Sample records for diffuse reflectance infrared

  1. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marbach, R.; Heise, H. M.

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  2. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    ERIC Educational Resources Information Center

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  3. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  4. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  5. Diffuse Reflectance Mid-Infrared Spectroscopy as a Tool for the Identification of Surface Contamination on Sandblasted Metals

    NASA Technical Reports Server (NTRS)

    Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.

    1997-01-01

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.

  6. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  7. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  8. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and themore » solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also discussed.« less

  9. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  10. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-01

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  11. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  12. Near-infrared diffuse reflection systems for chlorophyll content of tomato leaves measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Huanyu; Ying, Yibin; Lu, Huishan

    2006-10-01

    In this study, two measuring systems for chlorophyll content of tomato leaves were developed based on near-infrared spectral techniques. The systems mainly consists of a FT-IR spectrum analyzer, optic fiber diffuses reflection accessories and data card. Diffuse reflectance of intact tomato leaves was measured by an optics fiber optic fiber diffuses reflection accessory and a smart diffuses reflection accessory. Calibration models were developed from spectral and constituent measurements. 90 samples served as the calibration sets and 30 samples served as the validation sets. Partial least squares (PLS) and principal component regression (PCR) technique were used to develop the prediction models by different data preprocessing. The best model for chlorophyll content had a high correlation efficient of 0.9348 and a low standard error of prediction RMSEP of 4.79 when we select full range (12500-4000 cm -1), MSC path length correction method by the log(1/R). The results of this study suggest that FT-NIR method can be feasible to detect chlorophyll content of tomato leaves rapidly and nondestructively.

  13. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    PubMed

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Influence of earlobe thickness on near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  15. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-06-05

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Applications of fourier transform infrared spectroscopy to surface analysis problems 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Milosevic, M.

    Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less

  17. Applications of fourier transform infrared spectroscopy to surface analysis problems 2. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Milosevic, M.

    Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less

  18. [Study on brand traceability of vinegar based on near infrared spectroscopy technology].

    PubMed

    Guan, Xiao; Liu, Jing; Gu, Fang-Qing; Yang, Yong-Jian

    2014-09-01

    In the present paper, 152 vinegar samples with four different brands were chosen as research targets, and their near infrared spectra were collected by diffusion reflection mode and transmission mode, respectively. Furthermore, the brand traceability models for edible vinegar were constructed. The effects of the collection mode and pretreatment methods of spectrum on the precision of traceability models were investigated intensively. The models constructed by PLS1-DA modeling method using spectrum data of 114 training samples were applied to predict 38 test samples, and R2, RMSEC and RMSEP of the model based on transmission mode data were 0.92, 0.113 and 0.127, respectively, with recognition rate of 76.32%, and those based on diffusion reflection mode data were 0.97, 0.102 and 0.119, with recognition rate of 86.84%. The results demonstrated that the near infrared spectrum combined with PLS1-DA can be used to establish the brand traceability models for edible vinegar, and diffuse reflection mode is more beneficial for predictive ability of the model.

  19. [Study on predicting sugar content and valid acidity of apples by near infrared diffuse reflectance technique].

    PubMed

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-11-01

    The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).

  20. Optimization and design of pigments for heat-insulating coatings

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Hai; Zhang, Yue

    2010-12-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.

  1. Specular Reflection and Diffuse Reflectance Spectroscopy of Soils

    USDA-ARS?s Scientific Manuscript database

    Studies on the occurrence and effects of specular reflection in mid-infrared spectra of soils have shown that distortions due to specular reflection occur for both organic (humic acid) and non-organic fractions (carbonates, silica, ashed fraction of soil). The results demonstrated explain why the s...

  2. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    PubMed Central

    Accardo, Grazia; Cioffi, Raffaeke; Colangelo, Francesco; d’Angelo, Raffaele; De Stefano, Luca; Paglietti, Fderica

    2014-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1). PMID:28788467

  3. NIST High Accuracy Reference Reflectometer-Spectrophotometer

    PubMed Central

    Proctor, James E.; Yvonne Barnes, P.

    1996-01-01

    A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081

  4. Infrared deflectometry for the inspection of diffusely specular surfaces

    NASA Astrophysics Data System (ADS)

    Höfer, Sebastian; Burke, Jan; Heizmann, Michael

    2016-12-01

    Deflectometry is a full-field gradient technique that lends itself very well to testing specular surfaces. It uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflection characteristics, making them inaccessible to usual deflectometry. However, many industrially relevant surfaces exist that change their reflection characteristic during production and processing. An example is metal sheets that are used as car body parts. Whereas the molded but otherwise raw metal sheets show a mostly diffuse reflection without sufficient specular reflection, the final car body panels have a high specular reflectance due to the lacquering. In consequence, it would be advantageous to apply the same inspection approach both for the raw material and for the final product. To solve this challenge, specular reflection from rough surfaces can be achieved using light with a larger wavelength, as the specular reflectivity of a surface depends on the ratio of the surface roughness and the wavelength of the light applied. Wavelengths in the thermal infrared range create enough specular reflection to apply deflectometry on many visually rough metal surfaces. This contribution presents the principles of thermal deflectometry, its special challenges, and illustrates its use with examples from the inspection of industrially produced surfaces.

  5. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.

    PubMed

    Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R

    2007-02-10

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].

  6. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.

    The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. Anmore » exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].« less

  7. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses

    NASA Astrophysics Data System (ADS)

    Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2007-02-01

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].

  8. SWIR calibration of Spectralon reflectance factor

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Catherine; Ding, Leibo; Thome, Kurtis J.

    2011-11-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near InfraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475 nm to 1625 nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 50.8 mm (2 in) diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6°directional-hemispherical spectral reflectance factors from 900 nm to 2500 nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475 nm to 1625 nm at an incident angle of 0° and at viewing angle of 45°. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions.

  9. Influence of site and soil properties on the DRIFT spectra of northern cold-region soils

    USDA-ARS?s Scientific Manuscript database

    We investigated the influence of site characteristics and soil properties on the chemical composition of organic matter in soils collected from a latitudinal transect across Alaska through analysis of diffuse reflectance infrared Fourier transform mid infrared (MidIR) spectra of bulk soils. The stud...

  10. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  11. jasonSWIR Calibration of Spectralon Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Cahterine; Ding, Leibo; Thome, Kurtis J.

    2011-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near infraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475nm to 1625nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 2 inch diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6deg directional/hemispherical spectral reflectance factors from 900nm to 2500nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475nm to 1625nm at an incident angle of 0deg and at viewing angles of 40deg, 45deg, and 50deg. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions. Keywords: BRF, BRDF, Calibration, Spectralon, Reflectance, Remote Sensing.

  12. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  13. Application of Diffuse Reflectance FT-IR Spectroscopy for the Surface Study of Kevlar Fibers

    NASA Astrophysics Data System (ADS)

    Chatzi, E. G.; Ishida, H.; Koenig, J. L.

    1985-12-01

    The surfaces of Kevlar-49 aramid fibers, being used in high-performance composite materials, have been characterized by diffuse reflectance Fourier transform infrared (FT-IR) spectroscopy. Enhancement of the surface selectivity of the technique has been achieved using KBr overlayers. The water absorbed by both the skin and the core of the fibers has been characterized by using this technique and the accessibility of the fiber functional groups has been evaluated.

  14. Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations.

    PubMed

    da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F

    2016-03-01

    An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.

  15. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  16. On the possibility of spectroscopic cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.

    1993-07-01

    The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.

  17. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Technical Reports Server (NTRS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  18. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  19. NIR detection of pits and pit fragments in fresh cherries (abstract)

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...

  20. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  1. Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.

  2. Bi-color near infrared thermoreflectometry: a method for true temperature field measurement.

    PubMed

    Sentenac, Thierry; Gilblas, Rémi; Hernandez, Daniel; Le Maoult, Yannick

    2012-12-01

    In a context of radiative temperature field measurement, this paper deals with an innovative method, called bicolor near infrared thermoreflectometry, for the measurement of true temperature fields without prior knowledge of the emissivity field of an opaque material. This method is achieved by a simultaneous measurement, in the near infrared spectral band, of the radiance temperature fields and of the emissivity fields measured indirectly by reflectometry. The theoretical framework of the method is introduced and the principle of the measurements at two wavelengths is detailed. The crucial features of the indirect measurement of emissivity are the measurement of bidirectional reflectivities in a single direction and the introduction of an unknown variable, called the "diffusion factor." Radiance temperature and bidirectional reflectivities are then merged into a bichromatic system based on Kirchhoff's laws. The assumption of the system, based on the invariance of the diffusion factor for two near wavelengths, and the value of the chosen wavelengths, are then discussed in relation to a database of several material properties. A thermoreflectometer prototype was developed, dimensioned, and evaluated. Experiments were carried out to outline its trueness in challenging cases. First, experiments were performed on a metallic sample with a high emissivity value. The bidirectional reflectivity was then measured from low signals. The results on erbium oxide demonstrate the power of the method with materials with high emissivity variations in near infrared spectral band.

  3. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  4. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  5. Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose

    2010-05-01

    Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.

  6. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Gary F. Peter; Richard F. Daniels; Alexander Clark

    2006-01-01

    The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pirus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NlR spectra were obtained from the radial longitudinal face of each strip. The spectra...

  7. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Treesearch

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  8. NEAR-INFRARED AUTOFLUORESCENCE IN BILATERAL DIFFUSE UVEAL MELANOCYTIC PROLIFERATION ASSOCIATED WITH ESOPHAGEAL CARCINOMA AND CHOROIDAL METASTASIS.

    PubMed

    Golshahi, Azadeh; Bornfeld, Norbert; Weinitz, Silke; Kellner, Ulrich

    2016-01-01

    To investigate the advantage of near-infrared autofluorescence (787 nm) for the detection of melanocytic lesions in a patient with bilateral diffuse uveal melanocytic proliferation in association with esophageal carcinoma complicated by most likely unilateral choroidal metastasis. In this retrospective case report, a 55-year-old woman referred for the evaluation of sudden visual loss underwent normal ophthalmological evaluation and, in addition, was examined with near-infrared reflectance, near-infrared autofluorescence, fundus autofluorescence (Heidelberg Retina Angiograph II [HRA2; Heidelberg Engineering]), spectral domain optical coherence tomography (Spectralis OCT; Heidelberg Engineering), and multifocal electroretinography (RetiScan; Roland Consult). The patient had been diagnosed with esophageal carcinoma 3 months before the onset of visual symptoms. The visual acuity was 20/40 in the right eye and 20/20 in the left eye. Bilateral patchy melanocytic proliferation was detected on ophthalmoscopy. The extent of lesions was best detected with near-infrared reflectance and near-infrared autofluorescence, whereas fundus autofluorescence and spectral domain optical coherence tomography did not reveal alterations of the outer retina or retinal pigment epithelium in this early stage of bilateral diffuse uveal melanocytic proliferation. The right eye showed in addition to the findings on the left eye choroidal folds in the fovea and an elevated lesion inferotemporal of the fovea suspicious of a choroidal metastasis. In the B-scan ultrasonography, a homogenous lesion was seen. Spectral domain optical coherence tomography demonstrated a mild accumulation of subretinal fluid adjacent to and over the choroidal metastasis. Transretinal biopsy of this elevated lesion revealed a low differentiated carcinoma of squamous epithelium, compatible with choroidal metastasis of the esophageal carcinoma. The choroidal metastasis increased within 3 months after the first visit. The visual acuity dropped in both eyes. The patient died 6 months after her first visit. Bilateral diffuse uveal melanocytic proliferation can be associated with esophageal carcinoma as a systemic malignancy. Near-infrared imaging can be helpful to detect early stages of BDUMP and can help offer recently reported treatment options at an early stage of disease.

  9. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise ofmore » an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.« less

  10. Developments in the realization of diffuse reflectance scales at NPL

    NASA Astrophysics Data System (ADS)

    Chunnilall, Christopher J.; Clarke, Frank J. J.; Shaw, Michael J.

    2005-08-01

    The United Kingdom scales for diffuse reflectance are realized using two primary instruments. In the 360 nm to 2.5 μm spectral region the National Reference Reflectometer (NRR) realizes absolute measurement of reflectance and radiance factor by goniometric measurements. Hemispherical reflectance scales are obtained through the spatial integration of these goniometric measurements. In the mid-infrared region (2.5 μm - 55 μm) the hemispherical reflectance scale is realized by the Absolute Hemispherical Reflectometer (AHR). This paper describes some of the uncertainties resulting from errors in aligning the NRR and non-ideality in sample topography, together with its use to carry out measurements in the 1 - 1.6 μm region. The AHR has previously been used with grating spectrometers, and has now been coupled to a Fourier transform spectrometer.

  11. Monitoring Prepregs As They Cure

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Gleason, J. R.; Chang, A. C.

    1986-01-01

    Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.

  12. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.

    PubMed

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2010-11-08

    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (p<0.001, paired 2-sided Student's t-test, n=48). NIR AF imaging under polarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  13. Investigation on H-containing shallow trap of hydrogenated TiO2 with in situ Fourier transform infrared diffuse reflection spectroscopy.

    PubMed

    Han, Bing; Hang Hu, Yun

    2017-07-28

    A novel technique, high temperature high pressure in situ Fourier transform infrared diffuse reflection spectroscopy, was successfully used to investigate the formation and stability of shallow trap states in P25 TiO 2 nanoparticles. Two types of shallow traps (with and without H atoms) were identified. The H-containing shallow trap can be easily generated by heating in H 2 atmosphere. However, the trap is unstable in vacuum at 600 °C. In contrast, the H-free shallow trap, which can be formed by heating in vacuum, is stable even at 600 °C. The energy gaps between shallow trap states and the conduction band are 0.09 eV for H-containing shallow trap and 0.13 eV for H-free shallow trap, indicating that the H-containing shallow trap state is closer to the conduction band than that without H.

  14. Determination of uronic acids in isolated hemicelluloses from kenaf using diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and the curve-fitting deconvolution method.

    PubMed

    Batsoulis, A N; Nacos, M K; Pappas, C S; Tarantilis, P A; Mavromoustakos, T; Polissiou, M G

    2004-02-01

    Hemicellulose samples were isolated from kenaf (Hibiscus cannabinus L.). Hemicellulosic fractions usually contain a variable percentage of uronic acids. The uronic acid content (expressed in polygalacturonic acid) of the isolated hemicelluloses was determined by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and the curve-fitting deconvolution method. A linear relationship between uronic acids content and the sum of the peak areas at 1745, 1715, and 1600 cm(-1) was established with a high correlation coefficient (0.98). The deconvolution analysis using the curve-fitting method allowed the elimination of spectral interferences from other cell wall components. The above method was compared with an established spectrophotometric method and was found equivalent for accuracy and repeatability (t-test, F-test). This method is applicable in analysis of natural or synthetic mixtures and/or crude substances. The proposed method is simple, rapid, and nondestructive for the samples.

  15. Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness.

    PubMed

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-02-20

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  16. Radiative Transfer Simulations of the Two-Dimensional Ocean Glint Reflectance and Determination of the Sea Surface Roughness

    NASA Technical Reports Server (NTRS)

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-01-01

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  17. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  18. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas

    2010-09-01

    We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.

  19. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  20. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Treesearch

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  1. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  2. Establishing BRDF calibration capabilities through shortwave infrared

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  3. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED.

    PubMed

    Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% ( k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  4. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  5. Visible to Near-infrared Spectral Reflectance, NGEE-Arctic Tram, Barrow, Alaska, 2015-2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; McMahon, Andrew; Rogers, Alistair

    Canopy spectral reflectance collected from the NGEE-Arctic automated tram platform using a PP-Systems UniSpec-DC spectrometer. Downwelling radiance was measured using a 2 meter fiber optic cable connected to a cosine diffuser. Upwelling (i.e. reflected) radiance was measured using a 2 meter cable connected to a 12 degree field-of-view (FOV) lens. Canopy reflectance was calculated using the ratio of upwelling to downwelling radiance measured over a 99.99% reflectance Spectralon standard measured at the start of each measurement set.

  6. Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Fritzsche, J.; Tkatsch, H.; Waag, F.; Karch, K.; Henze, K.; Delbeck, S.; Budde, J.

    2013-11-01

    Mid- and near-infrared spectroscopy is introduced as a versatile analytical method for characterizing liquid and solid chemicals as obtained from petrochemistry and biotechnology processes. Besides normal transmission measurements, special equipment with silver halide fiber-optic probes allowing efficient analysis based on mid-infrared attenuated total reflection, and an accessory for near-infrared diffuse reflection measurements, are presented. The latter technique can be used advantageously for powdered samples such as microalgae biomass and polysaccharides, as well as for different tissues such as meat samples. The advantages and disadvantages of both methods, which can be used for industrial process monitoring and chemical quality control applications, are discussed, and have been used in several research projects of BSc students within their degree course of bio- and nano-technologies of our University of Applied Sciences.

  7. Intensity-Value Corrections for Integrating Sphere Measurements of Solid Samples Measured Behind Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy J.; Bernacki, Bruce E.; Redding, Rebecca L.

    2014-11-01

    Accurate and calibrated directional-hemispherical reflectance spectra of solids are important for both in situ and remote sensing. Many solids are in the form of powders or granules and to measure their diffuse reflectance spectra in the laboratory, it is often necessary to place the samples behind a transparent medium such as glass for the ultraviolet (UV), visible, or near-infrared spectral regions. Using both experimental methods and a simple optical model, we demonstrate that glass (fused quartz in our case) leads to artifacts in the reflectance values. We report our observations that the measured reflectance values, for both hemispherical and diffusemore » reflectance, are distorted by the additional reflections arising at the air–quartz and sample–quartz interfaces. The values are dependent on the sample reflectance and are offset in intensity in the hemispherical case, leading to measured values up to ~6% too high for a 2% reflectance surface, ~3.8% too high for 10% reflecting surfaces, approximately correct for 40–60% diffuse-reflecting surfaces, and ~1.5% too low for 99% reflecting Spectralon® surfaces. For the case of diffuse-only reflectance, the measured values are uniformly too low due to the polished glass, with differences of nearly 6% for a 99% reflecting matte surface. The deviations arise from the added reflections from the quartz surfaces, as verified by both theory and experiment, and depend on sphere design. Finally, empirical correction factors were implemented into post-processing software to redress the artifact for hemispherical and diffuse reflectance data across the 300–2300 nm range.« less

  8. Mid-infrared reflectlance spectra (2.3-22 micions) of sulfur, gold, KBr, MgO, and halon

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1986-01-01

    Biconical diffuse reflectance spectra in the mid-infrared are presented for powder and other solid forms of sulfur, gold, potassium bromide, magnesium oxide, and halon. Comparisons are made with previously published results of other investigators, and recommendations are made regarding the relative usefulnees of these materials as reflectance standards in the mid-IR. Sulfur has strong intrinsic bands at wavelengths greater than 7 microns that must be taken into account for its use as a reflectance standard. Some sulfur samples have hydrocarbon contaminants and in powder form may have adsorbed water, both of which produce bands in the 3-4-micron region. Potassium bromide has several weak intrinsic bands and is very sensitive to adsorbed water contamination; otherwise it is a good IR reference material. Magnesium oxide and halon have major bands structure and low reflectivity at wavelengths greater than 2.6 microns and thus are unsuitable as reference materials in the mid-IR. Vapor-deposited gold on fine sandpaper (600 grit) is very bright, spectrally flat, and fairly diffuse, so it is the superior material (of those examined) for reflectance reference material throughout the IR. Fine gold powder, on the other hand, is much less bright than evaporated gold, and its reflectivity at wavelengths greater than its particle size is highly sensitive to particle packing density.

  9. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics

    NASA Astrophysics Data System (ADS)

    Hayashi, Daiyu; van Dongen, Anne Marie; Boerekamp, Jack; Spoor, Sandra; Lucassen, Gerald; Schleipen, Jean

    2017-06-01

    Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470-1600 nm with a spectral gap at 900-1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.

  10. Characterization of near infrared spectral variance in the authentication of skim and nonfat dry milk powder collection using ANOVA-PCA, Pooled-ANOVA, and partial least squares regression

    USDA-ARS?s Scientific Manuscript database

    Forty-one samples of skim milk powder (SMP) and non-fat dry milk (NFDM) from 8 suppliers, 13 production sites, and 3 processing temperatures were analyzed by NIR diffuse reflectance spectrometry over a period of three days. NIR reflectance spectra (1700-2500 nm) were converted to pseudo-absorbance ...

  11. Comparison of Pinus taeda L. whole-tree wood property calibrations using diffuse reflectance near infrared spectra obtained using a variety of sampling options

    Treesearch

    P. David Jones; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Robert C. Purnell

    2008-01-01

    A necessary objective for tree-breeding programs, with a focus on wood quality, is the measurement of wood properties on a whole-tree basis, however, the time and cost involved limits the numbers of trees sampled. Near infrared (NIR) spectroscopy provides an alternative and recently, it has been demonstrated that calibrations based on milled increment cores and whole-...

  12. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  13. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    PubMed

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

  14. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  15. A diffuse reflectance infrared Fourier transform spectroscopic study of adsorbed hydrazines

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Kilduff, Jan E.; Koontz, Steven L.

    1988-01-01

    Diffuse reflectance spectroscopy of fuel hydrazines adsorbed on silica, silica-alumina and alimina surfaces indicates that the primary surface-hydrazine interaction is hydrogen bonding. Hydrazine, on adsorption to a deuterated silica surface, undergoes a rapid H/D exchange with deuterated surface silanol (Si-OD) groups. Adsorption equilibria are rapidly established at room temperature. Monomethylhydrazine and unsymmetrical dimethylhydrazine are similarly adsorbed. On adsorption, the C-H stretching and methyl deformation modes of the methylhydrazines are shifted to higher frequencies by 10 to 20 cm(-1). These shifts are postulated to be due to changes in the lone-pair electro-density on the adjacent nitrogen atom and an electronegativity effect.

  16. Measurement of drug and macromolecule diffusion across atherosclerotic rabbit aorta ex vivo by attenuated total reflection-Fourier transform infrared imaging

    NASA Astrophysics Data System (ADS)

    Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.

    2009-07-01

    Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.

  17. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  18. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.

    PubMed

    Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

    2013-10-15

    The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Reflectance spectroscopy can quantify cutaneous haemoglobin oxygenation by oxygen uptake from the atmosphere after epidermal barrier disruption.

    PubMed

    Heise, H M; Lampen, P; Stücker, M

    2003-11-01

    The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.

  20. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED

    PubMed Central

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region. PMID:29167593

  1. Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Greeley, R.; Goettelman, R.

    1974-01-01

    Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).

  2. Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Greeley, R.; Goettelman, R.

    1974-01-01

    Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).

  3. The optical diagnostics of parameters of biological tissues of human intact skin in near-infrared range

    NASA Astrophysics Data System (ADS)

    Petruk, Vasyl; Kvaternyuk, Sergii; Bolyuh, Boris; Bolyuh, Dmitry; Dronenko, Vladimir; Harasim, Damian; Annabayev, Azamat

    2016-09-01

    Melanoma skin is difficult to diagnose in the early stages of development despite its location outside. Melanoma is difficult to visually differentiate from benign melanocytic nevi. In the work we investigated parameters of human intact skin in near-infrared range for different racial and gender groups. This allows to analyze statistical differences in the coefficient of diffuse reflection and use them in the differential diagnosis of cancer by optical methods subject.

  4. A comparative study of mid-infrared diffuse reflection (DR) and attenuated total reflection (ATR) spectroscopy for the detection of fungal infection on RWA2-corn.

    PubMed

    Kos, Gregor; Krska, Rudolf; Lohninger, Hans; Griffiths, Peter R

    2004-01-01

    An investigation into the rapid detection of mycotoxin-producing fungi on corn by two mid-infrared spectroscopic techniques was undertaken. Corn samples from a single genotype (RWA2, blanks, and contaminated with Fusarium graminearum) were ground, sieved and, after appropriate sample preparation, subjected to mid-infrared spectroscopy using two different accessories (diffuse reflection and attenuated total reflection). The measured spectra were evaluated with principal component analysis (PCA) and the blank and contaminated samples were classified by cluster analysis. Reference data for fungal metabolites were obtained with conventional methods. After extraction and clean-up, each sample was analyzed for the toxin deoxynivalenol (DON) by gas chromatography with electron capture detection (GC-ECD) and ergosterol (a parameter for the total fungal biomass) by high-performance liquid chromatography with diode array detection (HPLC-DAD). The concentration ranges for contaminated samples were 880-3600 microg/kg for ergosterol and 300-2600 microg/kg for DON. Classification efficiency was 100% for ATR spectra. DR spectra did not show as obvious a clustering of contaminated and blank samples. Results and trends were also observed in single spectra plots. Quantification using a PLS1 regression algorithm showed good correlation with DON reference data, but a rather high standard error of prediction (SEP) with 600 microg/kg (DR) and 490 microg/kg (ATR), respectively, for ergosterol. Comparing measurement procedures and results showed advantages for the ATR technique, mainly owing to its ease of use and the easier interpretation of results that were better with respect to classification and quantification.

  5. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.

  6. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients

    USDA-ARS?s Scientific Manuscript database

    Rapid and efficient quantification of plant-available soil phosphorus (P) and potassium (K) is needed to support variable-rate fertilization strategies. Two methods that have been used for estimating these soil macronutrients are diffuse reflectance spectroscopy in visible and near-infrared (VNIR) w...

  7. Effect of sample thickness on the extracted near-infrared bulk optical properties of Bacillus subtilis in liquid culture.

    PubMed

    Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N

    2011-11-01

    In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.

  8. Positional dependence of the SNPP VIIRS SD BRDF degradation factor

    NASA Astrophysics Data System (ADS)

    Lei, Ning; Chen, Xuexia; Chang, Tiejun; Xiong, Xiaoxiong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager. The VIIRS regularly performs on-orbit radiometric calibration of its reflective solar bands (RSBs) through observing an onboard sunlit solar diffuser (SD). The reflectance of the SD changes over time and the change is denoted as the SD bidirectional reflectance distribution function degradation factor. The degradation factor, measured by an onboard solar diffuser stability monitor, has been shown to be both incident sunlight and outgoing direction dependent. In this Proceeding, we investigate the factor's dependence on SD position. We develop a model to relate the SD degradation factor with the amount of solar exposure. We use Earth measurements to evaluate the effectiveness of the model.

  9. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    PubMed

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings. © The Author(s) 2016.

  10. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  11. Modification method to reduce the impact of blood vessel on noncontact discrimination of human blood based on ;M+N; theory

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin

    2018-01-01

    Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.

  12. Optical measurements of absorption changes in two-layered diffusive media

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio

    2004-04-01

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  13. The effect of soil water deficit on the reflectance of conifer seedling canopies

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1977-01-01

    The effects of soil water deficit on spruce and pine seedling canopy reflectance, needle reflectance and transmittance, and canopy density were measured in a greenhouse with a diffuse source of radiant flux. A potential for early or pre-visual detection of plant water stress was not supported by these measurements made at visible, and reflected infrared wavelengths to 1950 nm. Needles were found to transmit approximately thirty percent of the radiant flux incident on them at 780 nm, ten percent at 700 nm, and were found to be opaque at 450, 550, 600 and 650 nm.

  14. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  15. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Valipour, A.

    2013-10-01

    The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.

  16. Infrared Spectroscopy of Hydrogen in Fullerite and MOF-5 Hosts

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Stephen; Churchill, Hugh; Korngut, Phil; Simmons, Christie; Strangas, Yorgos

    2006-03-01

    We present a novel use of diffuse reflectance infrared spectroscopy to study the quantum dynamics of hydrogen molecules trapped within a host material. This technique is particularly useful for the study of hydrogen storage materials since it provides detailed information about the intermolecular potential at the binding site. Because H2 has no intrinsic infrared activity any observed features arise solely through interaction with the host material and as such are very sensitive to the symmetry of the binding site. The drawback is that the induced spectra are quite weak. However, a technique based on diffuse reflectance has been shown to produce a sufficiently large signal [1]. We have now constructed a cryogenic system that allows spectra to be obtained in this manner at pressures as high as 100 atm. and at temperatures as low as 10 K. Data will be presented for H2 in both C60 and MOF-5 showing a series of absorption features arising from the quantized vibrational, rotational, and translational motion of the trapped H2. At the lowest temperature these peaks become quite sharp, FWHM less than 1 cm-1, with a detailed fine structure arising from the H2 host interactions. 1. S. A. FitzGerald et al., Phys. Rev. B 65, 140302. (2002)

  17. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  18. On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database).

    PubMed

    Doménech-Carbó, Antonio; Doménech-Carbó, María Teresa; Valle-Algarra, Francisco Manuel; Gimeno-Adelantado, José Vicente; Osete-Cortina, Laura; Bosch-Reig, Francisco

    2016-07-13

    A web-based database of voltammograms is presented for characterizing artists' pigments and corrosion products of ceramic, stone and metal objects by means of the voltammetry of immobilized particles methodology. Description of the website and the database is provided. Voltammograms are, in most cases, accompanied by scanning electron microphotographs, X-ray spectra, infrared spectra acquired in attenuated total reflectance Fourier transform infrared spectroscopy mode (ATR-FTIR) and diffuse reflectance spectra in the UV-Vis-region. For illustrating the usefulness of the database two case studies involving identification of pigments and a case study describing deterioration of an archaeological metallic object are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giard, E., E-mail: edouard.giard@onera.fr; Ribet-Mohamed, I.; Jaeck, J.

    2014-07-28

    We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the “InAs-rich” design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition,more » measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3–4.7 μm window equal to 42% for U{sub bias} = −0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.« less

  20. Cell wall compositional changes during incubation of plant roots measured by mid-infrared diffuse reflectance spectroscopy and fiber analysis

    USDA-ARS?s Scientific Manuscript database

    Plant roots, particularly the constituents of root cell walls (hemicellulose, cellulose and lignin), are important contributors to soil organic matter. Little is known about the cell wall composition of many important crop species or compositional changes as roots decay. The objectives of this stu...

  1. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    PubMed

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  2. Non-invasive characterization of colorants by portable diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Manfredi, Marcello; Barberis, Elettra; Aceto, Maurizio; Marengo, Emilio

    2017-06-01

    During the last years the need for non-invasive and non-destructive analytical methods brought to the development and application of new instrumentation and analytical methods for the in-situ analysis of cultural heritage objects. In this work we present the application of a portable diffuse reflectance infrared Fourier transform (DRIFT) method for the non-invasive characterization of colorants prepared according to ancient recipes and using egg white and Gum Arabic as binders. Approximately 50 colorants were analyzed with the DRIFT spectroscopy: we were able to identify and discriminate the most used yellow (i.e. yellow ochres, Lead-tin Yellow, Orpiment, etc.), red (i.e. red ochres, Hematite) and blue (i.e. Lapis Lazuli, Azurite, indigo) colorants, creating a complete DRIFT spectral library. The Principal Component Analysis-Discriminant Analysis (PCA-DA) was then employed for the colorants classification according to the chemical/mineralogical composition. The DRIFT analysis was also performed on a gouache painting of the artist Sutherland; and the colorants used by the painter were identified directly in-situ and in a non-invasive manner.

  3. Generalizing the flash technique in the front-face configuration to measure the thermal diffusivity of semitransparent solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza

    2014-10-15

    In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.

  4. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  5. Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-09-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  6. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    NASA Astrophysics Data System (ADS)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  7. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in contrast to the transient thermal response observed in infrared thermography), collection times can be lengthened to whatever extent needed to achieve desired signal-to-noise ratios. Each image is digitized, and the resulting data are processed in several steps to obtain a true mid-infrared reflectance image. The raw image includes thermal radiation emitted by the specimen in addition to the desired reflected radiation. The thermal-radiation contribution is eliminated by subtracting the image obtained with the illumination off from the image obtained with the illumination on. A flat-field correction is then made to remove the effects of non-uniformities in the illumination level and pixel-to-pixel variations in sensitivity. This correction is performed by normalizing to an image of a standard object that has a known reflectance at a wavelength of 4 microns. After correction, each pixel value is proportional to the reflectance (at a wavelength of 4-microns) at the corresponding location on the specimen. Mid-infrared reflectance imaging of specimens that were thermally cyc led for different numbers of cycles was performed and demonstrated t hat mid-infrared reflectance imaging was able to monitor the gradual delamination progression that occurs with continued thermal cycling . Reproducible values were obtained for the reflectance associated w ith an attached and fully delaminated TBC, so that intermediate refle ctance values could be interpreted to successfully predict the numbe r of thermal cycles to failure.

  8. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  9. Variable Temperature Infrared Spectroscopy Investigation of Benzoic Acid Interactions with Montmorillonite Clay Interlayer Water.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-07-01

    Molecular interactions between benzoic acid and cations and water contained in montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). Using sample perturbation and difference spectroscopy, infrared spectral changes resulting from removal of interlayer water and associated changes in local benzoic acid environments are identified. Difference spectra features can be correlated with changes in specific molecular vibrations that are characteristic of benzoic acid molecular orientation. Results suggest that the carboxylic acid functionality of benzoic acid interacts with interlayer cations through a bridging water molecule and that this interaction is affected by the nature of the cation present in the clay interlayer space.

  10. Prediction of erodibility in Oxisols using iron oxides, soil color and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques, José, Jr.

    2015-04-01

    The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.

  11. Computation of diffuse sky irradiance from multidirectional radiance measurements

    NASA Technical Reports Server (NTRS)

    Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.

    1987-01-01

    Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.

  12. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  13. SeaWiFS long-term solar diffuser reflectance trend analysis

    NASA Astrophysics Data System (ADS)

    Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2006-08-01

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.

  14. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  15. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  16. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.

  17. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectancemore » spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.« less

  18. Robust estimation of cerebral hemodynamics in neonates using multilayered diffusion model for normal and oblique incidences

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Harbater, Osnat; Gannot, Israel

    2014-07-01

    The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.

  19. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  20. PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.

    PubMed

    Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  1. Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  2. PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING

    PubMed Central

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712

  3. Cloud point extraction and diffuse reflectance-Fourier transform infrared spectroscopic determination of chromium(VI): A probe to adulteration in food stuffs.

    PubMed

    Tiwari, Swapnil; Deb, Manas Kanti; Sen, Bhupendra K

    2017-04-15

    A new cloud point extraction (CPE) method for the determination of hexavalent chromium i.e. Cr(VI) in food samples is established with subsequent diffuse reflectance-Fourier transform infrared (DRS-FTIR) analysis. The method demonstrates enrichment of Cr(VI) after its complexation with 1,5-diphenylcarbazide. The reddish-violet complex formed showed λ max at 540nm. Micellar phase separation at cloud point temperature of non-ionic surfactant, Triton X-100 occurred and complex was entrapped in surfactant and analyzed using DRS-FTIR. Under optimized conditions, the limit of detection (LOD) and quantification (LOQ) were 1.22 and 4.02μgmL -1 , respectively. Excellent linearity with correlation coefficient value of 0.94 was found for the concentration range of 1-100μgmL -1 . At 10μgmL -1 the standard deviation for 7 replicate measurements was found to be 0.11μgmL -1 . The method was successfully applied to commercially marketed food stuffs, and good recoveries (81-112%) were obtained by spiking the real samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  5. BRDF measurements of sunshield and baffle materials for the IRAS telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1982-01-01

    Measurements of the far-infrared bidirectional reflectance distribution functions (BRDF) of four samples of Martin Black coating and one sample of gold coated aluminum from the telescope to be flown on the Infrared Astronomy Satellite (IRAS) are presented. At incidence angles near 35 deg Martin Black is a diffuse reflector at wavelengths as long as 36 microns. The gold coated aluminum sample from the IRAS sunshield has a visible grain which causes a strong diffraction enhancement of the BRDF at large nonspecular angles. This enhancement from the sunshield will increase the stray light level inside the telescope.

  6. Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1988-01-01

    The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.

  7. A Comparative Study of the Bidirectional Reflectance Distribution Function of Several Surfaces as a Mid-wave Infrared Diffuse Reflectance Standard

    DTIC Science & Technology

    2009-03-01

    it for the symbology used in this document before reading this chapter. 2.1 BRDF Development In this section, the BRDF will first be briefly be...geometric occlusion term, which was de- picted in Figure 6. This term in the Cook-Torrance model describes the shadowing and masking effects, and is...where the min() function selects the least of the arguments. The first term in the minimum function is where no occlusion of any kind is occurring

  8. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  9. The reflectance of Ames 24E, Infrablack, and Martin black. [anodizing coatings for far-infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1989-01-01

    Results are reported from measurements of the specular reflectances (SRs) and bidirectional reflectance distribution functions (BRDFs) of three black optical coatings in the FIR wavelength range. The nonspecular reflectometer apparatus described by Smith (1984) is employed, and the data are presented in tables and graphs and discussed in detail. It is found that Ames 24E has an FIR SR one order of magnitude lower than that of Martin black (MB), with BRDF values characteristic of a nearly Lambertian surface, while Infrablack has SR two orders lower than MB and a specular-diffuse surface; MB itself has a very specular surface.

  10. Modeling of the Temperature-dependent Spectral Response of In(1-x)Ga(x)Sb Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gonzalex-Cuevas, Juan A.; Refaat, Tamer F.; Abedin, M. Nurul; Elsayed-Ali, Hani E.

    2006-01-01

    A model of the spectral responsivity of In(1-x) Ga(x) Sb p-n junction infrared photodetectors has been developed. This model is based on calculations of the photogenerated and diffusion currents in the device. Expressions for the carrier mobilities, absorption coefficient and normal-incidence reflectivity as a function of temperature were derived from extensions made to Adachi and Caughey-Thomas models. Contributions from the Auger recombination mechanism, which increase with a rise in temperature, have also been considered. The responsivity was evaluated for different doping levels, diffusion depths, operating temperatures, and photon energies. Parameters calculated from the model were compared with available experimental data, and good agreement was obtained. These theoretical calculations help to better understand the electro-optical behavior of In(1-x) Ga(x) Sb photodetectors, and can be utilized for performance enhancement through optimization of the device structure.

  11. [Applications of near-infrared spectroscopy to analysis of traditional Chinese herbal medicine].

    PubMed

    Li, Yan-Zhou; Min, Shun-Geng; Liu, Xia

    2008-07-01

    Analysis of traditional Chinese herbal medicine is of great importance to its quality control Conventional analysis methods can not meet the requirement of rapid and on-line analysis because of complex process more experiences or needed. In recent years, near-infrared spectroscopy technique has been used for rapid determination of active components, on-line quality control, identification of counterfeit and discrimination of geographical origins of herbal medicines and so on, due to its advantages of simple pretreatment, high efficiency, convenience to use solid diffuse reflection spectroscopy and fiber. In the present paper, the principles and methods of near-infrared spectroscopy technique are introduced concisely. Especially, the applications of this technique in quantitative analysis and qualitative analysis of traditional Chinese herbal medicine are reviewed.

  12. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.

    PubMed

    Bogomolov, Andrey; Belikova, Valeria; Galyanin, Vladislav; Melenteva, Anastasiia; Meyer, Hans

    2017-05-15

    New technique of diffuse reflectance spectroscopic analysis of milk fat and total protein content in the visible (Vis) and adjacent near infrared (NIR) region (400-995nm) has been developed and tested. Sample analysis was performed through a probe having eight 200-µm fiber channels forming a linear array. One of the end fibers was used for the illumination and other seven - for the spectroscopic detection of diffusely reflected light. One of the detection channels was used as a reference to normalize the spectra and to convert them into absorbance-equivalent units. The method has been tested experimentally using a designed sample set prepared from industrial raw milk standards with widely varying fat and protein content. To increase the modelling robustness all milk samples were measured in three different homogenization degrees. Comprehensive data analysis has shown the advantage of combining both spectral and spatial resolution in the same measurement and revealed the most relevant channels and wavelength regions. The modelling accuracy was further improved using joint variable selection and preprocessing optimization method based on the genetic algorithm. The root mean-square errors of different validation methods were below 0.10% for fat and below 0.08% for total protein content. Based on the present experimental data, it was computationally shown that the full-spectrum analysis in this method can be replaced by a sensor measurement at several specific wavelengths, for instance, using light-emitting diodes (LEDs) for illumination. Two optimal sensor configurations have been suggested: with nine LEDs for the analysis of fat and seven - for protein content. Both simulated sensors exhibit nearly the same component determination accuracy as corresponding full-spectrum analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. On mimicking diffuse reflectance spectra in the visible and near-infrared ranges for tissue-like phantom design

    NASA Astrophysics Data System (ADS)

    Debernardi, N.; Dunias, P.; van El, B.; Statham, A. E.

    2014-03-01

    A novel methodology is presented to mimic diffuse reflectance spectra of arbitrary biological tissues in the visible and near-infrared ranges. The prerequisite for this method is that the spectral information of basic components is sufficient to mimic an arbitrary tissue. Using a sterile disposable fiber optic probe the diffuse reflectance spectrum of a tissue (either in vivo or ex vivo) is measured, which forms the target spectrum. With the same type of fiber probe, a wide variety of basic components (ingredients) has been previously measured and all together forms a spectral database. A "recipe" for the optimal mixture of ingredients can then be derived using an algorithm that fits the absorption and scattering behavior of the target spectrum using the spectra of the basic components in the database. The spectral mimicking accuracy refines by adding more ingredients to the database. The validity of the principle is demonstrated by mimicking an arbitrary mixture of components. The method can be applied with different kinds of materials, e.g. gelatins, waxes and silicones, thus providing the possibility of mimicking the mechanical properties of target tissues as well. The algorithm can be extended from single point contact spectral measurement to contactless multi- and hyper-spectral camera acquisition. It can be applied to produce portable and durable tissue-like phantoms that provides consistent results over time for calibration, demonstration, comparison of instruments or other such tasks. They are also more readily available than living tissue or a cadaver and are not so limited by ease of handling and legislation; hence they are highly useful when developing new devices.

  14. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    PubMed

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  15. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  16. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy.

    PubMed

    Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina

    2015-02-01

    The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®

  17. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  18. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  19. The contribution of the diffuse light component to the topographic effect on remotely sensed data

    NASA Technical Reports Server (NTRS)

    Justice, C.; Holben, B.

    1980-01-01

    The topographic effect is measured by the difference between the global radiance from inclined surfaces as a function of their orientation relative to the sensor position and light source. The short wave radiant energy incident on a surface is composed of direct sunlight, scattered skylight, and light reflected from surrounding terrain. The latter two components are commonly known as the diffuse component. The contribution of the diffuse light component to the topographic effect was examined and the significance of this diffuse component with respect to two direct radiance models was assessed. Diffuse and global spectral radiances were measured for a series of slopes and aspects of a uniform and surface in the red and photographic infrared parts of the spectrum, using a nadir pointing two channel handheld radiometer. The diffuse light was found to produce a topographic effect which varied from the topographic effect for direct light. The topographic effect caused by diffuse light was found to increase slightly with solar elevation and wavelength for the channels examined. The correlations between data derived from two simple direct radiance simulation models and the field data were not significantly affected when the diffuse component was removed from the radiances. Radiances from a 60 percent reflective surface, assuming no atmospheric path radiance, the diffuse light topographic effect contributed a maximum range of 3 pixel values in simulated LANDSAT data from all aspects with slopes up to 30 degrees.

  20. Cleanliness evaluation of rough surfaces with diffuse IR reflectance

    NASA Technical Reports Server (NTRS)

    Pearson, L. H.

    1995-01-01

    Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.

  1. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    PubMed

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  2. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  3. The Shell Seeker: What Is the Quantity of Shell in the Lido di Venezia Sand? A Calibration DRIFTS Experiment

    ERIC Educational Resources Information Center

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    In this experiment, students are given a fanciful application of the standard addition method to evaluate the approximate quantity of the shell component in a sample of sand collected on the Lido di Venezia seashore. Several diffuse reflectance infrared Fourier transform (DRIFT) spectra are recorded from a sand sample before and after addition of…

  4. The effect of weave orientation on the BRDF of tarp samples

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Butler, James J.

    2003-10-01

    The results of bi-directional reflectance distribution function (BRDF) measurements of four tarp samples obtained from NASA"s Stennis Space Center (SSC) are presented. The measurements were performed in the Diffuser Calibration Facility (DCaF) at NASA"s Goddard Space Flight Center (GSFC). The samples are of similar material structure but different reflectance. The experimental data were obtained with a Xe arc lamp/monochromator light source as well as laser light sources in the ultraviolet, visible, and near infrared spectral regions. The BRDF data were recorded at four incident zenith angles and at five incident azimuth angles. The dependence of the measured BRDF on weave orientation was analyzed and presented. 8 degree irectional/hemispherical reflectance data were also measured for each tarp sample, and those results are also reported. All results are NIST traceable through calibrated standard plates. The specular and diffuse scatter data obtained from these studies are used by NASA"s SSC in their field-based, vicarious calibration of satellite and airborne remote sensing instruments.

  5. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  6. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  7. Analysis of ecstasy tablets: comparison of reflectance and transmittance near infrared spectroscopy.

    PubMed

    Schneider, Ralph Carsten; Kovar, Karl-Artur

    2003-07-08

    Calibration models for the quantitation of commonly used ecstasy substances have been developed using near infrared spectroscopy (NIR) in diffuse reflectance and in transmission mode by applying seized ecstasy tablets for model building and validation. The samples contained amphetamine, N-methyl-3,4-methylenedioxy-amphetamine (MDMA) and N-ethyl-3,4-methylenedioxy-amphetamine (MDE) in different concentrations. All tablets were analyzed using high performance liquid chromatography (HPLC) with diode array detection as reference method. We evaluated the performance of each NIR measurement method with regard to its ability to predict the content of each tablet with a low root mean square error of prediction (RMSEP). Best calibration models could be generated by using NIR measurement in transmittance mode with wavelength selection and 1/x-transformation of the raw data. The models build in reflectance mode showed higher RMSEPs using as data pretreatment, wavelength selection, 1/x-transformation and a second order Savitzky-Golay derivative with five point smoothing was applied to obtain the best models. To estimate the influence of inhomogeneities in the illegal tablets, a calibration of the destroyed, i.e. triturated samples was build and compared to the corresponding data of the whole tablets. The calibrations using these homogenized tablets showed lower RMSEPs. We can conclude that NIR analysis of ecstasy tablets in transmission mode is more suitable than measurement in diffuse reflectance to obtain quantification models for their active ingredients with regard to low errors of prediction. Inhomogeneities in the samples are equalized when measuring the tablets as powdered samples.

  8. In-vivo studies of reflectance pulse oximeter sensor

    NASA Astrophysics Data System (ADS)

    Ling, Jian; Takatani, Setsuo; Noon, George P.; Nose, Yukihiko

    1993-08-01

    Reflectance oximetry can offer an advantage of being applicable to any portion of the body. However, the major problem of reflectance oximetry is low pulsatile signal level which prevents prolonged clinical application during extreme situations, such as hypothermia and vasoconstriction. In order to improve the pulsatile signal level of reflectance pulse oximeter and thus its accuracy, three different sensors, with the separation distances (SPD) between light emitting diode (LED) and photodiode being 3, 5, and 7 mm respectively, were studied on nine healthy volunteers. With the increase of the SPD, it was found that both the red (660 nm) and near-infrared (830 nm) pulsatile to average signal ratio (AC/DC) increased, and the standard deviations of (AC/DC)red/(AC/DC)infrared ratio decreased, in spite of the decrease of the absolute signal level. Further clinical studies of 3 mm and 7 mm SPD sensors on seven patients also showed that the (AC/DC)red/(AC/DC)infrared ratio measured by the 7 mm sensor were less disturbed than the 3 mm sensor during the surgery. A theoretical study based on the three-dimensional photon diffusion theory supports the experimental and clinical results. As a conclusion, the 7 mm sensor has the highest signal-to- noise ratio among three different sensors. A new 7 mm SPD reflectance sensor, with the increased number of LEDs around the photodiode, was designed to increase the AC/DC ratio, as well as to increase the absolute signal level.

  9. Chemical vapor deposition of low reflective cobalt (II) oxide films

    NASA Astrophysics Data System (ADS)

    Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin

    2016-01-01

    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal ⿿cauliflower⿿ morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.

  10. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  11. Optimizing the models for rapid determination of chlorogenic acid, scopoletin and rutin in plant samples by near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Zhiyi; Shan, Ruifeng; Wang, Jiajun; Cai, Wensheng; Shao, Xueguang

    2014-07-01

    Polyphenols in plant samples have been extensively studied because phenolic compounds are ubiquitous in plants and can be used as antioxidants in promoting human health. A method for rapid determination of three phenolic compounds (chlorogenic acid, scopoletin and rutin) in plant samples using near-infrared diffuse reflectance spectroscopy (NIRDRS) is studied in this work. Partial least squares (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. The results show that individual spectral preprocessing and variable selection has no or slight influence on the models, but the combination of the techniques can significantly improve the models. The combination of continuous wavelet transform (CWT) for removing the variant background, multiplicative scatter correction (MSC) for correcting the scattering effect and randomization test (RT) for selecting the informative variables was found to be the best way for building the optimal models. For validation of the models, the polyphenol contents in an independent sample set were predicted. The correlation coefficients between the predicted values and the contents determined by high performance liquid chromatography (HPLC) analysis are as high as 0.964, 0.948 and 0.934 for chlorogenic acid, scopoletin and rutin, respectively.

  12. Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation

    NASA Astrophysics Data System (ADS)

    Liebert, Adam; Sawosz, Piotr; Milej, Daniel; Kacprzak, Michał; Weigl, Wojciech; Botwicz, Marcin; MaCzewska, Joanna; Fronczewska, Katarzyna; Mayzner-Zawadzka, Ewa; Królicki, Leszek; Maniewski, Roman

    2011-04-01

    Recently, it was shown in measurements carried out on humans that time-resolved near-infrared reflectometry and fluorescence spectroscopy may allow for discrimination of information originating directly from the brain avoiding influence of contaminating signals related to the perfusion of extracerebral tissues. We report on continuation of these studies, showing that the near-infrared light can be detected noninvasively on the surface of the tissue at large interoptode distance. A multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The instrument was applied during intravenous injection of indocyanine green and the distributions of times of flight of photons were successfully acquired showing inflow and washout of the dye in the tissue. Time courses of the statistical moments of distributions of times of flight of photons are presented and compared to the results obtained simultaneously at shorter source-detector separations (3, 4, and 5 cm). We show in a series of experiments carried out on physical phantom and healthy volunteers that the time-resolved data acquisition in combination with very large source-detector separation may allow one to improve depth selectivity of perfusion assessment in the brain.

  13. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy

    PubMed Central

    Wang, Cheng; Li, Wei; Guo, Mingxing; Ji, Junfeng

    2017-01-01

    The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk. PMID:28198802

  14. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  15. Diffuse Reflectance Spectroscopy of Hidden Objects. Part II: Recovery of a Target Spectrum.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    In this study, we consider the reconstruction of a diffuse reflectance near-infrared spectrum of an object (target spectrum) in case the object is covered by an interfering absorbing and scattering layer. Recovery is performed using a new empirical method, which was developed in our previous study. We focus on a system, which consists of several layers of polyethylene (PE) film and underlayer objects with different spectral features. The spectral contribution of the interfering layer is modeled by a three-component two-parameter multivariate curve resolution (MCR) model, which was built and calibrated using spectrally flat objects. We show that this model is applicable to real objects with non-uniform spectra. Ultimately, the target spectrum can be reconstructed from a single spectrum of the covered target. With calculation methods, we are able to recover quite accurately the spectrum of a target even when the object is covered by 0.7 mm of PE.

  16. BiOBr microspheres for photocatalytic degradation of an anionic dye

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  17. A novel image-based BRDF measurement system and its application to human skin

    NASA Astrophysics Data System (ADS)

    Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy

    2016-09-01

    Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.

  18. Initial studies of the bidirectional reflectance distribution function of carbon nanotube structures for stray light control applications

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Georgiev, Georgi T.; Tveekrem, June L.; Quijada, Manuel; Getty, Stephanie; Hagopian, John G.

    2010-10-01

    The Bidirectional Reflectance Distribution Function (BRDF) at visible and near-infrared wavelengths of Multi-Wall Carbon NanoTubes (MWCNTs) grown on substrate materials are reported. The BRDF measurements were performed in the Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center, and results at 500nm and 900nm are reported here. In addition, the 8° Directional/Hemispherical Reflectance of the samples is reported from the ultraviolet to shortwave infrared. The 8° Directional/Hemispherical Reflectance was measured in the Optics Branch at NASA's Goddard Space Flight Center. The BRDF was measured at 0° and 45° incident angles and from -80° to +80° scatter angles using a monochromatic source. The optical scatter properties of the samples as represented by their BRDF were found to be strongly influenced by the choice of substrate. As a reference, the optical scattering properties of the carbon nanotubes are compared to the BRDF of Aeroglaze Z306TM and Rippey Ultrapol IVTM, a well-known black paint and black appliqué, respectively. The possibility, promise, and challenges of employing carefully engineered carbon nanotubes in straylight control applications particularly for spaceflight instrumentation is also discussed.

  19. Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.

    NASA Astrophysics Data System (ADS)

    Liou, Lih-Yeh

    Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  20. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  1. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  2. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  3. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  4. Design of Reflective, Photonic Shields for Atmospheric Reentry

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John

    2010-01-01

    We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.

  5. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  6. [Spectral properties of light migration in apple fruit tissue].

    PubMed

    Sun, Teng-Fei; Zhang, Teng-Teng; Zheng, Tian-Tian; Cao, Zeng-Hui; Zhang, Jun

    2013-11-01

    The present paper simulates laser wavelength 632 and 750 nm Gaussian beam migration in apple fruit tissue using Monte-Carlo method, and researches the spectral properties of absorption and scattering. It was shown that the special energy distribution characteristics of Gaussian beam influenced the diffusion of the laser in the tissue, the reflection, absorption and transmittance of 750 nm by tissue are lower, there are more photons interacting with tissue within the tissue, and they can more clearly reflect the information within the tissue. So, the transmission characteristics of the infrared light were relatively strong in biology tissue, which was convenient for researching biology tissue.

  7. Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications.

    USGS Publications Warehouse

    King, T.V.V.; Ridley, W.I.

    1987-01-01

    Using high-resolution visible and near-infrared diffuse spectral reflectance, systematically investigates apparent wavelength shifts as a function of mineral chemistry in the Fe/Mg olivine series from Fo11 to Fo91. The study also shows that trace amounts of nickel can be spectrally detected in the olivine structure. Significant spectral variation as a function of grain size is also demonstrated, adding a further complication to the interpretation of remotely sensed data from olivine-rich surfaces. Some permutations of Fe-Mg-Ni relations in olivines are discussed as they apply to the interpretation of asteroid surfaces and other extraterrestrial bodies. -from Authors

  8. On the Widths of Bands in the Infrared Spectra of Oxyanions.

    PubMed

    Griffiths, Peter R; Eastman Fries, Brandy; Weakley, Andrew T

    2018-01-01

    It is well known that the antisymmetric stretching (ν 3 ) band in the mid-infrared spectra of oxyanion salts is usually very broad, whereas all the other fundamental bands are narrow. In this paper, we propose that the underlying cause of the increased width is the effect of the very high absorption index of this band for samples prepared with a range of particle sizes. When oxyanion salts are ground, the diameter of the resulting particles usually varies from less than 100 nm to about 2 µm. While the peak absorbance of the ν 3 band of the smaller particles (diameter < 200 nm) is less than 1, that of the larger particles can be as high as 6. We show that the average transmittance of these particles leads to a significant band broadening, especially when there are small voids in the resulting sample. Although the effect is always seen in the spectra of alkali halide disks and mineral oil mulls, it is also seen in diffuse reflection and attenuated total reflection (ATR) spectra. Because the depth of penetration of infrared radiation below 1500 cm -1 is less than 1 µm for ATR spectra measured with a germanium internal reflection element (IRE), the width of the ν 3 band is lower than that of ATR spectra measured with an IRE of lower refractive index such as diamond on zinc selenide.

  9. Flat-plate techniques for measuring reflectance of macro-algae (Ulva curvata)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Thomsen, Mads Solgaard; Schwarzschild, Arthur

    2012-01-01

    We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.

  10. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    PubMed

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  11. High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine

    2017-05-01

    We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in <0.1 s. Furthermore, raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.

  12. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  13. Modification of kaolinite surfaces through mechanochemical activation with quartz: A diffuse reflectance infrared fourier transform and chemometrics study.

    PubMed

    Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva

    2006-12-01

    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.

  14. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].

    PubMed

    Li, Xiao-yun; Wang, Jia-hua; Huang, Ya-wei; Han, Dong-hai

    2011-03-01

    Near infrared diffuse reflectance spectroscopy calibrations of fat, protein and DM in raw milk were studied with partial least-squares (PLS) regression using portable short-wave near infrared spectrometer. The results indicated that good calibrations of fat and DM were found, the correlation coefficients were all 0.98, the RMSEC were 0.187 and 0.217, RMSEP were 0.187 and 0.296, the RPDs were 5.02 and 3.20 respectively; the calibration of protein needed to be improved but can be used for practice, the correlation coefficient was 0.95, RMSEC was 0.105, RMSEP was 0.120, and RPD was 2.60. Furthermore, the measuring accuracy was improved by analyzing the correction relation of fat and DM in raw milk This study will probably provide a new on-site method for nondestructive and rapid measurement of milk.

  15. Aerosol Optical Depth Retrievals From High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    NASA Astrophysics Data System (ADS)

    Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.

  16. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  17. Noncontact discrimination of animal and human blood with vacuum blood vessel and factors affect the discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Zhang, Shengzhao; Sun, Meixiu; Li, Hongxiao; Li, Yingxin; Fu, Zhigang; Guan, Yang; Li, Gang; Lin, Ling

    2017-03-01

    Discrimination of human and nonhuman blood is crucial for import-export ports and inspection and quarantine departments. Current methods are usually destructive, complicated and time-consuming. We had previously demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize human blood discrimination. In that research, the spectra were measured with the fiber probe under the surface of blood samples. However, open sampling may pollute the blood samples. Virulence factors in blood samples can also endanger inspectors. In this paper, we explored the classification effect with the blood samples measured in the original containers-vacuum blood vessel. Furthermore, we studied the impact of different conditions of blood samples, such as coagulation and hemolysis, on the prediction ability of the discrimination model. The calibration model built with blood samples in different conditions displayed a satisfactory prediction result. This research demonstrated that visible and near-infrared diffuse reflectance spectroscopy method was potential for noncontact discrimination of human blood.

  18. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities

    PubMed Central

    Miller, Steven D.; Mills, Stephen P.; Elvidge, Christopher D.; Lindsey, Daniel T.; Lee, Thomas F.; Hawkins, Jeffrey D.

    2012-01-01

    Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights. PMID:22984179

  19. Identification of oil residues in Roman amphorae (Monte Testaccio, Rome): a comparative FTIR spectroscopic study of archeological and artificially aged samples.

    PubMed

    Tarquini, Gabriele; Nunziante Cesaro, Stella; Campanella, Luigi

    2014-01-01

    The application of Fourier Transform InfraRed (FTIR) spectroscopy to the analysis of oil residues in fragments of archeological amphorae (3rd century A.D.) from Monte Testaccio (Rome, Italy) is reported. In order to check the possibility to reveal the presence of oil residues in archeological pottery using microinvasive and\\or not invasive techniques, different approaches have been followed: firstly, FTIR spectroscopy was used to study oil residues extracted from roman amphorae. Secondly, the presence of oil residues was ascertained analyzing microamounts of archeological fragments with the Diffuse Reflectance Infrared Spectroscopy (DRIFT). Finally, the external reflection analysis of the ancient shards was performed without preliminary treatments evidencing the possibility to detect oil traces through the observation of the most intense features of its spectrum. Incidentally, the existence of carboxylate salts of fatty acids was also observed in DRIFT and Reflectance spectra of archeological samples supporting the roman habit of spreading lime over the spoil heaps. The data collected in all steps were always compared with results obtained on purposely made replicas. © 2013 Elsevier B.V. All rights reserved.

  20. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  1. [Optic method of searching for acupuncture points and channels].

    PubMed

    Gertsik, G Ia; Zmievskoĭ, G N; Ivantsov, V I; Sang Min Li; Iu Byiung Kim; Gil Von Iun

    2001-01-01

    A procedure is proposed to search for acupuncture points and channels (APC) by space-sensitive recording of optical radiation diffusely reflected by surface (dermal and hypodermal) tissues of the body. For this purpose, the body surface is probed by low-intensity infrared radiation from a laser or noncoherent (light-emitting diodes) source by using a fiber-optic multichannel sensor. It is shown that it is most advisable to apply sources at wavelengths of 840-850 and 1260-1300 nm.

  2. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  3. Developing visible and near-infrared reflectance spectroscopy to detect changes of the dermal collagen concentration

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Yi; Liao, Andy Ying Chi; Sung, Kung Bin

    2018-02-01

    Collagen provides skin structure integrity and its concentration is related to the severity of scars. The objective of this study is to develop a hand-held and relatively inexpensive system to detect changes of the dermal collagen concentration in vivo. Diffuse reflectance spectroscopy and two-layer diffusion model have often been used to quantify the collagen concentration and other optical properties of the skin. However, the influences of fat and muscle, which are just below the dermis, have not been thoroughly investigated. We applied Monte Carlo simulations to find source-detector separations most sensitive to changes in collagen absorption and identify four wavelengths between 650 nm and 1000 nm suitable for separating influences of other chromophores including melanin, oxyhemoglobin and deoxyhemoglobin. Our tissue model consisted of at least three layers including the epidermis, dermis and subcutaneous fat with an optional forth layer representing the muscle. Results showed that the reflectance of the three-layered tissue model differed significantly from that of the two-layered tissue model, and the additional muscle layer might also influence the reflectance depending on the thickness of the fat layer. In addition, whether scattering coefficients of the epidermis and dermis were the same significantly affected the reflectance. Differences in reflectance due to changes in the collagen concentration were distinct from those due to changes in scattering coefficients and other chromophores. Further in-vivo experiments are ongoing to to validate the proposed approach.

  4. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  5. Prediction of iron oxide contents using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Marques, José, Jr.; Arantes Camargo, Livia

    2015-04-01

    Determining soil iron oxides using conventional analysis is relatively unfeasible when large areas are mapped, with the aim of characterizing spatial variability. Diffuse reflectance spectroscopy (DRS) is rapid, less expensive, non-destructive and sometimes more accurate than conventional analysis. Furthermore, this technique allows the simultaneous characterization of many soil attributes with agronomic and environmental relevance. This study aims to assess the DRS capability to predict iron oxides content -hematite and goethite - , characterizing their spatial variability in soils of Brazil. Soil samples collected from an 800-hectare area were scanned in the visible and near-infrared spectral range. Moreover, chemometric calibration was obtained through partial least-squares regression (PLSR). Then, spatial distribution maps of the attributes were constructed using predicted values from calibrated models through geostatistical methods. The studied area presented soils with varied contents of iron oxides as examples for the Oxisols and Entisols. In the spectra of each soil is observed that the reflectance decreases with the content of iron oxides present in the soil. In soils with a high content of iron oxides can be observed more pronounced concavities between 380 and 1100 nm which are characteristic of the presence of these oxides. In soils with higher reflectance it were observed concavity characteristics due to the presence of kaolinite, in agreement with the low iron contents of those soils. The best accuracy of prediction models [residual prediction deviation (RPD) = 1.7] was obtained for goethite within the visible region (380-800 nm), and for hematite (RPD = 2.0) within the visible near infrared (380-2300 nm). The maps of goethite and hematite predicted showed the spatial distribution pattern similar to the maps of clay and iron extracted by dithionite-citrate-bicarbonate, being consistent with the iron oxide contents of soils present in the study area. These results confirm the value of DRS in the mapping of iron oxides in large areas at detailed scale.

  6. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    PubMed Central

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; Zhao, M.; Grapes, M. D.; Dale, D. S.; Tate, M. D.; Philipp, H. T.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C.

    2017-01-01

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s−1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases. PMID:28664887

  7. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    DOE PAGES

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; ...

    2017-06-15

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s -1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks,more » and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases.« less

  8. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.

    PubMed

    Gonzalez, Federico Lora; Gordon, Michael J

    2014-06-02

    Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.

  9. Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass

    NASA Astrophysics Data System (ADS)

    Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver

    2018-04-01

    A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings.

  10. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  11. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  12. Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements.

    PubMed

    Bai, Wenming; Yoshimura, Norio; Takayanagi, Masao; Che, Jingai; Horiuchi, Naomi; Ogiwara, Isao

    2016-06-28

    Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.

  13. [Studies on the brand traceability of milk powder based on NIR spectroscopy technology].

    PubMed

    Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian

    2013-10-01

    Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.

  14. Optical polarization: background and camouflage

    NASA Astrophysics Data System (ADS)

    Škerlind, Christina; Hallberg, Tomas; Eriksson, Johan; Kariis, Hans; Bergström, David

    2017-10-01

    Polarimetric imaging sensors in the electro-optical region, already military and commercially available in both the visual and infrared, show enhanced capabilities for advanced target detection and recognition. The capabilities arise due to the ability to discriminate between man-made and natural background surfaces using the polarization information of light. In the development of materials for signature management in the visible and infrared wavelength regions, different criteria need to be met to fulfil the requirements for a good camouflage against modern sensors. In conventional camouflage design, the aimed design of the surface properties of an object is to spectrally match or adapt it to a background and thereby minimizing the contrast given by a specific threat sensor. Examples will be shown from measurements of some relevant materials and how they in different ways affect the polarimetric signature. Dimensioning properties relevant in an optical camouflage from a polarimetric perspective, such as degree of polarization, the viewing or incident angle, and amount of diffuse reflection, mainly in the infrared region, will be discussed.

  15. Tracing the First Stars with Fluctuations of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.

    2005-01-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  16. Cation–hydroxide–water coadsorption inhibits the alkaline hydrogen oxidation reaction

    DOE PAGES

    Chung, Hoon Taek; Martinez, Ulises; Matanovic, Ivana; ...

    2016-10-24

    Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation–hydroxide–water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. Finally, these results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells.

  17. The properties of LaSrМnO3 powders synthesized at various regimes

    NASA Astrophysics Data System (ADS)

    Mikhailov, M.; Sokolovskiy, A.; Vlasov, V.; Smolin, A.

    2017-09-01

    For the first time the concentration of ferromagnetic and paramagnetic phases in LaSrMnO3 compounds has been defined using diffuse reflection and absorption spectra in the visible and near-infrared regions. The compounds as powders were synthesized by heating La2O3/SrCO3/МnСO3 mixtures at 1200 °C which is less than their sintering temperature. The possibility to obtain LaSrMnO3 powders by solid state synthesis for smart coatings was shown.

  18. NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.

    2012-01-01

    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.

  19. The quality of geological information derivable from high resolution reflectance spectra - Results for mafic silicates

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.

    1987-01-01

    High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).

  20. Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys.

    PubMed

    Tsunoda, Kazushige; Hanazono, Gen; Inomata, Koichi; Kazato, Yoko; Suzuki, Wataru; Tanifuji, Manabu

    2009-07-01

    Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.

  1. Rapid determination of sugar level in snack products using infrared spectroscopy.

    PubMed

    Wang, Ting; Rodriguez-Saona, Luis E

    2012-08-01

    Real-time spectroscopic methods can provide a valuable window into food manufacturing to permit optimization of production rate, quality and safety. There is a need for cutting edge sensor technology directed at improving efficiency, throughput and reliability of critical processes. The aim of the research was to evaluate the feasibility of infrared systems combined with chemometric analysis to develop rapid methods for determination of sugars in cereal products. Samples were ground and spectra were collected using a mid-infrared (MIR) spectrometer equipped with a triple-bounce ZnSe MIRacle attenuated total reflectance accessory or Fourier transform near infrared (NIR) system equipped with a diffuse reflection-integrating sphere. Sugar contents were determined using a reference HPLC method. Partial least squares regression (PLSR) was used to create cross-validated calibration models. The predictability of the models was evaluated on an independent set of samples and compared with reference techniques. MIR and NIR spectra showed characteristic absorption bands for sugars, and generated excellent PLSR models (sucrose: SEP < 1.7% and r > 0.96). Multivariate models accurately and precisely predicted sugar level in snacks allowing for rapid analysis. This simple technique allows for reliable prediction of quality parameters, and automation enabling food manufacturers for early corrective actions that will ultimately save time and money while establishing a uniform quality. The U.S. snack food industry generates billions of dollars in revenue each year and vibrational spectroscopic methods combined with pattern recognition analysis could permit optimization of production rate, quality, and safety of many food products. This research showed that infrared spectroscopy is a powerful technique for near real-time (approximately 1 min) assessment of sugar content in various cereal products. © 2012 Institute of Food Technologists®

  2. Characterization of thin film CO2 ice through the infrared ν1 + ν3 combination mode

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-01-01

    Carbon dioxide is abundant in ice mantles of dust grains; some is found in the pure crystalline form as inferred from the double peak splitting of the bending profile at about 650 cm-1. To study how CO2 segregates into the pure form from water-rich mixtures of ice mantles and how it then crystallizes, we used Reflection Absorption InfraRed Spectroscopy to study the structural change of pure CO2 ice as a function of both ice thickness and temperature. We found that the ν1 + ν3 combination mode absorption profile at 3708 cm-1 provides an excellent probe to quantify the degree of crystallinity in CO2 ice. We also found that between 20 and 30 K, there is an ordering transition that we attribute to reorientation of CO2 molecules, while the diffusion of CO2 becomes significant at much higher temperatures. In the formation of pure crystalline CO2 in interstellar medium ices, the rate limiting process is the diffusion/segregation of CO2 molecules in the ice instead of the phase transition from amorphous to crystalline after clusters/islands of CO2 are formed.

  3. Aqueous Reversed-Phase HPLC/FT-IR Using Diffuse Reflectance Detections

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Victor F.; Pai, T. H.; Kenton, R. C.; Kalasinsky, Kathryn S.

    1989-12-01

    Solvent-elimination HPLC/FT-IR has become a viable combination of two important techniques, and we have been developing a system which is adaptable to both normal and reversed-phase liquid chromatography. The interface involves the deposition of HPLC eluites onto a KCI-laden train with subsequent analysis via diffuse reflectance spectroscopy, and with minor modifications, the system can be used with microbore and analytical columns. With aqueous solvents, the water is converted to methanol and acetone in a post-column reaction with 2,2-dimethoxypropane before the eluites are deposited. A number of different samples have been used to demonstrate the interface and its flexibility. Steroids, analgesics, and other pharmaceutical preparations have been separated with reverse-phase solvents and identified by their infrared spectra. For some of the compounds studied, different infrared spectra of a given compound have been found to exhibit intensity variations, which arise from different crystalline states. The differences can be concentration dependent and may be useful in obtaining semi-quantitative information from the infrared spectra. Applications involving both gradient elution and isocratic separations have been successful. The former provides the same advantages for HPLC/FT-IR as one finds in conventional HPLC. More recent work has been applied to the use of buffers such as those frequently used in bioanalytical separations. In trying to simplify the post-column reaction with water, we have immobilized dehydration reagents onto silica particles and packed these materials into a column which is inserted in-line after the analytical column. Of the reagents utilized to date, 3,3-dimethoxypropyltrimethoxysilane has been found to perform most efficiently. It has advantages over the simpler reagents because it can be regenerated in the reaction column. Results and the efficiency of the dehydration process and its relation to the type of reagent and its coverage will be discussed.

  4. Tracking On-Orbit Stability of the Response Versus Scan Angle for the S-NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite (http:npp.gsfc.nasa.govviirs.html) has been in operation for nearly five years. The onboard calibration of the VIIRS reflective solar bands (RSB) relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The VIIRS response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability. In this study, the RVS stability is examined based on reflectance trends collected from 16-day repeatable orbits over pre-selected pseudo-invariant desert sites in Northern Africa. These trends nearly cover the entire Earth view scan range so that any systematic drifts in the scan angle direction would indicate a change in RVS. This study also compares VIIRS RVS on-orbit stability results with those from both Aqua and Terra MODIS over the first four years of mission for a few selected bands, which provides further information on potential VIIRS RVS on-orbit changes.

  5. Hybrid method to estimate two-layered superficial tissue optical properties from simulated data of diffuse reflectance spectroscopy.

    PubMed

    Hsieh, Hong-Po; Ko, Fan-Hua; Sung, Kung-Bin

    2018-04-20

    An iterative curve fitting method has been applied in both simulation [J. Biomed. Opt.17, 107003 (2012)JBOPFO1083-366810.1117/1.JBO.17.10.107003] and phantom [J. Biomed. Opt.19, 077002 (2014)JBOPFO1083-366810.1117/1.JBO.19.7.077002] studies to accurately extract optical properties and the top layer thickness of a two-layered superficial tissue model from diffuse reflectance spectroscopy (DRS) data. This paper describes a hybrid two-step parameter estimation procedure to address two main issues of the previous method, including (1) high computational intensity and (2) converging to local minima. The parameter estimation procedure contained a novel initial estimation step to obtain an initial guess, which was used by a subsequent iterative fitting step to optimize the parameter estimation. A lookup table was used in both steps to quickly obtain reflectance spectra and reduce computational intensity. On simulated DRS data, the proposed parameter estimation procedure achieved high estimation accuracy and a 95% reduction of computational time compared to previous studies. Furthermore, the proposed initial estimation step led to better convergence of the following fitting step. Strategies used in the proposed procedure could benefit both the modeling and experimental data processing of not only DRS but also related approaches such as near-infrared spectroscopy.

  6. Time-Dependent ATR-FTIR Spectroscopic Studies on Fatty Acid Diffusion and the Formation of Metal Soaps in Oil Paint Model Systems.

    PubMed

    Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet

    2018-06-18

    The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Monitoring the diffusion of topically applied drugs through human and pig skin using fiber evanescent wave spectroscopy (FEWS)

    NASA Astrophysics Data System (ADS)

    Spielvogel, Juergen; Reuter, Susanne; Hibst, Raimund; Katzir, Abraham

    1999-04-01

    The objective of this study was to examine if the diffusion process of topically applied drugs can reliably be monitored using FEWS in respect to timely distribution of the drug and chemical alterations of the drug during the diffusion process. In order to do this, recently excised human and pig skin was cut into slices of different thickness while also taking into account the different layers skin is composed of (e.g. Dermis, Stratum Corneum). These layers were first characterized spectroscopically and optically using a microscope before the drug itself was applied topically. The diffusion process was monitored by placing the sample on an ATR (attenuated total reflection) element. Time series from 1 - 4 hours were taken and the characteristic absorption bands of the drug were analyzed in the mid-infrared. By using a first order approach on Fick's diffusion equations (skin assumed to be homogeneous) we were able to fit these experimental values and to obtain diffusion constants, e.g. for water at 3376 cm-1 in the order of 10-5 cm2/s, which compare well with previously published values. The results indicate that this technique can be applied to the prediction of transdermal drug delivery.

  8. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  9. Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection

    PubMed Central

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-01-01

    We report the development and implementation of a unique integrated Mueller-matrix (MM) near-infrared (NIR) imaging and Mueller-matrix point-wise diffuse reflectance (DR) spectroscopy technique for improving colonic cancer detection and diagnosis. Point-wise MM DR spectra can be acquired from any suspicious tissue areas indicated by MM imaging. A total of 30 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated MM imaging and point-wise MM DR spectroscopy system. Polar decomposition algorithms are employed on the acquired images and spectra to derive three polarization metrics including depolarization, diattentuation and retardance for colonic tissue characterization. The decomposition results show that tissue depolarization and retardance are significantly decreased (p<0.001, paired 2-sided Student’s t-test, n = 30); while the tissue diattentuation is significantly increased (p<0.001, paired 2-sided Student’s t-test, n = 30) associated with colonic cancer. Further partial least squares discriminant analysis (PLS-DA) and leave-one tissue site-out, cross validation (LOSCV) show that the combination of the three polarization metrics provide the best diagnostic accuracy of 95.0% (sensitivity: 93.3%, and specificity: 96.7%) compared to either of the three polarization metrics (sensitivities of 93.3%, 83.3%, and 80.0%; and specificities of 90.0%, 96.7%, and 80.0%, respectively, for the depolarization, diattentuation and retardance metrics) for colonic cancer detection. This work suggests that the integrated MM NIR imaging and point-wise MM NIR diffuse reflectance spectroscopy has the potential to improve the early detection and diagnosis of malignant lesions in the colon. PMID:27446640

  10. Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass.

    PubMed

    Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver

    2018-04-15

    A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is consistent with a mixture of typical Titan hydrocarbons and CO2, or possibly methane/ethane; the concentration mechanism proposed is something similar to a terrestrial playa lake evaporate deposit, based on the fact that river channels are known to feed into at least Hotei Regio.

  12. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  13. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  14. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  15. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE PAGES

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; ...

    2016-04-08

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  16. [Research on NIR equivalent spectral measurement].

    PubMed

    Wang, Zhi-Hong; Liu, Jie; Sun, Yu-Yang; Teng, Fei; Lin, Jun

    2013-04-01

    When the spectra of the diffuse reflectance of low reflectivity samples or the transmittance of low transmisivity samples are measured by a portable near infrared (NIR) spectrometer, because there is the noise of the spectrometer, the smaller the reflectance or transmittance of the sample, the lower its SNR. Even if treated by denoise methods, the spectra can not meet the requirement of NIR analysis. So the equivalent spectrum measure method was researched. Based on the intensity of the reflected or transmitted signal by the sample under the traditional measure conditions, the light current of the spectrometer was enlarged, and then the signal of the measured sample increased; the reflected or transmitted light of the measure reference was reduced to avoid the signal of the measure reference over range. Moreover the equivalent spectrum of the sample was calculated in order to make it identical with the spectrum measured by traditional method. Thus the NIR spectral SNR was improved. The results of theory analysis and experiments show that if the light signal of the spectrometer was properly increased according to the reflected or transmitted signal of the low reflectivity or transmisivity sample, the equivalent spectrum was the same as the spectrum measured by traditional method and its SNR was improved.

  17. Atmospheric and Science Complexity Effects on Surface Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Diner, D. J. (Principal Investigator); Martonchik, J. V.; Sythe, W. D.; Hessom, C.

    1985-01-01

    Among the tools used in passive remote sensing of Earth resources in the visible and near-infrared spectral regions are measurements of spectral signature and bidirectional reflectance functions (BDRFs). Determination of surface properties using these observables is complicated by a number of factors, including: (1) mixing of surface components, such as soil and vegetation, (2) multiple reflections of radiation due to complex geometry, such as in crop canopies, and (3) atmospheric effects. In order to bridge the diversity in these different approaches, there is a need for a fundamental physical understanding of the influence of the various effects and a quantiative measure of their relative importance. In particular, we consider scene complexity effects using the example of reflection by vegetative surfaces. The interaction of sunlight with a crop canopy and interpretation of the spectral and angular dependence of the emergent radiation is basically a multidimensional radiative transfer problem. The complex canopy geometry, underlying soil cover, and presence of diffuse as well as collimated illumination will modify the reflectance characteristics of the canopy relative to those of the individual elements.

  18. Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...

  19. Dark, Infrared Reflective, and Superhydrophobic Coatings by Waterborne Resins.

    PubMed

    Zhang, Jing; Lin, Weiqiang; Zhu, Chenxi; Lv, Jian; Zhang, Weicheng; Feng, Jie

    2018-05-15

    Recently, infrared reflective pigments possessing deep colors have attracted much attention. However, in polluted air, the coatings consisting of such pigments are easily contaminated which abates infrared reflectivity. In this work, black and infrared reflective pigments, fluorine silicon sol and a small number of SiO 2 nanoparticles were introduced into waterborne epoxy resin emulsion and then coated on an aluminum plate. After drying, black coatings with infrared reflective and superhydrophobic (SH) properties were obtained. The average near-infrared (NIR) reflectivity of the coating over wavelength range of 780-2600 nm can reach 68%, which is much larger than that of carbon black coatings and even approaches that of white nano SiO 2 coatings. Under the irradiation of a 275-W infrared lamp (with height 40 cm), the surface temperature of the coating is 63 °C, which is much lower than that of the carbon black coating (90 °C) and only 7 °C higher than that of the white nano SiO 2 coating. Furthermore, the NIR reflective coating exhibited a typical SH property due to its low surface energy and high surface roughness, which may allow for self-cleaning performance in a practical environment, maintaining the coating's NIR reflective property.

  20. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    NASA Astrophysics Data System (ADS)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  1. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.

    PubMed

    Pogue, B W; Patterson, M S

    1994-07-01

    The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.

  2. Bone optical spectroscopy for the measurement of hemoglobin content

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Arambel, Paula; Piet, Judith; Shefelbine, Sandra; Markovic, Stacey; Niedre, Mark; DiMarzio, Charles A.

    2014-05-01

    Osteoporosis is a common side effect of spinal cord injuries. Blood perfusion in the bone provides an indication of bone health and may help to evaluate therapies addressing bone loss. Current methods for measuring blood perfusion of bone use dyes and ionizing radiation, and yield qualitative results. We present a device capable of measuring blood oxygenation in the tibia. The device illuminates the skin directly over the tibia with a white light source and measures the diffusely reflected light in the near infrared spectrum. Multiple source-detector distances are utilized so that the blood perfusion in skin and bone may be differentiated.

  3. Testing the Li-Strahler four-component canopy reflectance model in the HAPEX-Sahel shrub savanna sites using ground reflectance data

    NASA Technical Reports Server (NTRS)

    Franklin, J.; Duncan, J.

    1992-01-01

    The rate at which a light field decays in water is characterized by the diffuse attenuation coefficient k. The Li-Strahler discrete-object canopy reflectance model was tested in two sites, a shrub grass savanna and a degraded shrub savanna on bare soil, in the proposed HAPEX (Hydrologic Atmospheric Pilot Experiment) II/Sahel study area in Niger, West Africa. Average site reflectance was predicted for each site from the reflectances and cover proportions of four components: shrub canopy, background (soil or grass and soil), shaded canopy, and shaded background. Component reflectances were sampled in the SPOT wavebands using a hand-held radiometer. Predicted reflectance was compared to average site reflectance measured using the same radiometer mounted on a backpack with measurements recorded every 5 m along two 1-km transects, also in the SPOT (Systeme Probatoire d'Observation de la Terre) bands. Measurements and predictions were made for each of the three days during the summer growing season, approximately two weeks apart. Red, near infrared reflectance, and the NDVI (normalized difference vegetation index) were all predicted with a high degree of accuracy for the shrub/grass site and with reasonable accuracy for the degraded shrub site.

  4. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  5. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco

    2012-01-01

    The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.

  6. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  7. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  8. In vivo measurements of optical properties of human muscles with visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin

    2018-02-01

    Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.

  9. Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa2O6 single crystal fibre

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Andreeta, M. R. B.; Hernandes, A. C.; Dias, A.; Moreira, R. L.

    2014-03-01

    Infrared-reflectivity spectroscopy and micro-Raman scattering were used to determine the optical phonon features of orthorhombic calcium tantalite (CaTa2O6) single crystal fibres. The fibres, obtained by the Laser-Heated Pedestal Growth method, grew into an ordered cubic structure \\left( Pm\\bar{3} \\right). Long-time annealing was used to induce a polymorphic transformation to an aeschynite orthorhombic structure (Pnma space group). The phase transformation led to the appearance of structural domains and micro-cracks, responsible for diffuse scattering and depolarization of the scattered light in the visible range, but not in the infrared region. Thus, polarized infrared spectroscopy could be performed within oriented single domains, with an appropriate microscope, allowing us to determine all relevant polar phonons of the orthorhombic CaTa2O6. The obtained phononic dielectric response, {{\\epsilon }_{r}} = 22.4 and = 86 × 103 GHz, shows the appropriateness of the material for microwave applications. Totally symmetric Raman modes could be resolved by polarization, after re-polishing the cracked sample surface.

  10. Plant tissue and the color infrared record

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1969-01-01

    Green plant tissue should not be considered as having a uniguely high near-infrared reflectance but rather a low visual reflectance. Leaf tissue without chloroplasts appears to reflect well both visual and near infrared wavelengths. The sensitometry of color infrared film is such that a spectral imbalance strongly favoring infrared reflection is necessary to yield a red record. It is the absorption of visual light by chlorophyll that creates the imbalance that makes the typical red record for plants possible. Reflectance measurements of leaves that have been chemically blanched or which have gone into natural chloride decline strongly suggests that it is the rise in the visual reflectance that is most important in removing the imbalance and degrading the red CIR record. The role of water in leaves appears to be that of rendering epidermal membranes translucent so that the underlying chlorophyll controls the reflection rather than the leaf surface.

  11. Infrared reflective coatings for building and automobile glass windows for heat protection

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Fomchenkov, S. A.; Kazanskiy, N. L.; Ullah, A.; Ali, R. Z.; Habib, M.

    2017-04-01

    Sunlight can be used a source of light in buildings and automobiles, however infrared wavelengths in sunlight result in heating. In this work, Infrared Reflective Coatings are designed using thin films to transmit visible wavelengths 400 700 nm while reflecting infrared wavelengths above 700 nm. Three different design approaches have been used, namely single layer of metal, sandwich structure and multilayer design. Four metals (Ag, Au, Al and Cu) and two dielectrics (TiO2 and SiO2) are used in this study. Designs with Ag show maximum reflection of Infrared wavelengths in all designs. Sandwich structures of TiO2-Ag-TiO2 on substrate with 22 nm of thickness for each layer show the maximum transmission of 87% in the visible region and maximum reflection of Infrared wavelengths.

  12. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorptionmore » measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.« less

  13. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.

    PubMed

    Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Reid, Obadiah G; Blackburn, Jeffrey L

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  14. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study.

    PubMed

    Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony

    2017-03-07

    In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10 -15 m 2 /s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.

  15. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  17. Adaptive infrared-reflecting systems inspired by cephalopods

    NASA Astrophysics Data System (ADS)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  18. Non-Equilibrium Water-Glassy Polymer Dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef

    2012-02-01

    For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.

  19. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to increase Schottky-barrier detector efficiency. Absorbance enhancement of 70--200% in the lambda =1--2.5 micron range is demonstrated in crystalline PtSi films grown via electron beam evaporation of Pt and subsequent vacuum annealing. Low total reflectance (<10%) was measured in ME films, demonstrating the efficacy of the moth eye effect. Effective medium theory and transfer matrix calculations show that the large absorption enhancement at short wavelengths is partly due to light trapping, which increases the effective optical path length in PtSi. The demonstrated structures are promising candidates for efficient PtSi/p-Si Schottky barrier diode detectors in the NIR. Results further suggest a general method for relatively low-cost absorption enhancement of backside-illuminated detectors based on a wide variety of infrared absorptive materials. The methods presented here to fabricate quasi-ordered ME structures provide a general platform for creating antireflective structures in many different materials, devices, and bandwidths. Furthermore, understanding the relationship between protuberance shape, height, aspect ratio, etc. and performance (antireflection, scattering loss, etc.) can guide the design of antireflective surfaces for different applications (for example, in certain applications, large amounts of forward scattering is desired, e.g. photovoltaics).

  20. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.

    The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found thatmore » after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.« less

  1. Infrared techniques for detecting carbonization at onset of device failure

    NASA Astrophysics Data System (ADS)

    Farr, Norman; Sinofsky, Edward L.

    1997-05-01

    We describe the design, and development of an infrared detection system which detects the onset of carbonization of fluoropolymers in the presence of up to 60 watts of 1.06 micrometer laser energy. This system is used to shut down a therapeutic laser system before significant damage is done to a laser delivery device and patient. Black body radiation emitting from the diffusion tip is transmitted, backwards, through the same optical fiber as the therapeutic wavelength. Using a high power 1.06 micrometer laser mirror at 45 degrees, most of the 1.06 micrometer light is reflected while the black body radiation is passed to a holographic notch filter which further filters the signal. Still more filtering was needed before the 1.1 to 2 micrometer signal could be detected within the presence the therapeutic light using an extended indium gallium arsenide photodetector. There was still a significant detected offset which increased with laser power which necessitated a means to automatically null the offset for different laser power settings. The system is designed to be used with any unmodified laser system. It interfaces directly to or in series with most common external safety interlocks and can be used with various diffusing tips, probes or bare fibers.

  2. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    PubMed

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between PC1 and PC2. It is therefore concluded that maximum discrimination of writing, office, and photocopy paper could be achieved on the basis of the second approach. Hence, the present inexpensive analytical method can be appropriate for application to routine questioned document examination work in forensic laboratories because it provides nondestructive, quantitative, reliable, and repeatable results.

  3. Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-06-01

    In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.

  4. Detection of plum pox virus infection in selection plum trees using spectral imaging

    NASA Astrophysics Data System (ADS)

    Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar

    2016-01-01

    Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.

  5. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  6. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids found as colloidal materials in surface and groundwaters (4). Examples of the IR spectra obtained and variance as a function of time at the two sites will be presented. The spectra are taken in Kubelka - Munk format, which also allows the infrared absorption strengths to be evaluated as function of wavelength. The wavelength dependence of the aerosol complex refractive index (m = n + ik) in the infrared spectral region is determined by application of the Kramers Kronig function. The importance of the aerosol absorption in the infrared spectral region to radiative forcing will be discussed. 1. N.A. Marley, J.S. Gaffney, and M.M. Cunningham,Environ. Sci. Technol. 27 2864-2869 (1993). 2. N.A. Marley, J.S. Gaffney, and M.M. Cunningham, Spectroscopy 7 44-53 (1992). 3. J.S. Gaffney and N.A. Marley, Atmospheric Environment, New Directions contribution, 32, 2873-2874 (1998). 4. N.A. Marley, J.S. Gaffney, and K.A. Orlandini, Chapter 7 in Humic/Fulvic Acids and Organic Colloidal Materials in the Environment, ACS Symposium Series 651, American Chemical Society, Washington, D.C., pp. 96-107, 1996. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX- Mex) under the support of the Atmospheric Science Program. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328.

  7. Infrared spectroscopy of Mercury analogue materials under simulated Mercury surface temperature conditions

    NASA Astrophysics Data System (ADS)

    Reitze, Maximilian; Morlok, Andreas; Hiesinger, Harald; Weber, Iris; Stojic, Aleksandra

    2017-04-01

    Infrared spectroscopy is a powerful technique for the exploration of planetary surfaces with remote sensing observations [e.g., 1]. The MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument onboard the BepiColombo spacecraft is designed to explore the surface mineralogy of Mercury in the wavelength region from 7 μ m to 14 μ m [2]. Mercury's surface reaches dayside temperatures of about 700 K [3]. It is well known that bondings between atoms change with temperature, resulting in infrared spectra changes with temperature [4]. In particular, rock-forming minerals like silicates show distinct absorption bands in the infrared due to molecular vibrations, for example, of Si-O bondings [4]. To accurately understand and correctly interpret returned MERTIS data, it is necessary to collect laboratory data of analogue materials under condition similar to Mercury [5]. It is known from previous investigations [5] that the Reststrahlenbands of olivine shift with temperature. In this work we report on temperature effects on Mercury analogue materials in ambient air. At the IRIS (Infrared & Raman for Interplanetary Spectroscopy) laboratory in Münster we used a Bruker VERTEX 70v IR spectrometer together with a Harrick heating stage in a Praying Mantis Diffuse Reflectance Accessory to measure mid-infrared reflectance of mineral powder samples with different grain sizes at increasing temperatures. We report on our spectral results for a natural olivine with Fo91 with a grain size range between 63 μ m and 125 μ m as well as a natural labradorite with a grain size range between 90 μ m and 125 μ m. Spectra were collected at 26, 75, 150, 200, 250, 300, and 350 degrees Celsius with a liquid nitrogen cooled MCT detector under normal ambient pressure. To ensure complete thermal equilibrium of our measured samples, we heated them to higher temperatures and subsequently cooled them to the temperatures at which the spectra were taken. For background calibration, we used a commercial diffuse reflectance gold standard (INFRAGOLD). Our results confirm the temperature-dependent shift of the strongest silicate feature in olivine spectra observed by [5]. For the shift of the peak position of this feature we calculated a shift function depending on the temperature in the form of Rmax[μ m]=0.00027μ m/K\\cdot x[K]+10.454μ m (R^2=0.92). Differences in the intensity of the spectra between [5] and our work are most likely due to smaller grain sizes of our samples. We are also planning on presenting results obtained from evacuated samples (down to 10-6 mbar), which are close to pressures existing on Mercury. References} [1] A. Maturilli, J. Helbert, A. Witzke, and L. Moroz, Planet. Space Sci., 54:1057-1064, 2006. [2] H. Hiesinger, J. Helbert, and MERTIS Co-I Team, Planet. Space Sci., 58:144-165, 2010. [3] M. A. Slade, B. J. Butler, and D. O. Muhleman, Science, 258:635-640, 1992. [4] C. M. Pieters and P. A. J. Englert, editors. Topics in Remote Sensing 4. Remote Geo-chemical Analysis: Elemental and Mineralogical Composition. Cambridge University Press, 1993. [5] J. Helbert, F. Nestola, S. Ferrari, A. Maturilli, M. Massironi, G. J. Redhammer, M. T. Capria, F. Capaccioni, and M. Bruno, EPSL, 371-372:252-257, 2013.

  8. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.

    PubMed

    Nuopponen, Mari H; Birch, Gillian M; Sykes, Rob J; Lee, Steve J; Stewart, Derek

    2006-01-11

    Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin, cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were established for all wood species combined into one data set as well as for the separate Sitka spruce data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm(-1) were also established. In addition, chemical factors contributing to wood density were studied. Chemical composition and density assessed from DRIFT-MIR calibrations had R2 and Q2 values in the ranges of 0.6-0.9 and 0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP) values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized to predict the chemical composition and density of a wood, which should allow measurements of these properties using a hand-held device. MIR spectral data indicated that low-density samples had somewhat higher lignin contents than high-density samples. Correspondingly, high-density samples contained slightly more polysaccharides than low-density samples. This observation was consistent with the wet chemical data.

  9. Feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify iron-cyanide (Fe-CN) complexes in soil

    NASA Astrophysics Data System (ADS)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-04-01

    Contaminated sites create a significant risk to human health, by poisoning drinking water, soil, air and as a consequence food. Continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze considerable amount of samples. At the present time quantitative determination of Fe-CN concentration in soil usually requires a time consuming two step process: digestion of the sample (e.g., micro distillation system) and its analytical detection performed, e.g., by automated spectrophotometrical flow injection analysis (FIA). In order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify the Fe-CN complexes in soil matrix, 42 soil samples were collected (8 to 12.520 mg kg-1CN) indicating single symmetrical CN band in the range 2092 - 2084 cm-1. Partial least squares (PLS) calibration-validation model revealed IR response to CNtot exceeding 1268 mg kg-1 (limit of detection, LOD). Subsequently, leave-one-out cross-validation (LOO-CV) was performed on soil samples containing low CNtot (<900 mg kg-1), which improved the sensitivity of the model by reducing the LOD to 154 mg kg-1. Finally, the LOO-CV conducted on the samples with CNtot >900 mg kg-1 resulted in LOD equal to 3494 mg kg-1. Our results indicate that spectroscopic data in combination with PLS statistics can efficiently be used to predict Fe-CN concentrations in soil. We conclude that the protocol applied in this study can strongly reduce the time and costs essential for the spatial and vertical screening of the site affected by complexed Fe-CN.

  10. Modeling bistatic spectral measurements of temporally evolving reflected and emitted energy from a distant and receding target

    NASA Astrophysics Data System (ADS)

    Cusumano, Salvatore J.; Fiorino, Steven T.; Bartell, Richard J.; Krizo, Matthew J.; Bailey, William F.; Beauchamp, Rebecca L.; Marciniak, Michael A.

    2011-01-01

    The Air Force Institute of Technology's Center for Directed Energy developed the High Energy Laser End-to-End Operational Simulation (HELEEOS) model in part to quantify the performance variability in laser propagation created by the natural environment during dynamic engagements. As such, HELEEOS includes a fast-calculating, first principles, worldwide surface-to-100 km, atmospheric propagation, and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates, and hydrometeors as they relate to line-by-line layer transmission, path, and background radiance at wavelengths from the ultraviolet to radio frequencies. In the current paper an example of a unique high fidelity simulation of a bistatic, time-varying five band multispectral remote observation of energy delivered on a distant and receding test object is presented for noncloudy conditions with aerosols. The multispectral example emphasizes atmospheric effects using HELEEOS, the interaction of the energy and the test object, the observed reflectance, and subsequent hot spot generated. A model of a sensor suite located on the surface is included to collect the diffuse reflected in-band laser radiation and the emitted radiance of the hot spot in four separate and spatially offset midwave infrared and longwave infrared bands. Particular care is taken in modeling the bidirectional reflectance distribution function of the delivered energy/target interaction to account for both the coupling of energy into the test object and the changes in reflectance as a function of temperature. The architecture supports any platform-target-observer geometry, geographic location, season, and time of day, and it provides for correct contributions of the sky-earth background. The simulation accurately models the thermal response, kinetics, turbulence, base disturbance, diffraction, and signal-to-noise ratios.

  11. Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600-1100 nm).

    PubMed

    Lin, M; Al-Holy, M; Mousavi-Hesary, M; Al-Qadiri, H; Cavinato, A G; Rasco, B A

    2004-01-01

    To evaluate the feasibility of visible and short-wavelength near-infrared (SW-NIR) diffuse reflectance spectroscopy (600-1100 nm) to quantify the microbial loads in chicken meat and to develop a rapid methodology for monitoring the onset of spoilage. Twenty-four prepackaged fresh chicken breast muscle samples were prepared and stored at 21 degrees C for 24 h. Visible and SW-NIR was used to detect and quantify the microbial loads in chicken breast muscle at time intervals of 0, 2, 4, 6, 8, 10, 12 and 24 h. Spectra were collected in the diffuse reflectance mode (600-1100 nm). Total aerobic plate count (APC) of each sample was determined by the spread plate method at 32 degrees C for 48 h. Principal component analysis (PCA) and partial least squares (PLS) based prediction models were developed. PCA analysis showed clear segregation of samples held 8 h or longer compared with 0-h control. An optimum PLS model required eight latent variables for chicken muscle (R = 0.91, SEP = 0.48 log CFU g(-1)). Visible and SW-NIR combined with PCA is capable of perceiving the change of the microbial loads in chicken muscle once the APC increases slightly above 1 log cycle. Accurate quantification of the bacterial loads in chicken muscle can be calculated from the PLS-based prediction method. Visible and SW-NIR spectroscopy is a technique with a considerable potential for monitoring food safety and food spoilage. Visible and SW-NIR can acquire a metabolic snapshot and quantify the microbial loads of food samples rapidly, accurately, and noninvasively. This method would allow for more expeditious applications of quality control in food industries.

  12. Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Moyer, David; McCarthy, James K.; DeLuccia, Frank; Xiong, Xiaoxiong; Butler, James J.; Guenther, Bruce

    2011-01-01

    Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations.

  13. Infrared diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  14. Axial diffusion barriers in near-infrared nanopillar LEDs.

    PubMed

    Scofield, Adam C; Lin, Andrew; Haddad, Michael; Huffaker, Diana L

    2014-11-12

    The growth of GaAs/GaAsP axial heterostructures is demonstrated and implemented as diffusion current barriers in nanopillar light-emitting diodes at near-infrared wavelengths. The nanopillar light-emitting diodes utilize an n-GaAs/i-InGaAs/p-GaAs axial heterostructure for current injection. Axial GaAsP segments are inserted into the n- and p-GaAs portions of the nanopillars surrounding the InGaAs emitter region, acting as diffusion barriers to provide enhanced carrier confinement. Detailed characterization of growth of the GaAsP inserts and electronic band-offset measurements are used to effectively implement the GaAsP inserts as diffusion barriers. The implementation of these barriers in nanopillar light-emitting diodes provides a 5-fold increase in output intensity, making this a promising approach to high-efficiency pillar-based emitters in the near-infrared wavelength range.

  15. Evaluation of light scattering and absorption properties ofin vivorat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2015-07-01

    Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.

  16. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  17. Optical property measurement from layered biological media

    NASA Astrophysics Data System (ADS)

    Muller, Matthew R.

    1998-12-01

    Near infrared (NIR) photon reflectance spectroscopy is applied to measurement of blood concentration and its oxygen saturation within biological tissue. The measurement relies upon the changes in photon absorption of hemoglobin in the tissue as changes occur in the hemoglobin concentration and oxygen content. In the present study, NIR light is introduced at the skin surface and the optical properties (absorption and scattering) within the underlying tissue are determined from the resulting surface reflectance. Typically the tissue is modeled as a homogeneous mixture of bloodless tissue and blood, and the model incorporates the physical relationship between the surface reflectance and the optical properties of the tissue. The skin and underlying tissue, although heterogeneous, have a characteristic layered structure. These layers can be differentiated optically. The modeling and the inverse problem of measuring the optical properties in each of the tissue layers from the surface reflectance have been the subject of much attention by a number of investigators. Nonetheless, quantification of the relationship between surface reflectance and the optical properties of layered tissue has not been well understood nor well described. In the forward problem, tissue optical properties yield surface reflectance profiles (SRPs). Surface reflectance profiles, or SRPs, from diffusive media consisting of two layers are calculated using numerical solutions to the Boltzmann equation. Experimental SRPs are also measured in vitro from a test medium and in vivo from the calf of human subjects. This study provides a new approach to solving the inverse problem of determining optical properties from SRPs. To solve the inverse problem, an effective diffusion constant (Ke) is determined for the layered media. The Ke is the diffusion constant of an equivalent homogeneous medium which best fits the SRP of the layered medium. The departure from Ke of the SRP for a layered media is captured concisely, and Ke becomes a tool in describing the layered optical properties. This approach is applied clinically to measure changes in the blood concentration and oxygenation measured in vivo from normals and patients with peripheral vascular disease. A significant finding from the modeling was to identify the functional relationship of Ke to the top and lower layer diffusion constants, and the top layer thickness. When applied to in vitro measurements from media containing homogeneous layers with known optical properties, this functional relationship predicted Ke within the 95% confidence interval of the measured Ke. For the in vivo measurements, changes in K e with exercise are consistent with expected exercise physiology. With the incorporation of the known optical absorbance of hemoglobin in the presence of oxygen, the SRPs provide a means to measure the oxygen saturation of a deep tissue layer from the surface light reflectance.

  18. Dark Murky Clouds in the Bright Milky Way

    NASA Image and Video Library

    2011-08-24

    This infrared image from NASA Wide-field Infrared Survey Explorer shows exceptionally cold, dense cloud cores seen in silhouette against the bright diffuse infrared glow of the plane of the Milky Way galaxy.

  19. Background Light Bluer Than Expected

    NASA Image and Video Library

    2014-11-06

    This plot shows data from the Cosmic Infrared Background Experiment, or CIBER, rockets launched in 2010 and 2012. The experiment measures a diffuse glow of infrared light in the sky, known as the cosmic infrared background.

  20. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  1. Assessment of stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands using pseudo-invariant desert and Dome C sites

    NASA Astrophysics Data System (ADS)

    Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.

  2. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    PubMed

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Characterisation of oil and aluminium complex on replica and historical 19th c. Turkey red textiles by non-destructive diffuse reflectance FTIR spectroscopy.

    PubMed

    Wertz, Julie H; Tang, Pik Leung; Quye, Anita; France, David J

    2018-06-11

    This work investigates historical and replica Turkey red textiles with diffuse reflectance infrared (DRIFT) spectroscopy to study the coordination complex between cellulose, fatty acids, and the aluminium ions that form the basis of the colour lake. Turkey red was produced in Scotland for around 150 years, and is held in many museum and archive collections. The textile was renowned for its brilliant red hue, and for its fastness to light, washing, rubbing, and bleaching. This was attributed to its unusual preparatory process, the chemistry of which was never fully understood, that involved imbuing cotton with a solution of aqueous fatty acids and then aluminium in the following step. Here we show, for the first time, a characterisation of the Turkey red complex on replica and historical textiles. The development of techniques for non-destructive and in situ analysis of historical textiles is valuable for improving understanding of their chemistry, hopefully contributing to better conservation and display practices. The results show the fatty acids condense onto the cellulose polymer via hydrogen bonding between the CO and OH of the respective compounds, then the aluminium forms a bridging complex with the fatty acid carboxyl. This contributes to an improved understanding of Turkey red textiles, and shows the useful application of handheld diffuse FTIR instruments for heritage textile research. Copyright © 2018. Published by Elsevier B.V.

  4. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C. (Principal Investigator)

    1985-01-01

    The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions.

  5. Survey of Material for an Infrared-Opaque Coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained for a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising off-the-shelf binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective in reducing far-infrared reflectance; (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TiBr powder.

  6. Survey of material for an infrared-opaque coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained of a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising 'off-the-shelf' binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective reducing far-infrared reflectance; and (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TlBr powder.

  7. An improved method to estimate reflectance parameters for high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  8. Rapid Erosion Modeling in a Western Kenya Watershed using Visible Near Infrared Reflectance, Classification Tree Analysis and 137Cesium.

    PubMed

    deGraffenried, Jeff B; Shepherd, Keith D

    2009-12-15

    Human induced soil erosion has severe economic and environmental impacts throughout the world. It is more severe in the tropics than elsewhere and results in diminished food production and security. Kenya has limited arable land and 30 percent of the country experiences severe to very severe human induced soil degradation. The purpose of this research was to test visible near infrared diffuse reflectance spectroscopy (VNIR) as a tool for rapid assessment and benchmarking of soil condition and erosion severity class. The study was conducted in the Saiwa River watershed in the northern Rift Valley Province of western Kenya, a tropical highland area. Soil 137 Cs concentration was measured to validate spectrally derived erosion classes and establish the background levels for difference land use types. Results indicate VNIR could be used to accurately evaluate a large and diverse soil data set and predict soil erosion characteristics. Soil condition was spectrally assessed and modeled. Analysis of mean raw spectra indicated significant reflectance differences between soil erosion classes. The largest differences occurred between 1,350 and 1,950 nm with the largest separation occurring at 1,920 nm. Classification and Regression Tree (CART) analysis indicated that the spectral model had practical predictive success (72%) with Receiver Operating Characteristic (ROC) of 0.74. The change in 137 Cs concentrations supported the premise that VNIR is an effective tool for rapid screening of soil erosion condition.

  9. Determining moisture content in pasta by vibrational spectroscopy.

    PubMed

    Czaja, Tomasz; Kuzawińska, Ewelina; Sobota, Aldona; Szostak, Roman

    2018-02-01

    Pasta aside from bread is the most consumed cereal-based product in the world. Its taste and cooking ease makes it the basis of many cuisines. The pasta dough formed by mixing flour and water is extruded through an extrusion die to mould the appropriate pasta form and is dried to obtain a stable product. The concentration of moisture in the pasta dough is a one of key parameters determining the final quality of the product. Monitoring the moisture content of pasta after extrusion is also critically important. It enables a selection of suitable drying conditions that ensure the appropriate parameters of pasta, such as texture, color and taste, are met. A method for the quantitative determination of moisture content in pasta dough and in pasta based on the partial least squares treatment of infrared spectra registered using a single-reflection attenuated total reflectance diamond accessory is described. Results of a similar quality were found using models derived from near infrared spectra obtained in a diffuse reflectance mode and slightly worse based on Raman spectra. Relative standard errors of prediction calculated for moisture quantification by ATR/NIR/Raman techniques amounted to 2.54/3.16/5.56% and 2.15/3.32/5.67%, for calibration and validation sets, respectively. The proposed procedures can be used for fast and efficient pasta moisture quantification and may replace the current, more laborious methods used. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Core-shell silicon nanowire solar cells

    PubMed Central

    Adachi, M. M.; Anantram, M. P.; Karim, K. S.

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071

  11. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  12. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  13. Research on optical reflectance and infrared emissivity of TiNx films depending on sputtering pressure

    NASA Astrophysics Data System (ADS)

    Lu, Linlin; Luo, Fa; Huang, Zhibin; Zhou, Wancheng; Zhu, Dongmei

    2018-06-01

    TiNx thin films were deposited on glass substrates using direct current reactive magnetron sputtering, and effects of sputtering pressure on optical reflectance and infrared emissivity of TiNx films were studied. The results indicated that sputtering pressure was a key factor to affect the optical reflectance and infrared emissivity of TiNx films in this study. When sputtering pressure varied from 0.3 Pa to 1.2 Pa, an average reflectance of less than 25% in the visible range was obtained for the prepared films. With the working pressure rise, the resistivity of TiNx films went up. Meanwhile, the infrared emissivity of the films increased. As sputtering pressure was 0.3 Pa, the infrared emissivity in the wavelength of 3-5 and 8-14 μm of TiNx film with dark color and low optical reflectance was less than 0.2.

  14. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils.

    PubMed

    Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael

    2018-03-27

    Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  15. Numerical simulation of reflective infrared absorber based on metal and dielectric nanorings

    NASA Astrophysics Data System (ADS)

    Wei, Dong; Zhang, Guizhong; Ding, Xin; Yao, Jianquan

    2018-04-01

    We propose a subwavelength micro-structure of /metal-ring/dielectric-ring/metal-substrate/ for infrared absorber, and numerically simulate its spectral reflectance in the infrared regime. Besides its pragmatic fabrication, this nanoring structure is characterized by excellent infrared reflectance, angle and polarization insensitivities and large tunability. Based upon the nanoring structure, a multilayered nanoring structure is demonstrated to be able to further tune the resonance wavelength. We also use an area-corrected plasmon polariton model to decipher the resonance wavelengths.

  16. Non-Lambertian effects on remote sensing of surface reflectance and vegetation index

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kaufman, Y. J.

    1986-01-01

    This paper discusses the effects of non-Lambertian reflection from a homogeneous surface on remote sensing of the surface reflectance and vegetation index from a satellite. Remote measurement of the surface characteristics is perturbed by atmospheric scattering of sun light. This scattering tends to smooth the angular dependence of non-Lambertian surface reflectances, an effect that is not present in the case of Lambertian surfaces. This effect is calculated to test the validity of a Lambertian assumption used in remote sensing. For the three types of vegetations considered in this study, the assumption of Lambertian surface can be used satisfactorily in the derivation of surface reflectance from remotely measured radiance for a view angle outside the backscattering region. Within the backscattering region, however, the use of the assumption can result in a considerable error in the derived surface reflectance. Accuracy also deteriorates with increasing solar zenith angle. The angular distribution of the surface reflectance derived from remote measurements is smoother than that at the surface. The effect of surface non-Lambertianity on remote sensing of vegetation index is very weak. Since the effect is similiar in the visible and near infrared part of the solar spectrum for the vegetations treated in this study, it is canceled in deriving the vegetation index. The effect of the diffuse skylight on surface reflectance measurements at ground level is also discussed.

  17. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  18. A laboratory study of magnesium-tetrabenz-porphyrin - Lack of agreement with diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Donn, B.; Khanna, R. K.

    1980-01-01

    The visible and infrared spectra and thermal behavior of the bis-pyridal-magnesium-tetrabenz-porphyrin molecule proposed as the carrier of the diffuse interstellar bands were measured. Of the six band coincidences reported by Johnson (1977), only one, 4430 A, occurs in these experiments. This coincidence requires a special environment, not likely to occur in interstellar space but the infrared spectrum does not support Johnson's vibrational scheme. These spectroscopic and thermal measurements contradict the hypothesis that this molecule causes the diffuse bands.

  19. [Design of high-efficiency double compound parabolic concentrator system in near infrared noninvasive biochemical analysis].

    PubMed

    Gao, Jing; Lu, Qi-Peng; Peng, Zhong-Qi; Ding, Hai-Quan; Gao, Hong-Zhi

    2013-05-01

    High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.

  20. A rapid identification of four medicinal chrysanthemum varieties with near infrared spectroscopy.

    PubMed

    Han, Bangxing; Yan, Hui; Chen, Cunwu; Yao, Houjun; Dai, Jun; Chen, Naifu

    2014-07-01

    For genuine medicinal material in Chinese herbs; the efficient, rapid, and precise identification is the focus and difficulty in the filed studying Chinese herbal medicines. Chrysanthemum morifolium as herbs has a long planting history in China, culturing high quality ones and different varieties. Different chrysanthemum varieties differ in quality, chemical composition, functions, and application. Therefore, chrysanthemum varieties in the market demands precise identification to provide reference for reasonable and correct application as genuine medicinal material. A total of 244 batches of chrysanthemum samples were randomly divided into calibration set (160 batches) and prediction set (84 batches). The near infrared diffuses reflectance spectra of chrysanthemum varieties were preprocessed by first order derivative (D1) and autoscaling and was built model with partial least squares (PLS). In this study of four chrysanthemum varieties identification, the accuracy rates in calibration sets of Boju, Chuju, Hangju, and Gongju are respectively 100, 100, 98.65, and 96.67%; while the accuracy rates in prediction sets are 100% except for 99.1% of Hangju. The research results demonstrate that the qualitative analysis can be conducted by machine learning combined with near infrared spectroscopy (NIR), which provides a new method for rapid and noninvasive identification of chrysanthemum varieties.

  1. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate.

  2. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3% (486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, Band M5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250 nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on-orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11).

  3. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  4. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  5. The Infrared Reflection Nebula Around the Protostellar System in S140

    NASA Technical Reports Server (NTRS)

    Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)

    1994-01-01

    We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.

  6. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE PAGES

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; ...

    2017-09-08

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  7. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  8. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.

    PubMed

    Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S

    2011-10-26

    Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.

  9. Simultaneous determination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyapatite.

    PubMed

    Ning, Yu; Li, Jihui; Cai, Wensheng; Shao, Xueguang

    2012-10-01

    A method for simultaneous determination of metal ions in river water was developed by using preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). An inorganic biomaterial, nano-hydroxyapatite (HAP) was used as a high-efficient adsorbent for gathering the ions from water samples. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and partial least squares (PLS) models were established for fast and simultaneous quantitative prediction. With the samples prepared by river water, determination of Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Cr(3+) was investigated. The calibration models of Cu(2+), Cr(3+) and total content were proven to be efficient enough for precise prediction. The determination coefficients (R(2)) of the independent validation were found as high as 0.9924, 0.9869 and 0.9273 for Cu(2+), Cr(3+) and total content, respectively. Therefore, the feasibility of NIRDRS for microanalysis of heavy metal ions in waste water was demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    PubMed

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Development of a non-destructive method for determining protein nitrogen in a yellow fever vaccine by near infrared spectroscopy and multivariate calibration.

    PubMed

    Dabkiewicz, Vanessa Emídio; de Mello Pereira Abrantes, Shirley; Cassella, Ricardo Jorgensen

    2018-08-05

    Near infrared spectroscopy (NIR) with diffuse reflectance associated to multivariate calibration has as main advantage the replacement of the physical separation of interferents by the mathematical separation of their signals, rapidly with no need for reagent consumption, chemical waste production or sample manipulation. Seeking to optimize quality control analyses, this spectroscopic analytical method was shown to be a viable alternative to the classical Kjeldahl method for the determination of protein nitrogen in yellow fever vaccine. The most suitable multivariate calibration was achieved by the partial least squares method (PLS) with multiplicative signal correction (MSC) treatment and data mean centering (MC), using a minimum number of latent variables (LV) equal to 1, with the lower value of the square root of the mean squared prediction error (0.00330) associated with the highest percentage value (91%) of samples. Accuracy ranged 95 to 105% recovery in the 4000-5184 cm -1 region. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Light-scattering signal may indicate critical time zone to rescue brain tissue after hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2011-02-01

    A light-scattering signal, which is sensitive to cellular/subcellular structural integrity, is a potential indicator of brain tissue viability because metabolic energy is used in part to maintain the structure of cells. We previously observed a unique triphasic scattering change (TSC) at a certain time after oxygen/glucose deprivation for blood-free rat brains; TSC almost coincided with the cerebral adenosine triphosphate (ATP) depletion. We examine whether such TSC can be observed in the presence of blood in vivo, for which transcranial diffuse reflectance measurement is performed for rat brains during hypoxia induced by nitrogen gas inhalation. At a certain time after hypoxia, diffuse reflectance intensity in the near-infrared region changes in three phases, which is shown by spectroscopic analysis to be due to scattering change in the tissue. During hypoxia, rats are reoxygenated at various time points. When the oxygen supply is started before TSC, all rats survive, whereas no rats survive when the oxygen supply is started after TSC. Survival is probabilistic when the oxygen supply is started during TSC, indicating that the period of TSC can be regarded as a critical time zone for rescuing the brain. The results demonstrate that light scattering signal can be an indicator of brain tissue reversibility.

  13. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).

  14. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy.

    PubMed

    Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas

    2013-01-01

    Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg(-1) for mineral soils and a root mean square error of 50 g C kg(-1) for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation.

  15. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy

    PubMed Central

    Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas

    2013-01-01

    Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg−1 for mineral soils and a root mean square error of 50 g C kg−1 for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation. PMID:23840459

  16. An Overview of Suomi NPP VIIRS Calibration Maneuvers

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-01-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions.

  17. An overview of Suomi NPP VIIRS calibration maneuvers

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions.

  18. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  19. A low cost, simple, portable instrument for the measurement of infra-red reflectance of paints

    NASA Astrophysics Data System (ADS)

    Marson, F.

    1982-05-01

    The construction and design of a low cost, simple, portable infra-red reflectometer which can be used to estimate the reflectance of paint films in the 800 nm region is described. The infra-red reflectances of a range of lustreless, semigloss and gloss olive drab camouflage paints determined using this instrument are compared to those obtained using modified commercial equipment and to the reflectances measured at 800 nm using a Cary model 17 spectrophotometer. The new reflectometer was shown to be superior to the modified commercial instrument currently specified in Australian government paint specifications and to be capable of estimating the reflectance of olive drab paints to within about one per cent of the Cary derived reflectance values. The reflectance values for a range of 24 experimental coatings made with pigments of varying absorption in the infra-red region are used to illustrate the effect of the instrument's spectral response and the necessity of establishing a reliable working standard.

  20. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis

    NASA Astrophysics Data System (ADS)

    Krumeich, Frank; Waser, Oliver; Pratsinis, Sotiris E.

    2016-10-01

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO4-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO4-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO4 starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO4 particles (diameter in the range 300-400 nm), in agreement with ex-situ experiments.

  1. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.

    PubMed

    van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D

    2018-01-17

    Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.

  2. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials.

    PubMed

    Neo, Yun Ping; Swift, Simon; Ray, Sudip; Gizdavic-Nikolaidis, Marija; Jin, Jianyong; Perera, Conrad O

    2013-12-01

    The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour. Thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy revealed the stability of the fibre mats over time. The Ze-GA fibre mats displayed similar rapid release profiles, with Ze-GA 20% exhibiting the fastest release rate in water as compared to the others. Gallic acid diffuses from the electrospun fibres in a Fickian diffusion manner and the data obtained exhibited a better fit to Higuchi model. L929 fibroblast cells were cultured on the electrospun fibres to demonstrate the absence of cytotoxicity. Overall, the Ze-GA fibre mats demonstrated antibacterial activity and properties consistent with those considered desirable for active packaging material in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A reflectance model for non-contact mapping of venous oxygen saturation using a CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Jun; Dunmire, Barbrina; Beach, Kirk W.; Leotta, Daniel F.

    2013-11-01

    A method of non-contact mapping of venous oxygen saturation (SvO2) is presented. A CCD camera is used to image skin tissue illuminated alternately by a red (660 nm) and an infrared (800 nm) LED light source. Low cuff pressures of 30-40 mmHg are applied to induce a venous blood volume change with negligible change in the arterial blood volume. A hybrid model combining the Beer-Lambert law and the light diffusion model is developed and used to convert the change in the light intensity to the change in skin tissue absorption coefficient. A simulation study incorporating the full light diffusion model is used to verify the hybrid model and to correct a calculation bias. SvO2 in the fingers, palm, and forearm for five volunteers are presented and compared with results in the published literature. Two-dimensional maps of venous oxygen saturation are given for the three anatomical regions.

  4. Diffusion and Binding of Laponite Clay Nanoparticles into Collagen Fibers for the Formation of Leather Matrix.

    PubMed

    Shi, Jiabo; Wang, Chunhua; Ngai, To; Lin, Wei

    2018-06-13

    Understanding accessibility and interactions of clay nanoparticles with collagen fibers is an important fundamental issue for the conversion of collagen to leather matrix. In this study, we have investigated the diffusion and binding of Laponite into the collagen fiber network. Our results indicate that the diffusion behaviors of Laponite into the collagen exhibit the Langmuir adsorption, verifying its affinity for collagen. The introduction of Laponite leads to a shift in the isoelectric point of collagen from ∼6.8 to ∼4.5, indicating the ionic bonding between the positively charged amino groups of the collagen and negatively charged Laponite under the tanning conditions. Fluorescence microscopy, atomic force microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and wide-angle X-ray diffraction analyses reveal that Laponite nanoparticles can penetrate into collagen microstructure and evenly distributed onto collagen fibrils, not altering native D-periodic banding patterns of collagen fibrils. Attenuated total reflectance-Fourier transform infrared and Raman spectroscopy detections further demonstrate the presence of noncovalent interactions, namely, ionic and hydrogen bonding, between Laponite and collagen. These findings provide a theoretical basis for the use of Laponite as an emerging tanning agent in leather manufacture.

  5. Simple Fabrication of Gd(III)-DTPA-Nanodiamond Particles by Chemical Modification for Use as Magnetic Resonance Imaging (MRI) Contrast Agent

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu

    2013-01-01

    We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.

  6. Geometrical dart infrared polarization signatures

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth D.; Jordan, David L.

    1996-06-01

    The 8 - 12 micrometer polarization signatures of diffuse and specular aluminum geometrical darts were analyzed outdoors using a polarization sensitive thermal imager. Results of the degree and plane of polarization are presented for different thermal imager gain bands and weather conditions during a two week period. The 0 degree, 45 degree, 90 degree and 135 degree polarizer orientations were thermally calibrated and the S1 and S2 Stokes parameters shown as radiometric temperature differences. The effect on the polarization signatures of range is considered for these targets at 100 m and 370 m. A comparison of the degree of polarization to changes in the emission/reflection balance and to variations in the dart's complex refractive index is made.

  7. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  8. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.

    PubMed

    Damiran, D; Yu, P

    2011-10-01

    To date, no study has been done of molecular structures in relation to nutrient degradation kinetics and intestinal availability in dairy cattle. The objectives of this study were to (1) reveal molecular structures of hulless barley affected by structural alteration using molecular spectroscopy (diffuse reflectance infrared Fourier transform) as a novel approach, and (2) quantify structure features on a molecular basis in relation to digestive kinetics and nutritive value in the rumen and intestine in cattle. The modeled feeds in this study were 4 types of hulless barley (HB) cultivars modified in starch traits: (a) normal starch cultivar, (b) zero-amylose waxy, (c) waxy, and (d) high-amylose. The molecular structural features were determined using diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (ca. 4,000-800 cm(-1)) of the electromagnetic spectrum. The items assessed included infrared intensity attributed to protein amide I (ca. 1,715-1,575 cm(-1)), amide II (ca. 1,575-1,490 cm(-1)), α-helix (ca. 1,648-1,660 cm(-1)), β-sheet (ca. 1,625-1,640 cm(-1)), and their ratio, β-glucan (ca. 1,445-1,400 cm(-1)), total carbohydrates (CHO; ca. 1,188-820 cm(-1)) and their 3 major peaks, structural carbohydrates (ca. 1,277-1,190 cm(-1)), and ratios of amide I to II and amide I to CHO. The results show that (1) the zero-amylose waxy was the greatest in amide I and II peak areas, as well as in the ratio of protein amide I to CHO among HB; (2) α-helix-to-β-sheet ratio differed among HB: the high-amylose was the greatest, the zero-amylose waxy and waxy were the intermediate, and the normal starch was the lowest; (3) HB were similar in β-glucan and CHO molecular structural makeup; (4) altered starch HB cultivars were similar to each other, but were different from the normal starch cultivar in protein molecular makeup; and (5) the rate and extent of rumen degradation of starch and protein were highly related to the molecular structural makeup of HB. In conclusion, the molecular structural makeup on a molecular basis was related to rumen degradation kinetics and intestinal availability in dairy cattle. The alteration of starch structure in barley grain affects starch structure and the magnitude of protein and β-glucan contents, as well as the protein molecular structure of HB. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less

  10. Improved backward ray tracing with stochastic sampling

    NASA Astrophysics Data System (ADS)

    Ryu, Seung Taek; Yoon, Kyung-Hyun

    1999-03-01

    This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.

  11. Non-invasive neuroimaging using near-infrared light

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Boas, David A.; Sutton, Jeffrey P.

    2002-01-01

    This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.

  12. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  13. Scientific results from COBE

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H., Jr.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.

    1993-01-01

    NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.

  14. A non-destructive spectroscopic study of the decoration of archaeological pottery: from matt-painted bichrome ceramic sherds (southern Italy, VIII-VII B.C.) to an intact Etruscan cinerary urn

    NASA Astrophysics Data System (ADS)

    Bruni, Silvia; Guglielmi, Vittoria; Della Foglia, Elena; Castoldi, Marina; Bagnasco Gianni, Giovanna

    2018-02-01

    A study is presented based on the use of entirely non-destructive spectroscopic techniques to analyze the chemical composition of the painted surface layer of archaeological pottery. This study aims to define both the raw materials and the working technology of ancient potters. Energy-dispersive X-ray analysis, micro-Raman spectroscopy, visible and near infrared (NIR) diffuse reflection spectroscopy and external reflection Fourier-transform infrared (FTIR) spectroscopy were applied to matt-painted bichrome pottery sherds (VIII-VII century B.C.) from the site of Incoronata near Metaponto in southern Italy. Two different raw materials, ochre and iron-rich clay, were recognized for the red decoration, while the dark areas resulted to have been obtained by the so-called manganese black technique. In any case, it was demonstrated that the decoration was applied before firing, in spite of its sometimes grainy aspect that could suggest a post-firing application. For the samples with a more sophisticated decorative pattern a red/black/white polychromy was recognized, as the lighter areas correspond to an ;intentional white; obtained by the firing of a calcium-rich clay. Reflection spectroscopy in the visible-NIR and mid-IR as well as micro-Raman spectroscopy were then employed to characterize the decoration of an intact ceramic urn from the Etruscan town of Chiusi, evidencing a post-firing painting based on the use of red ochre, carbon black and lime, possibly imitating the ;fresco; technique used in wall paintings.

  15. A Study on the Characteristics of Design Variables for IRSS Diffuser

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jin; Ko, Dae-Eun

    2017-11-01

    In modern naval ships, infrared signature suppression systems (IRSS) are installed to decrease the temperature of waste gas generated in propulsion engine and the metallic surface temperature of heated exhaust pipes. Generally, IRSS is composed of eductor, mixing tube, and diffuser. Diffuser serves to reduce the temperature by creating an air film using the pressure difference between internal gas and external air. In this study, design variables were selected by analyzing the diffuser and the characteristics of design variables that affect the performance of diffuser were examined using Taguchi experiment method. For the diffuser performance analysis, a heat flow analysis technique established in previous research was used. The IRSS performance evaluation was carried out based on the average area value of the metal surface temperature and the temperature of the exhaust gas at the outlet of the diffuser, which are variables directly related to the intensity of infrared signature in naval ships. It was verified that the exhaust gas temperature is greatly affected by changes in the diameter of the diffuser outlet, and the metal surface temperature of diffuser is greatly affected by changes in the number of diffuser rings.

  16. Quantitative computational infrared imaging of buoyant diffusion flames

    NASA Astrophysics Data System (ADS)

    Newale, Ashish S.

    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.

  17. Assessment of Various Organic Matter Properties by Infrared Reflectance Spectroscopy of Sediments and Filters

    NASA Astrophysics Data System (ADS)

    Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.

    2009-05-01

    The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on attenuated total reflectance, or ATR, allowing the direct analysis of the filters. In addition to carbon and nitrogen contents, amino acid and muramic acid (a bacterial biomarker) yields were predicted using PLS. Calculated %RMSEP varied from 6.4% (total amino acid content) to 18.6% (muramic acid content) with cross-validation. PLS regression modeling does not require a priori knowledge of the spectral bands associated with the properties to be predicted. In turn, the spectral regions that give good PLS predictions provided valuable information on band assignment and geochemical processes. For instance, nitrogen and humin contents were greatly determined by an absorption band caused by aluminosilicate OH group. This supports the idea that OM-clay interactions, important in humin formation and OM preservation, are mediated by nitrogen-containing groups.

  18. The effects of esterified solvents on the diffusion of a model compound across human skin: an ATR-FTIR spectroscopic study.

    PubMed

    McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J

    2013-04-15

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Infrared reflectance spectra (4-12 micron) of lunar samples

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1991-01-01

    Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.

  20. Hybrid metasurfaces for microwave reflection and infrared emission reduction.

    PubMed

    Pang, Yongqiang; Li, Yongfeng; Yan, Mingbao; Liu, Dongqing; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-30

    Controlling of electromagnetic wave radiation is of great importance in many fields. In this work, a hybrid metasurface (HMS) is designed to simultaneously reduce the microwave reflection and the infrared emission. The HMS is composed of the metal/dielectric/metal/dielectric/metal configuration. The reflection reduction at microwave frequencies mainly results from the phase cancellation technique, while the infrared emission reduction is due to the reflection of the metal with a high filling ration in the top layer. It has been analytically indicated that reflection reduction with an efficiency larger than 10 dB can be achieved in the frequency band of 8.2-18 GHz, and this has been well verified by the simulated and experimental results. Meanwhile, the designed HMS displays a low emission performance in the infrared band, with the emissivity less than 0.27 from 3 to 14 μm. It is believed that our proposal may find the application of multispectral stealth technology.

  1. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    PubMed

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  2. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  3. In-vivo Reflectance Measurements from Human Skin

    NASA Astrophysics Data System (ADS)

    Delgado, J. A.; Cornejo, A.; Cunill, M.; Báez, J. J.; Matos, R.; Anasagasti, L.; Santiago, C.

    2006-09-01

    We evaluate the potential of using a standard commercial spectrophotometer, specifically designed to meet the growing requirement for color control in the digital-imaging application field, to perform in-vivo diffuse reflectance measurements from adult human skin. We report and discuss diffuse reflectance spectra for three practical situations: a) reflectance versus skin type, b) reflectance from normal skin with different grade of solar exposition, c) reflectance from normal skin versus reflectance from seborrheic keratosis. Results show, that using the above spectrophotometer we can easily differentiate two sites of different solar exposition. Besides, significant differences are found in the normal skin diffuse reflectance for patients with different skin types.

  4. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer.

    PubMed

    Soriano-Disla, José M; Janik, Leslie J; McLaughlin, Michael J

    2018-02-01

    We examined the feasibility of using handheld mid-infrared (MIR) Fourier-Transform infrared (FT-IR) instrumentation for detecting and analysing cyanide (CN) contamination in field contaminated soils. Cyanide spiking experiments were first carried out, in the laboratory, to test the sensitivity of infrared Fourier transform (DRIFT) spectrometry to ferro- and ferricyanide compounds across a range of reference soils and minerals. Both benchtop and handheld diffuse reflectance infrared spectrometers were tested. Excellent results were obtained for the reference soils and minerals, with the MIR outperforming the near-infrared (NIR) range. Spectral peaks characteristic of the -C≡N group were observed near 2062 and 2118cm -1 in the MIR region for the ferro- and ferricyanide compounds spiked into soils/minerals, respectively. In the NIR region such peaks were observed near 4134 and 4220cm -1 . Cyanide-contaminated samples were then collected in the field and analyzed with the two spectrometers to further test the applicability of the DRIFT technique for soils containing aged CN residues. The prediction of total CN in dry and ground contaminated soils using the handheld MIR instrument resulted in a coefficient of determination (R 2 ) of 0.88-0.98 and root mean square error of the cross-validation (RMSE) of 21-49mgkg -1 for a CN range of 0-611mgkg -1 . A major peak was observed in the MIR at about 2092cm -1 which was attributed to "Prussian Blue" (Fe 4 [Fe(CN) 6 ] 3 ·xH 2 O). These results demonstrate the potential of handheld DRIFT instrumentation as a promising alternative to the standard laboratory method to predict CN concentrations in contaminated field soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Accurate wavelength measurements of a putative standard for near-infrared diffuse reflection spectrometry.

    PubMed

    Isaksson, Tomas; Yang, Husheng; Kemeny, Gabor J; Jackson, Richard S; Wang, Qian; Alam, M Kathleen; Griffiths, Peter R

    2003-02-01

    The diffuse reflection (DR) spectrum of a sample consisting of a mixture of rare earth oxides and talc was measured at 2 cm-1 resolution, using five different accessories installed on five different Fourier transform near-infrared (FT-NIR) spectrometers from four manufacturers. Peak positions for 37 peaks were determined using two peak-picking algorithms: center-of-mass and polynomial fitting. The wavenumber of the band center reported by either of these techniques was sensitive to the slope of the baseline, and so the baseline of the spectra was corrected using either a polynomial fit or conversion to the second derivative. Significantly different results were obtained with one combination of spectrometer and accessory than the others. Apparently, the beam path through the interferometer and DR accessory was different for this accessory than for any of the other measurements, causing a severe degradation of the resolution. Spectra measured on this instrument were removed as outliers. For measurements made on FT-NIR spectrometers, it is shown that it is important to check the resolution at which the spectrum has been measured using lines in the vibration-rotation spectrum of atmospheric water vapor and to specify the peak-picking and baseline-correction algorithms that are used to process the measured spectra. The variance between the results given by the four different methods of peak-picking and baseline correction was substantially larger than the variance between the remaining five measurements. Certain bands were found to be more suitable than others for use as wavelength standards. A band at 5943.13 cm-1 (1682.62 nm) was found to be the most stable band between the four methods and the six measurements. A band at 5177.04 cm-1 (1931.61 nm) has the highest precision between different measurements when polynomial baseline correction and polynomial peak-picking algorithms are used.

  6. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study.

    PubMed

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ∼12  mm from the illumination site. The temperature at the onset of the experiment was ∼34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using DRS. Although several approaches have described the rise in temperature and its impact on tissue, to the best of our knowledge no information is available describing the ability to monitor temperature during heatstroke with DRS. The motivation of this study was to successfully describe this ability.

  7. Small helium-cooled infrared telescope experiment for Spacelab-2 (IRT)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    The Infrared Telescope (IRT) experiment, flown on Spacelab-2, was used to make infrared measurements between 2 and 120 microns. The objectives were multidisciplinary in nature with astrophysical goals of mapping the diffuse cosmic emission and extended infrared sources and technical goals of measuring the induced Shuttle environment, studying properties of superfluid helium in space, and testing various infrared telescope system designs. Astrophysically, new data were obtained on the structure of the Galaxy at near-infrared wavelengths. A summary of the large scale diffuse near-infrared observations of the Galaxy by the IRT is presented, as well as a summary of the preliminary results obtained from this data on the structure of the galactic disk and bulge. The importance of combining CO and near-infrared maps of similar resolution to determine a 3-D model of galactic extinction is demonstrated. The IRT data are used, in conjunction with a proposed galactic model, to make preliminary measurements of the global scale parameters of the Galaxy. During the mission substantial amounts of data were obtained concerning the induced Shuttle environment. An experiment was also performed to measure spacecraft glow in the IR.

  8. Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.

    2010-02-01

    Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.

  9. Visualization of hemodynamics and light scattering in exposed brain of rat using multispectral image reconstruction based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-07-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.

  10. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  11. Infrared welding process on composite: Effect of interdiffusion at the welding interface

    NASA Astrophysics Data System (ADS)

    Asseko, André Chateau Akué; Lafranche, Éric; Cosson, Benoît; Schmidt, Fabrice; Le Maoult, Yannick

    2016-10-01

    In this study, the effects of the welding temperature field developed during the infrared assembly process on the joining properties of glass fibre reinforced polycarbonate/ unreinforced polycarbonate with carbon black were investigated. The temperature field and the contact time govern together the quality of the adhesion at the welding interface. The effect of the semi-transparent glass fibre reinforced polycarbonate composite / unreinforced polycarbonate composite with carbon black interface was quantified in term of quadratic distance of diffusion or diffusion depth through the welding interface. The microstructural characterizations were investigated in order to inspect the welding zones quality and to observe their failure modes. The diffusion theory has then been applied to calculate the variation of the quadratic distance of diffusion versus time at different locations. The complete self-diffusion is supposed occurring only at temperature above the polycarbonate glass transition temperature (140°C) and with a quadratic distance of diffusion superior to the mean square end-to-end distance.

  12. Masking Out Galaxies

    NASA Image and Video Library

    2014-11-06

    This graphic illustrates how the Cosmic Infrared Background Experiment, or CIBER, team measures a diffuse glow of infrared light filling the spaces between galaxies. The glow does not come from any known stars and galaxies.

  13. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations.

    PubMed

    Roy, Gilles; Mielczarski, Jerzy A

    2002-04-01

    Infrared sensor, based on attenuated total reflection phenomenon, for the detection of chlorinated hydrocarbons (CHCs) represents a big advantage compared to chromatographic and mass spectroscopic techniques since it is a one step detector. Pre-concentration and separation take place in the polymer film with simultaneous identification of pollutants by the infrared beam. The analysis is rapid, sample does not require any initial preparation, and can be easily performed in the field. The main default of the latest version of the sensor was a low sensibility (above 1 ppm) compared to the threshold levels of the contaminants. In the present work, it is documented that the response dynamics of the optical sensor and its sensitivity depend strongly on the diffusion of pollutants through a boundary layer formed between polymer film and the monitored solution and in the polymer film. The reduction of thickness of the boundary layer through a controlled high flow rate, and the optimization of thickness (volume) of polymer films result in a tremendous improvement of the response dynamics. It is demonstrated that the sensor can detect simultaneously six CHCs: monochlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, trichloroethylene, and perchloroethylene in their mixture with a sensitivity as low as a few ppb. This level of detection opens up numerous applications for the optical sensor.

  14. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  15. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  16. [Research on outlier detection methods for determination of oil yield in oil shales using near-infrared spectroscopy].

    PubMed

    Zhang, Huai-zhu; Lin, Jun; Zhang, Huai-Zhu

    2014-06-01

    In the present paper, the outlier detection methods for determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy was studied. During the quantitative analysis with near-infrared spectroscopy, environmental change and operator error will both produce outliers. The presence of outliers will affect the overall distribution trend of samples and lead to the decrease in predictive capability. Thus, the detection of outliers are important for the construction of high-quality calibration models. The methods including principal component analysis-Mahalanobis distance (PCA-MD) and resampling by half-means (RHM) were applied to the discrimination and elimination of outliers in this work. The thresholds and confidences for MD and RHM were optimized using the performance of partial least squares (PLS) models constructed after the elimination of outliers, respectively. Compared with the model constructed with the data of full spectrum, the values of RMSEP of the models constructed with the application of PCA-MD with a threshold of a value equal to the sum of average and standard deviation of MD, RHM with the confidence level of 85%, and the combination of PCA-MD and RHM, were reduced by 48.3%, 27.5% and 44.8%, respectively. The predictive ability of the calibration model has been improved effectively.

  17. Carbon chain abundance in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.

    1999-01-01

    Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).

  18. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  19. Spectroscopic Detection of Caries Lesions

    PubMed Central

    Ruohonen, Mika; Palo, Katri; Alander, Jarmo

    2013-01-01

    Background. A caries lesion causes changes in the optical properties of the affected tissue. Currently a caries lesion can be detected only at a relatively late stage of development. Caries diagnosis also suffers from high interobserver variance. Methods. This is a pilot study to test the suitability of an optical diffuse reflectance spectroscopy for caries diagnosis. Reflectance visible/near-infrared spectroscopy (VIS/NIRS) was used to measure caries lesions and healthy enamel on extracted human teeth. The results were analysed with a computational algorithm in order to find a rule-based classification method to detect caries lesions. Results. The classification indicated that the measured points of enamel could be assigned to one of three classes: healthy enamel, a caries lesion, and stained healthy enamel. The features that enabled this were consistent with theory. Conclusions. It seems that spectroscopic measurements can help to reduce false positives at in vitro setting. However, further research is required to evaluate the strength of the evidence for the method's performance. PMID:27006907

  20. Non-destructive prediction of 'Hass' avocado dry matter via FT-NIR spectroscopy.

    PubMed

    Wedding, Brett B; White, Ronald D; Grauf, Steve; Wright, Carole; Tilse, Bonnie; Hofman, Peter; Gadek, Paul A

    2011-01-30

    The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados. 2010 Society of Chemical Industry.

  1. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  2. Optical (diffuse reflectance) and Mossbauer spectroscopic study of nontronite and related Fe-bearing smectites

    USGS Publications Warehouse

    Sherman, David M.; Vergo, N.

    1988-01-01

    Near-ultraviolet to near-infrared optical (diffuse reflectance) spectra of several nontronites and related Fe-bearing smectites [(Fe2+,Fe3+)-bearing saponite and (Fe2+,Fe3+)-bearing montmorillonite] are presented and interpreted. Mossbauer spectra at 298 K are also presented to help interpret the optical spectra. The optical spectra of nontronites are dominated by the ligand field transitions of Fe3+ in octahedral coordination sites. In addition to the ligand field transitions of single Fe3+ cations, a broad absorption band centered near 22000 cm-1 is observed that may be due to the simultaneous excitation of two Fe3+ cations to the 4T1g (4G) state. Alternatively, this band may represent excitations to the 2A2g and 2T1g ligand field states. For most samples, the amount of tetrahedrally coordinated Fe3+ was below that detectable by Mossbauer spectroscopy (1-3% of total Fe). However, the optical spectra of all of the nontronites show an absorption band near 23000 cm-1. This band is assigned to the 6A1 ??? 4E,4A1 transition of tetrahedrally coordinated Fe3+. The optical spectra of mixed-valence Fe-bearing smectites show a broad absorption band at 14000-15000 cm-1 owing to Fe2+ ??? Fe3+ charge transfer. -from Authors

  3. Product of the SNPP VIIRS SD Screen Transmittance and the SD BRDF (RSB) From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    To assure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) regularly performs on-orbit radiometric calibrations of its 22 spectral bands. The primary calibration radiance source for the reflective solar bands (RSBs) is a sunlit solar diffuser (SD). During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The SD scattered sunlight is used for the calibration, with the spectral radiance proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF). The BRDF is decomposed to the product of its value at launch and a numerical factor quantifying its change since launch. Therefore, the RSB calibration requires accurate knowledge of the product of the SD screen transmittance and the BRDF (RSB; launch time). Previously, we calculated the product with yaw maneuver data and found that the product had improved accuracy over the prelaunch one. With both yaw maneuver and regular on orbit data, we were able to improve the accuracy of the SDSM screen transmittance and the product for the solar diffuser stability monitor SD view. In this study, we use both yaw maneuver and a small portion of regular on-orbit data to determine the product for the RSB SD view.

  4. Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS).

    PubMed

    Tapia, A; Salgado, M S; Martín, M P; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2017-03-01

    A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH 2 OH, O 3 and NO 2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm -1 but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.

  5. Analysis of VIIRS TEB noise using solar diffuser measurements

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Cao, Changyong; Weng, Fuzhong

    2015-09-01

    The Soumi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28th, 2011 and its Sensor Data Record (SDR) product reached maturity status in March of 2014. Although the VIIRS SDR products are declared at the validated maturity level, there remain issues such as residual stripings in some thermal bands along with the scan direction. These horizontal striping issues in the Thermal Emissive Bands (TEB) were reflected in the sea surface temperature (SST) products. The observed striping magnitude can reach to 0.2 K, especially at the band M14 and M15. As an independent source of calibration, the Solar Diffuser (SD) is utilized in this study. The SD is originally designed for the Reflective Solar Band (RSB), however, it is assumed to be thermally stable at the time of SD observation. For each detector, a linear slope is developed by Integrated Calibration and Validation System (ICVS), which is applied on converting digital number (DN) to radiance unit. After the conversion, detector based noise analyses in VIIRS band M15 and M16 are performed on in-scan and scan-by-scan SD responses. Since SD radiance varies within an orbit, the noise calculation must be derived from the neighborhood Allan deviation. The noise derived Allan deviation shows that detector 1 and 2 in band M15 and detector 9 in band M16 have higher noise content compared to other detectors.

  6. Study on rapid valid acidity evaluation of apple by fiber optic diffuse reflectance technique

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Fu, Xiaping; Jiang, Xuesong

    2004-03-01

    Some issues related to nondestructive evaluation of valid acidity in intact apples by means of Fourier transform near infrared (FTNIR) (800-2631nm) method were addressed. A relationship was established between the diffuse reflectance spectra recorded with a bifurcated optic fiber and the valid acidity. The data were analyzed by multivariate calibration analysis such as partial least squares (PLS) analysis and principal component regression (PCR) technique. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influence of data preprocessing and different spectra treatments were also investigated. Models based on smoothing spectra were slightly worse than models based on derivative spectra and the best result was obtained when the segment length was 5 and the gap size was 10. Depending on data preprocessing and multivariate calibration technique, the best prediction model had a correlation efficient (0.871), a low RMSEP (0.0677), a low RMSEC (0.056) and a small difference between RMSEP and RMSEC by PLS analysis. The results point out the feasibility of FTNIR spectral analysis to predict the fruit valid acidity non-destructively. The ratio of data standard deviation to the root mean square error of prediction (SDR) is better to be less than 3 in calibration models, however, the results cannot meet the demand of actual application. Therefore, further study is required for better calibration and prediction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Donald A.

    A method of detecting counterfeit currency by contacting the currency to be tested with near infrared beams in the spectrum below 1250 namometers, measuring reflectance of the near infrared beams and comparing the reflectance values with those from genuine currency.

  8. Design on compatible stealth photonic crystal of nearmiddle infrared and 1.06 μm laser

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-kui; Wang, Jia-Chun; Wang, Qi-Chao

    2016-01-01

    In the near and middle infrared atmospheric window, infrared stealth material require a low absorptivity (which means a low emissivity according to Kirchhoff's law of black body), at the same time, it also requires high absorptivity so as to decrease the reflectance at military laser wavelength of 1.06μm. Under this circumstances, compatible stealth of infrared and laser is an urgent demand, but the demand is ambivalent for conventional materials. Photonic crystal (PC), as a new type of artificial periodic structure function material, can realize broadband thermal infrared stealth based on its high-reflection photon forbidden band(also called photonic band gap). The high-reflection photon forbidden band of PC can be adjusted to near and middle infrared wave band through some rational methods. When a defect was added into the periodic structure of PC, a "hole-digging" reflection spectrum, which is high absorption at military laser wavelength of 1.06μm, can be achieved, so compatible stealth of near and middle infrared and military laser wavelength of 1.06μm can be achieved too. In this paper, we selected near and middle infrared-transparent materials, Te and MgF2 , as high refractive index and low refractive index material respectively, and designed a one-dimensional one-defect-mode PC whose photon forbidden band was broadened to 1-5μm by constructing two photonic crystals into one. The optical property of the PC was calculated by Transfer matrix method(TMM) of thin-film optical theory, and the results shows that the as-designed PC has a high spectral reflectance in the near and middle infrared band, among which the reflectivity in 1.68μm 5.26μm band reached more than 90%, and the 2.48 5.07μm band even reached 99.99%. The result also shows that between the band gap of 1-5μm, there are one defect mode locating in the wavelength of 1.06μm, whose reflectance is below 0.70%, which means its spectral absorptivity is greater than 99.30%. All the above we have discussed proved that this "hole-digging spectrum" PC can realize the compatible stealth of near and middle infrared and 1.06μm military laser.

  9. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach.

    PubMed

    Invernizzi, Claudia; Daveri, Alessia; Vagnini, Manuela; Malagodi, Marco

    2017-05-01

    The analysis of historical musical instruments is becoming more relevant and the interest is increasingly moving toward the non-invasive reflection FTIR spectroscopy, especially for the analysis of varnishes. In this work, a specific infrared reflectance spectral library of organic compounds was created with the aim of identifying musical instrument materials in a totally non-invasive way. The analyses were carried out on pure organic compounds, as bulk samples and laboratory wooden models, to evaluate the diagnostic reflection mid-infrared (MIR) bands of proteins, polysaccharides, lipids, and resins by comparing reflection spectra before and after the KK correction. This methodological approach was applied to real case studies represented by four Stradivari violins and a Neapolitan mandolin.

  10. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy.

    PubMed

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories.

  11. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    PubMed Central

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  12. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance.

    PubMed

    Fougnie, B; Frouin, R; Lecomte, P; Deschamps, P Y

    1999-06-20

    Reflected skylight in above-water measurements of diffuse marine reflectance can be reduced substantially by viewing the surface through an analyzer transmitting the vertically polarized component of incident radiance. For maximum reduction of effects, radiometric measurements should be made at a viewing zenith angle of approximately 45 degrees (near the Brewster angle) and a relative azimuth angle between solar and viewing directions greater than 90 degrees (backscattering), preferably 135 degrees. In this case the residual reflected skylight in the polarized signal exhibits minimum sensitivity to the sea state and can be corrected to within a few 10(-4) in reflectance units. For most oceanic waters the resulting relative error on the diffuse marine reflectance in the blue and green is less than 1%. Since the water body polarizes incident skylight, the measured polarized reflectance differs from the total reflectance. The difference, however, is small for the considered geometry. Measurements made at the Scripps Institution of Oceanography pier in La Jolla, Calif., with a specifically designed scanning polarization radiometer, confirm the theoretical findings and demonstrate the usefulness of polarization radiometry for measuring diffuse marine reflectance.

  13. Temperature and evaporative water loss of leaf-sitting frogs: the role of reflection spectra

    PubMed Central

    Blount, Chris; Dickinson, Mark

    2016-01-01

    ABSTRACT The near infrared reflection peak in some frogs has been speculated to be either for enhancing crypticity, or to help them with thermoregulation. The theoretical background for the thermoregulatory processes has been established before, but little consideration has been given to the contribution from the frogs' reflection spectra differences. In this investigation, the reflection spectra from a range of different species of frogs were taken and combined with precise surface area measurements of frogs and an approximation to the mass transfer coefficient of agar frog models. These were then used to simulate the temperature and water evaporation in anurans with and without the near infrared reflective peak. We have shown that the presence of the near infrared reflection peak can contribute significantly to the temperature and evaporative water loss of a frog. The significance of the steady-state temperature differences between frogs with and without the near infrared reflection peak is discussed in a realistic and an extreme scenario. Temperature differences of up to 3.2°C were found, and the rehydration period was increased by up to 16.7%, although this does not reduce the number of rehydration events between dawn and dusk. PMID:27793832

  14. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.

    PubMed

    Wang, Xin; Madsen, Christi K

    2014-11-03

    Based on arsenic tri-sulfide films on titanium-diffused lithium niobate, we designed a hybrid optical waveguide for efficient mid-infrared emission by phase-matched difference frequency generation (DFG). The hybrid waveguide structure possesses a low-index magnesium fluoride buffer layer sandwiched between two high-index As(2)S(3) slabs, so that pump and signal waves are tightly confined by titanium-diffused waveguide while the DFG output idler wave at mid-infrared is confined by the whole hybrid waveguide structure. On a 1 mm-long hybrid waveguide pumped at 50 mW powers, a normalized power conversion efficiency of 20.52%W(-1)cm(-2) was theoretically predicted, which is the highest record for mid-infrared DFG waveguides based on lithium niobate crystal, to the best of our knowledge. Using a tunable near-infrared pump laser at 1.38-1.47 µm or a tunable signal laser at 1.95-2.15 µm, a broad mid-infrared tuning range from 4.0 µm to 4.9 µm can be achieved. Such hybrid optical waveguides are feasible for mid-infrared emission with mW powers and sub-nanometer linewidths.

  15. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  16. Process of preparing metal parts to be heated by means of infrared radiance

    DOEpatents

    Mayer, Howard Robinson [Cincinnati, OH; Blue, Craig A [Knoxville, TN

    2009-06-09

    A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

  17. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.

    PubMed

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2011-04-01

    In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy

  18. Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy.

    PubMed

    Okparanma, Reuben N; Coulon, Frederic; Mayr, Thomas; Mouazen, Abdul M

    2014-09-01

    In this study, we used data from spectroscopic models based on visible and near-infrared (vis-NIR; 350-2500 nm) diffuse reflectance spectroscopy to develop soil maps of polycyclic aromatic hydrocarbons (PAHs) and total toxicity equivalent concentrations (TTEC) of the PAH mixture. The TTEC maps were then used for hazard assessment of three petroleum release sites in the Niger Delta province of Nigeria (5.317°N, 6.467°E). As the paired t-test revealed, there were non-significant (p > 0.05) differences between soil maps of PAH and TTEC developed with chemically measured and vis-NIR-predicted data. Comparison maps of PAH showed a slight to moderate agreement between measured and predicted data (Kappa coefficient = 0.19-0.56). Using proposed generic assessment criteria, hazard assessment showed that the degree of action for site-specific risk assessment and/or remediation is similar for both measurement methods. This demonstrates that the vis-NIR method may be useful for monitoring hydrocarbon contamination in a petroleum release site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inclusion of Ti and Zr species on clay surfaces and their effect on the interaction with organic molecules

    NASA Astrophysics Data System (ADS)

    Rangel-Rivera, Pedro; Bachiller-Baeza, María Belén; Galindo-Esquivel, Ignacio; Rangel-Porras, Gustavo

    2018-07-01

    The interactions between the clay surface and the organic molecules play an important role in the efficient of these materials in adsorption and catalytic processes. These materials are often modified with the inclusion of other catalytic particles for the purpose of enhancing the activity. In this study, commercial clay K10 was modified with the particles inclusion of titanium and zirconium. The solid surfaces were examined by infrared spectroscopy, scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectroscopy device (EDS), and X-ray photoelectron spectroscopy (XPS). Temperature programmed desorption of ammonia (TPD-NH3) and propan-2-ol decomposition test reaction were performed to probe the acid properties. The adsorption of acetic acid, ethanol, and propan-2-ol on the surface of each solid and their thermal stability were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Finally, these materials were used in the esterification of acetic acid with penta-1-ol. The real effect over the incorporation of titanium species and zirconium species on clay surface for interacting with the organic molecules was discussed.

  20. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  1. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    PubMed

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Near infrared analysis of blending homogeneity of Chinese medicine formula particles based on moving window F test method].

    PubMed

    Yang, Chan; Xu, Bing; Zhang, Zhi-Qiang; Wang, Xin; Shi, Xin-Yuan; Fu, Jing; Qiao, Yan-Jiang

    2016-10-01

    Blending uniformity is essential to ensure the homogeneity of Chinese medicine formula particles within each batch. This study was based on the blending process of ebony spray dried powder and dextrin(the proportion of dextrin was 10%),in which the analysis of near infrared (NIR) diffuse reflectance spectra was collected from six different sampling points in combination with moving window F test method in order to assess the blending uniformity of the blending process.The method was validated by the changes of citric acid content determined by the HPLC. The results of moving window F test method showed that the ebony spray dried powder and dextrin was homogeneous during 200-300 r and was segregated during 300-400 r. An advantage of this method is that the threshold value is defined statistically, not empirically and thus does not suffer from threshold ambiguities in common with the moving block standard deviatiun (MBSD). And this method could be employed to monitor other blending process of Chinese medicine powders on line. Copyright© by the Chinese Pharmaceutical Association.

  3. Infrared signatures of the peptide dynamical transition: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Kobus, Maja; Nguyen, Phuong H.; Stock, Gerhard

    2010-07-01

    Recent two-dimensional infrared (2D-IR) experiments on a short peptide 310-helix in chloroform solvent [E. H. G. Backus et al., J. Phys. Chem. B 113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature Tg is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at Tg≈270 K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding CO frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment.

  4. Photoelectric sensor output controlled by eyeball movements

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The difference between the infrared absorption of the iris and infrared reflectivity of the eyeball controls the operation of a device consisting of an infrared source and amplifier, a cadmium selenide infrared sensor, and an infrared filter.

  5. A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth

    NASA Technical Reports Server (NTRS)

    Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.

  6. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  7. Combined theory of reflectance and emittance spectroscopy

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1995-01-01

    The theory in which either or both reflected sunlight and thermally emitted radiation contribute to the power received by a detector viewing a particulate medium, such as a powder in the laboratory or a planetary regolith, is considered theoretically. This theory is of considerable interest for the interpretation of data from field or spacecraft instruments that are sensitive to the near-infrared region of the spectrum, such as NIMS (near-infrared mapping spectrometer) and VIMS (visual and infrared mapping spectrometer), as well as thermal infrared detectors.

  8. Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Mu, Qiaozhen; Wu, Aisheng; Xiong, Xiaoxiong; Doelling, David R.; Angal, Amit; Chang, Tiejun; Bhatt, Rajendra

    2017-01-01

    MODIS reflective solar bands are calibrated on-orbit using a solar diffuser and near-monthly lunar observations. To monitor the performance and effectiveness of the on-orbit calibrations, pseudo-invariant targets such as deep convective clouds (DCCs), Libya-4, and Dome-C are used to track the long-term stability of MODIS Level 1B product. However, the current MODIS operational DCC technique (DCCT) simply uses the criteria set for the 0.65- m band. We optimize several critical DCCT parameters including the 11- micrometer IR-band Brightness Temperature (BT11) threshold for DCC identification, DCC core size and uniformity to help locate DCCs at convection centers, data collection time interval, and probability distribution function (PDF) bin increment for each channel. The mode reflectances corresponding to the PDF peaks are utilized as the DCC reflectances. Results show that the BT11 threshold and time interval are most critical for the Short Wave Infrared (SWIR) bands. The Bidirectional Reflectance Distribution Function model is most effective in reducing the DCC anisotropy for the visible channels. The uniformity filters and PDF bin size have minimal impacts on the visible channels and a larger impact on the SWIR bands. The newly optimized DCCT will be used for future evaluation of MODIS on-orbit calibration by MODIS Characterization Support Team.

  9. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    NASA Astrophysics Data System (ADS)

    Wu, C.-C.; York, D. G.; Snow, T. P.

    1981-05-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.

  10. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    NASA Technical Reports Server (NTRS)

    Wu, C.-C.; York, D. G.; Snow, T. P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, D.A.

    A method is disclosed of detecting counterfeit currency by contacting the currency to be tested with near infrared beams in the spectrum below 1,250 nanometers, measuring reflectance of the near infrared beams and comparing the reflectance values with those from genuine currency. 18 figs.

  12. Dark Reflections in the Southern Cross

    NASA Image and Video Library

    2010-10-27

    NASA Wide-field Infrared Survey Explorer captured this colorful image of the reflection nebula IRAS 12116-6001. This cloud of interstellar dust cannot be seen directly in visible light, but WISE detectors observed the nebula at infrared wavelengths.

  13. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, T.; Matsuura, S.; Sano, K.

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurementsmore » in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.« less

  14. Battle Keeps Solar Energy in Receiver

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Hale, R. R.

    1982-01-01

    Mirror structure in solar concentrator reduces heat loss by reflection and reradiation. Baffle reflects entering rays back and forth in solar-concentrator receiver until they reach heat exchanger. Similarly, infrared energy reradiated by heat exchanger is prevented from leaving receiver. Surfaces of baffle and inside wall of receiver are polished and highly reflective at solar and infrared wavelengths.

  15. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  16. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  17. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  18. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  19. The Milky Way, the Local Group & the IR Tully-Fisher Diagram

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Spergel, D.; Rhoads, J.; Li, J.

    1996-01-01

    Using the near infrared fluxes of local group galaxies derived from Cosmic Background Explorer/Diffuse Infrared Background Experiment band maps and published Cepheid distances, we construct Tully-Fisher diagrams for the Local Group.

  20. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  1. Study of cylindrical optical micro-structure technology used in infrared laser protection

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li

    2016-10-01

    The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0

  2. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples

    PubMed Central

    Miller, Arthur L.; Murphy, Nathaniel C.; Bayman, Sean J.; Briggs, Zachary P.; Kilpatrick, Andrew D.; Quinn, Courtney A.; Wadas, Mackenzie R.; Cauda, Emanuele G.; Griffiths, Peter R.

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers’ pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100–600 μg and 600–5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of −log R correlate linearly with known amounts of quartz on filters, with R2 values of approximately 0.99 and 0.94, respectively, for samples loaded up to ~4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is “free,” as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results. PMID:25636081

  3. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.

    PubMed

    Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results.

  4. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  5. Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies. [Purdue Agronomy Farm, Indiana

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Walburg, G.; Daughtry, C. S. T.

    1981-01-01

    Spectral and agronomic measurements were collected from corn (Zea mays L.) canopies under four nitrogen treatment levels (0, 67, 134, and 202 kg/ha) on 11 dates during 1978 and 12 dates during 1979. Data were analyzed to determine the relationship between the spectral responses of canopies and their argonomic characteristics as well as the spectral separability of the four treatments. Red reflectance was increased, while the near infrared reflectance was decreased for canopies under nitrogen deprivation. Spectral differences between treatments were seen throughout each growing season. The near infrared/red reflectance ratio increased spectral treatment differences over those shown by single band reflectance measures. Of the spectral variables examined, the near infrared/red reflectance ratio most effectively separated the treatments. Differences in spectral response between treatments were attributed to varying soil cover, leaf area index, and leaf pigmentation values, all of which changed with N treatment.

  6. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  7. Effect of heating on the structural and optical properties of TiO2 nanoparticles: antibacterial activity

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Javed, Rehan; Mahfooz-ur-Rehman; Shahid, Muhammad

    2018-02-01

    TiO2 nanoparticles were synthesized at room temperature by chemical precipitation method and were then heated at 120, 300, 600 and 900 °C temperatures. The phase transition and crystallite size variation were determined by X-rays diffraction (XRD) analysis. The surface area, pore volume and pore size were measured using Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The optical activity of heat treated and non-heat treated samples were carried out by diffuse reflectance (DR) spectroscopy. Four different methods were used to calculate band gap energy. The results obtained from thermogravimetric and differential thermal gravimetric (TG/TDG) analyses and Fourier transform infra-red (FTIR) spectroscopy agreed with each other. Agar well diffusion method has been applied to explore the antibacterial activity of nanoparticles against different bacterial strains such as Bacillus subtilis, Staphylococcus Aureus, Escherichia coli and Pseudomonas Aeruginosa. It was observed that TiO2 nanoparticles heated at 120 °C displayed maximum antibacterial activity while those heated at higher temperature showed no activity against the examined bacteria.

  8. Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Ji, Guangbin; Lv, Hualiang; Wang, Min; Du, Youwei

    2014-04-01

    Fe/Cu composite samples with Cu particles depositing on carbonyl iron sheets were prepared by chemical plating. Cu additions were uniformly distributed on the grain boundaries of the flaky carbonyl iron while keeping the internal structure of iron. Meanwhile, we found that the chemical plating time made a key point on both the microwave absorbing properties and infrared emissivity. With the growth of chemical plating time, the value of reflection loss gives a linear decrease and the infrared emissivity is reduced with a tendency of index reduction. When the plating time is less than 30 min, the reflection loss of the samples maintains above -20 GHz, moreover, prolonging the plating time more than 30 min, the infrared emissivity of the samples is reduced to 0.50 or less. It can be concluded that both the microwave absorbing and infrared properties are excellent at the optimal plating time of 30 min.

  9. [Application of BaSO4 diffuser plate in 250-400 nm spectral radiance calibration].

    PubMed

    Jia, Hui; Li, Fu-tian

    2004-01-01

    Sprayed BaSO4 diffuser plate is the most Lambertian surface actually used in spectral radiance calibration known by now. Its hemispheric reflectance and Bi-directional Reflectance Distribution Functions (BRDF) were measured in the experiment. Its diffuse characteristics were compared with Lambertian surface. In order to calibrate spectral radiance more accurately, the small variation of diffuser's BRDF with scattered angles and the nonuniformity of spectral irradiance on diffuser surface illuminated by the standard lamp should be considered. By integrating the radiation flux reflected by the element area and that entering the entrance slit within the viewing area of spectrometer, the measured spectral radiance can be calculated. Furthermore, the spectral radiance of Lambertian surface whose BRDF was derived from hemispheric reflectance was compared with that from the average of the measured BRDF.

  10. Diffuse and specular characteristics of leaf reflectance

    NASA Technical Reports Server (NTRS)

    Grant, Lois

    1987-01-01

    In this paper, the evolution of current understanding of the mechanisms of leaf reflectance is reviewed. The use of measurements of polarized reflectance to separate leaf reflectance into diffuse and specular components is discussed. A section on the factors influencing leaf reflectance - leaf structure and physiological disturbances - is included along with discussion on the manner in which these influences are manifested.

  11. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    PubMed

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  13. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  14. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  15. First Stars or Stray Stars? A Cosmic Infrared Mystery

    NASA Image and Video Library

    2014-11-06

    Our sky is filled with a diffuse background glow, known as the cosmic infrared background. Much of the light is from galaxies we know about, but previous Spitzer measurements have shown an extra component of unknown origin.

  16. In vivo assessment of liver fibrosis using diffuse reflectance and fluorescence spectroscopy: a proof of concept.

    PubMed

    Fabila, Diego; de la Rosa, José Manuel; Stolik, Suren; Moreno, Edgard; Suárez-Álvarez, Karina; López-Navarrete, Giuliana; Guzmán, Carolina; Aguirre-García, Jesús; Acevedo-García, Christian; Kershenobich, David; Escobedo, Galileo

    2012-12-01

    A novel application of diffuse reflectance and fluorescence spectroscopy in the assessment of liver fibrosis is here reported. To induce different stages of liver fibrosis, a sufficient number of male Wistar rats were differentially exposed to chronic administration with carbon tetrachloride. Then, diffuse reflectance and fluorescence spectra were in vivo measured from the liver surface of each animal by a minimal invasive laparoscopic procedure. The liver fibrosis degree was conventionally determined by means of histological examination using the Mason's Trichrome stain, accompanied by hepatic expression of α-sma, and evaluation of the ALT/AST serum levels. The liver from rats exhibiting higher grades of fibrosis showed a significant increase in diffuse reflectance and fluorescence intensity when compared with control animals. At 365 nm, the diffuse reflectance spectrum exhibited an increase of 4 and 3-fold in mild and advanced fibrotic rats, respectively, when compared to the control group. Similarly, the fluorescence emission at 493 nm was 2-fold higher in fibrotic animals than in controls. By using fluorescence intensity, discrimination algorithms indicated 73% sensitivity and 94% specificity for recognition of hepatic fibrosis, while for diffuse reflectance, these values increased up to 85% and 100%, respectively. Taking into consideration there is a special need for developing new diagnostic approaches focused on detecting different stages of liver fibrosis with minimal invasiveness, these results suggest that diffuse reflectance and fluorescence spectroscopy could be worthy of further exploration in patients with liver disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Detection of counterfeit currency

    DOEpatents

    Burns, D.A.

    1998-05-26

    A method is disclosed of detecting counterfeit currency by contacting the currency to be tested with near infrared beams in the spectrum below 1,250 nanometers, measuring reflectance of the near infrared beams and comparing the reflectance values with those from genuine currency. 18 figs.

  18. In the Grip of the Scorpion Claw

    NASA Image and Video Library

    2010-09-21

    Gripped in the claw of the constellation Scorpius sits the reflection nebula DG 129, a cloud of gas and dust that reflects light from nearby, bright stars. This infrared view of the nebula was captured by NASA Wide-field Infrared Survey Explorer.

  19. Characterization of Carrier Concentration and Mobility in n-type SiC Wafers Using Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Narita, Katsutoshi; Hijikata, Yasuto; Yaguchi, Hiroyuki; Yoshida, Sadafumi; Nakashima, Shinichi

    2004-08-01

    We have estimated the free-carrier concentration and drift mobility in n-type 6H-SiC wafers in the carrier concentration range of 1017-1019 cm-3 from far- and mid-infrared (30-2000 cm-1) reflectance spectra obtained at room temperature. A modified classical dielectric function model was employed for the analysis. We found good agreement between the electrical properties derived from infrared reflectance spectroscopy and those derived from Hall effect measurements. We have demonstrated the spatial mapping of carrier concentration and mobility for commercially produced 2 inch SiC wafers.

  20. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation

    NASA Astrophysics Data System (ADS)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2017-09-01

    Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain.

  1. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  2. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.

    PubMed

    Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang

    2017-10-01

    Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.

  3. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    PubMed

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  4. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    PubMed

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

  5. Analysis of hard-to-cook red and black common beans using Fourier transform infrared spectroscopy.

    PubMed

    Maurer, Giselle A; Ozen, Banu F; Mauer, Lisa J; Nielsen, S Suzanne

    2004-03-24

    Extracted fractions from black and red common beans (Phaseolus vulgaris) were studied using Fourier transform infrared spectroscopy (FT-IR). Beans were stored under three conditions: control at 4 degrees C; hard-to-cook (HTC) at 29 degrees C, 65% RH for 3.5 months; and refrigerated at 2 degrees C, 79% RH for 3.5 months after a HTC period (called HTC-refrigerated). Two fractions isolated from the beans, the soluble pectin fraction (SPF) and the water insoluble residue of the cell wall (WIRCW), were analyzed using diffuse reflectance (DRIFTS) FT-IR. The soaking water and cooking water from the beans were also studied using attenuated total reflectance (ATR) FT-IR. The DRIFTS FT-IR results from the SPF and WIRCW fractions were consistent with previously published data for Carioca beans showing that in general, more phenolic compounds were associated with the SPF of HTC beans than in the control beans. Results also showed that HTC-refrigerated beans had higher concentrations of phenolic compounds than control beans in the SPF. The ATR FT-IR results for soaking and cooking waters from the HTC-refrigerated and HTC beans had higher concentrations of absorbing compounds than the control beans, indicating that they lost more constituents to the water. Additionally, results indicate that the mechanism(s) for reversibility of the HTC defect could be different than the one(s) involved in the development of the defect.

  6. Refractometry studies of the optical properties of polymer films and the development of polymer coated refractive index sensors

    NASA Astrophysics Data System (ADS)

    Saunders, John Edward

    Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of Δn = 1-7 x10-4 and Δd < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.

  7. Electrochromic window with high reflectivity modulation

    DOEpatents

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  8. Environmentally Controlled Infrared Spectroscopy System for Fundamental Studies of Polymer Electrolyte Membranes

    DTIC Science & Technology

    2015-10-15

    to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments

  9. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  10. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  11. A preliminary verification of the floating reference measurement method for non-invasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Min, Xiaolin; Liu, Rong; Fu, Bo; Xu, Kexin

    2017-06-01

    In the non-invasive sensing of blood glucose by near-infrared diffuse reflectance spectroscopy, the spectrum is highly susceptible to the unstable and complicated background variations from the human body and the environment. In in vitro analyses, background variations are usually corrected by the spectrum of a standard reference sample that has similar optical properties to the analyte of interest. However, it is hard to find a standard sample for the in vivo measurement. Therefore, the floating reference measurement method is proposed to enable relative measurements in vivo, where the spectra under some special source-detector distance, defined as the floating reference position, are insensitive to the changes in glucose concentration due to the absorption effect and scattering effect. Because the diffuse reflectance signals at the floating reference positions only reflect the information on background variations during the measurement, they can be used as the internal reference. In this paper, the theoretical basis of the floating reference positions in a semi-infinite turbid medium was discussed based on the steady-state diffusion equation and its analytical solutions in a semi-infinite turbid medium (under the extrapolated boundary conditions). Then, Monte-Carlo (MC) simulations and in vitro experiments based on a custom-built continuous-moving spatially resolving double-fiber NIR measurement system, configured with two types of light source, a super luminescent diode (SLD) and a super-continuum laser, were carried out to verify the existence of the floating reference position in 5%, 10% and 20% Intralipid solutions. The results showed that the simulation values of the floating reference positions are close to the theoretical results, with a maximum deviation of approximately 0.3 mm in 1100-1320 nm. Great differences can be observed in 1340-1400 nm because the optical properties of Intralipid in this region don not satisfy the conditions of the steady-state diffusion equation. For the in vitro experiments, floating reference positions exist in 1220 nm and 1320 nm under two types of light source, and the results are quite close. However, the reference positions obtained from experiments are further from the light source compared with those obtained in the MC simulation. For the turbid media and the wavelengths investigated, the difference is up to 1 mm. This study is important for the design of optical fibers to be applied in the floating reference measurement.

  12. The number counts and infrared backgrounds from infrared-bright galaxies

    NASA Technical Reports Server (NTRS)

    Hacking, P. B.; Soifer, B. T.

    1991-01-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.

  13. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  14. Characterizing the reflectivity of handheld display devices.

    PubMed

    Liu, Peter; Badano, Aldo

    2014-08-01

    With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements, both luminance and illuminance increased as the size of the display window decreased. The TG18 method does not account for this variability. The authors conclude that the method requires a definitive description of the back panel used in the light source setup. The methods described in the TG18 document may need to be improved to provide consistent comparisons of desktop monitors, phones, and tablets.

  15. Tissue differentiation by diffuse reflectance spectroscopy for automated oral and maxillofacial laser surgery: ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre

    2010-02-01

    Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.

  16. Determining biological tissue optical properties via integrating sphere spatial measurements

    DOEpatents

    Baba, Justin S [Knoxville, TN; Letzen, Brian S [Coral Springs, FL

    2011-01-11

    An optical sample is mounted on a spatial-acquisition apparatus that is placed in or on an enclosure. An incident beam is irradiated on a surface of the sample and the specular reflection is allowed to escape from the enclosure through an opening. The spatial-acquisition apparatus is provided with a light-occluding slider that moves in front of the sample to block portions of diffuse scattering from the sample. As the light-occluding slider moves across the front of the sample, diffuse light scattered into the area of the backside of the light-occluding slider is absorbed by back side surface of the light-occluding slider. By measuring a baseline diffuse reflectance without a light-occluding slider and subtracting measured diffuse reflectance with a light-occluding slider therefrom, diffuse reflectance for the area blocked by the light-occluding slider can be calculated.

  17. Field- and Remote Sensing-based Structural Attributes Measured at Multiple Scales Influence the Relationship Between Nitrogen and Reflectance of Forest Canopies

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Ollinger, S. V.; Palace, M. W.; Ouimette, A.; Sanders-DeMott, R.; Lepine, L. C.

    2017-12-01

    The correlation between near-infrared reflectance and forest canopy nitrogen concentration has been demonstrated at varying scales using a range of optical sensors on airborne and satellite platforms. Although the mechanism underpinning the relationship is unclear, at its basis are biologically-driven functional relationships of multiple plant traits that affect canopy chemistry and structure. The link between near-infrared reflectance and canopy nitrogen has been hypothesized to be partially driven by covariation of canopy nitrogen with canopy structure. In this study, we used a combination of airborne LiDAR data and field measured leaf and canopy chemical and structural traits to explore interrelationships between canopy nitrogen, near-infrared reflectance, and canopy structure on plots at Bartlett Experimental Forest in the White Mountain National Forest, New Hampshire. Over each plot, we developed a 1-meter resolution canopy height profile and a 1-meter resolution canopy height model. From canopy height profiles and canopy height models, we calculated a set of metrics describing the plot-level variability, breadth, depth, and arrangement of LiDAR returns. This combination of metrics was used to describe both vertical and horizontal variation in structure. In addition, we developed and measured several field-based metrics of leaf and canopy structure at the plot scale by directly measuring the canopy or by weighting leaf-level metrics by species leaf area contribution. We assessed relationships between leaf and structural metrics, near-infrared reflectance and canopy nitrogen concentration using multiple linear regression and mixed effects modeling. Consistent with our hypothesis, we found moderately strong links between both near-infrared reflectance and canopy nitrogen concentration with LiDAR-derived structural metrics, and we additionally found that leaf-level metrics scaled to the plot level share an important role in canopy reflectance. We suggest that canopy structure has a governing role in canopy reflectance, reducing maximum potential reflectance as structural complexity increases, and therefore also influences the relationship between canopy nitrogen and NIR reflectance.

  18. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on itsmore » adsorption capacity and reaction mechanisms was also proposed in this work.« less

  19. Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, Frank; Hugger, Stefan; Kinzer, Michel; Aidam, Rolf; Bronner, Wolfgang; Lösch, Rainer; Yang, Quankui; Degreif, Kai; Schnürer, Frank

    2010-11-01

    The use of a tunable midinfrared external cavity quantum cascade laser for the standoff detection of explosives at medium distances between 2 and 5 m is presented. For the collection of the diffusely backscattered light, a high-performance infrared imager was used. Illumination and wavelength tuning of the laser source was synchronized with the image acquisition, establishing a hyperspectral data cube. Sampling of the backscattered radiation from the test samples was performed in a noncooperative geometry at angles of incidence far away from specular reflection. We show sensitive detection of traces of trinitrotoluene and pentaerythritol tetranitrate on real-world materials, such as standard car paint, polyacrylics from backpacks, and jeans fabric. Concentrations corresponding to fingerprints were detected, while concepts for false alarm suppression due to cross-contaminations were presented.

  20. Adhesive evaluation of LARC-TPI and a water-soluble version of LARC-TPI

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1985-01-01

    The results of a study to evaluate two Langley Research Center thermoplastic polimide (TPI) materials, identified as TPI/MTC for the material from Mitsui Toatsu Chemicals Inc. and TPI/H2O for the material from United Technologies Research Center, as high temperature thermoplastic adhesives and primers for bonding titanium (6AL-4V) adherends are discussed. A limited characterization of the materials was performed using a Diffuse Reflectance-Fourier Transform Infrared Spectroscopy (DR-FTIR) technique. Thermomechanical Analysis (TMA) and torsional braid techniques were used to determine glass transition temperature. The adhesive's strength, as determined by simple lap shear tests, as used to evaluate the effects of long term thermal exposure (up to 1000 hrs) at 204 deg C and a 72-hour water-boil.

  1. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    PubMed

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  2. Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-09-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  3. Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties.

    PubMed

    Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting

    2014-01-01

    In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.

  4. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  5. Enhanced photobactericidal activity of ZnO nanorods modified by meso-tetrakis(4-sulfonatophenyl)porphyrin under visible LED lamp irradiation.

    PubMed

    Rahimi, Rahmatollah; Shokraiyan, Javad; Rabbani, Mahboubeh; Fayyaz, Fatemeh

    2015-01-01

    In this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy. In addition, the photobactericidal activity of TPPS/ZnO composite, TPPS and ZnO nanorods was tested against the pathogenic bacterium of Escherichia coli under visible LED lamp irradiation. The results indicate that the photobactericidal activity of TPPS-loaded ZnO nanorods was better than TPPS or ZnO nanorods, separately.

  6. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  7. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts.

    PubMed

    Cucci, Costanza; Delaney, John K; Picollo, Marcello

    2016-10-18

    Diffuse reflectance hyperspectral imaging, or reflectance imaging spectroscopy, is a sophisticated technique that enables the capture of hundreds of images in contiguous narrow spectral bands (bandwidth < 10 nm), typically in the visible (Vis, 400-750 nm) and the near-infrared (NIR, 750-2500 nm) regions. This sequence of images provides a data set that is called an image-cube or file-cube. Two dimensions of the image-cube are the spatial dimensions of the scene, and the third dimension is the wavelength. In this way, each spatial pixel in the image has an associated reflectance spectrum. This "big data" image-cube allows for the mining of artists' materials and mapping their distribution across the surface of a work of art. Reflectance hyperspectral imaging, introduced in the 1980s by Goetz and co-workers, led to a revolution in the field of remote sensing of the earth and near planets ( Goetz, F. H.; Vane, G.; Solomon, B. N.; Rock, N. Imaging Spectrometry for Earth Remote Sensing . Science , 1985 , 228 , 1147 - 1152 ). In the subsequent decades, thanks to rapid advances in solid-state sensor technology, reflectance hyperspectral imaging, once only available to large government laboratories, was extended to new fields of application, such as monitoring agri-foods, pharmaceutical products, the environment, and cultural heritage. In the 2000s, the potential of this noninvasive technology for the study of artworks became evident and, consequently, the methodology is becoming more widely used in the art conservation science field. Typically hyperspectral reflectance image-cubes contain millions of spectra. Many of these spectra are similar, making the reduction of the data set size an important first step. Thus, image-processing tools based on multivariate techniques, such as principal component analysis (PCA), automated classification methods, or expert knowledge systems, that search for known spectral features are often applied. These algorithms seek to reduce the large number of high-quality spectra to a common subset, which allow identifying and mapping artists' materials and alteration products. Hence, reflectance hyperspectral imaging is finding its place as the starting point to find sites on polychrome surfaces for spot analytical techniques, such as X-ray fluorescence, Raman spectroscopy, and Fourier transform infrared spectroscopy. Reflectance hyperspectral imaging can also provide image products that are a mainstay in the art conservation field, such as color-accurate images, broadband near-infrared images, and false-color products. This Account reports on the research activity carried out by two research groups, one at the "Nello Carrara" Institute of Applied Physics of the Italian National Research Council (IFAC-CNR) in Florence and the other at the National Gallery of Art (NGA) in Washington, D.C. Both groups have conducted parallel research, with frequent interchanges, to develop multispectral and hyperspectral imaging systems to study works of art. In the past decade, they have designed and experimented with some of the earliest spectral imaging prototypes for museum applications. In this Account, a brief presentation of the hyperspectral sensor systems is given with case studies showing how reflectance hyperspectral imaging is answering key questions in cultural heritage.

  8. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  9. Small business initiative -- Surface inspection machine infrared (SIMIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Beecroft, M.

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. A secondary purpose was to evaluate applications that would serve both the private and the public sector. The design function of the SIMIR is to inspect sandblasted metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure onmore » lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Surface Optics Corporation supplied LMES-Y12 with a prototype SOC-400 that was evaluated by LMES-Y12 and rebuilt by Surface Optics to achieve the desired performance. LMES-Y12 subsequently evaluated the instrument against numerous applications including determining part cleanliness at the Corpus Christi Army Depot, demonstrating the ability to detect plasticizers and other organic contaminants on metals to Pantex and LANL personnel, analyzed sandblasted metal contamination standards supplied by NASA-MSFC, and demonstrated to Lockheed Martin Tactical Aircraft, marietta, GA, for analyzing the paint applied to the F-22 Fighter. The instrument also demonstrated the analysis of yarn, fabric, and finish on the textiles.« less

  10. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  11. Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Wang, Z. X.; Dong, T.; Wang, N. L.

    2017-10-01

    Strong-field mid-infrared pump-terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump-THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μm to 15 μm and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μm pump-THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.

  12. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    PubMed Central

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031

  13. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    PubMed

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  14. Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance

    NASA Technical Reports Server (NTRS)

    Fulbright, Jon; Lei, Ning; Efremova, Boryana; Xiong, Xiaoxiong

    2015-01-01

    When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nanometers to 0.989 at 926 nanometers. The random uncertainty of these H-factors is about 0.1 percent, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36 percent per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5 percent. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 hours of direct sunlight illumination perpendicular to the SD panel surface.

  15. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  16. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  17. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  18. Design and Fabrication of nanowire-grid polarizer in near-infrared broadband

    NASA Astrophysics Data System (ADS)

    Jin, Qiufeng; Liu, Quan; Wu, Jianhong; Cheng, Yu

    2012-11-01

    The infrared polarizers are widely used in the infrared imaging systems as the core components, such as infrared stealth, target acquisition and mine detection, automobile night-vision instrument and other systems. For the requirements of near-infrared imaging systems, a nanowire-grid is designed by Finite Difference Time Domain (FDTD) method. Herein, considering the high reflection of metal aluminum in the manufacturing process, we propose a structure with aluminum-copper nanowire-grid. FDTD method is adapted to analyze the effects of the thickness of aluminumcopper in different combinations on the TM and TE polarization transmission efficiency as well as the extinction ratio when the grating's period is 300nm. Numerical results and theoretical analysis show that: the reflection on the substrate is suppressed with the optimal thickness of the Cu layer. Considering the resist-substrate reflectivity and the final performance of the polarizer, the structure with an 120nm Al layer, and a 50nm anti-reflection Cu layer is chosen; and the TM transmission efficiency is more than 71%, and the extinction ratio is more than 25dB. At last we used Holographic lithography and IBE to fabricate a prototype of the nanowire-grid.

  19. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  20. Infrared tracker for a portable missile launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.J.

    1993-07-13

    An infrared beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the infrared beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first infrared detector for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second infrared detector for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to themore » first and second infrared detectors and responsive to the electric signals generated by said detectors for determining errors in missile flight direction and communicating course correction information to the missile.« less

  1. Availability of a library of infrared (2.1-25.0 microns) mineral spectra

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis S.

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmitance. Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 microns) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characterized minerals have been published to date. These data are available in both hard copy and digital form.

  2. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  3. Smart windows based on cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.

    2017-02-01

    With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.

  4. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    DTIC Science & Technology

    2010-06-01

    region and compared to nutrient monitoring data. A. Image Data This project uses MODIS normalized difference vegetation index ( NDVI ) to create a time...series of land vegetation canopies. MODIS provides a near-daily repeat time for the elimination of cloud contamination, and NDVI has been widely adopted...steps and NDVI was calculated by the defined formula NDVI = (near-infrared reflectance - red reflectance) / (near-infrared reflectance + red

  5. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  6. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.

    PubMed

    Parodi, Maurizio Battaglia; Iacono, Pierluigi; Del Turco, Claudia; Bandello, Francesco

    2014-12-01

    To describe fundus autofluorescence (FAF) on short-wavelength FAF and near-infrared FAF in the subclinical form of Best vitelliform macular dystrophy. Cross-sectional prospective study. Patients affected by the subclinical form of Best vitelliform macular dystrophy (positive testing for BEST1 gene mutation, fully preserved best-corrected visual acuity, normal fundus appearance) were recruited. Each patient underwent a complete ophthalmologic examination, including electro-oculogram (EOG), short-wavelength FAF, near-infrared FAF, spectral-domain OCT (SD OCT), and microperimetry. Main outcome measure was the identification of abnormal FAF patterns. Forty-six patients showing mutations in the BEST1 gene were examined. Forty patients presented a bilateral Best vitelliform macular dystrophy, 2 patients showed a unilateral Best vitelliform macular dystrophy, and 4 patients had a bilateral subclinical form. Patients with the unilateral form (2 eyes) and patients with the subclinical form (8 eyes) were analyzed. Three BEST1 sequence variants were identified: c.73C>T (p.Arg25Trp), c.28G>A (p.Ala10Thr), and c.652C>G (p.Arg218Gly). Short-wavelength FAF was normal in all eyes. Near-infrared FAF detected a pattern consisting of a central hypo-autofluorescence surrounded by a round area of hyper-autofluorescence. A bilateral reduced EOG response was detected in 1 patient. SD OCT revealed a thicker, well-defined, and more reflective interdigitation zone in 2 patients (4 eyes, 40%). Microperimetry of the central 10 degrees revealed a slight, diffuse reduction of retinal sensitivity. Mean retinal sensitivity within the central 2 and 4 degrees was lower and matched the hypo-autofluorescent area detected on near-infrared FAF. Additional relative scotomata were detected within the 10-degree area. No change in clinical, functional, or FAF pattern was found over the follow-up. Subclinical Best vitelliform macular dystrophy is characterized by the absence of biomicroscopic fundus abnormality and fully preserved visual acuity, but shows an abnormal near-infrared FAF pattern, with central hypo-autofluorescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    PubMed

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.

  8. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  9. Wireless Infrared Networking in the Duke Paperless Classroom.

    ERIC Educational Resources Information Center

    Stetten, George D.; Guthrie, Scott D.

    1995-01-01

    Discusses wireless (diffuse infrared) networking technology to link laptop computers in a computer programming and numerical methods course at Duke University (North Carolina). Describes products and technologies, and effects on classroom dynamics. Reports on effective instructional strategies for lecture, solving student problems, building shared…

  10. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  11. Hazard calculations of diffuse reflected laser radiation for the SELENE program

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Babb, Phillip D.

    1993-01-01

    The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.

  12. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    USDA-ARS?s Scientific Manuscript database

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  13. Physically-based parameterization of spatially variable soil and vegetation using satellite multispectral data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1989-01-01

    A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined.

  14. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  15. Fiberoptic microneedles: novel optical diffusers for interstitial delivery of therapeutic light.

    PubMed

    Kosoglu, Mehmet A; Hood, Robert L; Rossmeisl, John H; Grant, David C; Xu, Yong; Robertson, John L; Rylander, Marissa Nichole; Rylander, Christopher G

    2011-11-01

    Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent, non-target tissue. Copyright © 2011 Wiley Periodicals, Inc.

  16. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  17. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during laboratory incubation and more classical soil parameters such as carbon and clay content for a range of 36 soils collected from various field experiments in Denmark. Partial least square (PLS) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralized after 34 weeks of incubation at 15° C and pF 2, taken as an indicator of the labile fraction of SOM. Results showed that it is possible to predict the labile fraction of SOM with FTIR PAS with similar accuracy as with NIRS (assessed in a previous study on the same soil set). FTIR-PAS offered the advantage over NIRS to allow identification of the chemical compounds positively or negatively correlated with the labile fraction of SOM. The band at 1612 cm-1 corresponding to polysaccharides, pectin and aromatic C=C was the band most positively correlated with labile SOM, which we attributed to the relative lability of fresh plant debris rich in polysaccharide and aromatic lignin. The band at 1560-1590 cm-1 assigned to N=H, C=N and aromatic C=C vibration was the band most negatively correlated with the labile fraction of SOM, confirming the abundance of nitrogenous and aromatic compounds in stabilized SOM. In conclusion, FTIR-PAS has proved to be a powerful tool to characterize the labile fraction of SOM, offering several benefits over reflectance spectroscopy techniques.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6more » μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.« less

  19. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  20. Highly Efficient Performance and Conversion Pathway of Photocatalytic CH3SH Oxidation on Self-Stabilized Indirect Z-Scheme g-C3N4/I3--BiOI.

    PubMed

    Hu, Lingling; He, Huanjunwa; Xia, Dehua; Huang, Yajing; Xu, Jiarong; Li, Haoyue; He, Chun; Yang, Wenjing; Shu, Dong; Wong, Po Keung

    2018-06-06

    A self-stabilized Z-scheme porous g-C 3 N 4 /I 3- -containing BiOI ultrathin nanosheets (g-C 3 N 4 /I 3- -BiOI) heterojunction photocatalyst with I 3 - /I - redox mediator was successfully synthesized by a facile solvothermal method coupling with light illumination. The structure and optical properties of g-C 3 N 4 /I 3- -BiOI composites were systematically characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, N 2 adsorption/desorption, UV-vis diffuse reflectance spectrum, and photoluminescence. The g-C 3 N 4 /I 3- -BiOI composites, with a heterojunction between porous g-C 3 N 4 and BiOI ultrathin nanosheets, were first applied for the photocatalytic elimination of ppm-leveled CH 3 SH under light-emitting diode visible light illumination. The g-C 3 N 4 /I 3- -BiOI heterojunction with 10% g-C 3 N 4 showed a dramatically enhanced photocatalytic activity in the removal of CH 3 SH compared with pure BiOI and g-C 3 N 4 due to its effective interfacial charge transfer and separation. The adsorption and photocatalytic oxidation of CH 3 SH over g-C 3 N 4 /I 3- -BiOI were deeply explored by in situ diffuse reflectance infrared Fourier transform spectroscopy, and the intermediates and conversion pathways were elucidated and compared. Furthermore, on the basis of reactive species trapping, electron spin resonance and Mott-Schottky experiments, it was revealed that the responsible reactive species for catalytic CH 3 SH composition were h + , • O 2 - , and 1 O 2 ; thus, the g-C 3 N 4 /I 3- -BiOI heterojunction followed an indirect all-solid state Z-scheme charge-transfer mode with self-stabilized I 3 - /I - pairs as redox mediator, which could accelerate the separation of photogenerated charge and enhance the redox reaction power of charged carriers simultaneously.

  1. GEMAS: prediction of solid-solution phase partitioning coefficients (Kd) for oxoanions and boric acid in soils using mid-infrared diffuse reflectance spectroscopy.

    PubMed

    Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens

    2015-02-01

    The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2)  = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2)  = 0.62-0.79), compared with those from PSLR-DRIFT (R(2)  = 0.61-0.72) and MLR (R(2)  = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. © 2014 SETAC.

  2. [Evaluation of the thermal effects of the plasma microtorch by infrared thermography].

    PubMed

    Lhuisset, F; Zeboulon, S; Bouchier, G

    1991-01-01

    This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.

  3. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    NASA Astrophysics Data System (ADS)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  4. New mounting improves solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  5. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  6. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE PAGES

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  7. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  8. A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model

    NASA Technical Reports Server (NTRS)

    Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)

    2002-01-01

    Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.

  9. Circumnuclear starbursts in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew S.

    1987-01-01

    Observational diagnostics for the recognition of circumnuclear star formation in Seyfert galaxies are described and illustrated. These methods include: (1) spatially resolved optical spectroscopy, which allows the emission lines for HII regions to be separated from those originating in gas ionized by the Seyfert nucleus; (2) radio continuum mapping, where the linear radio sources characteristic of the nuclear activity may be distinguished from the diffuse morphology of multiple supernova remnants generated in a starburst; (3) infrared spectroscopic searches for emission features of dust, which are seen in starbursts but not in Seyfert nuclei; (4) the shape of the IRAS spectrum. These various diagnostics agree well as to the presence or absence of ongoing star formation. The IRAS spectra of a significant fraction of Seyferts are dominated by emission from dust heated by stars, not the Seyfert nucleus itself. In these cases, the spectrum is curved, being steep between 25 and 60 microns and flatter between 60 and 100 microns. When the Seyfert nucleus dominates, the 25 to 100 micron spectrum is much flatter. It is suggested that the location of a Seyfert galaxy in the IRAS color-color diagram reflects primarily the relative contributions of the active nucleus and dust heated by stars to the infrared fluxes.

  10. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  11. Influence of humidity on spectral performance for near-infrared detection of fruit

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Fu, Xiaping; Ying, Yibin

    2006-10-01

    Spectral performance would be affected by many factors such as temperature, equipment parameters and so on. Humidity fluctuations may occur in practice because of varying weather conditions. The objective of this research was to find out whether the change of humidity would influence the near infrared spectrum of samples. In this trial, an airproof, humidity-controllable test-bed was established to change the humidity of the mini environment. At 40%, 50%, 60%, 70% and 80% degrees of humidity, each sample's final spectrum was attained by removing the background's spectrum from the sample's. For whether the influence of the sample's and the background's spectrum are equal was not known, This trial was divided into two groups: detecting background and sample at each degree of humidity (group 1) and background's detecting just happened at 40% degree of humidity (group 2). This research was based on the hardware of NEXUS intelligent FT-IR spectrometer, made by Nicolet instrument company U.S.A, with using fiber optic diffuse reflectance accessory. The final spectrum was analysed using single variance analysis and Mahalanobis Distance methods. The result shows that neither in group 1 nor 2, humidity had little influence on NIR.

  12. Near infrared diffuse reflection and laser-induced fluorescence spectroscopy for myocardial tissue characterisation

    NASA Astrophysics Data System (ADS)

    Nilsson, A. M. K.; Heinrich, D.; Olajos, J.; Andersson-Engels, S.

    1997-10-01

    In order to evaluate the potential of cardiovascular tissue characterisation using near-infrared (NIR) spectroscopy, spectra in a previously unexplored wavelength region 0.8-2.3 μm were recorded from various pig heart tissue samples in vitro: normal myocardium (with and without endo/epicardium), aorta, fatty and fibrous heart tissue. The spectra were analysed with principal component analysis (PCA), revealing several spectroscopically characteristic features enabling tissue classification. Several of the identified spectral features could be attributed to specific tissue constituents by comparing the tissue signals with spectra obtained from water, elastin, collagen and cholesterol as well as with published data. The results obtained with the NIR spectroscopy technique in terms of its potential to classify different tissue types were compared with those from laser-induced fluorescence (LIF) using 337 nm excitation. LIF and NIR spectroscopy can in combination with PCA be used to discriminate between all previously mentioned tissue groups, apart from fatty versus fibrous tissue (LIF) and aorta versus fibrous tissue (NIR), respectively. The NIR analysis was improved by focusing the PCA to the wavelength segment 2.0-2.3 μm, resulting in successful spectral characterisation of all cardiovascular tissue groups.

  13. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    PubMed

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  14. Steady state model for the thermal regimes of shells of airships and hot air balloons

    NASA Astrophysics Data System (ADS)

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  15. The Detection and Quantification of Adulteration in Ground Roasted Asian Palm Civet Coffee Using Near-Infrared Spectroscopy in Tandem with Chemometrics

    NASA Astrophysics Data System (ADS)

    Suhandy, D.; Yulia, M.; Ogawa, Y.; Kondo, N.

    2018-05-01

    In the present research, an evaluation of using near infrared (NIR) spectroscopy in tandem with full spectrum partial least squares (FS-PLS) regression for quantification of degree of adulteration in civet coffee was conducted. A number of 126 ground roasted coffee samples with degree of adulteration 0-51% were prepared. Spectral data were acquired using a NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement in the range of 1300-2500 nm. The samples were divided into two groups calibration sample set (84 samples) and prediction sample set (42 samples). The calibration model was developed on original spectra using FS-PLS regression with full-cross validation method. The calibration model exhibited the determination coefficient R2=0.96 for calibration and R2=0.92 for validation. The prediction resulted in low root mean square error of prediction (RMSEP) (4.67%) and high ratio prediction to deviation (RPD) (3.75). In conclusion, the degree of adulteration in civet coffee have been quantified successfully by using NIR spectroscopy and FS-PLS regression in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation.

  16. Spectral refractive index assessment of turbid samples by combining spatial frequency near-infrared spectroscopy with Kramers-Kronig analysis

    NASA Astrophysics Data System (ADS)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2018-03-01

    A practical algorithm for estimating the wavelength-dependent refractive index (RI) of a turbid sample in the spatial frequency domain with the aid of Kramers-Kronig (KK) relations is presented. In it, phase-shifted sinusoidal patterns (structured illumination) are serially projected at a high spatial frequency onto the sample surface (mouse scalp) at different near-infrared wavelengths while a camera mounted normally to the sample surface captures the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial absorption maps by logarithmic function, and once the absorption coefficient information is obtained, the imaginary part (k) of the complex RI (CRI), based on Maxell's equations, can be calculated. Using the data represented by k, the real part of the CRI (n) is then resolved by KK analysis. The wavelength dependence of n ( λ ) is then fitted separately using four standard dispersion models: Cornu, Cauchy, Conrady, and Sellmeier. In addition, three-dimensional surface-profile distribution of n is provided based on phase profilometry principles and a phase-unwrapping-based phase-derivative-variance algorithm. Experimental results demonstrate the capability of the proposed idea for sample's determination of a biological sample's RI value.

  17. Investigation of NO interaction on Rh/doped TiO2-based automotive catalyst using combined transient diffuse reflectance Fourier transform infrared and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chafik, T.; Ouassini, A.; Verykios, X. E.

    1998-07-01

    The interaction of NO with Rh supported on W+6 doped TiO2 has been investigated by coupling transient diffuse reflectance Fourier transform Infrared spectroscopy and mass spectrometry. The experiments were carried out in dynamic conditions (under reactant flow and at temperature reaction) at atmospheric pressure. By comparing the results obtained with undoped Rh/TiO2 and Rh/TiO2(W6+) catalysts, the analytical approach used permitted to emphasis the effect of carrier doping, with respect to the elementary steps and surface intermediates involved in NO interaction process. It was found that W6+-doping of TiO2 promotes significantly the formation of Rh-NO- species and enhances the thermal stability of Rh-NO+ on Rh/TiO2 (W6+) surfaces. This leads to a drastic increase in the selectivity of NO decomposition reaction towards N2 formation, whereas the N2O yield decreases significantly. L'intéraction de NO sur un catalyseur à base de rhodium supporté sur TiO2 dopé par le tungstène W6+ a été étudiée en régime transitoire par couplage de la spectroscopie Infrarouge Diffuse à Transformée de Fourier (DRIFT) et la spectrométrie de masse. Ces études ont été effectuées dans des conditions dynamiques (sous flux de réactifs gazeux et à la température de la réaction) à la pression atmosphérique. La comparaison des études menées avec des catalyseurs non dopé (Rh/TiO2) et dopé (Rh/TiO2(W6+)) a permis de mettre en évidence l'influence du dopage du support catalytique sur la nature des intermédiaires superficiels et les étapes élémentaires intervenant dans le processus d'interaction de NO avec ces solides. Il a été montré que le dopage de TiO2 par W6+ accroît la formation des espèces Rh-NO- et la stabilité thermique des espèces Rh-NO+ sur Rh/TiO2(W6+). Ceci est à l'origine de l'augmentation de la sélectivité de la conversion de NO en N2 suite à la diminution considérable de la quantité N2O formée.

  18. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  19. Spectral reflectance properties of electroplated and converted zinc for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.

    1975-01-01

    The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, integrated over the solar spectrum, and of infrared emittance, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of absorptance and infrared emittance were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.

  20. Diffuse Optics for Tissue Monitoring and Tomography

    PubMed Central

    Durduran, T; Choe, R; Baker, W B; Yodh, A G

    2015-01-01

    This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204

  1. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  2. Availability of a library of infrared (2.1-25.0 μm) mineral spectra

    USGS Publications Warehouse

    Salisbury, John W.; Walter, Louis S.; Vergo, Norma

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmittance.  Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 μm) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characteized minerals have been published to date. These data are available in both hard copy and digital form.

  3. Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors.

    PubMed

    Matsui, Hiroaki; Furuta, Shinya; Hasebe, Takayuki; Tabata, Hitoshi

    2016-05-11

    This paper describes infrared plasmonic responses in three-dimensional (3D) assembled films of In2O3:Sn nanoparticles (NPs). The introduction of surface modifications to NPs can facilitate the production of electric-field interactions between NPs due to the creation of narrow crevices in the NP interfaces. In particular, the electric-field interactions along the in-plane and out-of-plane directions in the 3D assembled NP films allow for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby realizing selective high reflections in the near- and mid-infrared range, respectively. The origins of these plasmonic properties were revealed from electric-field distributions calculated by electrodynamic simulations that agreed well with experimental results. The interparticle gaps and their derived plasmon couplings play an important role in producing high reflective performances in assembled NP films. These 3D assemblies of NPs can be further extended to produce large-size flexible films with high infrared reflectance, which simultaneously exhibit microwave transmittance essential for telecommunications. This study provides important insights for harnessing infrared optical responses using plasmonic technology for the fabrication of infrared thermal-shielding applications.

  4. QCL-based standoff and proximal chemical detectors

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Hensley, Joel; Cosofret, Bogdan R.; Konno, Daisei; Mulhall, Phillip; Schmit, Thomas; Chang, Shing; Allen, Mark; Marinelli, William J.

    2016-05-01

    The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.

  5. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    USDA-ARS?s Scientific Manuscript database

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  6. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  7. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  9. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  10. The 1997 Reference of Diffuse Night Sky Brightness

    NASA Technical Reports Server (NTRS)

    Leinert, C.; Bowyer, S.; Haikala, L. K.; Hanner, M. S.; Hauser, M. G.; Levasseur-Regourd, A. C.; Mann, I.; Mattila, K.; Reach, W. T.; Schlosser, W.; hide

    1997-01-01

    In the following we present material in tabular and graphical form, with the aim to allow the non specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Ly to the far-infrared.

  11. In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre

    Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.

  12. Concluding Thoughts on New Directions in Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    Currently planned infrared space missions are ambitious and bound to be rewarding. We ask whether design criteria of the past still hold for these projects, and suggest that accumulating experience dictates new engineering guidelines for these increasingly sophisticated missions. Striking spectroscopic advances presented at this symposium indicate that generally held beliefs about the chemical evolution of galaxies may need to be revised. Similar changes in attitude may be required by the results of deep infrared surveys and the recent detectedion of a diffuse far-infrared (FIR) extragalactic background

  13. Microplastics effects in Scrobicularia plana.

    PubMed

    Ribeiro, Francisca; Garcia, Ana R; Pereira, Beatriz P; Fonseca, Maria; Mestre, Nélia C; Fonseca, Tainá G; Ilharco, Laura M; Bebianno, Maria João

    2017-09-15

    One of the most common plastics in the marine environment is polystyrene (PS) that can be broken down to micro sized particles. Marine organisms are vulnerable to the exposure to microplastics. This study assesses the effects of PS microplastics in tissues of the clam Scrobicularia plana. Clams were exposed to 1mgL -1 (20μm) for 14days, followed by 7days of depuration. A qualitative analysis by infrared spectroscopy in diffuse reflectance mode period detected the presence of microplastics in clam tissues upon exposure, which were not eliminated after depuration. The effects of microplastics were assessed by a battery of biomarkers and results revealed that microplastics induce effects on antioxidant capacity, DNA damage, neurotoxicity and oxidative damage. S. plana is a significant target to assess the environmental risk of PS microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polster, C. S.; Zhang, R.; Cyb, M. T.

    CO and H{sub 2} oxidation were studied over a series of Pt/CeO{sub 2} catalysts with differing Pt loadings and dispersions. Kinetic rate analysis confirms the presence of dual Langmuir-Hinshelwood (L-H) and Mars and van Krevelen (M-vK) pathways and is used to explain the loss in CO oxidation selectivity at low CO concentrations. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the strong CO coverage dependence on both CO and O{sub 2} concentrations and explains the transition from L-H to M-vK reaction character. Redox site measurements are performed on Pt/CeO{sub 2} catalysts by anaerobic titrations under conditions where themore » M-vK pathway dominates the reaction rate. Similar redox site densities per interfacial Pt atom suggest that interfacial Pt-O-Ce sites are responsible for M-vK redox activity.« less

  15. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  16. Spectroscopic methods for the photodiagnosis of nonmelanoma skin cancer.

    PubMed

    Drakaki, Eleni; Vergou, Theognosia; Dessinioti, Clio; Stratigos, Alexander J; Salavastru, Carmen; Antoniou, Christina

    2013-06-01

    The importance of dermatological noninvasive imaging techniques has increased over the last decades, aiming at diagnosing nonmelanoma skin cancer (NMSC). Technological progress has led to the development of various analytical tools, enabling the in vivo/in vitro examination of lesional human skin with the aim to increase diagnostic accuracy and decrease morbidity and mortality. The structure of the skin layers, their chemical composition, and the distribution of their compounds permits the noninvasive photodiagnosis of skin diseases, such as skin cancers, especially for early stages of malignant tumors. An important role in the dermatological diagnosis and disease monitoring has been shown for promising spectroscopic and imaging techniques, such as fluorescence, diffuse reflectance, Raman and near-infrared spectroscopy, optical coherence tomography, and confocal laser-scanning microscopy. We review the use of these spectroscopic techniques as noninvasive tools for the photodiagnosis of NMSC.

  17. Spectroscopic methods for the photodiagnosis of nonmelanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Drakaki, Eleni; Vergou, Theognosia; Dessinioti, Clio; Stratigos, Alexander J.; Salavastru, Carmen; Antoniou, Christina

    2013-06-01

    The importance of dermatological noninvasive imaging techniques has increased over the last decades, aiming at diagnosing nonmelanoma skin cancer (NMSC). Technological progress has led to the development of various analytical tools, enabling the in vivo/in vitro examination of lesional human skin with the aim to increase diagnostic accuracy and decrease morbidity and mortality. The structure of the skin layers, their chemical composition, and the distribution of their compounds permits the noninvasive photodiagnosis of skin diseases, such as skin cancers, especially for early stages of malignant tumors. An important role in the dermatological diagnosis and disease monitoring has been shown for promising spectroscopic and imaging techniques, such as fluorescence, diffuse reflectance, Raman and near-infrared spectroscopy, optical coherence tomography, and confocal laser-scanning microscopy. We review the use of these spectroscopic techniques as noninvasive tools for the photodiagnosis of NMSC.

  18. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2009-03-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.

  19. Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.

    2017-08-01

    In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.

  20. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

Top