of flow and transport in porous media, dual-energy gamma radiation is used to either simultaneously determine the bulk density and the volumetric liquid content in an air-liquid system (porous medium either rigid or non-rigid), the volumetric liquid contents of two liquids in a two-liquid system (rigid porous medium with or without air), or the salt concentration and volumetric liquid content in a saturated one-liquid-system (rigid porous medium). As was recently pointed out by Oostrom et al. (1998), the use of a single radiation source is sometimes sufficient and, in fact, provides more reliable data. An application of the use of one radioactive source is the determination of the volumetric liquid content values in two-liquid systems, such as a porous medium containing water and a non-aqueous phase liquid (NAPL). In this paper we will briefly review the principles involved in, and the possible errors associated with, the measurements of single- and dual-energy gamma radiation systems for the determination of volumetric liquid contents in rigid porous media containing water and a NAPL. The discussion will include an outline of an improved calibration procedure to determine the incident count rates. Subsequently, we will discuss the advantages and disadvantages (limitations) of gamma radiation measurements. Finally, we will present examples of experiments in which gamma radiation measurements were obtained to determine volumetric liquid content values of light and dense NAPLs after NAPL spills had occurred and during remediation processes. The use of gamma radiation is not only attractive for NAPL saturation measurements after spills and during remediation, but also for the measurements of capillary pressure-saturation curves. The latter are needed as input into computer models to predict NAPL behavior in porous media.

  14. The dependence on solar elevation of the correlation between monthly average hourly diffuse and global radiation

    SciTech Connect

    Soler, A. )

    1988-01-01

    In the present work, the dependence on {anti {gamma}} of the correlation between {anti K}{sub d} = {anti I}{sub d}/{anti I}{sub O} and {anti K}{sub t} = {anti I}/{anti I}{sub o} is studied, {anti I}, {anti I}{sub d}, and {anti I}{sub o} respectively being the monthly average hourly values of the global, diffuse, and extraterrestrial radiation, all of them on a horizontal surface, and {anti {gamma}} the solar elevation at midhour. The dependence is studied for Uccle for the following sky conditions. Condition A: clear skies (fraction of possible sunshine = 1) and the maximum values of direct radiation measured during the period considered (each of the hours before or after the solar noon for which radiation is received); Condition B corresponding to all the values of radiation measured when the sunshine fraction is 1 during the period considered; Condition C; corresponding to all the data collected, independently of the state of the sky; Condition D: corresponding to overcast skies ({anti I} = {anti I}{sub d}). From the available values of {anti I} and {anti I}{sub d} (monthly average hourly direct radiation on a horizontal surface), values of {anti K}{sub d} and {anti K}{sub t} for 5{degree} {le} {anti {gamma}} {le} 45{degree} and {Delta} {anti {gamma}} = 5{degree} are calculated using Newton's divided difference interpolation formula.

  15. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation.

    PubMed

    Vanhoudt, Nathalie; Horemans, Nele; Wannijn, Jean; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde

    2014-03-01

    As the environment is inevitably exposed to ionizing radiation from natural and anthropogenic sources, it is important to evaluate gamma radiation induced stress responses in plants. The objective of this research is therefore to investigate radiation effects in Arabidopsis thaliana on individual and subcellular level by exposing 2-weeks-old seedlings for 7 days to total doses of 3.9 Gy, 6.7 Gy, 14.8 Gy and 58.8 Gy and evaluating growth, photosynthesis, chlorophyll a, chlorophyll b and carotenoid concentrations and antioxidative enzyme capacities. While the capacity of photosystem II (PSII measured as Fv/Fm) remained intact, plants started optimizing their photosynthetic process at the lower radiation doses by increasing the PSII efficiency (φPSII) and the maximal electron transport rate (ETRmax) and by decreasing the non-photochemical quenching (NPQ). At the highest radiation dose, photosynthetic parameters resembled those of control conditions. On subcellular level, roots showed increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) capacities under gamma irradiation but catalase (CAT), syringaldazine peroxidase (SPX) and guaiacol peroxidase (GPX) activities, on the other hand, decreased. In the leaves no alterations were observed in SOD, CAT and SPX capacities, but GPX was highly affected. Based on these results it seems that roots are more sensitive for oxidative stress under gamma radiation exposure than leaves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  17. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  18. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  19. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N. D.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

    1998-01-01

    The telescopes on the Compton Gamma Ray Observatory (CCRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  20. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

    1999-01-01

    The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  1. Carbon Nanotubes Synthesis Through Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  2. Extragalactic gamma radiation: Use of galaxy counts as a galactic tracer

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.

    1982-01-01

    A derivation of the extragalactic diffuse gamma radiation with energies above 35 MeV was carried out using galaxy counts as a tracer of galactic matter. The extragalactic radiation has a differential photon number spectrum which may be expressed as a power law with index 2.35 (+0.4, -0.3) and an intensity above 35 MeV of (5.5 + or - 1.3) 0.00001 photons sq cm/s/ster, consistent with previous derivations. Use of a 1/sin of the absolute value of b expression of the galactic component produces a poorer fit, suggesting that the high-latitude galactic gamma-ray production may be dominated by cosmic ray interactions with matter rather than by Compton interactions of cosmic rays with photon fields.

  3. Bioburden assessment and gamma radiation inactivation patterns in parchment documents

    NASA Astrophysics Data System (ADS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; Carolino, Maria Manuela; Portugal, António; Botelho, Maria Luísa

    2013-07-01

    Parchment documents are part of our cultural heritage and, as historical artifacts that they are, should be preserved. The aim of this study was to validate an appropriate methodology to characterize the bioburden of parchment documents, and to assess the growth and gamma radiation inactivation patterns of the microbiota present in that material. Another goal was to estimate the minimum gamma radiation dose (Dmin) to be applied for the decontamination of parchment as an alternative treatment to the current toxic chemical and non-chemical decontamination methods. Two bioburden assessment methodologies were evaluated: the Swab Method (SM) and the Destructive Method (DM). The recovery efficiency of each method was estimated by artificial contamination, using a Cladosporium cladosporioides spore suspension. The parchment samples' microbiota was typified using morphological methods and the fungal isolates were identified by ITS-DNA sequencing. The inactivation pattern was assessed using the DM after exposure to different gamma radiation doses, and using C. cladosporioides as reference. Based on the applied methodology, parchment samples presented bioburden values lower than 5×103 CFU/cm2 for total microbiota, and lower than 10 CFU/cm2 for fungal propagules. The results suggest no evident inactivation trend for the natural parchment microbiota, especially regarding the fungal community. A minimum gamma radiation dose (Dmin) of 5 kGy is proposed for the decontamination treatment of parchment. Determining the minimal decontamination dose in parchment is essential for a correct application of gamma radiation as an alternative decontamination treatment for this type of documents avoiding the toxicity and the degradation promoted by the traditional chemical and non-chemical treatments.

  4. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  5. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation.

    PubMed

    Saxena, Sudhanshu; Panicker, Lata; Gautam, Satyendra

    2014-01-01

    Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5-40°C) and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5-15 kGy) on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (T g ) of these honey analyzed by differential scanning calorimetry varied from -44.1 to -54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  6. Gamma radiation from pulsar magnetospheric gaps

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    We investigate the production of gamma rays in two pulsar emission models: the 'polar cap' model and the 'outer cap' model. For the former, we have performed detailed simulations of energetic electrons flowing in the vacuum dipole open field line region. In the outer gap case, we generate light curves for various magnetosphere geometries. Using data from radio and optical observations, we construct models for specific viewing angles appropriate to the Crab and Vela pulsars. Phase-resolved spectra are also computed in the polar cap case and provide signatures for testing the models. The calculations have been extended to include millisecond pulsars, and we have been able to predict fluxes and spectra for populations of recycled pulsars, which are compared to COS B data for globular cluster populations.

  7. Nonelastic nuclear reactions and accompanying gamma radiation

    NASA Technical Reports Server (NTRS)

    Snow, R.; Rosner, H. R.; George, M. C.; Hayes, J. D.

    1971-01-01

    Several aspects of nonelastic nuclear reactions which proceed through the formation of a compound nucleus are dealt with. The full statistical model and the partial statistical model are described and computer programs based on these models are presented along with operating instructions and input and output for sample problems. A theoretical development of the expression for the reaction cross section for the hybrid case which involves a combination of the continuum aspects of the full statistical model with the discrete level aspects of the partial statistical model is presented. Cross sections for level excitation and gamma production by neutron inelastic scattering from the nuclei Al-27, Fe-56, Si-28, and Pb-208 are calculated and compared with avaliable experimental data.

  8. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  9. Effects of ionizing radiations on bacterial endotoxins: Comparison between gamma radiations and accelerated electrons

    NASA Astrophysics Data System (ADS)

    Guyomard, S.; Goury, V.; Darbord, J. C.

    Determinations of the effect of radiation sterilization processing on purified endotoxins, in aqueous solution or on dried support, are reported. These observations allow us to accept gamma radiations for sterilization of parenteral devices with an estimated probability of existence of non apyrogenic items, based upon a similar definition of the usual Sterility Assurance Level SAL = 10 -6).

  10. DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu

    2013-04-01

    The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

  11. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  12. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  13. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  14. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    SciTech Connect

    Tamborra, Irene; Ando, Shin'ichiro E-mail: s.ando@uva.nl

    2015-09-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.

  15. Gamma radiation survey of the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; Mckisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1992-01-01

    The retrieval of the Long Duration Exposure Facility spacecraft in January 1990 after nearly six years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. We conducted the first complete gamma-ray survey of a large spacecraft on LDEF shortly after its return to earth. A surprising observation was the Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes observed during the survey, the strongest being Na-22, are all attributed to activation of spacecraft components. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic-ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  16. Gamma radiation survey of the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; Mckisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1991-01-01

    The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  17. Measurement of the energy specta from gamma radiation fields

    SciTech Connect

    Minnema, D.M.; Berry, D.T.

    1982-01-01

    The ability to measure the energy spectrum of a gamma radiation field is very beneficial for radiation protection considerations. Identifying the actual components and processes that make up the field is essential for efficient and cost effective shield design. This report discusses the use of a handheld intrinsic germanium spectrometer in measuring the energy spectra of the gamma radiation fields generated during the operation of the Sandia Pulsed Reactors. These reactors are bare reactor assemblies operated in a concrete shield building at Sandia National Laboratories. The results are to be incorporated in the design of a new shield building to house the newest member of the family of SPR reactors. The detector interfaces to a computerized MCA through a 500 foot cable package, and the computer/MCA is mounted in a trailer allowing outdoor and mobile applications of the system. The detector is capable of being operated in fields up to about 5 mR/hr gamma without collimation, and collimation techniques are being studied to allow higher radiation levels. The techniques developed allow qualitative and quantitative analysis of the energy spectra of the field. The major contributing factors to the field can be identified, allowing one to selectively reduce or shield against these factors more effectively. Other uses for the system are being explored, such as evaluating portable detector calibration procedures, and these will also be discussed.

  18. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  19. Sterilization of bone allografts by microwave and gamma radiation.

    PubMed

    Singh, Rita; Singh, Durgeshwer

    2012-09-01

    Bone allografts are used to enhance healing in osteotomies, arthrodesis, fractures and to replace bone loss resulting from tumour or trauma. However, a major concern associated with the bone allografts is the potential for disease transmission. Various sterilization techniques have been developed to prevent infection through allografts. This study was undertaken with the aim of exploring the use of microwave radiation for sterilization of bone allografts and to compare with gamma radiation sterilization. Bone allografts were processed from femoral heads obtained from living donors. The effect of microwave and gamma radiation on the bacteria isolated from bone allograft was evaluated. The microwave radiation treatment was performed at 2450 MHz (frequency) for varying lengths of time at maximum power 900 Watts (W). Viability of three Gram-positive bacteria - Bacillus subtilis, Corynebacterium, Staphylococcus aureus and three Gram-negative bacteria - Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was examined after irradiation of bacterial suspensions and contaminated processed bone allografts. The sterility test of microwave and gamma irradiated bone allograft was carried out in accordance with ISO (International Organization for Standardization) 11737-2. Microwave irradiation (2450 MHz and 900 W) of bacterial isolates resulted in complete inactivation within 60 seconds. The contaminated bone samples showed no growth of organisms after 2 minutes of exposure to microwave irradiation. No viable counts were detected in bone grafts inoculated with Gram-negative bacterial species on gamma irradiation to a dose of 15 kGy. Bones contaminated with Gram-positive bacteria required a higher dose of 20 kGy for complete inactivation. The study shows that sterilization of contaminated femoral head bone allografts can be achieved by short exposure of 2 min to 2450 MHz and 900 W microwave radiation.

  20. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.

    1983-10-01

    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  1. Radiation Diffusion: An Overview of Physical and Numerical Concepts

    SciTech Connect

    Graziani, F R

    2005-01-14

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  2. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  3. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  4. Oxidation of naringenin by gamma-radiation

    NASA Astrophysics Data System (ADS)

    Nagy, Tristan O.; Ledolter, Karin; Solar, Sonja

    2008-06-01

    The reaction of rad OH with naringenin (4',5,7-trihydroxyflavanone) in the presence of air induced the formation of the hydroxylation product eriodictyol (3',4',5,7-tetrahydroxyflavanone). Its yield was dependent on pH. The initial degradation yield of naringenin was Gi(-Nar)=(2.5±0.2)×10 -7 mol dm -3 J -1. For the reaction with rad OH, a rate constant k ( rad OH+naringenin)=(7.2±0.7)×10 9 M -1 s -1 was determined. In the presence of N 2O and NaN 3/N 2O, no eriodyctiol was formed. Apigenin (4',5,7-trihydroxyflavon) was detected as decay product of the naringenin phenoxyl radicals. In Ar-saturated solutions, naringenin exhibited a pronounced radiation resistance, G(-naringenin) ˜0.3×10 -7 mol dm -3 J -1.

  5. Effects of gamma radiation on snake venoms

    NASA Astrophysics Data System (ADS)

    Nascimento, N.; Spencer, P. J.; Andrade, H. F.; Guarnieri, M. C.; Rogero, J. R.

    1998-06-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. Inn order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, susbequentely submitted to irradiaiton. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD 50 in mice. Native and irradiated crotoxin biodistribution ocured in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain).

  6. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  7. OBSERVATION OF DIFFUSE COSMIC AND ATMOSPHERIC GAMMA RAYS AT BALLOON ALTITUDES WITH AN ELECTRON-TRACKING COMPTON CAMERA

    SciTech Connect

    Takada, Atsushi; Nonaka, Naoki; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru; Mizuta, Eiichi

    2011-05-20

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 deg. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm{sup -2} we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  8. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  9. Radiation resistance testing of high-density polyethylene. [Gamma rays

    SciTech Connect

    Dougherty, D.R.; Adams, J.W.

    1983-01-01

    Mechanical tests following gamma inrradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to assess the adequacy of this material for use in high-integrity containers (HICs). These tests were motivated by experience in nuclear power plants in which polyethylene electrical insulation detoriorated more rapidly than expected due to radiation-induced oxidation. This suggested that HDPE HICs used for radwaste disposal might degrade more rapidly than would be expected in the absence of the radiation field. Two types of HDPE, a highly cross-linked rotationally molded material and a non-cross-linked blow molded material, were used in these tests. Gamma-ray irradiations were performed at several dose rates in environments of air, Barnwell and Hanford backfill soils, and ion-exchange resins. The results of tensile and bend testing on these materials following irradiation will be presented along with preliminary results on creep during irradiation.

  10. Characterization of muon and gamma radiations at the PTOLEMY site

    NASA Astrophysics Data System (ADS)

    Betts, Susannah; Gentile, Charles; Tully, Chris; Zapata, Sandra; Chris Tully Collaboration

    2013-10-01

    PTOLEMY is an experimental project at Princeton Plasma Physics Laboratory designed to determine the present day number density of relic neutrinos through measurement of electrons produced from neutrino capture on tritium. The weak interaction cross section for relic neutrino interactions necessitates high sensitivity measurements that could be influenced by high energy particles, like muons and gamma ray photons, which induce nuclear transitions and secondary electrons. Muons produced from the collision of cosmic rays with atmospheric nuclei are a significant source of background radiation at and below Earth's surface. The muon flux is measured by the coincidence of minimum ionization radiation loss in two plastic scintillator paddles. The spectrum of gamma ray photons is measured using sodium iodide based scintillators. These measurements will provide a characterization of the background and rates at the PTOLEMY site.

  11. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  12. Gamma radiation from the Crab and Vela pulsars

    NASA Technical Reports Server (NTRS)

    Kanbach, Gottfried

    1990-01-01

    The young pulsars in Crab and Vela were observed as very efficient emitters of high energy gamma radiation. While their radiation in the radio, optical, and x ray range was always known to differ considerably, the gamma ray emission on a superficial level appears quite similar: lightcurves with two narrow peaks, separated by 141 deg (Crab) and 153 deg (Vela) and photon energies in excess of 1 GeV with spectra that can be described by a power-law for Crab and a broken power-law for Vela. The detailed observations of these sources with the COS-B instrument, extending over nearly seven years, have revealed significant differences in the characteristics of the pulsars in the gamma-ray domain. Secular changes in the temporal (Crab) and spectral (Vela) properties above 50 MeV were found. These tantalizing signatures of the pulsar emission processes must now be explored in more detail and over a larger spectral range with the GRO (Gamma Ray Observatory) instruments in order to gain a deeper understanding of the physics of young neutron stars.

  13. Modeling the radiation doses from terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph; Liu, Ningyu; Rassoul, Hamid

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are intense bursts of gamma-rays that originate from thunderclouds, from altitudes that commercial aircraft fly. Based upon the fluence of gamma-rays measured by the RHESSI spacecraft, Dwyer et al. [2010] inferred radiation doses to individuals inside aircraft in the 0.001 - 0.1 Sv range, depending upon the assumed size of the TGF source region. The largest doses occur when an aircraft is directly struck by the energetic electron beam that produces the TGF. The relativistic feedback discharge model is a self-consistent model that includes the generation of runaway electrons via the positron and x-ray feedback mechanisms and the electric field changes due to the resulting ionization and low-energy electron and ion currents. This model has successfully explained many properties of TGFs, including the gamma-ray intensities, durations, multi-pulsed structures as well as discharge currents and radio emissions. In this presentation we discuss new radiation dose calculations based upon the relativistic feedback discharge model and compare these calculations to previous work.

  14. High Dose Gamma Radiation Selectively Reduces GABAA-slow Inhibition

    PubMed Central

    Dagne, Beza A; Sunay, Melis K; Cayla, Noëlie S; Ouyang, Yi-Bing; Knox, Susan J; Giffard, Rona G; Adler, John R.

    2017-01-01

    Studies on the effects of gamma radiation on brain tissue have produced markedly differing results, ranging from little effect to major pathology, following irradiation. The present study used control-matched animals to compare effects on a well characterized brain region following gamma irradiation. Male Sprague-Dawley rats were exposed to 60 Gy of whole brain gamma radiation and, after 24-hours, 48-hours, and one-week periods, hippocampal brain slices were isolated and measured for anatomical and physiological differences. There were no major changes observed in tissue appearance or evoked synaptic responses at any post-irradiation time point. However, exposure to 60 Gy of irradiation resulted in a small, but statistically significant (14% change; ANOVA p < 0.005; n = 9) reduction in synaptic inhibition seen at 100 ms, indicating a selective depression of the gamma-aminobutyric acid (GABAA) slow form of inhibition. Population spike (PS) amplitudes also transiently declined by ~ 10% (p < 0.005; n = 9) when comparing the 24-hour group to sham group. Effects on PS amplitude recovered to baseline 48 hour and one week later. There were no obvious negative pathological effects; however, a subtle depression in circuit level inhibition was observed and provides evidence for ‘radiomodulation’ of brain circuits. PMID:28401026

  15. Effects of gamma radiation on perfluorinated polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Mihai, Laura; Sporea, Dan; Neguţ, Daniel; Sturm, Heinz; Schukar, Marcus; Krebber, Katerina

    2016-08-01

    The paper presents the first complex study of gamma radiation effects on a low-loss perfluorinated polymer optical fiber (PF-POF) based on Cytop® polymer. Influence of gamma radiation on fiber's optical, mechanical and climatic performance is investigated. The radiation-induced attenuation (RIA) in the visible and near-infrared region (0.4 μm-1.7 μm) is measured and its origins are discussed. Besides attenuation increase, radiation is also shown to decrease the thermal degradation stability of the fiber and to increase its susceptibility to water. With regard to complex fiber transmission performance upon irradiation, the optimal operation wavelength region of PF-POF-based systems intended for use in radiation environments is determined to be around 1.1 μm. On the other hand, the investigated fiber holds potential for low-cost RIA-based optical fiber dosimetry applications with sensitivity as high as 260 dBm-1/kGy in the visible region.

  16. The Diffuse Gamma-Ray Background from Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Fields, Brian D.

    2012-01-01

    The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

  17. Diffuser for intravessels radiation based on plastic fiber

    NASA Astrophysics Data System (ADS)

    Pich, Justyna; Grobelny, Andrzej; Beres-Pawlik, Elzbieta

    2006-03-01

    Laser radiation is used in such contemporary medicine as: sport medicine, gynecology etc. Because of many radiations inside the system, there is a need of an element, which allows to supply the place of illness with energy. The dimensions of this element are often small and the one that meets these conditions is diffuser.

  18. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  19. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi.

    PubMed

    Jönsson, K Ingemar; Hygum, Thomas L; Andersen, Kasper N; Clausen, Lykke K B; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100-1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.

  20. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi

    PubMed Central

    Hygum, Thomas L.; Andersen, Kasper N.; Clausen, Lykke K. B.; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance. PMID:27997621

  1. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  2. Effects of gamma-Radiation on Select Lipids and Antioxidants

    NASA Technical Reports Server (NTRS)

    Gandolph, Jacob; Mauer, Lisa; Perchonok, Michele

    2006-01-01

    Radiation encountered on an extended duration space mission (estimates of 3 Sieverts for a mission to Mars) poses a threat not only to human health, but also to the quality, nutritional value, and palatability of the food system. Free radicals generated by radiation interaction with foods may initiate many unwanted reactions including: 1) autoxidation in lipids that alters flavor, odor, and concentrations of essential fatty acids, and 2) depletion of antioxidants food products and dietary supplements. Studies have shown that antioxidants may provide long term health protection from oxidative stress caused by radiation exposure; therefore, consumption of antioxidants will be important. Stability of essential fatty acids is also important for astronauts long-term health status. The objectives of this study were to characterize the effects of low dose gamma-radiation on lipids and antioxidants by monitoring oxidation and reducing power, respectively, in model systems. Select oils and antioxidants were exposed to levels of gamma-radiation ranging from 0 to 1000 Gy (1 Gy = 1 Sv) using a Gammacell 220 and stored at ambient or elevated temperatures (65 C) for up to 3 months prior to analysis. A Fricke dosimeter was used to verify differences between the radiation doses administered. Primary and secondary products of lipid oxidation in soybean and peanut oils were monitored using conjugated diene and 2-thiobarbituric acid (TBARs) assays. Changes in fatty acid composition and formation and vitamin E levels were also measured. The reducing power of antioxidant compounds, including vitamins C and E and beta-carotene, was determined using the ferric reducing antioxidant power (FRAP) assay. Significant differences (alpha =0.05) were present between all radiation doses tested using the Fricke dosimeter. Increasing radiation doses above 3 Sv resulted in significantly (alpha =0.05) elevated levels of oxidation and free fatty acids in soybean and peanut oils. Decreases in

  3. Effects of gamma-Radiation on Select Lipids and Antioxidants

    NASA Technical Reports Server (NTRS)

    Gandolph, Jacob; Mauer, Lisa; Perchonok, Michele

    2006-01-01

    Radiation encountered on an extended duration space mission (estimates of 3 Sieverts for a mission to Mars) poses a threat not only to human health, but also to the quality, nutritional value, and palatability of the food system. Free radicals generated by radiation interaction with foods may initiate many unwanted reactions including: 1) autoxidation in lipids that alters flavor, odor, and concentrations of essential fatty acids, and 2) depletion of antioxidants food products and dietary supplements. Studies have shown that antioxidants may provide long term health protection from oxidative stress caused by radiation exposure; therefore, consumption of antioxidants will be important. Stability of essential fatty acids is also important for astronauts long-term health status. The objectives of this study were to characterize the effects of low dose gamma-radiation on lipids and antioxidants by monitoring oxidation and reducing power, respectively, in model systems. Select oils and antioxidants were exposed to levels of gamma-radiation ranging from 0 to 1000 Gy (1 Gy = 1 Sv) using a Gammacell 220 and stored at ambient or elevated temperatures (65 C) for up to 3 months prior to analysis. A Fricke dosimeter was used to verify differences between the radiation doses administered. Primary and secondary products of lipid oxidation in soybean and peanut oils were monitored using conjugated diene and 2-thiobarbituric acid (TBARs) assays. Changes in fatty acid composition and formation and vitamin E levels were also measured. The reducing power of antioxidant compounds, including vitamins C and E and beta-carotene, was determined using the ferric reducing antioxidant power (FRAP) assay. Significant differences (alpha =0.05) were present between all radiation doses tested using the Fricke dosimeter. Increasing radiation doses above 3 Sv resulted in significantly (alpha =0.05) elevated levels of oxidation and free fatty acids in soybean and peanut oils. Decreases in

  4. On the omnipresent background gamma radiation of the continuous spectrum

    NASA Astrophysics Data System (ADS)

    Banjanac, R.; Maletić, D.; Joković, D.; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.

  5. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation.

    PubMed

    Gridley, D S; Mao, X W; Cao, J D; Bayeta, E J M; Pecaut, M J

    2013-10-01

    This study evaluated liver from C57BL/6 mice irradiated with low-dose/low-dose-rate (LDR) γ-rays (0.01 Gy, 0.03 cGy/h), with and without subsequent exposure to acute 2 Gy gamma or proton radiation. Analyses were performed on day 56 post-exposure. Expression patterns of apoptosis-related genes were strikingly different among irradiated groups compared with 0 Gy (p < 0.05). Two genes were affected in the Gamma group, whereas 10 were modified in the LDR + Gamma group. In Proton and LDR + Proton groups, there were six and 12 affected genes, respectively. Expression of genes in the Gamma (Traf3) and Proton (Bak1, Birc2, Birc3, Mcl1) groups was no longer different from 0 Gy control group when mice were pre-exposed to LDR γ-rays. When each combined regimen was compared with the corresponding group that received acute radiation alone, two genes in the LDR + Gamma group and 17 genes in the LDR + Proton group were modified; greatest effect was on Birc2 and Nol3 (> 5-fold up-regulated by LDR + Protons). Oxygen radical production in livers from the LDR + Proton group was higher in LDR, Gamma, and LDR + Gamma groups (p < 0.05 vs. 0 Gy), but there were no differences in phagocytosis of E. coli. Sections stained with hematoxylin and eosin (H&E) suggested more inflammation, with and without necrosis, in some irradiated groups. The data demonstrate that response to acute radiation is dependent on radiation quality and regimen and that some LDR γ-ray-induced modifications in liver response were still evident nearly 2 months after exposure.

  6. Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying dark matter

    SciTech Connect

    Hütsi, Gert; Hektor, Andi; Raidal, Martti E-mail: andi.hektor@cern.ch

    2010-07-01

    We analyze the recently published Fermi-LAT diffuse gamma-ray measurements in the context of leptonically annihilating or decaying dark matter (DM) with the aim to explain simultaneously the isotropic diffuse gamma-ray and the PAMELA, Fermi and HESS (PFH) anomalous e{sup ±} data. Five different DM annihilation/decay channels 2e, 2μ, 2τ, 4e, or 4μ (the latter two via an intermediate light particle φ) are generated with PYTHIA. We calculate both the Galactic and extragalactic prompt and inverse Compton (IC) contributions to the resulting gamma-ray spectra. To find the Galactic IC spectra we use the interstellar radiation field model from the latest release of GALPROP. For the extragalactic signal we show that the amplitude of the prompt gamma-emission is very sensitive to the assumed model for the extragalactic background light. For our Galaxy we use the Einasto, NFW and cored isothermal DM density profiles and include the effects of DM substructure assuming a simple subhalo model. Our calculations show that for the annihilating DM the extragalactic gamma-ray signal can dominate only if rather extreme power-law concentration-mass relation C(M) is used, while more realistic C(M) relations make the extragalactic component comparable or subdominant to the Galactic signal. For the decaying DM the Galactic signal always exceeds the extragalactic one. In the case of annihilating DM the PFH favored parameters can be ruled out by gamma-ray constraints only if power-law C(M) relation is assumed. For DM decaying into 2μ or 4μ the PFH favored DM parameters are not in conflict with the gamma-ray data. We find that, due to the (almost) featureless Galactic IC spectrum and the DM halo substructure, annihilating DM may give a good simultaneous fit to the isotropic diffuse gamma-ray and to the PFH e{sup ±} data without being in clear conflict with the other Fermi-LAT gamma-ray measurements.

  7. The equilibrium-diffusion limit for radiation hydrodynamics

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R.

    2017-07-27

    The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less

  8. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  9. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  10. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  11. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  12. Robust identification of isotropic diffuse gamma rays from galactic dark matter.

    PubMed

    Siegal-Gaskins, Jennifer M; Pavlidou, Vasiliki

    2009-06-19

    Dark matter annihilation in Galactic substructure will produce diffuse gamma-ray emission of remarkably constant intensity across the sky, making it difficult to disentangle this Galactic dark matter signal from the extragalactic gamma-ray background. We show that if Galactic dark matter contributes a modest fraction of the measured emission in an energy range accessible to the Fermi Gamma-ray Space Telescope, the energy dependence of the angular power spectrum of the total measured emission could be used to confidently identify gamma rays from Galactic dark matter substructure.

  13. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  14. Three-temperature plasma shock solutions with gray radiation diffusion

    SciTech Connect

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  15. Three-temperature plasma shock solutions with gray radiation diffusion

    SciTech Connect

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  16. Three-temperature plasma shock solutions with gray radiation diffusion

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Klein, R. I.

    2017-03-01

    The effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron-ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  17. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  18. Improvement of PVC floor tiles by gamma radiation

    NASA Astrophysics Data System (ADS)

    du Plessis, T. A.; Badenhorst, F.

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. The crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles.

  19. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  20. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  1. Gamma radiation effects on siloxane-based additive manufactured structures

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  2. Gamma radiation effects on time-dependent iodine partitioning

    SciTech Connect

    Marshall, P.W.; Lutz, J.B.; Kelly, J.L.

    1987-03-01

    A need for characterization of the iodine source term used in safety calculations for hypothesized light water reactor core disruptive accidents has motivated a study in iodine volatility. Previous experimental studies have been directed at evaluating volatility of iodine at a single time shortly (1 to 12 h) after introduction into the aqueous phase. The very important variables of time in solution and gamma radiation dose rate for a range of iodine concentrations (10/sup -8/ to 10/sup -5/ gI/ml) and pHs (5, 9, and 11) are explored. All experiments were performed at --25/sup 0/C, first in the absence of a significant radiation field and later with a gamma radiation dose rate ranging from 0.003 to 0.06 Mrad/h. Iodine was introduced as either molecular I/sub 2/ or NaI with /sup 131/I (8.04-day half-life) as a tracer. Results of experiments with nonirradiated systems indicated very little volatility with NaI-initiated studies. The I/sub 2/-initiated systems at pH 5 were the most volatile whereas experiments at pH 9 and 11 showed decreasing iodine volatility with time. From the experiments at pH 9, it is inferred that the partition coefficient of HOI is -- 1000.

  3. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  4. SAS 2 observations of the earth albedo gamma radiation above 35 MeV

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

    1981-01-01

    The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

  5. Environmental gamma radiation measurement in district Swat, Pakistan.

    PubMed

    Jabbar, T; Khan, K; Subhani, M S; Akhter, P; Jabbar, A

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from (226)Ra, (232)Th, (40)K and (137)Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for (226)Ra, (232)Th and (40)K were found to be 50.4 +/- 0.7, 34.8 +/- 0.7 and 434.5 +/- 7.4 Bq kg(-1), respectively, in soil samples, which are slightly more than the world average values. However, (137)Cs was only found in the soil sample of Barikot with an activity concentration of 34 +/- 1.2 Bq kg(-1). Only (40)K was determined in vegetation samples with an average activity of 172.2 +/- 1.7 Bq kg(-1), whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg(-1)). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h(-1), which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude.

  6. Cryo-gamma radiation inactivation of bovine herpesvirus type-1

    NASA Astrophysics Data System (ADS)

    Degiorgi, C. Fernández; Smolko, E. E.; Lombardo, J. H.

    1999-07-01

    The radioresistance of bovine herpesvirus-1 (BHV-1), commonly known as infectious bovine rhinotracheitis virus (IBRV), suspended in free serum Glasgow-MEM medium and frozen at -78°C was studied. The number of surviving virus at a given dose of gamma-radiation was determined by a plaque assay system. D 10 values were calculated before and after removal of cell debris. The D 10 values obtained were 4.72 kGy and 7.31 kGy before and after removal of cell debris, respectively. Our results indicate that the inactivated viral particles could be used for vaccine preparation or diagnostic reagents.

  7. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    SciTech Connect

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    2016-12-19

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  8. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  9. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  10. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  11. Stability of Stationary Solutions of the Multifrequency Radiation Diffusion Equations

    SciTech Connect

    Hald, O H; Shestakov, A I

    2004-01-20

    A nondimensional model of the multifrequency radiation diffusion equation is derived. A single material, ideal gas, equation of state is assumed. Opacities are proportional to the inverse of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the radiation source function. It is shown that the solutions are uniformly bounded in time and that stationary solutions are stable. The spatially independent solutions are asymptotically stable, while the spatially dependent solutions of the linearized equations approach zero.

  12. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  13. [Sensitivity of Jatropha curcas seeds to (60)Co-gamma radiation and their medial lethal doses in radiation breeding].

    PubMed

    Wang, Zhao-Yu; Lin, Jing-Ming; Luo, Li; Xu, Zeng-Fu

    2009-03-01

    To study the sensitivity of Jatropha curcas seeds from three different locations to (60)Co-gamma radiation and to determine the medial lethal doses (LD50) of (60)Co-gamma radiation for these seeds. Six different radiation doses (0, 100, 150, 200, 250 and 300 Gy) were used. Based on the germination rate 50%, LD50 doses of (60)Co-gamma radiation for the seeds were calculated using linear regression equation. LD50 doses of (60)Co-gamma radiation for these seeds were 178 Gy (seeds from Guangdong), 132 Gy (seeds from Hainan) and 198 Gy (seeds from India) respectively. Increasing radiation doses caused more significant changes in leaf shape of the M1 seedlings. The results provides an important experimental basis for the radiation breeding of the important herbal and energy plant J. curcas.

  14. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  15. [Gamma-radiation action on cells of algae Euglena gracilis].

    PubMed

    Glinkova, E; Zhuchkina, N I; Koltovoĭ, N A; Koltovaia, N A

    2012-01-01

    Considering the potentials of algae Euglena to constitute a part of biological systems of human life support, effects of low radiation doses on algal cells and radiosensitivity dependence on their genotype were studied. In experiments with gamma-irradiation (60Co) of Euglena gracilis, the highest radioresistance was demonstrated by strain Z. OFL; the chloroplasts lacking Z-derived strain showed hypersensitivity to radiation. E. bacillaris and derived chlorophyll-lacking strains W3 and W10 had intermediate radiosensitivity. Irradiation with the doses of up to 10 Gy produced a hormetic effect in the stock strains. Cells death was observed only after irradiation by doses above 100 Gy. The stimulating effect was exerted both on radioresistance and growth rate. Dyes made possible rapid evaluation of the proportion of living and dead cells. Comparison of two survival tests showed that the classic medium inoculation overestimates cell deaths as it disregards the living non-proliferating cells.

  16. Petroleum and diesel sulfur degradation under gamma radiation

    NASA Astrophysics Data System (ADS)

    Andrade, Luana dos Santos; Calvo, Wilson Aparecido Parejo; Sato, Ivone Mulako; Duarte, Celina Lopes

    2015-10-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries to remove sulfur compounds from petroleum fractions. However, it is not highly effective for removing thiophene compounds such as benzothiophene. Additionally, this process generates high costs for the oil industry. In the present work, ionizing radiation was used in order to study the effect on the degradation of petroleum and diesel sulfur compounds. Crude oil and diesel fuel samples were studied, without any pretreatment, and irradiated using a cobalt-60 gamma cell in a batch system at absorbed doses of 30 kGy and 50 kGy. The sulfur compounds were extracted and then analyzed by gas chromatography associated with mass spectrometry (GCMS). A high efficiency of ionizing radiation was observed regarding the degradation of sulfur compounds such as benzothiophene and benzenethiol and the formation of fragments, for example 1.2-dimethylbenzene and toluene.

  17. Analytic expressions for ULF wave radiation belt radial diffusion coefficients.

    PubMed

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-03-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Analytic expressions for the radial diffusion coefficients are presentedThe coefficients do not dependent on energy or wave m valueThe electric field diffusion coefficient dominates over the magnetic.

  18. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  19. The feasibility of gamma radiation sterilization for decellularized tracheal grafts.

    PubMed

    Johnson, Christopher M; Guo, DeHuang; Ryals, Stephanie; Postma, Gregory N; Weinberger, Paul M

    2017-08-01

    The most promising stem cell-derived tracheal transplantation approach is dependent upon the use of decellularized tracheal grafts. It has been assumed that a sterilization step, such as gamma radiation, would damage the delicate extracellular matrix of the graft, thus rendering it less viable for cellular repopulation, although this has not been thoroughly investigated. Laboratory-based comparative analysis. Fifteen murine tracheas of strain C57/B-6 mice were obtained. Thirteen were subjected to a detergent-enzymatic decellularization process. Of these decellularized tracheas (DT), eight were irradiated, exposing five tracheas to a radiation level of 25 kGy (DT25) and three to 5 kGy (DT5). Two were left untreated. The two untreated tracheas, two DTs, and two DT25s were prepared and examined using both scanning and transmission electron microscopy. Bioburden calculations were obtained from three DTs, three DT25s, and three DT5s by homogenization, serial dilution, and streak plating. Electron microscopy of untreated fresh tracheas and DTs showed a slight qualitative degradation of cartilage ultrastructure due to the decellularization process. In contrast, examination of DT25 shows significant degradation including poor overall preservation of cartilage architecture with disorganized collagen fibers. The nonirradiated DTs had a calculated bacterial bioburden of 7.8 × 10(7) to 3.4 × 10(8) colony-forming units per gram. Both the DT25 and DT5 specimens were found to have a bioburden of zero. Gamma radiation at 25 kGy degrades the architecture of decellularized tracheal grafts. These ultrastructural changes may prove detrimental to graft viability; however, bioburden calculations suggest that a 5 kGy radiation dose may be sufficient for sterilization. NA Laryngoscope, 127:E258-E264, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Gamma radiation effects on commercial Mexican bread making wheat flour

    NASA Astrophysics Data System (ADS)

    Agúndez-Arvizu, Z.; Fernández-Ramírez, M. V.; Arce-Corrales, M. E.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-04-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 60C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  1. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  2. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  3. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    PubMed

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required.

  4. Effect of Gamma radiation on microbial population of natural casings

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Fraqueza, M. J.

    1998-06-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.

  5. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P. E-mail: gudlaugu@glast2.stanford.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS and others

    2012-05-01

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  6. [Protection of cadaver tissues exposed to high gamma radiation].

    PubMed

    Matus-Jiménez, J; Flores-Fletes, J R; Carrillo, A

    2013-01-01

    Bone tissue is the most widely used tissue for the treatment of various conditions. As a result of this, allografts are used at an increasing frequency and processes for their harvest, preservation and sterilization have improved. The sterilization method that grants the greatest sterilization is high-dose gamma radiation, which destroys prions and any microorganism thus assuring that patients will not experience any infection. But given that radiation use has proven to deteriorate bone and tendon tissue, efforts have been made to protect the latter. One way to do this is a commercially available substance called Clearant. Studies conducted elsewhere have found that it does protect bone and tendon tissue. This study was therefore conducted with allograft samples exposed to high-dose radiation. Its purpose was to assess, with photon microscopy using various dyes and electron microscopy, the presence of color changes as well as the destruction of the anatomical structure. The same tissue was followed-up throughout the process until it was placed in the patient. The review found no structural changes in bone and tendon tissues exposed to high radiation doses (60 kilograys) when the Clearant process was used, and concluded that the former may be used safely in orthopedic or traumatologic diseases.

  7. Diffuse cosmic gamma-ray background as a probe of cosmological gravitino regeneration and decay

    SciTech Connect

    Olive, K.A.; Silk, J.

    1985-11-18

    We predict the presence of a spectral feature in the isotropic cosmic gamma-ray background associated with gravitino decays at high red shifts. With a gravitino abundance that falls in the relatively narrow range expected for thermally regenerated gravitinos following an inflationary epoc in the very early universe, gravitinos of mass several gigaelectronvolts are found to yield an appreciable flux of 1--10-MeV diffuse gamma rays.

  8. DIFFUSE PERIPAPILLARY CHOROIDAL MELANOMA THAT EVOLVED FROM A SMALL PRESUMED CHOROIDAL NEVUS SUCCESSFULLY TREATED WITH GAMMA KNIFE RADIOTHERAPY.

    PubMed

    Duker, Jacob S; Duker, Jay S

    2016-01-01

    To report a case of diffuse peripapillary choroidal melanoma which began as a small choroidal nevus and was successfully treated with gamma knife radiotherapy. Observational case report. A 31-year-old visually asymptomatic man presented for a routine eye examination and was noted to have a small choroidal nevus. Six years later, the lesion had become a diffuse juxtapapillary choroidal melanoma with a thickness of 1.9 mm. Given the peripapillary location of the tumor with involvement of about 6 clock hours of the disk, Leksell Gamma Knife radiotherapy was performed. At 5.5 years after radiation therapy, visual acuity remained 20/20. The lesion thickness had decreased to 1.5 mm, and there was no interval growth of any margins. Small choroidal nevi carry low malignant potential but still deserve photographic documentation when possible with regular follow intervals. Gamma knife radiotherapy can be considered for tumors abutting the optic nerve, especially when plaque radiotherapy may be technically difficult.

  9. Performance of radiation survey meters in X- and gamma-radiation fields.

    PubMed

    Ceklic, Sandra; Arandjic, Danijela; Zivanovic, Milos; Ciraj-Bjelac, Olivera; Lazarevic, Djordje

    2014-11-01

    The aim of this work was to investigate the different types of radiation detectors commonly used for radiation protection purposes as survey meters. The study was performed on survey meters that use different detectors as ionisation chamber, Geiger Mueller (GM) counter and scintillation detector. For each survey meter, energy dependence and angular response in X- and gamma-radiation fields was tested. The following commercially available survey meters were investigated: ionisation chambers Victoreen 451P, Babyline 31 and VA-J-15A, Geiger counter MRK-M87, 6150 AD6 and FAG FH 40F2 and scintillation counter 6150 ADB. As a source of gamma radiation, (137)Cs and (60)Co were used whereas X-ray radiation fields were generated using an X-ray unit. The radiation characteristics of the survey meters were mostly in compliance with references estimated by standard IEC 1017-2. However, some of them showed larger deviation at lower energies. GM counters exhibit strong energy dependence for low-energy photons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radiative Penguin Decays of B Mesons: Measurements of B to K* gamma, B to K2* gamma, and Search for B0 to phi gamma

    SciTech Connect

    Bauer, J.

    2005-01-03

    Electromagnetic radiative penguin decays of the B meson were studied with the BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching fractions and isospin asymmetry of the decay B {yields} K*{gamma}, branching fractions of B {yields} K*{sub 2}(1430){gamma}, and a search for B{sup 0} {yields} {phi}{gamma} are presented. The decay rates may be enhanced by contributions from non-standard model processes.

  11. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    NASA Astrophysics Data System (ADS)

    Dugan, G.; Sagan, D.

    2017-02-01

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall where the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program's use.

  12. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  13. Gamma convolution models for self-diffusion coefficient distributions in PGSE NMR.

    PubMed

    Röding, Magnus; Williamson, Nathan H; Nydén, Magnus

    2015-12-01

    We introduce a closed-form signal attenuation model for pulsed-field gradient spin echo (PGSE) NMR based on self-diffusion coefficient distributions that are convolutions of n gamma distributions, n⩾1. Gamma convolutions provide a general class of uni-modal distributions that includes the gamma distribution as a special case for n=1 and the lognormal distribution among others as limit cases when n approaches infinity. We demonstrate the usefulness of the gamma convolution model by simulations and experimental data from samples of poly(vinyl alcohol) and polystyrene, showing that this model provides goodness of fit superior to both the gamma and lognormal distributions and comparable to the common inverse Laplace transform. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Relative Biological Effectiveness (RBE) of (131)I Radiation Relative to (60)Co Gamma Rays.

    PubMed

    Neshasteh-Riz, Ali; Mahmoud Pashazadeh, Ali; Mahdavi, Seyed Rabie

    2013-01-01

    To assess relative biological effectiveness (RBE) of (131)I radiation relative to (60)Co gamma rays in glioblastoma spheroid cells. : In this experimental study, glioblastoma spheroid cells were exposed to (131)I radiation and (60)Co gamma rays. Radiation induced DNA damage was evaluated by alkaline comet assay. Samples of spheroid cells were treated by radiation from (131)I for four different periods of time to find the dose-response equation. Spheroid cells were also exposed by 200 cGy of (60)Co gamma rays as reference radiation to induce DNA damage as endpoint. Resulted RBE of (131)I radiation relative to (60)Co gamma rays in 100 µm giloblastoma spheroid cells was equal to 1.16. The finding of this study suggests that (131)I photons and electrons can be more effective than (60)Co gamma rays to produce DNA damage in glioblastoma spheroid cells.

  15. Method for imaging quantum dots during exposure to gamma radiation

    NASA Astrophysics Data System (ADS)

    Immucci, Andrea N.; Chamson-Reig, Astrid; Yu, Kui; Wilkinson, Diana; Li, Chunsheng; Stodilka, Robert Z.; Carson, Jeffrey J. L.

    2011-03-01

    Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, ~5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source.

  16. Networked gamma radiation detection system for tactical deployment

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  17. Gamma radiation influence on technological characteristics of wheat flour

    NASA Astrophysics Data System (ADS)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  18. The Impact of Gamma Radiation on Sediment Microbial Processes

    PubMed Central

    Brown, Ashley R.; Boothman, Christopher; Pimblott, Simon M.

    2015-01-01

    Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1 for 8 weeks all displayed NO3− and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1 treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1 treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42− reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h−1 and 30-Gy h−1 treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation. PMID:25841009

  19. Trypanosoma cruzi Gene Expression in Response to Gamma Radiation

    PubMed Central

    Grynberg, Priscila; Passos-Silva, Danielle Gomes; Mourão, Marina de Moraes; Hirata Jr, Roberto; Macedo, Andrea Mara; Machado, Carlos Renato; Bartholomeu, Daniella Castanheira; Franco, Glória Regina

    2012-01-01

    Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress. PMID:22247781

  20. THE DEVELOPMENT OF A PHOTOTROPIC ANODIZED ALUMINUM FINISH RESPONSIVE TO GAMMA RADIATION.

    DTIC Science & Technology

    The present investigation was conducted to establish a phototropic anodized aluminum finish sensitive to gamma radiation. A comprehensive literature...search revealed a number of candidate phototropic materials but very little information about gamma radiation response. Because early trials...indicated that each candidate phototropic system possessed different dyeing characteristics for an anodic film, time-consuming trials with dyed anodic films

  1. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOEpatents

    Hondorp, Hugh L.

    1984-01-01

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  2. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  3. Fires increase Amazon forest productivity through increases in diffuse radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Spracklen, D. V.; Mercado, L.; Reddington, C. L.; Haywood, J. M.; Ellis, R. J.; Phillips, O. L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; Butt, N.

    2015-06-01

    Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156 Tg C a-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60 Tg C a-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests.

  4. Event-Specific Quantification of Radiation Belt Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Tu, W.; Sarris, T. E.; Ozeke, L.

    2016-12-01

    Recently, there has been a great emphasis on developing event-specific inputs for radiation belt models, since they are proven critical for reproducing the observed radiation belt dynamics during strong events. For example, our DREAM3D simulation of the 8-9 October 2012 storm demonstrates that event-specific chorus wave model and seed population are critical to reproduce the strong enhancement of MeV electrons in this event. However, the observed fast electron dropout preceding the enhancement was not captured by the simulation, which could be due to the combined effects of fast outward radial diffusion of radiation belt electrons with magnetopause shadowing and enhanced electron precipitation. Without an event-specific quantification of radial diffusion, we cannot resolve the relative contribution of outward radial diffusion and precipitation to the observed electron dropout or realistically reproduce the dynamics during the event. In this work, we provide physical quantification of radial diffusion specific to the October 2012 event by including both real-time and global distributions of ULF waves from a constellation of wave measurements and event-specific estimation of ULF wave mode structure. The global maps of ULF waves during the event are constructed by combining the real-time measurements from the Van Allen Probes, THEMIS, and GOES satellites in space and a large array of ground magnetometers. The real-time ULF wave mode structure is then estimated using the new Cross-Wavelet Transform technique, applied to various azimuthally aligned pairs of ULF wave measurements that are located at the same L shells. The cross power and phase differences between the time series are calculated using the technique, based on which the wave power per mode number is estimated. Finally, the physically estimated radial diffusion coefficients specific to the event are applied to the DREAM3D model to quantify the relative contribution of radial diffusion to the electron dynamics

  5. Search for Charmonium States Decaying to J/\\psi\\gamma \\gamma $ Using Initial-State Radiation Events

    SciTech Connect

    Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G.S.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2006-11-30

    We study the processes e{sup +}e{sup -} {yields} (J/{psi}{gamma}{gamma}){gamma} and e{sup +}e{sup -} {yields} (J/{psi}{pi}{sup -}{pi}{sup +}){gamma} where the hard photon radiated from an initial e{sup +}e{sup -} collision with center-of-mass (CM) energy near 10.58 GeV is detected. In the final state J/{psi}{gamma}{gamma} we consider J/{psi}{pi}{sup 0}, J/{psi}{eta}, {chi}{sub c1}{gamma}, and {chi}c{sub 2}{gamma} candidates. The invariant mass of the hadronic final state defines the effective e{sup +}e{sup -} CM energy in each event, so these data can be compared with direct e{sup +}e{sup -} measurements. We report 90% CL upper limits for the integrated cross section times branching fractions of the J/{psi}{gamma}{gamma} channels in the Y (4260) mass region.

  6. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  7. Charged particle diffusion and acceleration in Saturn's radiation belts

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.; Simpson, J. A.

    1980-01-01

    In the present paper, an attempt is made to determine, from the observed intensity profiles for protons and electrons in the region of L smaller than 4, whether population of Saturn's innermost trapped radiation zones from an external source is possible. It is found that if diffusion proceeds in an episodic rather than a steady-state manner (long periods of quiescence interrupted by brief periods of rapid diffusion), the basic features of the observed phase space density profiles are qualitatively reproduced for both the trapped protons and electrons.

  8. Structure and radiation properties of turbulent diffusion flames

    SciTech Connect

    Kounalakis, M. E.

    1990-01-01

    A theoretical and experimental study of the flame structure and gas band radiation of carbon monoxide/hydrogen/air diffusion flames is described. The results have applications to analysis of the rate of spread of natural fires, design and development of furnaces, determination of radiant heat loads to engine components, development of rocket plume visibility, safe operations of industrial flares, development of material test codes for fire properties and development of fire detectors. The structure of the turbulent flames was studied using the Mie scattering technique to measure single and two-point mixture fraction statistics, and laser Doppler anemometery to measure single-point velocity statistics along the centerline. A stochastic methodology for treating the nonlinear flame radiation fluctuations caused by turbulence/radiation interactions was developed. The methodology was evaluated by comparison with high resolution emission spectroscopy measurements of gas-band radiation.

  9. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  10. Phoswich scintillator for proton and gamma radiation of high energy

    SciTech Connect

    Tengblad, O.; Borge, M. J. G.; Briz, J. A.; Carmona-Gallardo, M.; Cruz, C.; Gugliermina, V.; Nacher, E.; Perea, A.; Sanchez del Rio, J.; Nieves, M. Turrion; Nilsson, T.; Johansson, H. T.; Bergstroem, J.; Blomberg, E.; Buelling, A.; Gallneby, E.; Hagdahl, J.; Jansson, L.; Jareteg, K.; Masgren, R.; and others

    2011-11-30

    We present here a Phoswich scintillator design to achieve both high resolution gamma ray detection, and good efficiency for high energy protons. There are recent developments of new high resolution scintillator materials. Especially the LaBr3(Ce) and LaCl3(Ce) crystals have very good energy resolution in the order of 3% for 662 keV gamma radiation. In addition, these materials exhibit a very good light output (63 and 32 photons/keV respectively).A demonstrator detector in the form of an Al cylinder of 24 mm diameter and a total length of 80 mm with 2 mm wall thickness, containing a LaBr3(Ce) crystal of 20 mm diameter and 30 mm length directly coupled to a LaCl3(Ce) crystal of 50 mm length, and closed with a glass window of 5 mm, was delivered by Saint Gobain. To the glass window a Hamamatsu R5380 Photomultiplier tube (PMT) was coupled using silicon optical grease.

  11. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  12. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  13. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  14. Nano-Sensitization under gamma rays and fast ion radiation

    NASA Astrophysics Data System (ADS)

    Porcel, E.; Li, S.; Usami, N.; Remita, H.; Furusawa, Y.; Kobayashi, K.; Le Sech, C.; Lacombe, S.

    2012-07-01

    The use of heavy compounds to enhance radiation induced damage is a promising approach to improve the therapeutic index of radiotherapy. In order to quantify and control the effects of these radiosensitizers, it is of fundamental interest to describe the elementary processes which take place at the molecular level. Using DNA as a probe, we present a comparison of the damage induced in the presence of platinum compounds exposed to different types of ionizing radiation. We present the results obtained with gamma rays (Linear Energy Transfer (LET) = 0.2 keV.μm-1), fast helium ions He2+ (LET = 2.3 keV.μm-1) and fast carbon ions C6+ (LET = 13 keV.μm-1 and LET = 110 keV.μm-1). The efficiency of two different sensitizers was measured: platinum based molecules (the chloroterpyridine platinum - PtTC) and platinum nanoparticles (PtNP). These experiments show that the two sensitizers are efficiently amplifying molecular damage under photon or ion irradiation. Experiments with a radical scavenger confirmed that these damages are mediated by free radicals for more than 90%. More interestingly, the induction of complex damage, the most lethal for the cells, is amplified by a factor of 1.5 on average if platinum (PtTC and PtNP) is present. As already known, the induction of complex damages increases also with the radiation LET. So, finally, the most significant enhancement of complex damage is observed when ion radiation is combined with platinum induced sensitization.

  15. X-RAY INVESTIGATION OF THE DIFFUSE EMISSION AROUND PLAUSIBLE {gamma}-RAY EMITTING PULSAR WIND NEBULAE IN KOOKABURRA REGION

    SciTech Connect

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu

    2012-05-10

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV {gamma}-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of {sigma}{sub X} = 1.'66 and {sigma}{sub X} = 1.'49, respectively. The peaks of the diffuse X-ray emission are located within the {gamma}-ray excess maps obtained by H.E.S.S. and the offsets from the {gamma}-ray peaks are 2.'8 for PSR J1420-6048 and 4.'5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with {Gamma} = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 {mu}G and 2.5 {mu}G, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  16. Influence of radiation damage on krypton diffusion in silicon carbide

    NASA Astrophysics Data System (ADS)

    Friedland, E.; Hlatshwayo, T. T.; van der Berg, N. G.; Mabena, M. C.

    2015-07-01

    Diffusion of krypton in poly and single crystalline silicon carbide is investigated and compared with the previously obtained results for xenon, which pointed to a different diffusion mechanism than observed for chemically active elements. For this purpose 360 keV krypton ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 °C and 600 °C. Width broadening of the implantation profiles and krypton retention during isochronal and isothermal annealing up to temperatures of 1400 °C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by α-particle channeling. Little diffusion and no krypton loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 °C. Above that temperature thermal etching of the implanted surface became increasingly important. No diffusion or krypton loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 °C. Radiation damage dependent grain boundary diffusion is observed at 1300 °C in CVD-SiC. The results seem to indicate, that the chemically inert noble gas atoms do not form defect-impurity complexes, which strongly influence the diffusion behavior of other diffusors in silicon carbide.

  17. VOYAGER OBSERVATIONS OF THE DIFFUSE FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn; Holberg, Jay B.

    2012-03-01

    The two Voyager spacecraft have completed their planetary exploration mission and are now probing the outer realms of the heliosphere. The Voyager ultraviolet spectrometers continued to operate well after the Voyager 2 Neptune encounter in 1989. We present a complete database of diffuse radiation observations made by both Voyagers: a total of 1943 spectra (500-1600 A) scattered throughout the sky. These include observations of dust-scattered starlight, emission lines from the hot interstellar medium, and a number of locations where no diffuse radiation was detected, with the very low upper limit of about 25 photons cm{sup -2} s{sup -1} sr{sup -1} A{sup -1}. Many of these observations were from late in the mission when there was significantly less contribution from interplanetary emission lines and thus less contamination of the interstellar signal.

  18. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    NASA Astrophysics Data System (ADS)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  19. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  20. JITTER RADIATION MODEL OF THE CRAB GAMMA-RAY FLARES

    SciTech Connect

    Teraki, Yuto; Takahara, Fumio

    2013-02-15

    The gamma-ray flares of the Crab nebula detected by the Fermi and AGILE satellites challenge our understanding of the physics of pulsars and their nebulae. The central problem is that the peak energy of the flares exceeds the maximum energy E {sub c} determined by synchrotron radiation loss. However, when turbulent magnetic fields exist with scales {lambda}{sub B} smaller than 2{pi}mc {sup 2}/eB, jitter radiation can emit photons with energies higher than E {sub c}. The scale required for the Crab flares is about two orders of magnitude less than the wavelength of the striped wind. We discuss a model in which the flares are triggered by plunging the high-density blobs into the termination shock. The observed hard spectral shape may be explained by the jitter mechanism. We make three observational predictions: first, the polarization degree will become lower in flares; second, no counterpart will be seen in TeV-PeV range; and third, the flare spectrum will not be harder than {nu}F {sub {nu}}{proportional_to}{nu}{sup 1}.

  1. Degradation of monoterpenes in orange juice by gamma radiation.

    PubMed

    Fan, X; Gates, R A

    2001-05-01

    Single-strength orange juice was irradiated with 0, 0.89, 2.24, 4.23, and 8.71 gGy of gamma radiation at 5 degrees C and then stored at 7 degrees C for 21 days. Volatile compounds, isolated by solid-phase microextraction, were separated and identified using a gas chromatograph equipped with a mass selective detector. The majority of the volatile compounds were terpenes, and the most abundant volatile compounds were ethanol and limonene. Most volatile compounds were stable during the 21-day storage period except geranial and neral which decreased over time. Irradiation reduced the concentration of acyclic monoterpenes, such as geranial, neral, myrcene, and linalool 1 and 7 days after irradiation, but did not affect other monoterpenes, sesquiterpenes, or other volatile compounds. The reduction of acyclic monterpenes increased linearly with radiation dose, and correlated with an increase in thiobarbituric acid reactive substrates (TBARS) content. Reduction in the concentration of monoterpenes induced by irradiation was not significant 21 days after irradiation. Our results indicate that acyclic monoterpenes are sensitive to irradiation whereas most other volatile compounds are resistant.

  2. Mediate gamma radiation effects on some packaged food items

    NASA Astrophysics Data System (ADS)

    Inamura, Patricia Y.; Uehara, Vanessa B.; Teixeira, Christian A. H. M.; del Mastro, Nelida L.

    2012-08-01

    For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.

  3. THE MYSTERY OF THE COSMIC DIFFUSE ULTRAVIOLET BACKGROUND RADIATION

    SciTech Connect

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua E-mail: jmurthy@yahoo.com E-mail: 97tyler@cardinalmail.cua.edu

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a ''second population'' of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such ''smaller'' grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our ''second component'' of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  4. The Mystery of the Cosmic Diffuse Ultraviolet Background Radiation

    NASA Astrophysics Data System (ADS)

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a "second population" of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such "smaller" grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our "second component" of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  5. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  6. Radio galaxies dominate the high-energy diffuse gamma-ray background

    SciTech Connect

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  7. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  8. Radio galaxies dominate the high-energy diffuse gamma-ray background

    SciTech Connect

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  9. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation. [Paramecium tetraurelia; Synechococcus lividus

    SciTech Connect

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-05-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y.

  10. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive (137)Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of gamma radiation on fetal development in mice

    PubMed Central

    Dehghan, Tahere; Mozdarani, Hossein; Khoradmehr, Arezoo; Kalantar, Seyed Mehdi

    2016-01-01

    Background: Many cancer patients receive radiotherapy which may lead to serious damages to the ovary storage and the matrix muscle state. Some of these patients may admit to infertility clinics for having pregnancy and on the other hand hormonal administration for superovulation induction is a routine procedure in assisted reproduction technology (ART) clinics. Objective: This study aimed to investigate fertility and fetuses of hormone treated super ovulated female mice who had received whole-body gamma irradiation before mating. Materials and Methods: Female mice were randomly categorized into a control group and 3 experimental groups including: Group I (Irradiation), Group II (Superovulation), and Group III (Superovulation and Irradiation). In hormone treated groups, mice were injected with different doses of pregnant mare's serum gonadotropin (PMSG) followed with human chorionic gonadotropin (HCG). Irradiation was done using a Co-60 gamma ray generator with doses of 2 and 4 Gy. Number of fetuses counted and the fetus’s weight, head circumference, birth height, the number of live healthy fetuses, the number of fetuses with detected anomalies in the body, the sum of resorption and arrested fetuses were all recorded as outcome of treatments. Results: In the group I and group II, increased radiation and hormone dose led to a decrease in the number of survived fetuses (45 in 2 Gy vs. 29 in 4 Gy for irradiated group) as well as from 76 in 10 units into 48 in 15 units. In the group III, a higher dose of hormone in the presence of a 2 Gy irradiation boosted the slink rate; i.e. the number of aborted fetuses reached 21 cases while applying the dose of 15 Iu, whereas 6 cases of abortion were reported applying the hormone with a lower dose. Among different parameters studied, there was a significant difference in parameters of weight and height in the mouse fetuses (p=0.01). Conclusion: The data indicated that use of ovarian stimulating hormones in mice that received pre

  12. Gamma-radiation-induced corrosion of aluminum alloy: low dose effect

    NASA Astrophysics Data System (ADS)

    Kanjana, K.; Ampornrat, P.; Channuie, J.

    2017-06-01

    Gamma-radiation-induced corrosion of aluminium alloy 6061 (AA6061) immersed in demineralized water was studied at radiation dose up to 206 kGy using a Co-60 gamma radiation source. The surface morphology and chemical composition of the oxide produced on the post-irradiated samples were investigated using SEM-EDS. The electrochemical corrosion potentials (Ecorr ) of the post-irradiated samples were measured. The corrosion behavior of AA6061 appeared to be dose dependent under the experimental conditions. A dramatic change in surface morphology was observed in the samples exposed to gamma radiation at 206 kGy. At this radiation dose the aluminium oxide scale developed can be clearly seen. The results from electrochemical corrosion tests have shown that the corrosion potentials (Ecorr ) can be undoubtedly decreased by gamma irradiation, giving corrosion rate of 7 × 10-4 mm/yr.

  13. COS-B gamma ray sources beyond the predicted diffuse emission

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  14. Gamma radiation effects in amorphous silicon and silicon nitride photonic devices.

    PubMed

    Du, Qingyang; Huang, Yizhong; Ogbuu, Okechukwu; Zhang, Wei; Li, Junying; Singh, Vivek; Agarwal, Anuradha M; Hu, Juejun

    2017-02-01

    Understanding radiation damage is of significant importance for devices operating in radiation-harsh environments. In this Letter, we present a systematic study on gamma radiation effects in amorphous silicon and silicon nitride guided wave devices. It is found that gamma radiation increases the waveguide modal effective indices by as much as 4×10-3 in amorphous silicon and 5×10-4 in silicon nitride at 10 Mrad dose. This Letter further reveals that surface oxidation and radiation-induced densification account for the observed index change.

  15. Measurement of the Cosmic Diffuse Gamma-Ray Spectrum from 800 KEV to 30 Mev

    NASA Astrophysics Data System (ADS)

    Kappadath, Srinivas Cheenu

    The Cosmic Diffuse Gamma-Ray (CDG) spectrum between 800 keV and 30 MeV has been measured with the Imaging Compton telescope COMPTEL, aboard the Compton Gamma Ray Observatory. COMPTEL is well suited to measure the CDG flux because of its large detection area, wide field-of-view (~1.5 sr), low background and long exposure times. The major difficulty in measuring the CDG radiation at MeV energies is the intense instrumental background. The instrumental background in COMPTEL is created mainly in the surrounding material. The striking feature of the pre-COMPTEL CDG spectrum was an apparent flattening between 1 and 10 MeV. A simple power law extrapolation from the X-ray regime showed the presence of an excess, referred to as the MeV bump, in the 1 to 10 MeV range. These CDG flux measurements in the 1 to 10 MeV range are about 5 to 10 times lower than the pre-COMPTEL estimates. They show no evidence of a MeV bump in the 1 to 10 MeV range. The measured CDG emission between 0.8 and 30 MeV is well described by a power-law photon spectrum with an index of -2.4 ± 0.2 and a flux normalization of (1.05 ± 0.2) × 10-4 photons/cm2-s-sr-MeV at 5 MeV. No statistically significant deviations from isotropy is observed in the 4.2 to 30 MeV CDG emission when comparing the spectrum from the Virgo and the South Galactic Pole directions. The CDG spectrum was measured using COMPTEL data by first measuring the count rate of gamma rays from high galactic latitudes, during periods when the Earth was outside the COMPTEL field-of-view. Special data selections were applied to suppress the prompt and delayed background components. Above 4.2 MeV, in the absence of long-lived background, the count rates were extrapolated to zero cosmic-ray intensity to eliminate the prompt background and arrive at the CDG count rates. The delayed emission from long-lived radioactivity, present only below 4.2 MeV, was determined by fitting the energy spectrum. Below 4.2 MeV, their contributions were subtracted

  16. Understanding uncertainties in modeling the galactic diffuse gamma-ray emission

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Calore, Francesca; Weniger, Christoph

    2017-01-01

    The nature of the Galactic diffuse gamma-ray emission as measured by the Fermi Gamma-ray Space Telescope has remained an active area of research for the last several years. A standard technique to disentangle the origins of the diffuse emission is the template fitting approach, where predictions for various diffuse components, such as emission from cosmic rays derived from Galprop or Dragon, are compared to the data. However, this method always results in an overall bad fit to the data, with strong residuals that are difficult to interpret. Additionally, there are instrinsic uncertainties in the predicted templates that are not accounted for naturally with this method. We therefore introduce a new template fitting approach to study the various components of the Galactic diffuse gamma-ray emission, and their correlations and uncertainties. We call this approach Sky Factorization with Adaptive Constrained Templates (SkyFACT). Rather than using fixed predictions from cosmic-ray propagation codes and examining the residuals to evaluate the quality of fits and the presence of excesses, we introduce additional fine-grained variations in the templates that account for uncertainties in the predictions, such as uncertainties in the gas tracers and from small scale variations in the density of cosmic rays. We show that fits to the gamma-ray diffuse emission can be dramatically improved by including an appropriate level of uncertainty in the initial spatial templates from cosmic-ray propagation codes. We further show that we can recover the morphology of the Fermi Bubbles from its spectrum alone with SkyFACT.

  17. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber.

    PubMed

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Lee, Seung Ho; Han, Won-Taek

    2016-02-22

    We have investigated gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber. Radiation-induced attenuation (RIA) of the optical fiber was measured under intermittent gamma-ray irradiations with dose rate of ~10 kGy/h. No radiation hardening effect on the RIA by the gamma-ray pre-dose was found when the exposed fiber was bleached for long periods of time (27~47 days) at room-temperature. Photo-bleaching scheme upon 980 nm LD pumping has proven to be an effective deterrent to the RIA, particularly by suppressing the incipient RIA due to room-temperature unstable self-trapped hole defects (STHs). Large temperature dependence of the RIA of the optical fiber together with the photo-bleaching effect are worthy of note for reinforcing its radiation hard characteristics.

  18. Radiation protection by diethyldithiocarbamate: protection of membrane and DNA in vitro and in vivo against gamma-radiation.

    PubMed

    Gandhi, Nitin Motilal; Nair, Cherupally Krishnan Krishnan

    2004-06-01

    Diethyldithiocarbamate (DDTC) is studied for its antioxidant and radioprotective abilities. DDTC at a concentration of 0.5 mM reduced DPPH radical. DDTC reduced the damage to deoxyribose resulting from hydroxyl radicals generated by Fenton reaction, indicating that the radioprotective abilities of this compound could be due to the free radical scavenging. DDTC protected rat liver microsomal membranes in vitro from peroxidative damage in lipids (measured as TBARS) resulting from 50 Gy gamma-radiation. It also protected plasmid pBR322 DNA from radiation-induced strand breaks. An oral administration of DDTC to mice before whole body gamma-radiation exposure (4 Gy) resulted in a reduction of radiation-induced lipid peroxides in the liver homogenates. An administration of DDTC to mice before gamma-radiation reduced the radiation-induced DNA damage as studied by single cell gel-electrophoresis (comet assay). The comet parameters such as tail length, tail moment, and percent of DNA in tail were found to increase in the blood leukocytes of mice exposed to 4 Gy gamma-radiation. When DDTC was administered to mice before the radiation exposure, the increase in the comet parameters as a result of radiation was prevented, indicating a protection of cellular DNA. The present study has implication for the potential use of DDTC as a radioprotector.

  19. Gamma radiation from blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) observed high-energy gamma rays from PKS 0537-441 during observations in 1991 July-August. Upper limits from later EGRET observations suggest time variability.

  20. Environmental gamma radiation measurements on the island of Pantelleria.

    PubMed

    Brai, M; Bellia, S; Di Liberto, R; Dongarra, G; Hauser, S; Parello, F; Puccio, P; Rizzo, S

    1992-09-01

    The population exposure to those living on the island of Pantelleria, Italy, was estimated by measuring the natural gamma background. Gamma spectra of natural rocks and measurements of absorbed dose in air were taken. A correlation was found between the mean gamma exposure rate and the mean values of natural radionuclide concentrations in the investigated rocks.

  1. Gamma radiation from blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) observed high-energy gamma rays from PKS 0537-441 during observations in 1991 July-August. Upper limits from later EGRET observations suggest time variability.

  2. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  3. Diffusive and dynamical radiating stars with realistic equations of state

    NASA Astrophysics Data System (ADS)

    Brassel, Byron P.; Maharaj, Sunil D.; Goswami, Rituparno

    2017-03-01

    We model the dynamics of a spherically symmetric radiating dynamical star with three spacetime regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. A large family of solutions to the field equations are presented for various realistic equations of state. We demonstrate that it is possible to obtain solutions via a direct integration of the second order equations resulting from the assumption of an equation of state. A comparison of our solutions with earlier well known results is undertaken and we show that all these solutions, including those of Husain, are contained in our family. We then generalise our class of solutions to higher dimensions. Finally we consider the effects of diffusive transport and transparently derive the specific equations of state for which this diffusive behaviour is possible.

  4. Flux limited Diffusion Theory of Microwave Background Radiation Fluctuations

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Antonuccio-Delogu, V.

    1995-08-01

    A physically satisfactory treatment of the radiative transfer during the recombination epoch is complicated by the fact that the Universe has a quite rapid (Dz~400 at z_dec~1200) transition into the optically thin regime. We show here that all previous approaches (e.g. Peebles and Yu,1968 [1],Bond and Efstathiou,1987 [2],up to the most recent by Holtzmann,1992 [3] and Stompor,1994 [4]) are based on analytic expansions in powers of the mean free path which run into physical inconsistencies (the predicted radiation flux is larger than the product of speed of light and radiation density). To remedy to this situation, we apply to this problem the Covariant Flux-Limited Diffusion (CFLD) theory recently formulated by Bonanno and Romano (1993)[4]. Flux-limited diffusion theories are currently adopted in plasma physics, and offer a physical description free of the above mentioned inconsistency. We calculate the spectrum of the resulting perturbations for a few CDM models. Our physical treatment improves consistently on small (<=50') scales over previous treatments: the resulting spectra for the corresponding high wavenumbers are then substantially different from those found by the previous authors.

  5. Evidence for a Solar Influence on Gamma Radiation from Radon

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J.

    2012-12-01

    We have analyzed 29,000 measurements of gamma radiation associated with the decay of radon confined to an airtight vessel at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of strong periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We consider it significant that these same oscillations have previously been detected in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt. We have suggested that these oscillations are due to some form of solar radiation (possibly neutrinos) that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. Time-frequency analysis also yields quite different results from daytime and nighttime data. These procedures have also been applied to data collected from subsurface geological sites in Israel, Tenerife, and Italy, which have a variety of geological and geophysical scenarios, different elevations, and depths below the surface ranging from several meters to 1000 meters. In view of these results, and in view of the fact that there is at present no clear understanding of the behavior of radon in its natural environment, there would appear to be a need for multi-disciplinary research. Investigations that clarify the nature and mechanisms of solar influences may help clarify the nature and mechanisms of geological influences.

  6. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Harries, Tim J.

    2012-02-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.

  7. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate.

  8. Hydrogel membranes of PVAl/ clay by gamma radiation

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. J. A.; Parra, D. F.; Amato, V. S.; Lugão, A. B.

    2013-03-01

    In the last decades several studies concerning the new methods for drug delivery system have been investigated. A new field known as "smart therapy" involves devices and drug delivery systems to detect, identify and treat the site affected by the disease, not interfering with the biological system. Cutaneous Leishmaniasis is an endemic disease that is characterized by the development of single or multiple localized lesions on exposed areas of skin and one coetaneous treatment could be a potential solution. The aim of this study was to obtain polymeric hydrogel matrices of poly(vinylalcohol)(PVAl) and chitosan with inorganic nanoparticles, which can release a drug according to the need of the treatment of injury caused by leishmania on the skin. The hydrogels matrices were obtained with PVAl/ chitosan and PVAl/ chitosan 0.5; 1.0 and 1.5% laponite RD clay, crosslinked by ionizing gamma radiation with dose of 25 kGy. The techniques used for characterization were swelling, gel fraction, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). After synthesis, the samples were immersed in distilled water and weighed in periods of time until 60 h for the swelling determination. The obtained results have indicated that the swelling of the membranes increases with clay concentration, in consequence of ionic groups present in the clay.

  9. Gamma radiation effect on gas production in anion exchange resins

    NASA Astrophysics Data System (ADS)

    Traboulsi, A.; Labed, V.; Dauvois, V.; Dupuy, N.; Rebufa, C.

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H2g) and carbon dioxide (CO2g). TMA and H2g are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMAaq was associated with aqueous dimethylamine (DMAaq), monomethylamine (MMAaq) and ammonia (NH). CO2g is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMAg.

  10. Gamma radiation effects on Sporothrix schenckii yeast cells.

    PubMed

    Lacerda, Camila Maria de Souza; Martins, Estefânia Mara do Nascimento; de Resende, Maria Aparecida; de Andrade, Antero Silva Ribeiro

    2011-06-01

    Sporotrichosis is a subcutaneous mycosis caused by Sporothrix schenckii. Zoonotic transmission to man can occur after scratches or bites of animals, mainly cats. In this study, the gamma radiation effects on yeast of S. schenckii were analyzed with a view of developing a radioattenuated vaccine for veterinary use. The cultures were irradiated at doses ranging from 1.0 to 9.0 kGy. The reproductive capacity was measured by the ability of cells to form colonies. No colonies could be recovered above 8.0 kGy, using inocula up to 10(7) cells. Nevertheless, yeast cells irradiated with 7.0 kGy already were unable to produce infection in immunosuppressed mice. Evaluation by the FungaLight™ Kit (Invitrogen) indicated that yeast cells remained viable up to 9.0 kGy. At 7.0 kGy, protein synthesis, estimated by the incorporation of [L-(35)S] methionine, continues at levels slightly lower than the controls, but a significant decrease was observed at 9.0 kGy. The DNA of 7.0 kGy irradiated cells, analyzed by electrophoresis in agarose gel, was degraded. Cytoplasmic vacuolation was the main change verified in these cells by transmission electron microscopy. The dose of 7.0 kGy was considered satisfactory for yeast attenuation since irradiated cells were unable to produce infection but retained viability, metabolic activity, and morphology.

  11. APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION

    SciTech Connect

    Mao, Jirong; Wang, Jiancheng

    2013-10-10

    A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.

  12. Application of concentrated TiO2 sols for gamma-ray radiation dosimetry.

    PubMed

    Huang, J; Wang, M; Zhao, J; Gao, N; Li, Y

    2001-03-01

    Upon exposure to gamma-radiation, a concentrated TiO2 sol changes from colorless to deep blue with an absorption maximum at 540 nm. The absorption has been assigned to trapped electrons or Ti3+ states in the solid matrix based on its spectroscopic similarity to the samples irradiated with UV light. Unlike the conduction-band electrons generated from direct excitation by UV radiation, the origin of the trapped electrons during gamma-ray irradiation may be traced to a series of reducing species produced by the high energy electrons, which in turn, are the direct result of gamma-irradiation. As the absorption intensity is linearly related to the duration of exposure to gamma-radiation, it may have an application in gamma-ray dosimetry. The sensitivity of its dosage response has been found to be influenced by the semiconductor particle concentration and the dispersing solvent.

  13. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  14. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  15. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  16. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    NASA Technical Reports Server (NTRS)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  17. Development of an alpha/beta/gamma detector for radiation monitoring.

    PubMed

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics

  18. Photoacoustic imaging of prostate cancer using cylinder diffuse radiation

    NASA Astrophysics Data System (ADS)

    Xie, Wenming; Li, Li; Li, Zhifang; Li, Hui

    2012-12-01

    Prostate cancer is one of diseases with high mortality in man. Many clinical imaging modalities are utilized for the detection, grading and staging of prostate cancer, such as ultrasound, CT, MRI, etc. But they lacked adequate sensitivity and specificity for finding cancer in transition or central zone of prostate. To overcome these problems, we propose a photoacoustic imaging modality based on cylinder diffuse radiation through urethra for prostate cancer detection. We measure the related parameters about this system like lateral resolution (~2mm) and axial resolution(~333μm). Finally, simulated sample was imaged by our system. The results demonstrate the feasibility for detecting prostate cancer by our system.

  19. A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

    1977-01-01

    The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

  20. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  1. GRIS observations of the galactic center and the gamma ray galactic diffuse continuum

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Barthelmy, S.; Gehrels, N.; Teegarden, B. J.; Leventhal, M.; Maccallum, C. J.

    1992-01-01

    On two flights in 1988, the Gamma-Ray Imaging Spectrometer (GRIS) discovered the galactic center in a high state (greater than 1 x 10(exp -3) ph/(sq cm sec)) of positron annihilation line emission (511 keV) after nearly a decade of failed attempts to confirm the exciting early results of balloon and satellite instruments. These two flights represented the first flights of a new generation of high resolution germanium spectrometers designed to achieve significantly greater sensitivity for astrophysical observations. During the fall flight, an observation of the galactic plane at 335 degrees longitude was also performed. This observation showed a very low level of 511 keV emission (2 +/- 1 x 10(exp -4) ph/(sq cm sec)), confirming the galactic center origin of the line, and a high level of hard x-ray and gamma-ray continuum emission (1 x 10(exp -4) ph/(sq cm sec keV) at 100 keV), which we attribute to galactic diffuse emission. Improved fits to the spectrum of the galactic center are presented with the proposed diffuse component subtracted. We conclude that our galactic center continuum spectrum is consistent with the sum of the 1E1740.7-2942 spectrum observed by SIGMA/GRANAT and our 1 = 335 degree galactic plane spectrum. The predicted diffuse flux should be easily measurable by the Oriented Scintillation Spectrometer Experiment (OSSE) experiment on the Gamma Ray Observatory (GRO).

  2. Study of the Diffuse Gamma-Ray Emission from the Galactic Plane with ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Branchini, P.; Budano, A.; Camarri, P.; Cao, Z.; Cardarelli, R.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liguori, G.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; Ning, C. C.; Panareo, M.; Perrone, L.; Pistilli, P.; Ruggieri, F.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.; ARGO-YBJ Collaboration

    2015-06-01

    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25° < l < 100° and Galactic latitudes |b|\\lt 5{}^\\circ . The energy range covered by this analysis, from ˜350 GeV to ˜2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40° < l < 100° and 65° < l < 85° (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.

  3. Registration of the Atmospheric Gamma Radiation on Board the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Andreevsky, S. E.; Kuznetsov, V. D.; Sinelnikov, V. M.

    2016-11-01

    The paper describes the complex of scientific instruments and the algorithm of the "Molniya-Gamma" experiment on measuring gamma-ray fluxes in the energy range of 32-750 keV carried out in 2011 on board the Russian Segment (RS) of the International Space Station (ISS). About 500 thousand energy spectra with a time resolution of 1 min were obtained in 512 energy channels during 232 days. One-second variations in the number of gamma quanta in four energy channels and the triggered fluxes of gamma quanta lasting less than 100 ms were recorded simultaneously. The data obtained allow us to study temporal and spatial variation of gamma-ray radiation to detect terrestrial gamma flashes (TGFs). Data on very large number of gamma-ray spikes were acquired through a trigger data mode with a low threshold.

  4. Registration of the Atmospheric Gamma Radiation on Board the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Andreevsky, S. E.; Kuznetsov, V. D.; Sinelnikov, V. M.

    2017-03-01

    The paper describes the complex of scientific instruments and the algorithm of the "Molniya-Gamma" experiment on measuring gamma-ray fluxes in the energy range of 32-750 keV carried out in 2011 on board the Russian Segment (RS) of the International Space Station (ISS). About 500 thousand energy spectra with a time resolution of 1 min were obtained in 512 energy channels during 232 days. One-second variations in the number of gamma quanta in four energy channels and the triggered fluxes of gamma quanta lasting less than 100 ms were recorded simultaneously. The data obtained allow us to study temporal and spatial variation of gamma-ray radiation to detect terrestrial gamma flashes (TGFs). Data on very large number of gamma-ray spikes were acquired through a trigger data mode with a low threshold.

  5. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    SciTech Connect

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  6. Airborne time-series measurement of soil moisture using terrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas R.; Lipinski, Daniel M.; Peck, Eugene L.

    1988-01-01

    Terrestrial gamma radiation data and independent ground-based core soil moisture data are analyzed. They reveal the possibility of using natural terrestrial gamma radiation collected from a low-flying aircraft to make reliable real-time soil moisture measurements for the upper 20 cm of soil. The airborne data were compared to the crude ground-based soil moisture data set collected at the core sites.

  7. Influence of gamma radiation on microbiological parameters of the ethanolic fermentation of sugar-cane must

    NASA Astrophysics Data System (ADS)

    Alcarde, A. R.; Walder, J. M. M.; Horii, J.

    2003-04-01

    The influence of gamma radiation on reducing the population of some bacteria Bacillus and Lactobacillus that usually contaminate the sugar-cane must and its effects on acidity of the medium and viability of the yeast during fermentation were evaluated. The treatment with gamma radiation reduced the bacterial load of the sugar-cane must. Consequently, the volatile acidity produced during the fermentation of the must decreased and the viability of the yeast afterwards added increased.

  8. Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation

    NASA Astrophysics Data System (ADS)

    Brichard, B.; Fernandez, A. F.; Ooms, H.; Berghmans, F.

    2007-10-01

    We demonstrate the possibility of using Cerenkov radiation to monitor the reactor power and the high energy gamma-ray flux in a high neutron flux reactor. The system employs a radiation-resistant pure silica glass fibre to measure the Cerenkov radiation in the infrared region (800-1100 nm). A model is proposed to determine the order of magnitude of the gamma-ray flux from the measurement. The method and concept can be extended to the monitoring of low reactor powers if Cerenkov radiation is measured in the 450-500 nm region by means of hydrogen-treated fibres.

  9. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-01-19

    We present that the γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy rangemore » between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. In conclusion, the total intensity attributed to the IGRB is (7.2 ± 0.6) × 10–6 cm–2 s–1 sr–1 above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  10. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashi, K.; Hays, E.; Hewitt, J. W.; Ippoliti, P.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Manfreda, A.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sánchez-Conde, M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.

    2015-01-19

    We present that the γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. In conclusion, the total intensity attributed to the IGRB is (7.2 ± 0.6) × 10–6 cm–2 s–1 sr–1 above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.

  11. The Spectrum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashi, K.; Hays, E.; Hewitt, J. W.; Ippoliti, P.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Manfreda, A.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sánchez-Conde, M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.

    2015-01-01

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10-6 cm-2 s-1 sr-1 above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  12. Shelf life extension of fresh turmeric ( Curcuma longa L.) using gamma radiation

    NASA Astrophysics Data System (ADS)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.; Cheruth, Abdul Jaleel

    2009-09-01

    Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 °C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.

  13. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    PubMed

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.

  14. Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach

    NASA Astrophysics Data System (ADS)

    Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.

    2017-01-01

    Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.

  15. Diffusion of radiation belt protons by whistler waves

    NASA Astrophysics Data System (ADS)

    Villalon, Elena; Burke, William J.

    1994-11-01

    Whistler waves propagating near the quasi-electrostatic limit can interact with energetic protons (approximately 80 - 500 keV) that are transported into the radiation belts. The waves may be launched from either the ground or generated in the magnetosphere as a result of the resonant interactions with trapped electrons. The wave frequencies are significant fractions of the equatorial electron gyrofrequency, and they propagate obliquely to the geomagnetic field. A finite spectrum of waves compensates for the inhomogeneity of the geomagnetic field allowing the protons to stay in gyroresonance with the waves over long distances along magnetic field lines. The Fokker-Planck equation is intergrated along the flux tube considering the contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients in energy, cross energy/ pitch angle, and pitch angle are obtained for second-order resonant interactions. They are sown to be proportional to the electric fields amplitudes. Numerical calculations for the second-order interactions show that diffusion dominates near the edge of the loss cone. For small pitch angles the largest diffusion coefficient is in energy, although the cross energy/ pitch angle term is also important. This may explain the induced proton precipitation observed in active space experiments.

  16. Shelf life of ground beef patties treated by gamma radiation.

    PubMed

    Roberts, W T; Weese, J O

    1998-10-01

    The effects of irradiation on microbial populations in ground beef patties vacuum package and irradiated frozen at target doses of 0.0, 1.0, 3.0, 5.0, and 7.0 kGy were determined. Irradiated samples were stored at 4 or -18 degrees C for 42 days, and mesophilic aerobic plate counts (APCs) were periodically determined. Fresh ground beef (initial APC of 10(2) CFU/g) treated with 3.0, 5.0, and 7.0 kGy was acceptable (< 10(7) CFU/g) for 42 days at 4 degrees C. The 1.0 kGy-treated beef samples were acceptable microbiologically (< 10(7) CFU/g) after 42 days but developed an unacceptable off-odor after 21 days. Shelf life diminished in fresh ground beef patties with an initial APC of 10(4) CFU/g. Only beef patties treated with 7.0 kGy were found to be acceptable at 42 days. Beef patties treated at 1.0 and 3.0 kGy reached spoilage APC levels (> 10(7) CFU/g) by day 14 and 21, respectively, whereas patties treated at 5.0 kGy did not spoil until 42 days. The nonirradiated control samples for both batches of ground beef spoiled within 7 days. Microbial counts in ground beef patties stored at -18 degrees C did not change over the 42-day period. Shelf life of ground beef patties stored at 4 degrees C may be extended with gamma radiation, especially at 5.0 and 7.0 kGy. Initial microbial load in ground beef samples was an important shelf life factor.

  17. Effects of gamma radiation on raspberries: safety and quality issues.

    PubMed

    Verde, S Cabo; Trigo, M J; Sousa, M B; Ferreira, A; Ramos, A C; Nunes, I; Junqueira, C; Melo, R; Santos, P M P; Botelho, M L

    2013-01-01

    There is an ever-increasing global demand from consumers for high-quality foods with major emphasis placed on quality and safety attributes. One of the main demands that consumers display is for minimally processed, high-nutrition/low-energy natural foods with no or minimal chemical preservatives. The nutritional value of raspberry fruit is widely recognized. In particular, red raspberries are known to demonstrate a strong antioxidant capacity that might prove beneficial to human health by preventing free radical-induced oxidative stress. However, food products that are consumed raw, are increasingly being recognized as important vehicles for transmission of human pathogens. Food irradiation is one of the few technologies that address both food quality and safety by virtue of its ability to control spoilage and foodborne pathogenic microorganisms without significantly affecting sensory or other organoleptic attributes of the food. Food irradiation is well established as a physical, nonthermal treatment (cold pasteurization) that processes foods at or nearly at ambient temperature in the final packaging, reducing the possibility of cross contamination until the food is actually used by the consumer. The aim of this study was to evaluate effects of gamma radiation on raspberries in order to assess consequences of irradiation. Freshly packed raspberries (Rubus idaeus L.) were irradiated in a (60)Co source at several doses (0.5, 1, or 1.5 kGy). Bioburden, total phenolic content, antioxidant activity, physicochemical properties such as texture, color, pH, soluble solids content, and acidity, and sensorial parameters were assessed before and after irradiation and during storage time up to 14 d at 4°C. Characterization of raspberries microbiota showed an average bioburden value of 10(4) colony-forming units (CFU)/g and a diverse microbial population predominantly composed of two morphological types (gram-negative, oxidase-negative rods, 35%, and filamentous fungi, 41

  18. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values

  19. A Consistent Approach to Solving the Radiation Diffusion Equation

    SciTech Connect

    Hammer, J H; Rosen, M D

    2002-11-06

    Diffusive x-ray-driven heat waves are found in a variety of astrophysical and laboratory settings, e.g. in the heating of a hohlraum used for ICF, and hence are of intrinsic interest. However, accurate analytic diffusion wave (also called Marshak wave) solutions are difficult to obtain due to the strong non-linearity of the radiation diffusion equation. The typical approach is to solve near the heat front, and by ansatz apply the solution globally. This works fairly well due to ''steepness'' of the heat front, but energy is not conserved and it does not lead to a consistent way of correcting the solution or estimating accuracy. We employ the steepness of the front through a perturbation expansion in {var_epsilon} = {beta}/(4+{alpha}), where the internal energy varies as T{sup {beta}} and the opacity varies as T{sup -{alpha}}. We solve using an iterative approach, equivalent to asymptotic methods that match outer (away from the front) and inner (near the front) solutions. Typically {var_epsilon} < 0.3. Calculations are through first order in {var_epsilon} and are accurate to {approx} 10%, which is comparable to the inaccuracy from assuming power laws for material properties. We solve for supersonic waves with arbitrary drive time history, including the case of a rapidly cooling surface, and generalize the method to arbitrary temperature dependence of opacity and internal energy. We also solve for subsonic waves with drive temperature varying as a power of time. In the subsonic case, the specific heat, (pressure/density) and opacity are each assumed to vary as density to a small power, of order {var_epsilon}. We find the theory compares well with radiation hydrodynamics code calculations of the heat front position, absorbed flux and ablation pressure.

  20. Accuracy of soil water content estimates from gamma radiation monitoring data

    NASA Astrophysics Data System (ADS)

    Mao, Jie; Huisman, Johan Alexander; Reemt Bogena, Heye; Vereecken, Harry

    2016-04-01

    Terrestrial gamma radiation is known to be sensitive to soil water content, and could be promising for soil water content determination because of the availability of continental-scale gamma radiation monitoring networks. However, the accuracy of soil water content estimates that can be obtained from this type of data is currently unknown. Therefore, the aim of this study is to assess the accuracy of soil water content estimates from measured time series of gamma radiation. For this, four gamma radiation monitoring stations were each equipped with four soil water content sensors at 5 and 15 cm depth to provide reference soil water content measurements. The contributions of terrestrial radiation and secondary cosmic radiation were separated from the total amount of measured gamma radiation by assuming that the long-term contribution of secondary cosmic radiation was constant, and that variations were related to changes in air pressure and incoming neutrons. In addition, precipitation effects related to atmospheric washout of radon progenies to the ground that cause an increase of gamma radiation were considered by excluding time periods with precipitation and time periods less than three hours after precipitation. The estimated terrestrial gamma radiation was related to soil water content using an exponential function with two fit parameters. For daily soil water content estimates, the goodness of fit ranged from R2= 0.21 to 0.48 and the RMSE ranged from 0.048 to 0.117 m3m-3. The accuracy of the soil water content estimates improved considerably when a weekly resolution was used (RMSE ranged from 0.029 to 0.084 m3m-3). Overall, these results indicate that gamma radiation monitoring data can be used to obtain useful soil water content information. The remaining differences between measured and estimated soil water content can at least partly be explained by the fact that the terrestrial gamma radiation is strongly determined by the upper few centimeters of the soil

  1. Inhibition of radiation degradation by hydrogen-donating hydroaromatics. [gamma radiation

    SciTech Connect

    Kubo, Junichi . Central Technical Research Lab.)

    1993-08-01

    The inhibiting effect of a multicomponent hydroaromatic type additive (HHAP) produced from petroleum which showed prominent radical-scavenging ability with DPPH (2,2-diphenyl-1-picrylhydrazyl) was tested against the radiation degradation ([gamma]-ray in air at room temperature) of mineral oil in comparison with the effect of a hindered phenolic antioxidant, 2,6-di-tert-butyl-p-cresol (DBPC). The obvious effects of HHAP on the restriction of the increases of acid value and carbonyl absorbance were preserved up to 2,500 kGy. However, the structural changes that occurred in DBPC were shown by analyses of the carbonyl absorbance and of the OH group absorbance by IR. DBPC itself was analyzed by gas chromatography as the irradiation dose accumulated. The differences in the inhibiting effects of a hindered phenolic antioxidant and HHAP between the thermal oxidation and radiation degradation of polyolefins are discussed from these results. HHAP, which does not have a functional group containing heteroatoms, can be considered to be resistant to radiation as well as to heat.

  2. Protection effects of condensed bromoacenaphthylene on radiation deterioration of ethylene-propylene-diene rubber. [Gamma radiation

    SciTech Connect

    Morita, Y.; Hagiwara, M.; Kasai, N.

    1982-09-01

    As a continuation of a series of the studies on the flame and ..gamma..-radiation resistant modification of ethylene-propylene-diene rubber (EPDM), condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant was synthesized and its effects on the radiation resistance of EPDM were investigated. The radiation resistance evaluated by measuring tensile properties of irradiated sheets of 2 mm thick was found improved greatly by adding con-BACN together with ordinary rubber ingredients but decreased by decabromodiphenylether (DBDPE) that has bromins in aromatic rings as con-BACN. When EPDM sheets of 1 mm thick were irradiated in oxygen at a dose rate of 1 X 10/sup 5/ rad/h, the weight swelling ratio increased with increasing dose, indicating that oxidative main chain scission is predominant under the irradiation conditions. On the other hand, crosslinking was shown to be predominant in nitrogen. From the results of the swelling experiments with different additives, it was concluded that DBDPE accelerates both the main chain scission in oxygen and the crosslinking in nitrogen. In contrast to this, con-BACN reduced the chain scission in oxygen. This observation was accounted by the assumption that the influence of the oxidative chain scission is partly compensated by the concurrent crosslinking which takes place through additions of con-BACN to substrate polymers even in the presence of oxygen.

  3. Principles of radiation terrain mapping with SiPM gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Trushkina, Anna V.; Ryzhova, Victoria A.; Korotaev, Valery V.; Denisov, Victor M.; Radilov, Andrey V.

    2017-06-01

    The paper is about field and special methods of radiation terrain mapping with the identification of their distinctive features, advantages and disadvantages of each of them. The applicability of methods in various situations of radiation contamination is shown. An analysis of sources of radioactive radiation and of the situation of radiation contamination in Russia has been carried out. Different detectors of ionizing radiation are compared. It is proved that SiPM combines high performance and operational characteristics most effectively, making it possible to use it in a gamma spectrometer for any type of radiation mapping.

  4. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Singh, S P; Mudahar, Gurmel S; Dhaliwal, A S

    2015-06-01

    Different gamma radiation interaction parameters has been measured experimentally for the prepared diaspore-flyash concretes at 59.54, 662, 1173 and 1332 keV using narrow-beam transmission geometry and results are found to be in good agreement with theoretical values computed with a computer programme, WinXCom. The radiation exposure rate and absorbed dose rate for the gamma radiation with and without shielding of diaspore-flyash concretes have been determined using linear attenuation results. The results show that on average, there is reduction of 95%, 53% and 40% in dose rate for gamma sources (241)Am, (137)Cs and (60)Co, respectively with diaspore-flyash concretes as shielding material. Other health physics parameters namely equivalent dose, effective dose, gamma flux and energy fluence rate have also been determined.

  6. Post Situ neutron and gamma radiation damage tests on different quartz types

    NASA Astrophysics Data System (ADS)

    Duru, F.; Baker, D.; Schletzbaum, J.; Bruecken, P.; Onel, Y.; Konik, A.; Akgun, U.

    2016-10-01

    Post-Situ neutron and gamma radiation damage studies performed on seven types of quartz fibers are reported. All fibers contained quartz cores, some of which were UV enhanced. The fiber cladding was either polymer or quartz, while the buffer was either polymide or acrylite. Previous studies with electron and proton irradiation on numerous types of quartz fibers have shown different optical degradation levels. However, neutron and gamma irradiation has not been investigated for similar quartz fibers before. After 17.6 × 104 Gray of neutron and 73.5 × 104 Gray of gamma radiation, wavelength specific damage to each type of fibers was determined. It is seen that the FBP type quartz fiber by Polymicro shows the least damage due to neutron and gamma radiations.

  7. Effect of gamma radiation on morphological & optical properties of ZnO nanopowder

    NASA Astrophysics Data System (ADS)

    Qindeel, Rabia

    Gamma radiation is the most energetic, highly penetrating electromagnetic radiation with extremely high frequency. In this light, the influence of gamma irradiation on the morphological and the optical properties of zinc oxide (ZnO) nanopowder is investigated for different applications. In particular, the zinc oxide (ZnO) nanopowder is prepared by the homogenous precipitation method with the post-oxidation annealing taking place in air atmosphere. The optical properties of the ZnO nanopowder are observed using a UV-Vis spectrophotometer in the wavelength range of 200-800 nm, while scanning electron microscopy (SEM) is used for surface analysis. Samples are irradiated using a Co60 gamma source with high and low dose. The energy band gap of ZnO nanopowder is calculated before and after gamma radiation.

  8. An integrated view of gamma radiation effects on marine fauna: from molecules to ecosystems.

    PubMed

    Won, Eun-Ji; Dahms, Hans-U; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-11-01

    Accidental release of nuclides into the ocean is causing health risks to marine organisms and humans. All life forms are susceptible to gamma radiation with a high variation, depending on various physical factors such as dose, mode, and time of exposure and various biological factors such as species, vitality, age, and gender. Differences in sensitivity of gamma radiation are also associated with different efficiencies of mechanisms related to protection and repair systems. Gamma radiation may also affect various other integration levels: from gene, protein, cells and organs, population, and communities, disturbing the energy flow of food webs that will ultimately affect the structure and functioning of ecosystems. Depending on exposure levels, gamma radiation induces damages on growth and reproduction in various organisms such as zooplankton, benthos, and fish in aquatic ecosystems. In this paper, harmful effects of gamma-irradiated aquatic organisms are described and the potential of marine copepods in assessing the risk of gamma radiation is discussed with respect to physiological adverse effects that even affect the ecosystem level.

  9. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  10. 'Averaged' Diffusion of Radiation in Spectral Lines intra Interjacent Plasma-Gas Layer

    SciTech Connect

    Demura, A. V.; Demchenko, G. V.

    2008-10-22

    The approximate model of 'averaged diffusion' for resonance radiation transfer is introduced. It allows to reduce computational efforts preserving satisfactory accuracy while modeling divertor plasmas.

  11. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.

    PubMed

    Khairnar, Nivedita P; Kamble, Vidya A; Misra, Hari S

    2008-01-01

    Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break (DSB) repair enzyme in some bacteria. Recombinant Deinococcus expressing the recBC genes of E. coli showed nearly three-fold improvements in near-UV tolerance and nearly 2 log cycle reductions in wild type gamma radiation resistance. RecBC over expression effect on radiation response of D. radiodurans was independent of indigenous RecD. Loss of gamma radiation tolerance was attributed to the enhanced rate of in vivo degradation of radiation damaged DNA and delayed kinetics of DSB repair during post-irradiation recovery. RecBC expressing cells of Deinococcus showed wild type response to Far-UV. These results suggest that the overproduction of RecBC competes with the indigenous mechanism of gamma radiation damaged DNA repair while it supports near-UV tolerance in D. radiodurans.

  12. Mold and aflatoxin reduction by gamma radiation of packed hot peppers and their evolution during storage.

    PubMed

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Ariño, Agustin

    2012-08-01

    The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases.

  13. Preliminary results from the first satellite of a high-resolution germanium gamma-ray spectrometer: Description of instrument, some activation lines encountered, and studies of the diffuse spectra

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.; Reagan, J. B.; Johnson, R. G.

    1973-01-01

    Gamma radiation from terrestrial and extraterrestrial sources were investigated with a high resolution Ge(Li) spectrometer-cryogen system flown onboard a low altitude, spin stabilized, polar orbiting satellite. A brief description is given of the instrument and preliminary results obtained from earth orbit are discussed. Attempts were made to use angular distributions and geomagnetic latitude spectral variations to determine diffuse background spectrum, detect gamma ray line emissions from solar flares, and search for positron annihilation radiation coming from the direction of the galactic center.

  14. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view.

  15. Gamma radiation monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo B.; Nitschke, Kim

    2016-04-01

    Continuous monitoring of gamma radiation is often performed in nuclear facilities and industrial environments as a way to control the ambient radioactivity and give warning of potential accidents. However, gamma radiation is also ubiquitous in the natural environment. The main sources are i) cosmic radiation from space, including secondary radiation from the interaction with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232) and their decay products (e.g. Radium, Ra-226) , and iii) airborne Radon gas (Rn-222), which is the dominant source of natural environmental radioactivity. The temporal variability of this natural radiation background needs to be well understood and quantified in order to discriminate non-natural sources of radiation in the environment and artificial radionuclides contamination. To this end, continuous gamma radiation monitoring is being performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The site is unique for the study of the natural radioactivity background on one hand due to the remote oceanic geographical location, in the middle of the North Atlantic Ocean and clear of direct continental influence, and on the other hand because of the comprehensive dataset of atmospheric parameters that is available for enhancing the interpretation of the radiation measurements, as a result of the vast array of very detailed and high-quality atmospheric measurements performed at the ARM-ENA facility. Gamma radiation in the range 475 KeV to 3000 KeV is measured continuously with a 3" x 3" NaI(Tl) scintillator. The campaign started started in May 2015, with gamma

  16. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good

  17. Investigation of {gamma} radiation from {sup 178}Hf in the respective (n, n Prime {gamma}) reaction

    SciTech Connect

    Govor, L. I.; Demidov, A. M.; Kurkin, V. A. Mikhailov, I. V.

    2012-12-15

    The spectra and angular distributions of gamma rays were measured in the reaction {sup 178}Hf(n, n Prime {gamma}) induced by a beam of fast reactor neutrons. Data onmultipole mixtures in gamma transitions and a lot of new information about gamma transitions of energy 1.5 to 3.0 MeV were obtained. A comparison of these results with information known from the respective (n, {gamma}) reaction made it possible to refine the schemes of deexcitation of {sup 178}Hf levels at energies above 1.5 MeV, to determine more precisely features of these levels, and to introduce new levels and rotation bands at excitation energies of about 2MeV.

  18. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    SciTech Connect

    Osterhuber, R.; Fehrke, F.; Condreva, K.

    1998-05-01

    Incoming, background cosmic radiation constantly fluxes through the earth`s atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters` worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location.

  19. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    NASA Technical Reports Server (NTRS)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  20. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    SciTech Connect

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-03-10

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton`s method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton`s method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step.

  1. Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation

    SciTech Connect

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions

  2. SMM detection of interstellar Al-26 gamma radiation

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Rieger, E.

    1985-01-01

    The gamma ray spectrometer on the Solar Maximum Mission Satellite has detected the interstellar Al-26 line when the Galactic center traversed its aperture. The center of the emission is consistent with the location of the Galactic center, but the spatial distribution is presently not well defined. The total flux in the direction of the Galactic center is 4.3 + or - 0.4) x .0001 gamma/sq cm-s-rad for an assumed population I distribution.

  3. METHOD AND APPARATUS FOR PRODUCING AND ANALYZING POLARIZED GAMMA RADIATION

    DOEpatents

    Hamermesh, M.; Hanna, S.S.; Perlow, G.J.

    1964-04-21

    A method of polarizing and resolving the plane of polarization of gamma rays is described. Polarization is produced by positioning a thin disc of ferromagnetic metal, cortaining /sup 57/Co, in a magnetic field. Resolution is accomplished by rotating a thin disc of iron enriched in /sup 57/Fe relative to a second magnetic field and noting the change of gamma absorption at each rotational position. (AEC)

  4. The radiation tolerance of MTP and LC optical fibre connectors to 500 kGy(Si) of gamma radiation

    NASA Astrophysics Data System (ADS)

    Hall, D. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.

    2012-04-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require high-speed optical links to read out data from the detectors. The optical fibre connectors contained within such a link must have a small form factor and be capable of operating in the harsh radiation environment at the HL-LHC. MTP ribbon fibre connectors and LC single fibre connectors were exposed to 500 kGy(Si) of gamma radiation and their radiation hardness was investigated. Neither type of connector exhibited evidence for any significant radiation damage and both connectors could be qualified for use at HL-LHC detectors.

  5. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2012-04-23

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less

  6. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D’Ammando, F.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grégoire, T.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hayashi, K.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Linden, T.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Roth, M.; Sbarra, C.; Schmitt, J.; Sgrò, C.; Siegal-Gaskins, J.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Komatsu, E.

    2012-04-23

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidence level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  7. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Riley, William J.; Kueppers, Lara M.; Biraud, Sebastien C.; Torn, Margaret S.

    2016-07-01

    Gross primary productivity (GPP) has been reported to increase with the fraction of diffuse solar radiation, for a given total irradiance. The correlation between GPP and diffuse radiation suggests effects of diffuse radiation on canopy light-use efficiency, but potentially confounding effects of vegetation phenology have not been fully explored. We applied several approaches to control for phenology, using 8 years of eddy-covariance measurements of winter wheat in the U.S. Southern Great Plains. The apparent enhancement of daily GPP due to diffuse radiation was reduced from 260% to 75%, after subsampling over the peak growing season or by subtracting a 15 day moving average of GPP, suggesting a role of phenology. The diffuse radiation effect was further reduced to 22% after normalizing GPP by a spectral reflectance index to account for phenological variations in leaf area index LAI and canopy photosynthetic capacity. Canopy photosynthetic capacity covaries with diffuse fraction at a given solar irradiance at this site because both factors are dependent on day of year or solar zenith angle. Using a two-leaf Sun-shaded canopy radiative transfer model, we confirmed that the effects of phenological variations in photosynthetic capacity can appear qualitatively similar to the effects of diffuse radiation on GPP and therefore can be difficult to distinguish using observations. The importance of controlling for phenology when inferring diffuse radiation effects on GPP raises new challenges and opportunities for using radiation measurements to improve carbon cycle models.

  8. Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; van Beek, Patrick; Hellmund, Johannes; Durante, Marco; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2015-11-01

    In order to measure the uptake and diffusion of 222Rn in biological material, an exposure chamber was constructed where cell cultures, biological tissues and mice can be exposed to 222Rn-activities similar to therapy conditions. After exposure, the material is transferred to a gamma spectrometer and the decay of 214Pb and 214Bi is analyzed. From the time kinetics of these decays the total amount of the initial 222Rn concentration can be calculated. In this paper the design and construction as well as first test measurements are reported.

  9. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio).

    PubMed

    Praveen Kumar, M K; Shyama, S K; Kashif, Shamim; Dubey, S K; Avelyno, D'costa; Sonaye, B H; Kadam Samit, B; Chaubey, R C

    2017-08-01

    The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure. Copyright © 2017. Published by Elsevier Inc.

  10. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.

    PubMed

    Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

    2010-01-01

    Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p < .05) in serum and testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats.

  11. High-energy gamma radiation from Geminga observed by EGRET

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Bertsch, D. L.; Brazier, K. T. S.; Chiang, J.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kwok, P. W.

    1994-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) has carried out extensive studies of the gamma-ray source Geminga. Following the detection of pulsed X-rays (Halpern and Holt 1992) from Geminga, Bertsch et al. (1992) reported the same 237 ms periodicity to be visible in the EGRET data. A full analysis of the Geminga source shows that the energy spectrum is compatible with a power law with a spectral index of -1.50 +/- 0.08 between 30 MeV and 2 GeV. A falloff relative to the power law is observed for energies above 2 GeV. Phase-resolved spectra also show power laws with high-energy cutoffs, but with significant variation of the spectral index with phase. No unpulsed emission is observed. No evidence for time variation was found within the EGRET observations.

  12. High-energy gamma radiation from Geminga observed by EGRET

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Bertsch, D. L.; Brazier, K. T. S.; Chiang, J.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kwok, P. W.

    1994-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) has carried out extensive studies of the gamma-ray source Geminga. Following the detection of pulsed X-rays (Halpern and Holt 1992) from Geminga, Bertsch et al. (1992) reported the same 237 ms periodicity to be visible in the EGRET data. A full analysis of the Geminga source shows that the energy spectrum is compatible with a power law with a spectral index of -1.50 +/- 0.08 between 30 MeV and 2 GeV. A falloff relative to the power law is observed for energies above 2 GeV. Phase-resolved spectra also show power laws with high-energy cutoffs, but with significant variation of the spectral index with phase. No unpulsed emission is observed. No evidence for time variation was found within the EGRET observations.

  13. Quality of life: Gamma Knife surgery and whole brain radiation therapy.

    PubMed

    Nesbitt, Janice

    2007-01-01

    Cerebral metastasis of cancers originating outside the brain has traditionally been treated with whole brain radiation therapy (WBRT). Gamma Knife Radiosurgery (GKS) provides safe and effective alternative treatment that is less invasive and has fewer side effects. Both WBRT and GKS are reviewed and discussed in terms of quality of life and health outcomes. The case studies of two individuals who underwent Gamma Knife surgery are presented.

  14. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores).

    PubMed

    Barbosa, S M; Miranda, P; Azevedo, E B

    2017-06-01

    This work addresses the short-term variability of gamma radiation measured continuously at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM). The temporal variability of gamma radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 h are coincident with heavy precipitation and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the PBL height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, since the drop growing process is dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays from all gamma-emitting elements on the ground. Anomalies occurring in the absence of precipitation are found to be associated with a diurnal cycle of maximum gamma counts before sunrise decreasing to a minimum in the evening, which are observed in conditions of thermal stability and very weak winds enabling the build-up of near surface radon progeny during the night. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Botelho, M. L.; Leal, J. P.; Gil, M. H.

    2005-04-01

    In the present study, 2-hydroxyethyl methacrylate has been grafted onto chitosan by using either chemical initiation, or photo-induction or gamma radiation-induced polymerisation, all under heterogeneous conditions. The evidence of grafting was provided by Fourier transform infrared spectroscopy and thermal analysis. The results concerning the effect of initiator concentration, initial monomer concentration and dose rate influencing on the yield of grafting reactions are presented. These suggest that gamma irradiation is the method that leads to higher yields of grafting.

  16. LOWER BOUND ON THE COSMIC TeV GAMMA-RAY BACKGROUND RADIATION

    SciTech Connect

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.

    2016-02-20

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as 2.8 × 10{sup −8}(E/100 GeV){sup −0.55} exp(−E/2100GeV)[GeV cm{sup −2} s{sup −1} sr{sup −1}] < E{sup 2}dN/dE < 1.1 × 10{sup −7}(E/100 GeV){sup −0.49} [GeV cm{sup −2} s{sup −1} sr{sup −1}], where the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum. Two nearby blazars, Mrk 421 and Mrk 501, explain ∼70% of the cumulative background flux at 0.8–4 TeV, while extreme blazars start to dominate at higher energies. We also provide the cumulative background flux from each population, i.e., blazars, radio galaxies, and starburst galaxies which will be the minimum requirement for their contribution to the cosmic TeV gamma-ray background radiation.

  17. Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA

    PubMed Central

    Miao, YuJi; Hu, XiaoDan; Min, Rui; Liu, PeiDang; Zhang, HaiQian

    2016-01-01

    A zinc finger motif is an element of proteins that can specifically recognize and bind to DNA. Because they contain multiple cysteine residues, zinc finger motifs possess redox properties. Ionizing radiation generates a variety of free radicals in organisms. Zinc finger motifs, therefore, may be a target of ionizing radiation. The effect of gamma radiation on the zinc finger motifs in transcription factor IIIA (TFIIIA), a zinc finger protein, was investigated. TFIIIA was exposed to different gamma doses from 60Co sources. The dose rates were 0.20 Gy/min and 800 Gy/h, respectively. The binding capacity of zinc finger motifs in TFIIIA was determined using an electrophoretic mobility shift assay. We found that 1000 Gy of gamma radiation impaired the function of the zinc finger motifs in TFIIIA. The sites of radiation-induced damage in the zinc finger were the thiol groups of cysteine residues and zinc (II) ions. The thiol groups were oxidized to form disulfide bonds and the zinc (II) ions were indicated to be reduced to zinc atoms. These results indicate that the zinc finger motif is a target domain for gamma radiation, which may decrease 5S rRNA expression via impairment of the zinc finger motifs in TFIIIA. PMID:27803644

  18. The properties of gamma-radiation and high-energy neutron fluxes in "MIR" station orbit.

    PubMed

    Bogomolov, A V; Bogomolov, V V; Denisov, Yu I; Logachev, Yu I; Svertilov, S I; Kudryavtsev, M I; Lyagushin, V I; Ershova, T V

    2002-10-01

    The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given.

  19. Gamma radiation induced degradation in PE-PP block copolymer

    SciTech Connect

    Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N.

    2012-06-05

    In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

  20. Determination of the diffusion coefficient of hydrogen in gamma titanium aluminides during electrolytic charging

    SciTech Connect

    Sundaram, P.A.; Wessel, E.; Clemens, H.; Kestler, H.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.

    2000-03-14

    The diffusion coefficient of hydrogen in some gamma based titanium aluminide alloys was determined at room temperature using an electrochemical techniques. A cast Ti-48Al-2Cr alloy as well as Ti-46.5Al-4(Cr,Nb,Ta,B) sheet material with primary annealed and designed fully lamellar microstructures were subjected to cathodic hydrogen charging at room temperature in the galvanostatic mode. The potential variation with time was monitored form which data the values of the diffusion coefficient of hydrogen, D were calculated form well known error function/infinite series solutions to Fick's second law. Very good correlation was obtained with respect to theoretical calculations. The diffusion coefficients appear to be in close agreement with those for the cast alloy calculated from microhardness measurements. The value of D can be overestimated for thick specimens. Results show that neither the microstructure in terms of grain/lamellar colony size, nor the charging current density, appear to have a significant effect on the value of D. Lattice diffusion appears to be rate controlling.

  1. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  2. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms.

    PubMed

    Chacko, Tiju; Menon, Aditya; Majeed, Teeju; Nair, Sivaprabha V; John, Nithu Sara; Nair, Cherupally Krishnan Krishnan

    2016-11-17

    Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.

  3. Dependence on latitude of the relation between the diffuse fraction of solar radiation and the radiation and the ratio of global-to-extraterrestrial radiation for monthly average daily values

    SciTech Connect

    Soler, A. )

    1990-01-01

    An approach for the prediction of the monthly average daily diffuse radiation, {bar H}{sub d}, was proposed by Page in 1961. The Page method is based on the use of the linear correlation {bar H}{sub d}/{bar H} = c + d{bar H}/{bar H}{sub o}, where {bar H} and {bar H}{sub o} are, respectively, the monthly average daily values of global and extraterrestrial radiation, both on a horizontal surface. The values of c and d are a function of atmospheric conditions, cloud cover conditions/types, as well as latitude. In the present work the author studies the dependence on latitude of c and d for European locations with 36{degree}N < {gamma} < 61{degree}N (longitudes between 29{degree}E and 11{degree}W). The dependence is first studied using 28 values of c and d obtained using experimental values of {bar H} and {bar H}{sub d}. Next the dependence on {gamma} is studied using experimental values of {bar H} for 64 European locations, obtained for the period 1966-1975, and corresponding values of {bar H}{sub d} estimated using the European Community Solar Radiation Model (E.C.S.R.M.). In both cases a minimum for c vs. {gamma} and a maximum for d vs. {gamma} are obtained for similar values of {gamma}. Using the E.C.S.R.M. it is shown that both, the minimum and the maximum can be explained by the way {bar H}{sub d}/{bar H} and {bar H}/{bar H}{sub o} vary with {gamma}.

  4. SAS-2 observations of the high energy gamma radiation from the Vela region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

    1974-01-01

    Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays.

  5. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation

    SciTech Connect

    Mitchel, R.E.; Smith, B.P.; Wheatly, N.; Chan, A.; Child, S.; Paterson, M.C.

    1985-11-01

    Human xeroderma pigmentosum (XP) or Fanconi anemia (FA) fibroblasts displayed shouldered 45/sup 0/C heat survival curves not significantly different from normal fibroblasts, a result similar to that previously found for ataxia telangiectasia (AT) cells, indicating heat resistance is not linked to either uv or low-LET ionizing radiation resistance. Hyperthermia (45/sup 0/C) sensitized normal and XP fibroblasts to killing by gamma radiation but failed to sensitize the cells to the lethal effects of 254 nm uv radiation. Thermal inhibition of repair of ionizing radiation lesions but not uv-induced lesions appears to contribute synergistically to cell death. The thermal enhancement ratio (TER) for the synergistic interaction of hyperthermia (45/sup 0/C, 30 min) and gamma radiation was significantly lower in one FA and two strains (TER = 1.7-1.8) than that reported previously for three normal strains (TER = 2.5-3.0). These XP and FA strains may be more gamma sensitive than normal human fibroblasts. Since hyperthermia treatment only slightly increases the gamma-radiation sensitivity of ataxia telangiectasia (AT) fibroblasts compared to normal strains, it is possible that the degree of thermal enhancement attainable reflects the genetically inherent ionizing radiation repair capacity of the cells. The data indicate that both repair inhibition and particular lesion types are required for lethal synergism between heat and radiation. We therefore postulate that the transient thermal inhibition of repair results in the conversion of gamma-induced lesions to irrepairable lethal damage, while uv-type damage can remain unaltered during this period.

  6. The high-energy radiation dose received aboard aircraft exposed to a terrestrial gamma- ray flash

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Grefenstette, B. W.; Hazelton, B. J.

    2008-12-01

    Terrestrial gamma-ray flashes (TGF) are large bursts of high energy radiation observed from space that originate from our atmosphere. These millisecond long flashes of gamma-rays are often so bright that they saturate detectors, even from 600 km away. Several independent observations suggest that terrestrial gamma-ray flashes originate from thunderstorms deep within the atmosphere, near the altitudes where commercial aircraft fly. Based upon the flux of gamma-rays observed by the RHESSI spacecraft, detailed gamma-ray propagation models show that at least 1.0E17 energetic, multi-MeV electrons, are typically produced at the source. This large number of energetic electrons could potentially be a hazard for aircraft passengers, pilots and electronics. Using theoretical and observational estimates of the size of the TGF source region, we calculate the high-energy radiation dose from the energetic electrons and the gamma-rays for an aircraft exposed to the TGF from a close range. Finally, we shall discuss upcoming observations that will help constrain this radiation risk from TGFs.

  7. Gamma radiation exposure of accompanying persons due to Lu-177 patients

    NASA Astrophysics Data System (ADS)

    Kovan, Bilal; Demir, Bayram; Tuncman, Duygu; Capali, Veli; Turkmen, Cuneyt

    2015-07-01

    Neuroendocrine tumours (NET) are cancers usually observed and arisen in the stomach, intestine, pancreas and breathing system. Recently, radionuclide therapy applications with Lu-177 peptide compound are rapidly growing; especially effective clinical results are obtained in the treatment of well-differentiated and metastatic NET. In this treatment, Lu-177-DOTA, a beta emitter radioisotope in the radiopharmaceutical form, is given to the patient by intravenous way. Lu-177 has also gamma rays apart from beta rays. Gamma rays have 175 keV average energy and these gamma rays should be under the control in terms of radiation protection. In this study, we measured the exposure dose from the Lu-177 patient.

  8. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  9. (Gamma scattering in condensed matter with high intensity Moessbauer radiation)

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

  10. Inhaled /sup 147/Pm and/or total-body gamma radiation: Early mortality and morbidity in rats

    SciTech Connect

    Filipy, R.E.; Lauhala, K.E.; McGee, D.R.; Cannon, W.C.; Buschbom, R.L.; Decker, J.R.; Kuffel, E.G.; Park, J.F.; Ragan, H.A.; Yaniv, S.S.; Scott, B.R.

    1989-05-01

    Rats were given doses of /sup 60/Co gamma radiation and/or lung burdens of /sup 147/Pm (in fused aluminosilicate particles) within lethal ranges in an experiment to determine and compare morbidity and mortality responses for the radiation insults within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Acute mortality and morbidity from inhaled promethium were caused primarily by radiation pneumonitis and pulmonary fibrosis that occurred more than 53 days after exposure. Acute mortality and morbidity from total-body gamma irradiation occurred within 30 days of exposure and resulted from the bone-marrow radiation syndrome. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell levels and by reduced body weight gain in animals that survived the acute gamma radiation syndrome. Inhaled promethium caused a loss of body weight and diminished pulmonary function, but its only effect on blood cell levels was lymphocytopenia. Combined gamma irradiation and promethium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Promethium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the later effect of promethium lung burdens. 70 refs., 68 figs., 21 tabs.

  11. Radiation-enhanced thermal diffusion of transition metal and rare earth ions into II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Martinez, Alán.; Williams, Lamario; Gafarov, Ozarfar; Martyshkin, Dmitry; Fedorov, Vladimir; Mirov, Sergey

    2015-02-01

    We report on study of gamma radiation-enhanced thermal diffusion of Transition Metal and Rare Earth ions into IIVI semiconductor crystals. ZnSe and ZnS samples with of iron thin film deposited on one facet were sealed in evacuated quartz ampoules at 10-3 Torr. The crystals were annealed for 14 days at 950°C under γ-irradiation from 60Co source. The irradiation dose rates of 43.99 R/s, 1.81 R/s were varied by distance between 60Co source and furnaces. For comparison, the samples were also annealed without irradiation at the same temperature. The spatial distributions of transition metal were measured by absorption of focused laser radiation at 5T2-5E mid-IR transitions of iron ions. In addition, samples of ZnSe were similarly sealed in evacuated quartz ampoules in the presence of Praseodymium metal and annealed at 950°C under 43.99 R/s and 0 R/s and the diffusion lengths and Pr concentrations were compared. The γ-irradiation results in better intrusion of the iron ions from the metal film and increase of the diffusion length at ~25%, while Praseodymium diffusion is dramatically enhanced by γ-irradiation during the annealing process.

  12. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  13. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    SciTech Connect

    Patel, U.D.; Govindarajan, P.; Dave, P.J. )

    1989-02-01

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  14. Reconciliation of CDM abundance and {mu}{yields}e{gamma} in a radiative seesaw model

    SciTech Connect

    Suematsu, Daijiro; Toma, Takashi; Yoshida, Tetsuro

    2009-05-01

    We reexamine relic abundance of a singlet fermion as a cold dark matter candidate, which contributes to the neutrino mass generation through radiative seesaw mechanism. We search solutions for Yukawa couplings and the mass spectrum of relevant fields to explain neutrino oscillation data. For such solutions, we show that an abundance of a lightest singlet fermion can be consistent with WMAP data without conflicting with both bounds of {mu}{yields}e{gamma} and {tau}{yields}{mu}{gamma}. This reconciliation does not need any modification of the original radiative seesaw model other than by specifying flavor structure of Yukawa couplings and taking account of coannihilation effects.

  15. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.; Medina, N. H.; Aguiar, V. A. P.

    2010-08-04

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  16. The use of the diffusion approximation for simulating radiation and thermal processes in the skin

    NASA Astrophysics Data System (ADS)

    Kovtanyuk, A. E.; Grenkin, G. V.; Chebotarev, A. Yu.

    2017-08-01

    Radiation and thermal processes in skin exposed to solar radiation are simulated based on the diffusion model of radiative-conductive heat exchange. Using the model proposed for the parameters corresponding to radiation with a wavelength of 800 nm, the contributions of thermal radiation induced by the skin and the reflection and refraction effects are estimated, and the photoprotective properties of titanium dioxide nanoparticles (TiO2) when introduced into the stratum corneum are studied.

  17. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  18. Developmental inhibition and DNA damage of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) by gamma radiation.

    PubMed

    Kim, Junheon; Chung, Soon-Oh; Jang, Miyeon; Jang, Sin Ae; Park, Chung Gyoo

    2015-01-01

    Gamma radiation on Helicoverpa armigera Hübner was performed to assess developmental inhibition and to identify a potential quarantine treatment dose of the radiation. Gamma radiation ((60)Co) treatment at different doses of 50, 100, 200, 300, and 400 Gy was carried out with egg, larvae, pupae and adults of H. armigera. Gamma radiation induced developmental inhibition of all stages of H. armigera. The effective dose values required for inhibition 99% (ED(99)) of hatching, pupation and adult emergence from the irradiated eggs were 550.7, 324.9 and 136.4 Gy, respectively. ED(99) values for inhibition of the larvae to adult emergence was 200.0 Gy. Irradiation on pupae could not completely inhibit adult emergence even at 400 Gy. ED(99) value for inhibition of F(1) egg hatchability from the irradiated adults was estimated to be 229.5 Gy. This study suggests that gamma radiation is a possible alternative to phytosanitary treatments. Irradiation treatment with minimum dose of 200 Gy can be suggested as optimum dose for larval treatment in quarantine.

  19. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation.

    PubMed

    Kapoor, M; Lozano, G

    1998-03-17

    The tumor suppressor p53 is a nuclear phosphoprotein in which DNA-binding activity is increased on exposure to DNA-damaging agents such as UV or gamma radiation by unknown mechanisms. Because phosphorylation of p53 at the casein kinase (CK) II site activates p53 for DNA-binding function in vitro, we sought to determine the in vivo relevance of phosphorylation at this site after UV and gamma radiation. A polyclonal antibody was generated that binds to bacterially expressed p53 only when phosphorylated in vitro by CK II. Using this antibody, we showed that p53 is phosphorylated at the CK II site upon UV treatment of early passage rat embryo fibroblasts and RKO cells. In addition, DNA-binding assays indicated that phosphorylated p53 bound to a p53-responsive element, suggesting functional activation. However, gamma radiation, which also stabilizes p53, did not result in phosphorylation at the CK II site. These results indicate that phosphorylation at the CK II site is one of the post-translational mechanisms through which p53 is activated in response to UV radiation and that different mechanisms activate p53 after DNA damage by gamma radiation.

  20. Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats.

    PubMed

    Orhon, Zeynep Nur; Uzal, Cem; Kanter, Mehmet; Erboga, Mustafa; Demiroglu, Murat

    2016-05-01

    The aim of this study was to compare the efficacy of Nigella sativa in protection of jejunal mucosa against harmful effects of gamma radiation. Radiotherapy group received abdominal gamma radiation of 15Gy in addition to physiological saline. Radiotherapy+Nigella sativa treatment group received abdominal gamma radiation of 15Gy in addition to Nigella sativa treatment in the amount of 400mg/kg. Radiotherapy and treatment groups were sacrificed 3 days after the exposure to irradiation. Then, jejunum samples were harvested for biochemical and histological assessment of mucosal injury. Nigella sativa treatment was found to significantly lower elevated tissue malondialdehyde (MDA) levels and, to raise reduced glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in intestinal tissues samples. Single dose 15Gy gamma-irradiation was noted to result in a marked jejunal mucosal injury. Three days after exposure to irradiation, the villi and Lieberkühn crypts were observed as denuded, and villous height diminished. Concomitantly with inflammatory cell invasion, capillary congestion and ulceration were observed in the atrophic mucosa. Nigella sativa treatment significantly attenuated the radiation induced morphological changes in the irradiated rat jejunal mucosa. Nigella sativa has protective effects against radiation-induced damage, suggesting that clinical transfer is feasible. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  2. Aberrant megakaryocytopoiesis preceding radiation-induced leukemia in the dog. [Gamma radiation

    SciTech Connect

    Tolle, D.V.; Seed, T.M.; Cullen, S.M.; Poole, C.M.; Fritz, T.E.

    1982-01-01

    Six of nine decedent beagles exposed continuously to 2.5 R*/22 hour day of whole-body 60Co gamma-radiation died with myeloproliferative diseases: three cases of myelogenous leukemia and one each of monocytic leukemia, erythroleukemia, and erythremic myelosis. The three dogs that died with myelogenous leukemia had micromegakaryocytes and megakaryoblasts in the peripheral blood during the preleukemic phase when myeloblasts were not observed in the peripheral blood or in increased numbers in the bone marrow. In this study we have examined the megakaryocytes during the preleukemic period by a combination of light, transmission, and scanning electron microscopy. Morphologic abnormalities seen by light microscopy included mononucleated and binucleated forms, many with cytoplasmic blebs. The small mononuclear forms in the bone marrow tended to form clusters. Ultrastructural features included a paucity of both specific alpha granules and dense granules. The micromegakaryocytes showed dysgenesis of the demarcation membrane system. This membrane system appeared disorganized with a few dilated round, oval, or rarely, elongated vesicles and showed no evidence of platelet formation. The cells also had a paucity of endoplasmic reticulum, few mitochrondria, and sparse glycogen accumulations. The scarcity of cytoplasmic organelles gave a pale immature appearance to the cytoplasm. By scanning electron microscopy, the sponge-like surface of large mature megakaryocytes from unirradiated marrow contrasted with the characteristically smooth, topographically featureless surfaces of the micromegakaryocytes from preleukemic dogs.

  3. Aberrant megakaryocytopoiesis preceding radiation-induced leukemia in the dog. [Gamma radiation

    SciTech Connect

    Tolle, D.V.; Seed, T.M.; Cullen, S.M.; Poole, C.M.; Fritz, T.E.

    1982-01-01

    Six of nine decedent beagles exposed continuously to 2.5 R/22 hour day of whole-body /sup 60/Co ..gamma..-radiation died with myeloproliferative diseases: three cases of myelogenous leukemia and one each of monocytic leukemia, erythroleukemia, and erythremic myelosis. The three dogs that died with myelogenous leukemia had micromegakaryocytes and megakaryoblasts in the peripheral blood during the preleukemic phase when myeloblasts were not observed in the peripheral blood or in increased numbers in the bone marrow. In this study we have examined the megakaryocytes during the preleukemic period by a combination of light, transmission, and scanning electron microscopy. Morphologic abnormalities seen by light microscopy included mononucleated and binucleated forms, many with cytoplasmic blebs. The small mononuclear forms in the bone marrow tended to form clusters. Ultrastructural features included a paucity of both specific ..cap alpha.. granules and dense granules. The micromegakaryocytes showed dysgenesis of the demarcation membrane system. This membrane system appeared disorganized with a few dilated round, oval, or rarely, elongated vesicles and showed no evidence of platelet formation. The cells also had a paucity of endoplasmic reticulum, few mitochrondria, and sparse glycogen accumulations. The scarcity of cytoplasmic organelles gave a pale immature appearance to the cytoplasm. By scanning electron microscopy, the sponge-like surface of large mature megakaryocytes from unirradiated marrow contrasted with the characteristically smooth, topographically featureless surfaces of the micromegakaryocytes from preleukemic dogs.

  4. Gamma evaluation combined with isocenter optimal matching in intensity modulated radiation therapy quality assurance

    NASA Astrophysics Data System (ADS)

    Bak, Jino; Choi, Jin Hwa; Park, Suk Won; Park, Kwangwoo; Park, Sungho

    2015-12-01

    Two-dimensional (2D) dose comparisons are widely performed by using a gamma evaluation with patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) or dose delivery quality assurance (DQA). In this way, a pass/fail determination is made for a particular treatment plan. When gamma evaluation results are close to the failure criterion, the pass/fail decision may change applying a small shift to the center of the 2D dose distribution. In this study, we quantitatively evaluated the meaning of such a small relative shift in a 2D dose distribution comparison. In addition, we propose the use of a small shift for a pass/fail criterion in gamma analysis, where the concept of isocenter optimal matching (IOM) is applied to IMRT QA of 20 patients. Gamma evaluations were performed to compare two dose distributions, one with and the other without IOM. In-house software was developed in C++ in order to find IOM values including both translational and rotational shifts. Upon gamma evaluation failure, further investigation was initiated using IOM. In this way, three groups were categorized: group 1 for `pass' on gamma evaluation, group 21 for `fail' on the gamma evaluation and `pass' on the gamma the evaluation with IOM, and group 22 for `fail' on the both gamma evaluations and the IOM calculation. IOM results revealed that some failures could be considered as a `pass'. In group 21, 88.98% (fail) of the averaged gamma pass rate changed to 90.45% (pass) when IOM was applied. On average, a ratio of γ ≥ 1 was reduced by 11.06% in 20 patients. We propose that gamma evaluations that do not pass with a rate of 85% to 90% may be augmented with IOM to reveal a potential pass result.

  5. Orbital Observatory GLAST - New Step in the Study of Cosmic Gamma-Radiation

    NASA Technical Reports Server (NTRS)

    Moiseev, A. A.

    2008-01-01

    The new Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in the middle of 2008. It contains the high energy gamma-ray telescope LAT (Large Area Telescope) which covers the energy range from 20 MeV to >300 GeV and the GMB (GLAST Burst Monitor), covering 8 keV - 30 MeV energy range. The GLAST science objectives include understanding the mechanism of charged particle acceleration in active galactic nuclei, pulsars and supernova remnants, determining the nature of the still-unidentified EGRET sources, detailed study of gamma-ray diffuse emission, high-energy emission from gamma-ray bursts and transient sources, and probing dark matter. A brief overview of the mission is given.

  6. Gamma radiation and photospheric white-light flare continuum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Dwivedi, B. N.

    1982-01-01

    It is noted that recent gamma-ray observations of solar flares have provided a better means for estimating the heating of the solar atmosphere by energetic protons. This type of heating has been suggested as the explanation of the continuum emission of the white-light flare. The effects on the photosphere of high-energy particles capable of producing the intense gamma-ray emission observed in the flare of July 11, 1978, are analyzed. A simple energy-balance argument is used, and hydrogen ionization is taken into account. It is found that energy deposition increases with height for the inferred proton spectra and is not strongly dependent upon the assumed angle of incidence. At the top of the photosphere, the computed energy inputs fall in the range 10-100 ergs/cu cm-s.

  7. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  8. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.

    PubMed

    Tüfekci, Kenan; Kayacan, Ramazan; Kurbanoğlu, Cahit

    2014-06-01

    Gamma radiation has been widely used for sterilization of bone allograft. However, sterilization by gamma radiation damages the material properties of bone which is a major clinical concern since bone allograft is used in load bearing applications. While the degree of this damage is well investigated for quasi-static and cyclic loading conditions, there does not appear any information on mechanical behavior of gamma-irradiated cortical bone at high speed loading conditions. In this study, the effects of gamma irradiation on high strain rate compressive behavior of equine cortical bone were investigated using a Split Hopkinson Pressure Bar (SHPB). Quasi-static compression testing was also performed. Equine cortical bone tissue from 8year old retired racehorses was divided into two groups: non-irradiated and gamma-irradiated at 30kGy. Quasi-static and high strain rate compression tests were performed at average strain rates of 0.0045/s and 725/s, respectively. Agreeing with previous results on the embrittlement of cortical bone when gamma-irradiated, the quasi-static results showed that gamma-irradiation significantly decreased ultimate strength (9%), ultimate strain (27%) and toughness (41%), while not having significant effect on modulus of elasticity, yield strain and resilience. More importantly, contrary to what is typically observed in quasi-static loading, the gamma-irradiated bone under high speed loading showed significantly higher modulus of elasticity (45%), ultimate strength (24%) and toughness (26%) than those of non-irradiated bone, although the failure was at a similar strain. Under high speed loading, the mechanical properties of bone allografts were not degraded by irradiation, in contrast to the degradation measured in this and prior studies under quasi-static loading. This result calls into question the assumption that bone allograft is always degraded by gamma irradiation, regardless of loading conditions. However, it needs further investigation

  9. ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES

    SciTech Connect

    Hirotani, Kouichi; Pu, Hung-Yi

    2016-02-10

    Supermassive black holes (BHs) are believed to be the central powerhouse of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to BH magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating BH. In this particle accelerator (or a gap), electrons and positrons are created by photon–photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null-charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole’s rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive BH, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC 310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.

  10. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  11. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  12. Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira

    NASA Astrophysics Data System (ADS)

    Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís

    2017-04-01

    Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.

  13. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  14. Immunotherapy of acute radiation syndromes with antiradiation gamma G globulin.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Casey, Rachael; Jones, Jeffrey; Kedar, Prasad

    Introduction: If an immunotherapy treatment approach to treatment of acute radiation syndromes (ARS) were to be developed; consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants- SRD) by specific antiradiation antibodies. To accomplish this objective, irradiated animals were injected with a preparation of antiradiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-indeced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic and enterotoxic) characteristics as well as specific antigenic properties that combined with the direct physiochemical direct radiation damage, induce the development of many of the pathological processes associated with ARS. We tested several specific hyperimmune IgG preparations against these radiation toxins and observed that their toxic properties were neutralized by specific antiradiation IgGs. Material and Methods: Rabbits were inoculated with SRD radiation toxins to induce hyperimmune serum. The hyperimmune serum was pooled from several animals, purified, and concentrated. Enzyme-linked immunosorbent assays of the hyperimmune serum revealed high titers of IgG with specific binding to radiation toxins. The antiradiation IgG preparation was injected into laboratory animals one hour before and three hours after irradiation, and was evaluated for its ability to protect inoculated animals against the development of acute radiation syndromes. Results: Animals that were inoculated with specific antiradiation antibodies before receiving lethal irradiation at LD 100/30 exhibited 60-75% survival rate at 30 days, whereas all control animals expired by 30 days following exposure. These inoculated animals also exhibited markedly reduced clinical symptoms of ARS, even those that did not survive irradiation. Discussion: The results of our experiments demonstrate that rabbit hyperimmune serum directed against SRD toxins afford significant, albeit

  15. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    SciTech Connect

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O.; Naydenov, S.; Pochet, T.; Smith, C.

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards

  16. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  17. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure.

    PubMed

    Senthilkumar, B; Dhavamani, V; Ramkumar, S; Philominathan, P

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides (232)Th, (238)U and (40)K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using gamma-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of (232)Th, (238)U and (40)K is 42.9+/-9.4 Bq.kg(-1), 14.7+/-1.7 Bq.kg(-1) and 149.5+/-3.1 Bq.kg(-1) respectively are derived from all the soil samples studied. The activity concentration of (232)Th, (238)U and (40)K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h(-1) and 59.1 nGy.h(-1) with an arithmetic mean of 43.3 +/-9 nGy.h(-1). This value is lesser than the population weighted world-averaged of 60 nGy.h(-1). Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 muSv.y(-1) with an arithmetic mean of 53.1+/-11 muSv.y(-1). The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels.

  18. Joint gamma generation and radiation heat regime (GG&RH) theory for gamma laser screening in the first approach of soft prompt transplantation of excited nuclei

    NASA Astrophysics Data System (ADS)

    Karyagin, Stanislav V.

    2001-03-01

    Joint theory of gamma-generation and radiation-heat regime in active medium of (gamma) -laser (GL) was created and applied for the analyses of the total world experience in the GL-problem in order to choose those nuclei-candidates, active media, GL-schemes which are indeed actual for the GL- creation.

  19. Tensile and creep properties of diffusion bonded titanium alloy IMI 834 to gamma titanium aluminide IHI alloy 01A

    SciTech Connect

    Holmquist, M.; Recina, V.; Pettersson, B.

    1999-04-23

    Diffusion bonding of the Ti-alloy Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.5Mo-0.35Se-0.06C (wt%) to the intermetallic {gamma}-based alloy Ti-33Al-2Fe-1.8V-0.1B (wt%) using hot isostatic pressing at 900 C, 200 MPa held for 1 h was studied. Sound joints without any pores or cracks with a width of approximately 5--7 {micro}m could be produced. Tensile testing showed that the strengths of the joints are similar to the strength of the {gamma}-TiAl base material at temperatures between room temperature and 600 C. The fracture occurs either at the joint or in the {gamma}-TiAl material. The fracture initiation process is a competition between initiation in the {gamma}-TiAl base material and initiation at the {gamma}-TiAl/diffusion bond interface. Creep testing showed that most of the creep elongation occurs in the Ti-alloy, but failure is initiated in the joint bond line. Creep causes degradation and pore formation in this line. Interlinkage of these pores creates a crack which grows slowly until the fracture toughness of the {gamma}-TiAl is exceeded and the crack starts to propagate in the {gamma}-TiAl material and terminates creep life.

  20. Influence of gamma-radiation on the nutritional and functional qualities of lotus seed flour.

    PubMed

    Bhat, Rajeev; Sridhar, Kandikere Ramaiah; Karim, Alias A; Young, Chiu C; Arun, Ananthapadmanabha B

    2009-10-28

    In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.

  1. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  2. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  3. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2009-01-08

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.

  4. A molecular dynamics study of radiation induced diffusion in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Maillard, S.; Brutzel, L. Van; Garcia, P.; Dorado, B.; Valot, C.

    2009-03-01

    The nuclear oxide fuels are submitted 'in-pile' to strong structural and chemical modifications due to the fissions and temperature. The diffusion of species is notably the result of a thermal activation and of radiation induced diffusion. This study proposes to estimate to what extent the radiation induced diffusion contributes to the diffusion of lattice atoms in UO2. Irradiations are simulated using molecular dynamics simulation by displacement cascades induced by uranium primary knock-on atoms between 1 and 80 keV. As atoms are easier to displace when their vibration amplitude increases, the temperature range which have been investigated is 300-1400 K. Cascade overlaps were also simulated. The material is shown to melt at the end of cascades, yielding a reduced threshold energy displacement. The nuclear contribution to the radiation induced diffusion is compared to thermally activated diffusion under in-reactor and long-term storage conditions.

  5. Fermi Gamma-Ray Observatory-Science Highlights for the First 8 Months

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation reviews the science highlights for the first 8 months of the Fermi Gamma-Ray Observatory. Results from pulsars, flaring AGN, gamma ray bursts, diffuse radiation, LMC and electron spectrum are also presented.

  6. Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; Bashian, Nicholas H.; Hemmelgarn, Chase W.; Thio, Wesley J.; Lyons, Daniel J.; Zheng, Yuan F.; Cao, Lei R.; Co, Anne C.

    2017-07-01

    Radiation effects induced by gamma rays on battery performance were investigated by measuring the capacity and resistance of a series of battery coin cells in-situ directly under gamma radiation and ex-situ. An experimental setup was developed to charge and discharge batteries directly under gamma radiation, equipped with precise temperature control, at The Ohio State University Nuclear Reactor Lab. Latent effects induced by gamma radiation on battery components directly influence their performance. Charge and discharge capacity and overall resistance throughout a time span of several weeks post irradiation were monitored and compared to control groups. It was found that exposure to gamma radiation does not significantly alter the available capacity and the overall cell resistance immediately, however, battery performance significantly decreases with time post irradiation. Also, batteries exposed to a higher cumulative dose showed close-to-zero capacity at two-week post irradiation.

  7. Radiation protection by disulfiram: protection of membrane and DNA in vitro and in vivo against gamma-radiation.

    PubMed

    Gandhi, Nitin Motilal; Gopalaswamy, Usulumarty Venu; Nair, Cherupally rishnan K

    2003-09-01

    Disufiram (a drug used for the treatment of alcoholism) protected microsomal membranes and plasmid DNA against damages induced by gamma-radiation. The peroxidation of membrane lipids increased linearly with the radiation dose up to 600 Gy, and the presence of disulfiram inhibited membrane lipid peroxidation as assayed by the presence of thiobarbituric acid reacting substances. The reduction of the quantity of the supercoiled (ccc) form of plasmid pBR322 DNA is directly related to the radiation-induced damage, particularly to DNA strand breaks. There was a complete protection of plasmid DNA when exposed to gamma-radiation in the presence of disufiram (0.1 mM) at 300 Gy. This drug also protected deoxyribose against damages caused by hydroxyl radicals produced by the Fenton reaction. The administration of DSF to mice prior to whole-body radiation exposure (4 Gy) resulted in a reduction of peroxidation of membrane lipids in mice liver as well as a decrease in radiation-induced damage to cellular DNA, as assayed by single-cell gel electrophoresis (comet assay). The results thus suggest the possible use of DSF as a radioprotector.

  8. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  9. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  10. Influence of {gamma} radiation on the structure-sensitive properties of CuTi amorphous alloy

    SciTech Connect

    Klopotov, A.A.; Timoshnikov, Yu.A.; Plotnikov, V.A.; Matveeva, N.M.; Sazanov, Yu.A.; Lapsker, I.A.

    1995-02-01

    The influence of small doses of {gamma} radiation on the structure-sensitive properties of CuTi amorphous metallic alloy (AMA) is investigated. The AMA exhibit brittle behavior. It is found that, in samples exposed to {gamma} radiation, the nonlinear behavior of the load-elongation curve is more pronounced and begins sooner. A small change in the fracture morphology in these samples is observed by raster electron microscopy. The additional broadening of the first amorphous maximum and its shift on the x-ray diffraction patterns correlates with increase in the {gamma} dose. The modification of the structural-relaxation processes on heating the initial and irradiated samples is traced by the acoustic-emission method. The activation energy of these processes is determined.

  11. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Casimiro, M. H.; Oliveira, C.; Cabeço Silva, M. E.; Marques Abreu, M. J.; Coelho, A.

    2002-05-01

    The large number of surgical operations with post-operative infection problems and the appearing of new infectious diseases, contribute to the development of new materials in order to answer the needs of health care services. This development must take into account the modifications promoted by sterilisation methods in materials, namely by gamma radiation. The differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques show that a nonwoven and a laminate textiles maintain a good molecular cohesion, do not showing high levels of degradation, for gamma radiation dose values lower than 100 kGy in nonwoven and 200 kGy in laminate materials. The tensile strength and the elongation decrease slowly for the nonwoven textile and decrease faster for the laminate textile for 25 and 80 kGy absorbed dose. This paper shows that the DSC and TGA techniques can be helpful for the prevision of mechanical changes occurred in the materials as a consequence of the gamma irradiation.

  12. The production and composition of rat sebum is unaffected by 3 Gy gamma radiation.

    PubMed

    Lanz, Christian; Ledermann, Monika; Slavík, Josef; Idle, Jeffrey R

    2011-04-01

    The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers. Rats were gamma-irradiated (3 Gy) or sham irradiated and groups of rats were euthanised at 1 h or 24 h post-irradiation. Sebum was collected by multiple washings of the carcasses with acetone. Nonpolar lipids were extracted, methylated, separated and quantitated using gas chromatography-mass spectrometry (GCMS). Metabolomic analysis of the GCMS data was performed using both orthogonal projection to latent structures-discriminant analysis and random forests machine learning algorithm. Irradiation did not alter sebum production. A total of 35 lipids were identified in rat sebum, 29 fatty acids, five fatty aldehydes, and cholesterol. Metabolomics showed that three fatty acids, palmitic, 2-hydroxypalmitic, and stearic acids were potential biomarkers. Sebaceous palmitic acid was marginally statistically significantly elevated (7.5-8.4%) at 24 h post-irradiation. Rat sebaceous gland appears refractory to 3 Gy gamma-irradiation. Unfortunately, collection of sebum shortly after gamma-irradiation is unlikely to form the basis of high-throughput non-invasive radiation biodosimetry in man.

  13. Inactivation of foodborne pathogens on crawfish tail meat using cryogenic freezing and gamma radiation

    USDA-ARS?s Scientific Manuscript database

    Foodborne illness outbreaks occasionally occur as a result of microbiologically contaminated crustaceans, including crawfish. Cryogenic freezing and gamma radiation are two technologies which can be used to improve the microbiological safety and shelf-life of foods. In the U.S. the majority of non-c...

  14. New Spherical Gamma-Ray and Neutron Emitting Sources for Testing of Radiation Detection Instruments

    PubMed Central

    Lucas, L.; Pibida, L.

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed new gamma-ray and neutron emitting sources for testing radiation detection systems. These radioactive sources were developed for testing of detection systems in maritime applications. This required special source characteristics. PMID:27504230

  15. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  16. Gamma radiation inactivation of non-0157:H7 shiga-toxin producing Escherichia coli in foods

    USDA-ARS?s Scientific Manuscript database

    Non-O157:H7 serovars of shiga-toxin producing Escherichia coli are emerging foodborne pathogens that have been associated with illness outbreaks and food product recalls on a global basis. Ionizing (gamma) radiation is a nonthermal food safety intervention technology that has been approved for use i...

  17. Comparison of antibodies raised against heat-and gamma radiation-killed bacteria

    USDA-ARS?s Scientific Manuscript database

    For antibody generation, pathogenic bacteria are often heat-treated prior to inoculation into host animals in order to prevent infection and subsequently, premature death of the host. Inoculation of host rabbits with gamma radiation-killed pathogenic bacteria was employed with the hopes of generati...

  18. Gamma Radiation Induced Oxidation and Tocopherols Decrease in In-Shell, Peeled and Blanched Peanuts

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; de Alencar, Severino Matias; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops. PMID:22489128

  19. Gamma radiation induced oxidation and tocopherols decrease in in-shell, peeled and blanched peanuts.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; de Alencar, Severino Matias; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops.

  20. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report

    SciTech Connect

    Not Available

    1985-01-01

    This progress report covers: harvest and conditioning following harvest; effects of ..gamma.. radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates). Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses. (DLC)

  1. Use of gamma radiation as a form of preservation of sweet potatoes

    NASA Astrophysics Data System (ADS)

    The effects of (GAMMA) radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates) are discussed. Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses.

  2. The production and composition of rat sebum is unaffected by 3 Gy gamma radiation

    PubMed Central

    Lanz, Christian; Ledermann, Monika; Slavík, Josef; Idle, Jeffrey R.

    2013-01-01

    Purpose The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers. Materials and methods Rats were gamma-irradiated (3 Gy) or sham irradiated and groups of rats were euthanised at 1 h or 24 h post-irradiation. Sebum was collected by multiple washings of the carcasses with acetone. Nonpolar lipids were extracted, methylated, separated and quantitated using gas chromatography-mass spectrometry (GCMS). Metabolomic analysis of the GCMS data was performed using both orthogonal projection to latent structures-discriminant analysis and random forests machine learning algorithm. Results Irradiation did not alter sebum production. A total of 35 lipids were identified in rat sebum, 29 fatty acids, five fatty aldehydes, and cholesterol. Metabolomics showed that three fatty acids, palmitic, 2-hydroxypalmitic, and stearic acids were potential biomarkers. Sebaceous palmitic acid was marginally statistically significantly elevated (7.5–8.4%) at 24 h post-irradiation. Conclusions Rat sebaceous gland appears refractory to 3 Gy gamma-irradiation. Unfortunately, collection of sebum shortly after gamma-irradiation is unlikely to form the basis of high-throughput non-invasive radiation biodosimetry in man. PMID:21158499

  3. Short-lived variations in the background gamma-radiation dose.

    PubMed

    Burnett, J L; Croudace, I W; Warwick, P E

    2010-09-01

    Sudden increases in the background gamma-radiation dose may occur due to the removal of (222)Rn and (220)Rn progeny from the atmosphere by wet deposition mechanisms. This contribution has been measured using a Geiger-Muller detector at the Atomic Weapons Establishment (Aldermaston, UK) during July 2005-April 2006. The results are approximated by a log-normal distribution and there were nine separate occurrences of the gamma-radiation dose exceeding 125% of the geometric mean value. The increases were associated with periods of heavy rainfall, although no correlation was evident between the dose rate and the amount of rainfall, as increased rainfall dilutes the activity further rather than increasing its atmospheric removal. The events were preceded by periods of fine weather and atmospheric stability that allow for the build-up of (222)Rn and (220)Rn progeny. Similar increases in gamma-radiation dose have been measured at a nearby monitoring station situated approximately 11 miles from Aldermaston. Increases in gamma-radiation dose during heavy rainfall have also been observed throughout the UK, that followed the trajectory of an air mass. All events decreased to typical values within 1-2 h as the water permeated into the ground below and the radioactivity decayed away.

  4. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    NASA Astrophysics Data System (ADS)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  5. Monte Carlo Calculations for Neutron and Gamma Radiation Fields on a Fast Neutron Irradiation Device

    NASA Astrophysics Data System (ADS)

    Vieira, A.; Ramalho, A.; Gonçalves, I. C.; Fernandes, A.; Barradas, N.; Marques, J. G.; Prata, J.; Chaussy, Ch.

    We used the Monte Carlo program MCNP to calculate the neutron and gamma fluxes on a fast neutron irradiation facility being installed on the Portuguese Research Reactor (RPI). The purpose of this facility is to provide a fast neutron beam for irradiation of electronic circuits. The gamma dose should be minimized. This is achieved by placing a lead shield preceded by a thin layer of boral. A fast neutron flux of the order of 109 n/cm2s is expected at the exit of the tube, while the gamma radiation is kept below 20 Gy/h. We will present results of the neutron and gamma doses for several locations along the tube and different thickness of the lead shield. We found that the neutron beam is very collimated at the end of the tube with a dominant component on the fast region.

  6. Arabidopsis plants exposed to gamma radiation in two successive generations show a different oxidative stress response.

    PubMed

    van de Walle, Jorden; Horemans, Nele; Saenen, Eline; Van Hees, May; Wannijn, Jean; Nauts, Robin; van Gompel, Axel; Vangronsveld, Jaco; Vandenhove, Hildegarde; Cuypers, Ann

    2016-12-01

    When terrestrial environments get contaminated with long-lived gamma emitting radionuclides, plants that grow in these contaminated areas are exposed to gamma radiation during consecutive generations. Therefore it is important to evaluate the gamma induced stress response in plants in and between generations. The objective of this research is to reveal differences at the level of the antioxidative stress response between generations with a different radiation history. An experiment was conducted in which 7-days old Arabidopsis thaliana plants were exposed for 14 days to four different gamma dose rates: 22 mGy/h, 38 mGy/h, 86 mGy/h and 457 mGy/h. Two different plant groups were used: plants that were not exposed to gamma radiation before (P0) and plants that received the aforementioned gamma treatment during their previous generation (S1). Growth, the concentration of the antioxidants ascorbate and glutathione, a number of antioxidative enzyme activities and their gene transcript levels were analysed. A dose-rate dependent induction was seen for catalase (CAT) and guaiacol peroxidase (GPX) in the roots and for syringaldazine peroxidase (SPX) in the shoots. Differences between the two generations were observed for CAT and GPX in the roots, where a significantly higher activity of these reactive oxygen species (ROS) detoxifying enzymes was observed in the S1 generation. For SPX in the shoots, a dose dependent upregulation was observed in the P0 generation. However, high SPX activities were present for all doses in the S1 generation. These differences in enzyme activity between generations for SPX and GPX and the involvement of these enzymes in cell wall biosynthesis, suggest an important role for cell wall strengthening in the response to gamma irradiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Prognostic value of diffusion tensor imaging parameters for Gamma Knife radiosurgery in meningiomas.

    PubMed

    Speckter, Herwin; Bido, Jose; Hernandez, Giancarlo; Mejía, Diones Rivera; Suazo, Luis; Valenzuela, Santiago; Perez-Then, Eddy; Stoeter, Peter

    2016-12-01

    OBJECTIVE Diffusion tensor imaging (DTI) parameters are able to differentiate between meningioma subtypes. The hypothesis that there is a correlation between DTI parameters and the change in tumor size after Gamma Knife radiosurgery (GKRS) was analyzed. METHODS DTI parameters were measured using MRI before GKRS in 26 patients with meningiomas. The findings were correlated with the change in tumor size after treatment as measured at the last follow-up (range 12.5-45 months). RESULTS Only those meningiomas that showed the highest fractional anisotropy (FA), the lowest spherical index of the tensor ellipsoid (Cs), and the lowest radial diffusivity (RD) either increased or remained stable in terms of volume, whereas all other meningiomas decreased in volume. The correlation between the DTI parameters (correlation values of -0.81 for FA, 0.75 for Cs, 0.66 for RD, and 0.66 for mean diffusivity) and the rate of volume change per month was significant (p ≤ 0.001). Other factors, including original tumor size, prescription dose, and patient age, did not correlate significantly. CONCLUSIONS Meningiomas that show high FA values-as well as low Cs, low RD, and low mean diffusivity values-do not respond as well to GKRS in comparison with meningiomas with low FA values. This finding might be due to their higher content level of fibrous tissue. In particular, the meningioma with the highest FA value (0.444) considerably increased in volume (by 32.3% after 37 months), whereas the meningioma with the lowest FA value (0.151) showed the highest rate of reduction (3.3% per month) in this study.

  8. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  9. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  10. SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA

    SciTech Connect

    Chen, Ding; Jin, Hong-Bo; Huang, Jing

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  11. Diffuse gamma-ray constraints on dark matter revisited I: the impact of subhalos

    SciTech Connect

    Blanchet, Steve; Lavalle, Julien E-mail: lavalle@in2p3.fr

    2012-11-01

    We make a detailed analysis of the indirect diffuse gamma-ray signals from dark matter annihilation in the Galaxy. We include the prompt emission, as well as the emission from inverse Compton scattering whenever the annihilation products contain light leptons. We consider both the contribution from the smooth dark matter halo and that from substructures. The main parameters for the latter are the mass function index and the minimal subhalo mass. We use recent results from N-body simulations to set the most reasonable range of parameters, and find that the signal can be boosted by a factor ranging from 2 to 15 towards the Galactic poles, slightly more towards the Galactic anticenter, with an important dependence on the subhalo mass index. This uncertainty is however much less than that of the extragalactic signal studied in the literature. We derive upper bounds on the dark matter annihilation cross section using the isotropic gamma-ray emission measured by Fermi-LAT, for two directions in the sky, the Galactic anticenter and the Galactic pole(s). The former represents the lowest irreducible signal from dark matter annihilation, and the latter is robust as the astrophysical background, dominated by the hadronic contribution, is rather well established in that direction. Finally, we show how the knowledge of the minimal subhalo mass, which formally depends on the dark matter particle interactions with normal matter, can be used to derive the mass function index.

  12. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  13. An automated system for gamma radiation field mapping

    NASA Astrophysics Data System (ADS)

    Gould, Robert; Tarpinian, James E.; Kenney, Edward S.

    1990-12-01

    Remote radiation survey equipment was sorely needed at Chernobyl but adequate systems did not exist. The current state of the art still consists of a survey meter mounted on a robotic carriage, which scans an area at many points on a grid. This process is both time consuming and somewhat inaccurate. The system we have developed will overcome these limitations, and would provide significant savings in man-hours and man-rem over manual survey techniques. The system we have developed consists of a collimated ionization chamber mounted in a scanning head. The measurement process is similar to that used in medical computed tomography (CT) imaging and consists of a series of collimator rotations and translations. The key to this work is the use of a collimator to provide position information with a position insensitive detector. In addition, an inverse filter image reconstruction technique has been used to reduce the distortion effects due to the scanner and scanning process in the resulting maps. This technique models the distortion as a linear, space invariant degrading function which is removed in a deconvolution process. We have constructed first- and second-generation prototype scanners, and developed software to produce three-dimensional radiation field "iso-dose" maps. The iso-dose maps will be superimposed on three-dimensional computer-aided design and drafting (CADD) drawings of the radiation area, aiding in the characterization of the source of radiation.

  14. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  15. Inactivation of foodborne pathogens on seafood by gamma radiation

    USDA-ARS?s Scientific Manuscript database

    Ionizing radiation is used on a global basis to improve the phytosanitary and microbial safety and shelf-life of foods. In recent years progress has been made in the commercial application of irradiation to sterilize destructive invasive insects and to irradiate produce to improve its microbiologica...

  16. Gamma radiation sensitivity of foodborne pathogens on meat and poultry

    SciTech Connect

    Thayer, D.W.; Boyd, G.

    1994-12-31

    Several factors have been identified that may affect the responses of foodborne pathogens to ionizing radiation. Among these are the temperature and atmosphere during the process of irradiation; the medium in which the pathogen is suspended; and the genus, species, serovar, and physiological state of the organism. In addition to these factors, variations in {open_quotes}apparent{close_quotes} radiation sensitivity of bacteria may occur because of the incubation conditions and media used to estimate the number of surviving colony-forming units. Both incubation temperature and culture media frequently affect the ability of injured bacteria to recover. Because there are so many possible variables, it is often difficult to compare data on the radiation sensitivity of foodborne pathogens from different studies. The objectives of the studies reported here were to compare the radiation sensitivities of Bacillus cereus on beef, beef gravy, chicken, pork, and turkey; and of Escherichia coli 0157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus on beef, pork, lamb, turkey breast, and turkey leg meats. Examples of the effects of serovar, irradiation temperature, growth phase, and atmosphere during irradiation were also examined.

  17. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radioactive ores are mined. (b) Surveys shall be in accordance with American National Standards (ANSI) Standard N13.8-1973, entitled “Radiation Protection in Uranium Mines”, section 14.1 page 12, which is... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality...

  18. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... radioactive ores are mined. (b) Surveys shall be in accordance with American National Standards (ANSI) Standard N13.8-1973, entitled “Radiation Protection in Uranium Mines”, section 14.1 page 12, which is... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality...

  19. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  20. Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation

  1. Gamma-irradiated onions as a biological indicator of radiation dose.

    PubMed

    Vaijapurkar, S G; Agarwal, D; Chaudhuri, S K; Senwar, K R; Bhatnagar, P K

    2001-10-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied.

  2. CARBON FIBRE COMPOSITE MATERIALS PRODUCED BY GAMMA RADIATION INDUCED CURING OF EPOXY RESINS

    SciTech Connect

    Dispenza, C.; Spadaro, G.; Alessi, S.

    2008-08-28

    It is well known that ionizing radiation can initiate polymerization of suitable monomers for many applications. In this work an epoxy difunctional monomer has been used as matrix of a carbon fibre composite in order to produce materials through gamma radiation, for aerospace and advanced automotive applications. Radiation curing has been performed at different absorbed doses and, as comparison, also thermal curing of the same monomer formulations has been done. Furthermore some irradiated samples have been also subjected to a post irradiation thermal curing in order to complete the polymerization reactions. The properties of the cured materials have been studied by moisture absorption isotherms, dynamic mechanical thermal analysis and mechanical flexural tests.

  3. Deoxyribonuclease I is essential for DNA fragmentation induced by gamma radiation in mice.

    PubMed

    Apostolov, Eugene O; Soultanova, Izoumroud; Savenka, Alena; Bagandov, Osman O; Yin, Xiaoyan; Stewart, Anna G; Walker, Richard B; Basnakian, Alexei G

    2009-10-01

    Gamma radiation is known to induce cell death in several organs. This damage is associated with endonuclease-mediated DNA fragmentation; however, the enzyme that produces the latter and is likely to cause cell death is unknown. To determine whether the most abundant cytotoxic endonuclease DNase I mediates gamma-radiation-induced tissue injury, we used DNase I knockout mice and zinc chelate of 3,5-diisopropylsalicylic acid (Zn-DIPS), which, as we show, has DNase I inhibiting activity in vitro. The study demonstrated for the first time that inactivation or inhibition of DNase I ameliorates radiation injury to the white pulp of spleen, intestine villi and bone marrow as measured using a quantitative TUNEL assay. The spleen and intestine of DNase I knockout mice were additionally protected from radiation by Zn-DIPS, perhaps due to the broad radioprotective effect of the zinc ions. Surprisingly, the main DNase I-producing tissues such as the salivary glands, pancreas and kidney showed no effect of DNase I inactivation. Another unexpected observation was that even without irradiation, DNA fragmentation and cell death were significantly lower in the intestine of DNase I knockout mice than in wild-type mice. This points to the physiological role of DNase I in normal cell death in the intestinal epithelium. In conclusion, our results suggested that DNase I-mediated mechanism of DNA damage and subsequent tissue injury are essential in gamma-radiation-induced cell death in radiosensitive organs.

  4. Morphophysiological and biochemical alterations in Ricinus communis L. seeds submitted to cobalt60 gamma radiation.

    PubMed

    Lopes, Amanda M; Bobrowski, Vera L; Silva, Sergio D Dos Anjos E; Deuner, Sidnei

    2017-01-01

    This study aimed to evaluate the radiosensitivity of castor bean seeds after applications of different doses of Cobalt60 gamma radiation. Seeds were pre-soaked for 24 hours in distilled water and then irradiated with 50, 100, 150, and 200 Gy, except the control. Sowing was performed in trays, which contained soil as substrate and were maintained in a greenhouse. The electrical conductivity, emergence, emergence speed index, growth parameters and activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase) were evaluated in the leaves and roots of castor bean seedlings. Gamma radiation did not affect the electrical conductivity of the seeds; however, at a dose of 200 Gy, the emergence and emergence speed index of the seedlings was negatively affected. An analysis of the morphophysiological parameters revealed a reduction in seedling size as the radiation dose increased. There was a significant increase in superoxide dismutase and ascorbate peroxidase activities at higher radiation doses in the leaves, but not in roots. Thus, the analysis of all the variables suggests a response pattern as to the morphophysiological and biochemical changes of castor bean seedlings due to the increase of gamma radiation, which may serve as a tool for generating greater genetic variability.

  5. Response of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), eggs to gamma radiation

    NASA Astrophysics Data System (ADS)

    Silva, W. D.; Arthur, V.; Mastrangelo, T.

    2010-10-01

    As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae's cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD 90 and LD 99 were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile.

  6. Modification of silicone sealant to improve gamma radiation resistance, by addition of protective agents

    NASA Astrophysics Data System (ADS)

    González-Pérez, Giovanni; Burillo, Guillermina

    2013-09-01

    Poly (dimethylsiloxane) (PDMS) sealant (SS) was modified with the addition of different protective compounds to conserve its physical-chemical properties during gamma irradiation. 2-Vinyl naphthalene (2-VN), bisphenol-A (BPA) and poly (vinyl carbazole) (PVK) were used to evaluate radiation protection through the crosslinking effect of radiation. The samples were irradiated with doses from 100 kGy to 500 kGy at room temperature in air, with a 60Co gamma source, and the changes in molecular weight, thermal behavior, elastic properties and infrared spectra (FTIR-ATR) absorbance analysis were determined. The molecular weight of unmodified silicone sealant increases with the absorbed dose because of crosslinking as predominant effect. However, the crosslinking effect was inhibited with the addition of protective agent due to the aromatic compounds present. Modified silicone sealant films present better radiation resistance than unmodified system.

  7. Removing Noises Induced by Gamma Radiation in Cerenkov Luminescence Imaging Using a Temporal Median Filter

    PubMed Central

    Li, Yang; Zhan, Yonghua; Kang, Fei; Wang, Jing

    2016-01-01

    Cerenkov luminescence imaging (CLI) can provide information of medical radionuclides used in nuclear imaging based on Cerenkov radiation, which makes it possible for optical means to image clinical radionuclide labeled probes. However, the exceptionally weak Cerenkov luminescence (CL) from Cerenkov radiation is susceptible to lots of impulse noises introduced by high energy gamma rays generating from the decays of radionuclides. In this work, a temporal median filter is proposed to remove this kind of impulse noises. Unlike traditional CLI collecting a single CL image with long exposure time and smoothing it using median filter, the proposed method captures a temporal sequence of CL images with shorter exposure time and employs a temporal median filter to smooth a temporal sequence of pixels. Results of in vivo experiments demonstrated that the proposed temporal median method can effectively remove random pulse noises induced by gamma radiation and achieve a robust CLI image. PMID:27648450

  8. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  9. Constraints on the cosmic ray diffusion coefficient in the W28 region from gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Gabici, S.; Casanova, S.; Aharonian, F. A.; Rowell, G.

    2010-12-01

    GeV and TeV gamma rays have been detected from the supernova remnant W28 and its surroundings. Such emission correlates quite well with the position of dense and massive molecular clouds and thus it is often interpreted as the result of hadronic cosmic ray interactions in the dense gas. Constraints on the cosmic ray diffusion coefficient in the region can be obtained, under the assumption that the cosmic rays responsible for the gamma ray emission have been accelerated in the past at the supernova remnant shock, and subsequently escaped in the surrounding medium. In this scenario, gamma ray observations can be explained only if the diffusion coefficient in the region surrounding the supernova remnant is significantly suppressed with respect to the average galactic one.

  10. The Gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model.

    PubMed

    Lansky, Petr; Sacerdote, Laura; Zucca, Cristina

    2016-06-01

    Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of them, the diffusion leaky integrate-and-fire neuronal model, which is based on the Ornstein-Uhlenbeck (OU) stochastic process that is restricted by an absorbing barrier, can describe a wide range of neuronal activity in terms of its parameters. These parameters are readily associated with known physiological mechanisms. The other model is descriptive, Gamma renewal process, and its parameters only reflect the observed experimental data or assumed theoretical properties. Both of these commonly used models are related here. We show under which conditions the Gamma model is an output from the diffusion OU model. In some cases, we can see that the Gamma distribution is unrealistic to be achieved for the employed parameters of the OU process.

  11. The effect of gamma radiation on recombination frequency in Caenorhabditis elegans.

    PubMed

    Kim, J S; Rose, A M

    1987-06-01

    We have studied the effect of gamma radiation on recombination frequency for intervals across the cluster of linkage group I in Caenorhabditis elegans. Recombination frequency increased approximately twofold across the dpy-5-unc-13 interval after treatment with 2000 rads (1 rad = 10 mGy) of cobalt 60 gamma radiation. Several factors affecting the magnitude of the increase have been characterized. Recombination frequency increased more with higher doses of radiation. However, the increase in recombination frequency with increasing dose was accompanied by a reduced average number of progeny from radiation-treated individuals. The amount of the increase was affected by meiotic stage, age at the time of treatment (premeiotic), and radiation dose. The increase in recombination was detectable in the B brood and remained elevated for the remainder of egg production. X-chromosome nondisjunction was also increased by radiation treatment. A high frequency of the recombinant progeny produced with radiation treatment were sterile unlike their nonrecombinant siblings. When parameters affecting recombination frequency are held constant during treatment, chromosomal regions of high gene density on the meiotic map increased more (fourfold) than an adjacent region of low gene density (no increase). The greatest increase was across the dpy-14-unc-13 interval near the center of the gene cluster. These results may suggest that the physical length of DNA per map unit is greater within the cluster than outside.

  12. Effect of gamma and UV-B/C radiation on plant cells.

    PubMed

    Kovács, E; Keresztes, A

    2002-01-01

    The biological effect of gamma-rays is based on the interaction with atoms or molecules in the cell, particularly water, to produce free radicals, which can damage different important compounds of plant cell. The UV-B/C photons have enough energy to destroy chemical bounds, causing a photochemical reaction. The biological effect is due to these processes. This paper is focused on the structural and biochemical changes of the cell wall and plastids after gamma and/or UV-B irradiation. Gamma-rays accelerate the softening of fruits, causing the breakdown of middle lamella in cell wall. They also influence the plastid development and function, such as starch-sugar interconversion. The penetration of UV-B light into the cell is limited, while gamma-rays penetrate through the cells. For this reason, UV-B light has a strong effect on surface or near-to-surface area in plant cells. UV-B radiation influences plastid structure (mostly thylakoid membranes) and photosynthesis. Some kinds of pigments, such as carotenoids, flavonoids save plant cells against UV-B and gamma irradiation. Plant cells are generally ozone sensitive. The detoxifying systems operate at the cellular level. Methods for studying structural changes in plant cells develop in direction to molecular biology, combined with immunoassays and new microscopical techniques. Nowadays, UV-B radiation is undergoing much research, being an environmental factor which causes damage to both humans and plant cells.

  13. Predictions of induced background radiations at gamma/X-ray experiment envelopes in NASA spacecraft

    NASA Technical Reports Server (NTRS)

    Fischbein, W. L.; Debiak, T.; Rossi, M.; Stauber, M.; Suh, P.

    1979-01-01

    This work seeks to predict secondary radiation levels induced in spacecraft structures by space protons. The radiations analyzed are secondary neutrons from spallation and evaporation reactions and gamma and beta rays from the decay of induced radioactivity, as sources of interfering background to spaceborne measurements of galactic and planetary gamma rays below 10 MeV. The spacecraft considered are the Multi-Mission Spacecraft (MMS) and the Space Shuttle, modeled as spherical shells. The proton environment is that of the South Atlantic Anomaly, as well as cosmic ray protons. The induced radioactivity is analyzed in terms of its interference with various gamma-ray lines of astrophysical interest, as well as its contribution to several spectral regions of the gamma-ray continuum. The buildup of the line and continuum radioactivity background is predicted for a period of nearly 9 months in orbit (approximately 4100 orbits). In addition, background contributions from cosmic ray electron bremsstrahlung and earth gamma-ray albedo are estimated.

  14. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    DOE PAGES

    Marion, Bill

    2017-03-27

    Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less

  15. Multi-componenet diffusion analysis and assessment of Gamma code and improved RELAP5 code

    SciTech Connect

    Chang Oh

    2007-05-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure. Thus, without any mitigating features, a LOCA will lead to an air ingress event, which will lead to exothermic chemical reactions of graphite with oxygen, potentially resulting in significant increases of the core temperature. New and safer nuclear reactors (Generation IV) are now in the early planning stages in many countries throughout the world. One of the reactor concepts being seriously considered is the VHTR. To achieve public acceptance, these reactor concepts must show an increased level of inherent safety over current reactor designs (i.e., a system must be designed to eliminate any concerns of large radiological releases outside the site boundary). A computer code developed from this study, gas multi-component mixture analysis (GAMMA) code, was assessed using a two-bulb experiment and in addition the molecular diffusion behavior in the prismatic-core gas-cooled reactor was investigated following the guillotine break of the main pipe between the reactor vessel and the power conversion unit. The RELAP5 code was improved for the VHTR air ingress analysis and was assessed using inverse U-tube and NACOK natural circulation data.

  16. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  17. Determination of activity of 51Cr on gamma radiation measurements

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2017-01-01

    A method of determining the activity of intensive distributed -sources on the measurement of the continuous spectrum of radiation, for example the internal bremsstrahlung, is developed. The recurrent formula for reconstructing of a continuous spectrum, registered in a Ge detector, at distorting it in the detector. The method of precise measurements of the spectrum of 51Cr internal bremsstrahlung using two point sources of low activity is described.

  18. [Evaluation of exposure to ionizing radiation among gamma camera operators].

    PubMed

    Domańska, Agnieszka Anna; Bieńkiewicz, Malgorzata; Olszewski, Jerzy

    2013-01-01

    Protection of nuclear medicine unit employees from hazards of the ionizing radiation is a crucial issue of radiation protection services. We aimed to assess the severity of the occupational radiation exposure of technicians performing scintigraphic examinations at the Nuclear Medicine Department, Central Teaching Hospital of Medical University in Lódz, where thousands of different diagnostic procedures are performed yearly. In 2013 the studied diagnostic unit has employed 10 technicians, whose exposure is permanently monitored by individual dosimetry. We analyzed retrospective data of quarterly doses in terms of Hp(10) dose equivalents over the years 2001-2010. Also annual and five-year doses were determined to relate the results to current regulations. Moreover, for a selected period of one year, we collected data on the total activity of radiopharmaceuticals used for diagnostics, to analyze potential relationship with doses recorded in technicians performing the examinations. In a 10-year period under study, the highest annual dose recorded in a technician was 2 mSv, which represented 10% of the annual dose limit of 20 mSv. The highest total dose for a 5-year period was 7.1 mSv, less than 10% of a 5-year dose limit for occupational exposure. Positive linear correlation was observed between total activity of radiopharmaceuticals used for diagnostics in the period of three months and respective quarterly doses received by technicians performing examinations. Doses received by nuclear medicine technicians performing diagnostic procedures in compliance with principles of radiation protection are low, which is confirmed by recognizing the technicians of this unit as B category employees.

  19. PROPERTIES OF NEARBY STARBURST GALAXIES BASED ON THEIR DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Paglione, Timothy A. D.; Abrahams, Ryan D.

    2012-08-20

    The physical relationship between the far-infrared and radio fluxes of star-forming galaxies has yet to be definitively determined. The favored interpretation, the 'calorimeter model', requires that supernova generated cosmic-ray (CR) electrons cool rapidly via synchrotron radiation. However, this cooling should steepen their radio spectra beyond what is observed, and so enhanced ionization losses at low energies from high gas densities are also required. Further, evaluating the minimum energy magnetic field strength with the traditional scaling of the synchrotron flux may underestimate the true value in massive starbursts if their magnetic energy density is comparable to the hydrostatic pressure of their disks. Gamma-ray spectra of starburst galaxies, combined with radio data, provide a less ambiguous estimate of these physical properties in starburst nuclei. While the radio flux is most sensitive to the magnetic field, the GeV gamma-ray spectrum normalization depends primarily on gas density. To this end, spectra above 100 MeV were constructed for two nearby starburst galaxies, NGC 253 and M82, using Fermi data. Their nuclear radio and far-infrared spectra from the literature are compared to new models of the steady-state CR distributions expected from starburst galaxies. Models with high magnetic fields, favoring galaxy calorimetry, are overall better fits to the observations. These solutions also imply relatively high densities and CR ionization rates, consistent with molecular cloud studies.

  20. Doses from radon progeny as a source of external beta and gamma radiation.

    PubMed

    Markovic, V M; Krstic, D; Nikezic, D; Stevanovic, N

    2012-11-01

    Great deal of work has been devoted to determine doses from alpha particles emitted by (222)Rn and its progeny. In contrast, contribution of beta particles and following gamma radiation to total dose has mostly been neglected so far. The present work describes a study of the detriment of (222)Rn progeny for humans due to external exposure. Doses and dose conversion factors (DCFs) were determined for beta and gamma radiation in main organs and remainder tissue of the Oak Ridge National Laboratory phantom, taking into account (222)Rn progeny (214)Pb and (214)Bi distributed in the middle of a standard or typical room with dimensions 4 m × 5 m × 2.8 m. The DCF was found to be 7.37 μSv/WLM. Skin and muscle tissue from remainder tissue receives largest dose. Beta and gamma radiation doses from external exposure were compared with alpha, beta, and gamma doses from internal exposure where the source of radioactivity was the lungs. Total doses received in all main organs and remainder tissues were obtained by summing up the doses from external and internal exposure and the corresponding DCF was found to be 20.67 μSv/WLM.

  1. Evaluation of fungal burden and aflatoxin presence in packed medicinal plants treated by gamma radiation.

    PubMed

    Aquino, Simone; Gonçalez, Edlayne; Rossi, Maria Helena; Nogueira, Juliana Hellmeister de Campos; Reis, Tatiana Alves Dos; Corrêa, Benedito

    2010-05-01

    This study was developed to evaluate the fungal burden, toxigenic molds, and mycotoxin contamination and to verify the effects of gamma radiation in four kinds of medicinal plants stored before and after 30 days of irradiation treatment. Eighty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia, and Cassia angustifolia) purchased from drugstores, wholesale, and open-air markets in São Paulo city, Brazil, were analyzed. The samples were treated using a (60)Co gamma ray source (Gammacell) with doses of 5 and 10 kGy. Nonirradiated samples were used as controls of fungal isolates. For enumeration of fungi on medicinal plants, serial dilutions of the samples were plated in duplicate onto dichloran 18% glycerol agar. The control samples revealed a high burden of molds, including toxigenic fungi. The process of gamma radiation was effective in reducing the number of CFU per gram in all irradiated samples of medicinal plants after 30 days of storage, using a dose of 10 kGy and maintaining samples in a protective package. No aflatoxins were detected. Gamma radiation treatment can be used as an effective method for preventing fungal deterioration of medicinal plants subject to long-term storage.

  2. Effects of gamma radiation on codling moth, Cydia pomonella (L.), eggs

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Mohamad, F.

    2004-12-01

    The radiosensitivity of codling moth, Cydia pomonella (L.), eggs in different stages of development was studied. Eggs ranging in age from 1-24 to 97-120 h were exposed, at 24 h intervals, to gamma radiation doses ranging from 10 to 350 Gy. The effects of gamma radiation on egg hatch, pupation and adult emergence was examined. Results showed that the radiosensitivity of codling moth eggs decreased with increasing age. Egg hatch in 1-24 h old eggs was significantly affected at 20 Gy dose and at 60 Gy dose, egg hatch decreased to about 1%. At the age of 25-48 h, however, egg hatch at 60 Gy dose was about 10%, and egg sensitivity to gamma irradiation decreased significantly in the 49-72 h age group; 60 Gy dose had no significant effect on egg hatch. Eggs irradiated few hours before hatch (at the blackhead stage), were the most resistant ones; 100 Gy had no significant effect on egg hatch and at 350 Gy dose over 56% of the eggs hatched. When adult emergence was used as a criterion for measuring effectiveness, however, the effect of gamma radiation was very sever. A dose of 60 Gy completely prevented adult emergence and at 100 Gy dose all resulted larvae died before pupation.

  3. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  4. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    SciTech Connect

    Shestakov, A I; Harte, J A; Bolstad, J H; Offner, S R

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  5. Data From HANE-Generated Radiation Belts and the Origin of Diffusion Theory

    SciTech Connect

    Winske, Dan

    2012-07-16

    In this presentation we briefly review some of the published data regarding the artificial radiation belts produced by the Starfish and R2 high altitude nuclear explosions in 1962. The data showed slow temporal variations of the belts in altitude (L) and pitch angle ({alpha}) that could be modeled as a diffusion process. That early work formed the basis for more complex radiation belt diffusion models that are in use at present.

  6. Development and characterization of the integrated fiber-optic radiation sensor for the simultaneous detection of neutrons and gamma rays.

    PubMed

    Jang, Kyoung Won; Lee, Bong Soo; Moon, Joo Hyun

    2011-04-01

    Sometimes, detection of thermal neutrons in the presence of gamma rays is required. This study developed and characterized an integrated fiber-optic radiation sensor for the simultaneous detection of thermal neutrons and gamma rays in a mixed radiation field. The performance of the integrated sensor was verified by measuring the distributions of thermal neutrons and gamma rays released from a nuclear fuel rod at the Kyoto University Critical Assembly. The experimental results show that the integrated sensor produced similar distribution patterns to those of thermal neutrons and gamma rays released from a fuel rod.

  7. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  8. The effect of low doses of gamma radiation on the electrophysical properties of mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Bilenko, D. I.; Galushka, V. V.; Zharkova, E. A.; Sidorov, V. I.; Terin, D. V.; Khasina, E. I.

    2017-02-01

    The effect of low exposure doses (5-40 kR) of gamma radiation on the electrical properties of structures based on a mesoporous silicon (SiMP) layer is investigated. It is demonstrated that the conductivity of the SiMP layer increases, the Fermi level shifts, and the trap density changes in gamma-irradiated Al/SiMP/ p-Si/Al structures. Long-term stable switched-state memory in the region of the I-V curve hysteresis is revealed. This effect is controlled by the irradiation dose.

  9. Short-term variability of gamma radiation at the ARM Eastern North Atlantic (ENA) site (Azores)

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo

    2017-04-01

    Naturally-occurring radionuclides, and radon and its progeny in particular, can be used as a sensitive atmospheric tracer and an indicator of dynamic processes in the lower troposphere. Radiation from gamma-emitting radionuclides (including Rn-222 progeny) is being continuously monitored since May 2015 in the framework of an ARM campaign at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the Government of the Autonomous Region of the Azores and University of the Azores. The resulting time series of 15-minute gamma ray counts radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 hours are coincident with heavy precipitation (> 10 mm/hour) and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However, the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the boundary layer height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, likely as a result of the drop growing process being dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays

  10. The COS-B experiment and mission. [high energy extraterrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The COS-B satellite carries a single experiment, capable of detecting gamma rays with energies greater than 30 MeV to study the spatial, energy, and time characteristics of high-energy radiation of galactic and extragalactic origin. The capability to search for gamma ray pulsations is enhanced by the inclusion in the payload of a proportional counter sensitive of X-rays of 2 to 12 keV. The experiment was calibrated using particle accelerators. The results of these measurements are presented, and the performance of the system in orbit is discussed.

  11. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Zhai, M; Venkateswaran, Amudhan; Hess, M; Omelchenko, M V.; Kostandarithes, Heather M.; Makarova, S; Wackett, L. P.; Fredrickson, Jim K.; Ghosal, D

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  12. Bactericidal Effect of Various Combinations of Gamma Radiation and Chloramine on Aqueous Suspensions of Escherichia coli

    PubMed Central

    Venosa, Albert D.; Chambers, Cecil W.

    1973-01-01

    Methods of combining gamma radiation with chloramine to disinfect aqueous suspensions of Escherichia coli were investigated. Logarithmically grown cells were exposed to the bactericidal agents sequentially (i.e., radiation followed by chloramine, and chloramine followed by radiation) and simultaneously. Regardless of which combination was used, the bactericidal effect was always less than additive. During the phase of work involving the simultaneous addition of both agents, it was observed that chloramine was destroyed more rapidly by radiation than were the organisms. Since an increase in the bactericidal effectiveness of either disinfectant by prior or simultaneous treatment of the cells with the other disinfectant was not achieved in buffered distilled water, it was concluded that disinfection of wastewater effluents by combining ionizing radiation with chloramine would not be economically feasible. Images PMID:4577176

  13. Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system.

    PubMed

    Cao, Yi; Xu, Qian; Jin, Zong-Da; Zhang, Jun; Lu, Min-Xia; Nie, Ji-Hua; Tong, Jian

    2010-01-01

    Exposure of humans simultaneously to microwave and gamma-ray irradiation may be a commonly encountered phenomenon. In a previous study data showed that low-dose microwave radiation increased the survival rate of mice irradiated with 8Gy gamma-ray; however, the mechanisms underlying these findings remain unclear. Consequently, studies were undertaken to examine the effects of microwave exposure on hematopoietic system adversely altered by gamma-ray irradiation in mice. Preexposure to low-dose microwaves attenuated the damage produced by gamma-ray irradiation as evidenced by less severe pathological alterations in bone marrow and spleen. The protective effects of microwaves were postulated to be due to up-expression of some hematopoietic growth factors, stimulation of proliferation of the granulocyte-macrophages in bone marrow, and inhibition of the gamma-ray induced suppression of hematopoietic stem cells/hematopoietic progenitor cells. Data thus indicate that prior exposure to microwaves may be beneficial in providing protection against injuries produced by gamma-ray on the hematopoietic system in mice.

  14. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  15. Cobalt-60 gamma radiation increased the nitric oxide generation in cultured rat vascular smooth muscle cells.

    PubMed

    Zhong, Guang Zhen; Chen, Feng Rong; Bu, Ding Fang; Wang, Shu Heng; Pang, Yong Zheng; Tang, Chao Shu

    2004-05-07

    Radiation is a promising and new treatment for restenosis following angioplasty. Nitric oxide has been proposed as a potential "anti-restenotic" molecule. We radiated the cultured rat vascular smooth muscle cells with Cobalt-60 gamma radiation at doses of 14 and 25Gy and observed nitrite production, cGMP content, L-arginine uptake, inducible nitric oxide synthase (iNOS) activity, and the gene expression of iNOS. Results showed that radiation at doses of 14 and 25Gy increased cGMP content by 92.4% and 86.4%, respectively. Radiation at the dose of 25Gy increased the iNOS activity and nitrite content, but radiation at the dose of 14Gy had no significant effect on iNOS activity and NO production. Both doses of radiation significantly decreased the L-arginine transport. Radiation at the doses of 14 and 25Gy increased iNOS gene expression significantly, which was consistent with the effect of radiation on iNOS activity. In conclusion, radiation induces the NO generation by up-regulating the iNOS activity.

  16. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  17. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  18. The role of diffusion tensor imaging tractography for Gamma Knife thalamotomy planning.

    PubMed

    Gomes, João Gabriel Ribeiro; Gorgulho, Alessandra Augusta; de Oliveira López, Amanda; Saraiva, Crystian Wilian Chagas; Damiani, Lucas Petri; Pássaro, Anderson Martins; Salvajoli, João Victor; de Oliveira Siqueira, Ludmila; Salvajoli, Bernardo Peres; De Salles, Antônio Afonso Ferreira

    2016-12-01

    OBJECTIVE The role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications. METHODS In this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure-posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. The 40 targets and tractography were transferred as objects to the GammaPlan Treatment Planning System (GP-TPS). New targets were defined, according to the AC-PC line in the functional targets section of the GP-TPS. The target offsets required to maintain the internal capsule (IC) constraint of < 15 Gy were evaluated. In addition, the strategies available in GP-TPS to maintain the minimum conventional VIM target dose at > 100 Gy were determined. RESULTS A difference was observed between the positions of both targets and the doses to the IC. The lateral (x) and the vertical (z) coordinates were adjusted 1.9 mm medially and 1.3 mm cranially, respectively. The targets defined considering the position of the pyramidal tract were more medial and superior, based on the constraint of 15 Gy touching the object representing the IC in the GP-TPS. The best strategy to meet the set constraints was 90° Gamma angle (GA) with automatic shaping of dose distribution; this was followed by 110° GA. The worst GA was 70°. Treatment time was substantially increased by the shaping strategy, approximately doubling delivery time. CONCLUSIONS Routine use of DTI pyramidal tractography might be important to fine-tune GK-T planning. DTI tractography, as well as anisotropy showing the VIM, promises to improve Gamma Knife functional procedures. They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the

  19. Gene expression in Catla catla (Hamilton) subjected to acute and protracted doses of gamma radiation.

    PubMed

    Anbumani, S; Mohankumar, Mary N

    2016-09-01

    Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α - r=0.85, p=0.0073; cdk1 - r=0.86, p=0.0053; bcl-2 - r=0.89, p=0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote 'repair' and 'death' circuitries in fish blood cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of sublethal gamma radiation on host defenses in experimental scrub typhus

    SciTech Connect

    Kelly, D.J.; Rees, J.C.

    1986-06-01

    The effect of sublethal gamma radiation on inbred mice chronically infected with scrub typhus rickettsiae was examined. Inbred mice which were inoculated with the Gilliam or Karp strain of Rickettsia tsutsugamushi by the subcutaneous route harbored the infection for at least 1 year. Irradiation of these animals at 12 or 52 weeks postinoculation with normally sublethal levels induced a significantly higher percentage of rickettsemic mice (recrudescence) than was seen in the unirradiated, similarly infected control animals. In addition, sublethal irradiation at 12 weeks induced a quantitative increase in total rickettsiae. Homologous antibody titers to the rickettsiae were examined for 5 weeks after irradiation to determine the role of the humoral response in radiation-induced recrudescence. Unirradiated, infected mice showed consistent titers of about 320 throughout the 5-week observation period, and the titer was not affected by exposure of up to 500 rads of gamma radiation. Drug dose-dependent radioprotection and modification of recrudescence was noted in infected, irradiated mice treated with the antiradiation compound S-2-(3-aminopropylamino)ethyl phosphorothioic acid. The results of this investigation supported the conclusion that the recrudescence of a chronic rickettsial infection in the appropriate host after immunological impairment due to gamma radiation can result in an acute, possibly lethal rickettsemia.