Sample records for diffuse rrl emission

  1. Diffuse Ionized Gas in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Wenger, Trey V.; Bania, T. M.

    2017-11-01

    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from {\\ell }=18^\\circ to 40° using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from H II region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100 {km} {{{s}}}-1 associated with the luminous H II region W43, and the other centered around 45 {km} {{{s}}}-1 not associated with any large H II region. Our analysis suggests that the two velocity components near W43 may be caused by noncircular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ˜6 kpc for the 100 {km} {{{s}}}-1 component and ˜12 kpc for the 45 {km} {{{s}}}-1 component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0 μm emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete H II regions and the intensity of the RRL emission from the DIG. This implies that the soft ultraviolet photons responsible for creating the infrared emission have a similar origin as the harder ultraviolet photons required for the RRL emission. The 8.0 μm emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.

  2. A derivation of the free-free emission on the Galactic plane between ℓ= 20° and 44°

    NASA Astrophysics Data System (ADS)

    Alves, Marta I. R.; Davies, Rodney D.; Dickinson, Clive; Calabretta, Mark; Davis, Richard; Staveley-Smith, Lister

    2012-05-01

    We present the derivation of the free-free emission on the Galactic plane between ℓ= 20° and 44° and |b|≤ 4°, using radio recombination line (RRL) data from the H I Parkes All Sky Survey (HIPASS). Following an upgrade of the RRL data reduction technique, which improves significantly the quality of the final RRL spectra, we have extended the analysis to three times the area covered in Alves et al. The final RRL map has an angular resolution of 14.8 arcmin and a velocity resolution of 20 km s-1. The electron temperature (Te) distribution of the ionized gas in the area under study at 1.4 GHz is derived using the line and continuum data from the present survey. The mean Te on the Galactic plane is 6000 K. The first direct measure of the free-free emission is obtained based on the derived Te distribution. Subtraction of this thermal component from the total continuum leads to the first direct measurement of the synchrotron emission at 1.4 GHz. A narrow component of width 2° is identified in the latitude distribution of the synchrotron emission. We present a list of H II regions and supernova remnants (SNRs) extracted from the present free-free and synchrotron maps, where we confirm the synchrotron nature of the SNRs G42.0-0.1 and G41.5+0.4 proposed by Kaplan et al. and the SNR G35.6-0.4 recently re-identified by Green. The latitude distribution for the RRL-derived free-free emission shows that the Wilkinson Microwave Anisotropy Probe (WMAP) maximum entropy method is too high by ˜50 per cent, in agreement with other recent results. The extension of this study to the inner Galaxy region ℓ=-50° to 50° will allow a better overall comparison of the RRL result with WMAP.

  3. GBT Observations of Radio Recombination Line Emission Associated with Supernova Remnants W28 and W44

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Yusef-Zadeh, F.

    2006-06-01

    Since the 1970's weak radio recombination line(RRL) emission has been observed toward several supernova remnants. It has remained unclear if this emission is in fact associated with these remnants or due to intervening sources such as extended HII envelopes along the line of sight. To explore the origin of this emitting gas we have recently undertaken Green Bank Telescope (GBT) observations of prominent supernova remnants W28 and W44 which are well-known to be interacting with molecular clouds. Eight alpha and beta RRL transitions were mapped at C-Band (4-6 GHz) with 2.5' resolution. Maps cover 0.5 and 0.25 square degrees of W28 and W44, respectively, permitting comparison with the distribution of X-rays, Radio, and H-alpha emission. Both remnants are observed to have a mixed-morphology: a radio-continuum shell centrally-filled by thermal X-rays. We find the observed velocity of RRL emission is near the systemic velocity of both remnants as traced by OH(1720 MHz) masers. Preliminary results are presented exploring the association of the RRL-emitting gas with these interacting supernova remants and implications for the origins of the hot thermal X-ray plasma that fills their centers. Support for this work was provided by the NSF through The GBT Student Support Program from the NRAO.

  4. Large-scale Map of Millimeter-wavelength Hydrogen Radio Recombination Lines around a Young Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Nguyen-Luong, Q.; Anderson, L. D.; Motte, F.; Kim, Kee-Tae; Schilke, P.; Carlhoff, P.; Beuther, H.; Schneider, N.; Didelon, P.; Kramer, C.; Louvet, F.; Nony, T.; Bihr, S.; Rugel, M.; Soler, J.; Wang, Y.; Bronfman, L.; Simon, R.; Menten, K. M.; Wyrowski, F.; Walmsley, C. M.

    2017-08-01

    We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky Very Large Array and HCO+ 1-0 line emission data from the IRAM 30 m. The mm-RRLs reveal an expanding wind-blown ionized gas shell with an electron density ˜70-1500 cm-3 driven by the WR/OB cluster, which produces a total Lyα photon flux of 1.5× {10}50 s-1. This shell is interacting with the dense neutral molecular gas in the W43-Main dense cloud. Combining the high spectral and angular resolution mm-RRL and cm-RRL cubes, we derive the two-dimensional relative distributions of dynamical and pressure broadening of the ionized gas emission and find that the RRL line shapes are dominated by pressure broadening (4-55 {km} {{{s}}}-1) near the YMC and by dynamical broadening (8-36 {km} {{{s}}}-1) near the shell’s edge. Ionized gas clumps hosting ultra-compact H II regions found at the edge of the shell suggest that large-scale ionized gas motion triggers the formation of new star generation near the periphery of the shell.

  5. Validation study of ¹³¹I-RRL: assessment of biodistribution, SPECT imaging and radiation dosimetry in mice.

    PubMed

    Zhao, Qian; Yan, Ping; Yin, Lei; Li, Ling; Chen, Xue Qi; Ma, Chao; Wang, Rong Fu

    2013-04-01

    Tumor angiogenesis is important in the growth and metastasis of malignant tumors. In our previous study, we demonstrated that an arginine-arginine-leucine (RRL) peptide is a tumor endothelial cell-specific binding sequence that may be used as a molecular probe for the imaging of malignant tumors in vivo. The aim of the present study was to further explore the characteristics of 131I‑RRL by biodistribution tests, and to estimate the radiation dosimetry of 131I‑RRL for humans using mice data. The RRL peptide was radiolabeled with 131I by a chloramine-T (CH-T) method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 131I‑RRL was injected intravenously into B16 xenograft-bearing Kunming mice. Biodistribution analysis and in vivo imaging were performed periodically. The radiation dosimetry in humans was calculated according to the organ distribution and the standard medical internal radiation dose (MIRD) method in mice. All data were analyzed by statistical and MIRDOSE 3.1 software. The labeling efficiency of 131I‑RRL reached 70.0±2.91% (n=5), and the radiochemical purity exceeded 95% following purification. In mice bearing B16 xenografts, 131I‑RRL rapidly cleared from the blood and predominantly accumulated in the kidneys, the stomach and the tumor tissue. The specific uptake of 131I‑RRL in the tumor increased over time and was significantly higher than that of the other organs, 24-72 h following injection (P<0.05). The ratio of tumor-to-skeletal muscle (T/SM) tissue exceeded 4.75, and the ratio of the tumor-to-blood (T/B) tissue peaked at 3.36. In the single-photon emission computed tomography (SPECT) imaging of Kunming mice bearing B16 xenografts, the tumors were clearly identifiable at 6 h, and significant uptake was evident 24-72 h following administration of 131I‑RRL. The effective dose for the adult male dosimetric model was estimated to be 0.0293 mSv/MBq. Higher absorbed doses were estimated for the stomach (0.102 mGy/MBq), the small intestines (0.0699 mGy/MBq), the kidneys (0.0611 mGy/MBq) and the liver (0.055 mGy/MBq). These results highlight the potential of 131I‑RRL as a ligand for the SPECT imaging of tumors. Administration of 131I‑RRL led to a reasonable radiation dose burden and was safe for human use.

  6. The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.; Dickey, John M.; Jordan, C.

    The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission frommore » 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.« less

  7. Radio Recombination Line Surveys of the inner Galactic Plane: SIGGMA and GDIGS

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Anderson, Loren Dean; Luisi, Matteo; Balser, Dana; Bania, Thomas; Wenger, Trey; Haffner, Lawrence Matthew; Minchin, Robert; Roshi, Anish; Churchwell, Edward; Terzian, Yervant; McIntyre, Travis; Lebron, Mayra; SIGGMA team, GDIGS team

    2018-01-01

    Ionized gas is one of the primary components of the interstellar medium (ISM) and plays a crucial role in star formation and galaxy evolution. Radio recombination lines (RRLs) can directly trace ionized gas in HII regions and warm ionized medium (WIM) without being affected by interstellar extinction. Single-dish telescopes like Arecibo Observatory and the Green Bank Telescope (GBT) are sensitive to low surface brightness emission, and are therefore powerful tools for the study of HII regions and the WIM. We report here on two large surveys of RRL emission: The Survey of Ionized Gas in the Galaxy, Made with the Arecibo telescope (SIGGMA) and the GBT Diffuse Ionized Gas Survey (GDIGS). These are the first large-scale fully-sampled RRL surveys, and together cover nearly the entire first quadrant of the Galactic plane at ~arcmin spatial resolution (l = -5 - 32 deg. for GDIGS and l = 32 - 70 deg. for SIGGMA). SIGGMA is performed with the Arecibo L-band Feed Array (ALFA) receiver, whose bandpass covers twelve hydrogen alpha lines from H163α to H174α. By stacking the α-lines and smoothing to 4 km/s velocity resolution, the final SIGGMA spectra have a mean rms level of ~0.65 mJy per beam. The GDIGS data were taken with the GBT C-band receiver and the VEGAS backend and include RRLs from H95α to H117α, and when stacked and smoothed to 5 km/s resolution achieve 1 mJy per beam rms. Here, we report on early analysis of the SIGGMA and GDIGS data, and present first scientific results.

  8. Synthesis and evaluation of Tc-99m-labeled RRL-containing peptide as a non-invasive tumor imaging agent in a mouse fibrosarcoma model.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-11-01

    Arginine-arginine-leucine (RRL) is considered a tumor endothelial cell-specific binding sequence. RRL-containing peptide targeting tumor vessels is an excellent candidate for tumor imaging. In this study, we developed RRL-containing hexapeptides and evaluated their feasibility as a tumor imaging agent in a HT-1080 fibrosarcoma-bearing murine model. The hexapeptide, glutamic acid-cysteine-glycine (ECG)-RRL was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated using instant thin-layer chromatography. Uptake of Tc-99m ECG-RRL within HT-1080 cells was evaluated in vitro by confocal microscopy and cellular binding affinity was calculated. Gamma images were acquired In HT-1080 fibrosarcoma tumor-bearing mice, and the tumor-to-muscle uptake ratio was calculated. The inflammatory-to-normal muscle uptake ratio was also calculated in an inflammation mouse model. A biodistribution study was performed to calculate %ID/g. A high yield of Tc-99m ECG-RRL complexes was prepared after Tc-99m radiolabeling. Binding of Tc-99m ECG-RRL to tumor cells had was confirmed by in vitro studies. Gamma camera imaging in the murine model showed that Tc-99m ECG-RRL accumulated substantially in the subcutaneously engrafted tumor and that tumoral uptake was blocked by co-injecting excess RRL. Moreover, Tc-99m ECG-RRL accumulated minimally in inflammatory lesions. We successfully developed Tc-99m ECG-RRL as a new tumor imaging candidate. Specific tumoral uptake of Tc-99m ECG-RRL was evaluated both in vitro and in vivo, and it was determined to be a good tumor imaging candidate. Additionally, Tc-99m ECG-RRL effectively distinguished between cancerous tissue and inflammatory lesions.

  9. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung

    2018-06-15

    We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.

  10. An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4.

    PubMed

    Yao, Xuan; Li, Juanjuan; Liu, Jianping; Liu, Kede

    2015-10-01

    The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RETARDED ROOT GROWTH) is required for cell division in the root meristem. RRL shares 54% and 57% identity at the nucleotide and amino acid sequences, respectively, with RRG; nevertheless, RRL shows a different function in Arabidopsis. In this study, disruption of RRL decreased ABA sensitivity whereas overexpression of RRL increased ABA sensitivity during seed germination and seedling growth. High expression levels of RRL were found in germinating seeds and developing seedlings, as revealed by β-glucuronidase (GUS) staining of ProRRL-GUS transgenic lines. The analyses of the structure and function of mitochondria in the knockout rrl mutant showed that the disruption of RRL causes extensively internally vacuolated mitochondria and reduced ABA-stimulated reactive oxygen species (ROS) production. Previous studies have revealed that the expression of alternative oxidase (AOX) in the alternative respiratory pathway is increased by mitochondrial retrograde regulation to regain ROS levels when the mitochondrial electron transport chain is impaired. The APETALA2 (AP2)-type transcription factor ABI4 is a regulator of ALTERNATIVE OXIDASE1a (AOX1a) in mitochondrial retrograde signalling. This study showed that ABA-induced AOX1a and ABI4 expression was inhibited in the rrl mutant, suggesting that RRL is probably involved in ABI4-mediated mitochondrial retrograde signalling. Furthermore, the results revealed that ABI4 is a downstream regulatory factor in RRL-mediated ABA signalling in seed germination and seedling growth. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. The Southern HII Region Discovery Survey: The Bright Catalog

    NASA Astrophysics Data System (ADS)

    Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine

    2018-01-01

    HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.

  12. A Green Bank Telescope Survey of Large Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs < 10 {km} {{{s}}}-1. If half the line width is due to turbulence, these seven sources have thermal plasma temperatures < 1100 {{K}}. These temperatures are lower than any measured for Galactic H II regions, and the narrow-line components may arise instead from partially ionized zones in the H II region photodissociation regions. We discover G039.515+00.511, one of the most luminous H II regions in the Galaxy. We also detect the RRL emission from three H II regions with diameters > 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  13. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.

    PubMed

    Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P

    2018-01-19

    A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.

  14. Ionized gas clouds near the Sagittarius Arm tangent

    NASA Astrophysics Data System (ADS)

    Hou, Li-Gang; Dong, Jian; Gao, Xu-Yang; Han, Jin-Lin

    2017-04-01

    Radio recombination lines (RRLs) are the best tracers of ionized gas. Simultaneous observations of multi-transitions of RRLs can significantly improve survey sensitivity. We conducted pilot RRL observations near the Sagittarius Arm tangent by using the 65-m Shanghai Tian Ma Radio Telescope (TMRT) equipped with broadband feeds and a digital backend. Six hydrogen RRLs (H96 α - H101α) at C band (6289 MHz-7319 MHz) were observed simultaneously toward a sky area of 2° × 1.2° by using on-the-fly mapping mode. These transitions were then stacked together for detection of ionized gas. Star forming complexes G48.6+0.1 and G49.5-0.3 were detected in the integrated intensity map. We found agreements between our measured centroid velocities and previous results for the 21 known HII regions in the mapped area. For more than 80 cataloged HII region candidates without previous RRL measurements, we obtained new RRL spectra at 30 targeted positions. In addition, we detected 25 new discrete RRL sources with spectral S/N > 5 σ, and they were not listed in the catalogs of previously known HII regions. The distances for 44 out of these 55 new RRL sources were estimated.

  15. Refraction effects on the Galileo probe telemetry carrier frequency

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Spilker, T. R.

    1991-01-01

    As the Galileo probe relay radio link (RRL) signal propagates outward through the Jovian atmosphere, the atmosphere will manifest itself in two ways. First, the geometric path length of the signal is increased, resulting in a small change of the RRL signal departure angle from the proble (transmitter). Secondly, the velocity of the signal is decreased. For a spherical, static atmosphere with a known profile of refractivity versus altitude the effects of refraction on the RRL frequency can be found using a variation of standard ray-tracing techniques, whereby the ray departure angle is found by an iterative process. From the dispersive characteristics of a mixture of hydrogen and helium with trace amounts of methane and ammonia a simple model of the Jovian atmosphere is constructed assuming spherical symmetry and uniform mixing. The contribution to the RRL Doppler frequency arising from refraction is calculated, and its effect on the Doppler wind measurements is discussed.

  16. RR Lyrae Stars as High-Precision Standard Candles in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian Rose

    In this work, we provide the theoretical and empirical framework to establish RR Lyrae stars (RRL) as the anchor of a Population II distance scale. We present new theoretical period-luminosity-metallicity (PLZ) relations for RRL at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range in metal abundances (Z = 0.0001 to 0.0198). We also compare our theoretical relations to empirical relations derived from RRL in the field. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus and extinction of each individual Galactic RRL in our sample. The results are consistent with trigonometric parallax measurements from the Gaia mission's first data release. This analysis has shown that when considering a sample covering a typical range of iron abundances for RRL, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to 0.02 mag at MIR wavelengths. On the empirical side, we present the analysis of five clusters from the Carnegie RR Lyrae Program (CRRP) sample (M4, NGC 3201, M5, M15, and M14). M4, the nearest one of the most well studied clusters, was used as a test case to develop a new data analysis pipeline for CRRP. Following the analysis of the five clusters, the resulting calibration PL relations are M[3.6] = -2.424 +/- 0.079 log P -1.205 +/- 0.057 and M [4.5] = -2.245 +/- 0.076 - 1.225 +/- 0.057. The slope of the PL relations was determined from the weighted average of the cluster results, and the zero point was fixed using five Galactic RRL with geometric parallaxes measured by Hubble Space Telescope. The dispersion of the RRL around the PL relations ranges from 0.05 mag in M4 to 0.3 mag in M14. The resulting band-averaged distance moduli for the five clusters agree well with results in the literature. The systematic uncertainty will be greatly reduced when parallaxes of more stars become available from the Gaia mission, and we are able to use the full CRRP sample of 55 Galactic RRL to calibrate the relation.

  17. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  18. Study of diffuse H II regions potentially forming part of the gas streams around Sgr A*

    NASA Astrophysics Data System (ADS)

    Armijos-Abendaño, J.; López, E.; Martín-Pintado, J.; Báez-Rubio, A.; Aravena, M.; Requena-Torres, M. A.; Martín, S.; Llerena, M.; Aldás, F.; Logan, C.; Rodríguez-Franco, A.

    2018-05-01

    We present a study of diffuse extended ionized gas towards three clouds located in the Galactic Centre (GC). One line of sight (LOS) is towards the 20 km s-1 cloud (LOS-0.11) in the Sgr A region, another LOS is towards the 50 km s-1 cloud (LOS-0.02), also in Sgr A, while the third is towards the Sgr B2 cloud (LOS+0.693). The emission from the ionized gas is detected from Hnα and Hmβ radio recombination lines (RRLs). Henα and Hemβ RRL emission is detected with the same n and m as those from the hydrogen RRLs only towards LOS+0.693. RRLs probe gas with positive and negative velocities towards the two Sgr A sources. The Hmβ to Hnα ratios reveal that the ionized gas is emitted under local thermodynamic equilibrium conditions in these regions. We find a He to H mass fraction of 0.29±0.01 consistent with the typical GC value, supporting the idea that massive stars have increased the He abundance compared to its primordial value. Physical properties are derived for the studied sources. We propose that the negative velocity component of both Sgr A sources is part of gas streams considered previously to model the GC cloud kinematics. Associated massive stars with what are presumably the closest H II regions to LOS-0.11 (positive velocity gas), LOS-0.02, and LOS+0.693 could be the main sources of ultraviolet photons ionizing the gas. The negative velocity components of both Sgr A sources might be ionized by the same massive stars, but only if they are in the same gas stream.

  19. Changing Amplitudes: Detecting RR Lyrae Light Curve Shape Variations in the Galactic Disk and Inner Halo

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Kinemuchi, K.; Pepper, J.; Rodriguez, J. E.

    2014-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-8 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 9,000 epochs per light curve with completeness out to 3 kpc from the Sun. Recent results from both Kepler and ground based surveys results suggest that as many as 50% of RR Lyrae stars show long-term modulation of their light curve shapes (Blazhko effect). These stars combined with RRL stars that pulsate in more than one mode give a sample of objects that the KELT survey is uniquely suited to explore. This poster concentrates on a pilot project to examine RRL stars in a limited number of KELT fields. In particular, we focus on, detecting RR Lyrae, developing a light curve shape-metallicity relationship in the KELT band-pass, and some initial characterization of RRL with either amplitude-modulated or period-modulated light curves.

  20. The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, Clara E.; Monelli, Matteo; Bernard, Edouard J.; Gallart, Carme; Stetson, Peter B.; Skillman, Evan D.; Bono, Giuseppe; Cassisi, Santi; Fiorentino, Giuliana; McQuinn, Kristen B. W.; Cole, Andrew A.; McConnachie, Alan W.; Martin, Nicolas F.; Dolphin, Andrew E.; Boylan-Kolchin, Michael; Aparicio, Antonio; Hidalgo, Sebastian L.; Weisz, Daniel R.

    2017-12-01

    We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), and XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three eclipsing binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit (I, B-I) relations published by Marconi et al., we obtain distance moduli of μ 0 = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties <0.11 mag. We have considered an enlarged sample of 16 M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods and amplitudes) with those of 15 Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13028 and 13739.

  1. Field 1: A First Look at the KELT RR Lyrae Project

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2015-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. We will focus on initial results from our testbed region, Field 1. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-8 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 9,000 epochs per light curve with completeness out to 3 kpc from the Sun.Recent results from both Kepler and ground based surveys results suggest that as many as 50% of RR Lyrae stars show long-term modulation of their light curve shapes (Blazhko effect). These stars combined with RRL stars that pulsate in more than one mode give a sample of objects that the KELT survey is uniquely suited to explore. This poster uses the RR Lyrae stars in Field 1 of the KELT survey to compare detection methods to previous variable star surveys of the same region. We also discuss the individual RR Lyrae found in Field 1. In particular, we focus on initial characterization of RRL light curves including those with amplitude-modulated or period-modulated light curves. We uses these initial results to discuss future plans for this survey.

  2. A census of variability in globular cluster M 68 (NGC 4590)

    NASA Astrophysics Data System (ADS)

    Kains, N.; Arellano Ferro, A.; Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Jørgensen, U. G.; Tsapras, Y.; Street, R. A.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Ipatov, S.; Snodgrass, C.; Steele, I. A.; Lcogt/Robonet Consortium; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Southworth, J.; Surdej, J.; Vilela, C.; Wang, X.-B.; Wertz, O.; Mindstep Consortium

    2015-06-01

    Aims: We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. Methods: We reduced our data using difference image analysis to achieve the best possible photometry in the crowded field of the cluster. In doing so, we show that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M 68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. Results: M 68 had 45 previously confirmed variables, including 42 RRL and 2 SX Phoenicis (SX Phe) stars. In this paper we determine new periods and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect 4 additional SX Phe stars and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M 68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different classes of variables, we derived values for the metallicity of the cluster of [Fe/H] = -2.07 ± 0.06 on the ZW scale, or -2.20 ± 0.10 on the UVES scale, and found true distance moduli μ0 = 15.00 ± 0.11 mag (using RR0 stars), 15.00 ± 0.05 mag (using RR1 stars), 14.97 ± 0.11 mag (using SX Phe stars), and 15.00 ± 0.07 mag (using the MV -[Fe/H] relation for RRL stars), corresponding to physical distances of 10.00 ± 0.49, 9.99 ± 0.21, 9.84 ± 0.50, and 10.00 ± 0.30 kpc, respectively. Thanks to the first use of difference image analysis on time-series observations of M 68, we are now confident that we have a complete census of the RRL stars in this cluster. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A128

  3. The cometary H II regions of DR 21: Bow shocks or champagne flows or both?

    NASA Astrophysics Data System (ADS)

    Immer, K.; Cyganowski, C.; Reid, M. J.; Menten, K. M.

    2014-03-01

    We present deep Very Large Array H66α radio recombination line (RRL) observations of the two cometary H II regions in DR 21. With these sensitive data, we test the "hybrid" bow shock/champagne flow model previously proposed for the DR 21 H II regions. The ionized gas down the tail of the southern H II region is redshifted by up to ~30 km s-1 with respect to the ambient molecular gas, as expected in the hybrid scenario. The RRL velocity structure, however, reveals the presence of two velocity components in both the northern and southern H II regions. This suggests that the ionized gas is flowing along cone-like shells, swept-up by stellar winds. The observed velocity structure of the well-resolved southern H II region is most consistent with a picture that combines a stellar wind with stellar motion (as in bow shock models) along a density gradient (as in champagne flow models). The direction of the implied density gradient is consistent with that suggested by maps of dust continuum and molecular line emission in the DR 21 region. The image cubes are only available as a FITS file at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A39Table 2, Fig. 4, and Appendices A and B are available in electronic form at http://www.aanda.org

  4. Dual Role for Hsc70 in the Biogenesis and Regulation of the Heme-Regulated Kinase of the α Subunit of Eukaryotic Translation Initiation Factor 2

    PubMed Central

    Uma, Sheri; Thulasiraman, Vanitha; Matts, Robert L.

    1999-01-01

    The heme-regulated kinase of the α subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI. PMID:10454533

  5. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation.

    PubMed

    Soto Rifo, Ricardo; Ricci, Emiliano P; Décimo, Didier; Moncorgé, Olivier; Ohlmann, Théophile

    2007-01-01

    Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.

  6. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  7. Incremental benefits of male HPV vaccination: accounting for inequality in population uptake.

    PubMed

    Smith, Megan A; Canfell, Karen

    2014-01-01

    Vaccines against HPV16/18 are approved for use in females and males but most countries currently have female-only programs. Cultural and geographic factors associated with HPV vaccine uptake might also influence sexual partner choice; this might impact post-vaccination outcomes. Our aims were to examine the population-level impact of adding males to HPV vaccination programs if factors influencing vaccine uptake also influence partner choice, and additionally to quantify how this changes the post-vaccination distribution of disease between subgroups, using incident infections as the outcome measure. A dynamic model simulated vaccination of pre-adolescents in two scenarios: 1) vaccine uptake was correlated with factors which also affect sexual partner choice ("correlated"); 2) vaccine uptake was unrelated to these factors ("unrelated"). Coverage and degree of heterogeneity in uptake were informed by observed data from Australia and the USA. Population impact was examined via the effect on incident HPV16 infections. The rate ratio for post-vaccination incident HPV16 in the lowest compared to the highest coverage subgroup (RR(L)) was calculated to quantify between-group differences in outcomes. The population-level incremental impact of adding males was lower if vaccine uptake was "correlated", however the difference in population-level impact was extremely small (<1%) in the Australia and USA scenarios, even under the conservative and extreme assumption that subgroups according to coverage did not mix at all sexually. At the subgroup level, "correlated" female-only vaccination resulted in RR(L)= 1.9 (Australia) and 1.5 (USA) in females, and RR(L)= 1.5 and 1.3 in males. "Correlated" both-sex vaccination increased RR(L) to 4.2 and 2.1 in females and 3.9 and 2.0 in males in the Australia and USA scenarios respectively. The population-level incremental impact of male vaccination is unlikely to be substantially impacted by feasible levels of heterogeneity in uptake. However, these findings emphasize the continuing importance of prioritizing high coverage across all groups in HPV vaccination programs in terms of achieving equality of outcomes.

  8. The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period-luminosity Relations

    NASA Astrophysics Data System (ADS)

    Hatt, Dylan; Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Jang, In-Sung; Hoyt, Taylor J.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2017-08-01

    IC 1613 is an isolated dwarf galaxy within the Local Group. Low foreground and internal extinction, low metallicity, and low crowding make it an invaluable testbed for the calibration of the local distance ladder. We present new, high-fidelity distance estimates to IC 1613 via its Tip of the Red Giant Branch (TRGB) and its RR Lyrae (RRL) variables as part of the Carnegie-Chicago Hubble Program, which seeks an alternate local route to H 0 using Population II stars. We have measured a TRGB magnitude {I}{ACS}{TRGB}=20.35+/- {0.01}{stat}+/- {0.01}{sys} mag using wide-field observations obtained from the IMACS camera on the Magellan-Baade telescope. We have further constructed optical and near-infrared RRL light curves using archival BI- and new H-band observations from the ACS/WFC and WFC3/IR instruments on board the Hubble Space Telescope (HST). In advance of future Gaia data releases, we set provisional values for the TRGB luminosity via the Large Magellanic Cloud and Galactic RRL zero-points via HST parallaxes. We find corresponding true distance moduli {μ }0{TRGB}=24.30+/- {0.03}{stat}+/- {0.05}{sys} {mag} and < {μ }0{RRL}> =24.28+/- {0.04}{stat+{sys}} mag. We compare our results to a body of recent publications on IC 1613 and find no statistically significant difference between the distances derived from Population I and II stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691. Additional observations are credited to the Observatories of the Carnegie Institution of Washington for the use of Magellan-Baade IMACS. Presented as part of a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

  9. Robust reinforcement learning.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2005-02-01

    This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.

  10. On the Nature of Orion Source I

    NASA Astrophysics Data System (ADS)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  11. Molecular Typing of Borrelia burgdorferi

    PubMed Central

    Wang, Guiqing; Liveris, Dionysios; Mukherjee, Priyanka; Jungnick, Sabrina; Margos, Gabriele; Schwartz, Ira

    2015-01-01

    Borrelia burgdorferi sensu lato is a group of spirochetes belonging to the genus Borrelia in the family of Spirochaetaceae. The spirochete is transmitted between reservoirs and hosts by ticks of the family Ixodidae. Infection with B. burgdorferi in humans causes Lyme disease or Lyme borreliosis. Currently, 20 Lyme disease-associated Borrelia species and more than 20 relapsing fever-associated Borrelia species have been described. Identification and differentiation of different Borrelia species and strains is largely dependent on analyses of their genetic characteristics. A variety of molecular techniques have been described for Borrelia isolate speciation, molecular epidemiology, and pathogenicity studies. In this unit, we focus on three basic protocols, PCR-RFLP-based typing of the rrs-rrlA and rrfA-rrlB ribosomal spacer, ospC typing, and MLST. These protocols can be employed alone or in combination for characterization of B. burgdorferi isolates or directly on uncultivated organisms in ticks, mammalian host reservoirs, and human clinical specimens. PMID:25082003

  12. KELT RR Lyrae Variable Stars Observed by the NKU Schneider Observatory

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2016-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-10 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 10,000+ epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up data taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  13. Approaching hell's kitchen: Molecular daredevil clouds in the vicinity of Sagittarius A* ⋆⋆

    NASA Astrophysics Data System (ADS)

    Moser, Lydia; Sánchez-Monge, Álvaro; Eckart, Andreas; Requena-Torres, Miguel A.; García-Marin, Macarena; Kunneriath, Devaky; Zensus, Anton; Britzen, Silke; Sabha, Nadeen; Shahzamanian, Banafsheh; Borkar, Abhijeet; Fischer, Sebastian

    2017-07-01

    We report serendipitous detections of line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 3, 6, and 7 in the central parsec down to within 1'' around Sgr A* at an up to now highest resolution (<0.5'') view of the Galactic center (GC) in the submillimeter (sub-mm) domain. From the 100 GHz continuum and the H39α emission we obtain a uniform electron temperature around Te 6000 K for the minispiral. The spectral index (S ∝ να) of Sagittarius A* (Sgr A*) is 0.5 at 100-250 GHz and 0.0 at 230-340 GHz. The bright sources in the center show spectral indices around -0.1 implying Bremsstrahlung emission, while dust emission is emerging in the minispiral exterior. Apart from CS, which is most widespread in the center, H13CO+, HC3N, SiO, SO, C2H, CH3OH, 13CS and N2H+ are also detected. The bulk of the clumpy emission regions is at positive velocities and in a region confined by the minispiral northern arm (NA), bar, and the sources IRS 3 and 7. Although partly spatially overlapping with the radio recombination line (RRL) emission at same negative velocities, the relation to the minispiral remains unclear. A likely explanation is an infalling clump consisting of denser cloud cores embedded in diffuse gas. This central association (CA) of clouds shows three times higher CS/X (X: any other observed molecule) ratios than the circumnuclear disk (CND) suggesting a combination of higher excitation, by a temperature gradient and/or infrared (IR) pumping, and abundance enhancement due to UV and/or X-ray emission. Hence, we conclude that this CA is closer to the center than the CND is to the center. Moreover, we find molecular line emission at velocities up to 200 km s-1. Apart from the CA, we identified two intriguing regions in the CND. One region shows emission in all molecular species and higher energy levels tested in this and previous observations and contains a methanol class I maser. The other region shows similar behavior of the line ratios such as the CA. Outside the CND, we find the traditionally quiescent gas tracer N2H+ coinciding with the largest IR dark clouds in the field. Methanol emission is found at and around previously detected methanol class I masers in the same region. We propose to make these particular regions subject to further studies in the scope of hot core, cold core, and extreme photon and/or X-ray dominated region (PDR/XDR) chemistry and consequent star formation in the central few parsecs. Based on ALMA observations under the project number 2011.0.00887.S, which were executed on 18 May 2012.Supplementary data (reduced FITS cubes and images) of the continuum and line emission listed in Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A68

  14. KELT RR Lyrae Variable Stars Observed by NKU Schneider and Michigan State Observatories

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Brueneman, Stacy; Hicks, Logan; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph; Paegert, Martin; Smith, Horace A.

    2017-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 70% of the entire sky, and has a long-time-baseline of up to 11 years with a very high cadence rate of less than 20 minutes. This translates to upwards of 11,000 epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up multi-color photometry taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We also have archival photometry of these stars from the Michigan State Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  15. An Update on the Status of RR Lyrae Research - Report of the RRL2015 Meeting (October, Hungary) (Abstract)

    NASA Astrophysics Data System (ADS)

    Kolenberg, K.

    2016-06-01

    (Abstract only) In October 2015 we organized the first international meeting focused on RR Lyrae research, with the goal to discuss recent developments and future RR Lyrae plans. The Scientific rationale is the following:

  16. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  17. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    PubMed

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  18. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  19. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    NASA Astrophysics Data System (ADS)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.

  20. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  1. 3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.

    PubMed

    Zhu, Q; Kato, S; Murakami, S; Ito, K

    2007-06-01

    This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.

  2. The European Space Agency's FESTIP initiative

    NASA Astrophysics Data System (ADS)

    Burleson, Daphne

    1998-01-01

    In an effort to reduce the cost of access and open up new markets, the European Space Agency has begun a program called Future European Space Transportation Investigations Programme or FESTIP, in which reusable launcher concepts are being studied and developed. The ideal reusable launcher would be comparable to a normal aircraft in that it would be capable of taking off from many possible locations on Earth, enter the desired orbital plane, then accelerate to orbital velocity, release its payload, de-orbit, disperse its kinetic energy and land at the take-off base to be prepared for its next flight following a quick turnaround time. This ideal vehicle would be called the `single-stage-to-orbit reusable rocket launcher' or SSTO-RRL. All space launchers currently in use are staged to orbit and expendable, except the US Space Shuttle, and there is no SSTO-RRL in operation as yet. This paper will discuss the design options being studied by the European Space Agency (ESA) as well as their practical use in serving the space-launch market (FESTIP Workshop 1).

  3. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group.

    PubMed

    Shallom, Shamira J; Moura, Natalia S; Olivier, Kenneth N; Sampaio, Elizabeth P; Holland, Steven M; Zelazny, Adrian M

    2015-11-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. A Complete Census of the ~7000 Milky Way HII Regions

    NASA Astrophysics Data System (ADS)

    Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten

    2018-01-01

    HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we predict nearly 7000 HII regions in the Milky Way created by a central star of type B2 or earlier.

  5. Very large array and green bank telescope observations of Orion B (NGC 2024, W12): photodissociation region properties and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshi, D. Anish; Goss, W. M.; Jeyakumar, S., E-mail: aroshi@nrao.edu, E-mail: mgoss@nrao.edu, E-mail: sjk@astro.ugto.mx

    We present images of C110α and H110α radio recombination line (RRL) emission at 4.8 GHz and images of H166α, C166α, and X166α RRL emission at 1.4 GHz, observed toward the star-forming region NGC 2024. The 1.4 GHz image with angular resolution ∼70'' is obtained using Very Large Array (VLA) data. The 4.8 GHz image with angular resolution ∼17'' is obtained by combining VLA and Green Bank Telescope data in order to add the short and zero spacing data in the uv plane. These images reveal that the spatial distributions of C110α line emission is confined to the southern rim ofmore » the H II region close to the ionization front whereas the C166α line emission is extended in the north-south direction across the H II region. The LSR velocity of the C110α line is 10.3 km s{sup –1} similar to that of lines observed from molecular material located at the far side of the H II region. This similarity suggests that the photodissociation region (PDR) responsible for C110α line emission is at the far side of the H II region. The LSR velocity of C166α is 8.8 km s{sup –1}. This velocity is comparable with the velocity of molecular absorption lines observed from the foreground gas, suggesting that the PDR is at the near side of the H II region. Non-LTE models for carbon line-forming regions are presented. Typical properties of the foreground PDR are T {sub PDR} ∼ 100 K, n{sub e}{sup PDR}∼5 cm{sup –3}, n {sub H} ∼ 1.7 × 10{sup 4} cm{sup –3}, and path length l ∼ 0.06 pc, and those of the far side PDR are T {sub PDR} ∼ 200 K, n{sub e}{sup PDR}∼ 50 cm{sup –3}, n {sub H} ∼ 1.7 × 10{sup 5} cm{sup –3}, and l ∼ 0.03 pc. Our modeling indicates that the far side PDR is located within the H II region. We estimate the magnetic field strength in the foreground PDR to be 60 μG and that in the far side PDR to be 220 μG. Our field estimates compare well with the values obtained from OH Zeeman observations toward NGC 2024. The H166α spectrum shows narrow (1.7 km s{sup –1}) and broad (33 km s{sup –1}) line features. The narrow line has spatial distribution and central velocity (∼9 km s{sup –1}) similar to that of the foreground carbon line emission, suggesting that they are associated. Modeling the narrow H166α emission provides physical properties T {sub PDR} ∼ 50 K, n{sub e}{sup PDR}∼4 cm{sup –3}, and l ∼ 0.01 pc and implies an ionization fraction of ∼10{sup –4}. The broad H166α line originates from the H II region. The X166α line has a different spatial distribution compared to other RRLs observed toward NGC 2024 and is probably associated with cold dust clouds. Based on the expected low depletion of sulfur in such clouds and the –8.1 km s{sup –1} velocity separation between the X166α and C166α lines, we interpret that the X166α transition arises from sulfur.« less

  6. ON THE IONIZATION OF LUMINOUS WMAP SOURCES IN THE GALAXY: CONSTRAINTS FROM He RECOMBINATION LINE OBSERVATIONS WITH THE GBT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana

    2012-04-10

    Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less

  7. New Bedford, Coastal Research Center Buzzards Bay Study

    EPA Pesticide Factsheets

    2012-04-22

    ... 1:: c: e nl 1: diii I.ill l :'i:ri:' lili.'i ii ii ,11 rrl ii Bisy , Tin? n. K i:\\s\\\\: ay i. e I ill l:lhe l:«.l. I ovi np, iiia.j ar po I. nl: iii. o I' I nl: i : ir |:in?: II: :ii t I a in: !! ...

  8. Operating manual for the RRL 8 channel data logger

    NASA Technical Reports Server (NTRS)

    Paluch, E. J.; Shelton, J. D.; Gardner, C. S.

    1979-01-01

    A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape.

  9. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  10. Double Negative Materials (DNM), Phenomena and Applications

    DTIC Science & Technology

    2009-07-01

    Nanoparticles Formed by Pairs Of Concentric Double-Negative (DNG), Single-Negative ( SNG ) and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl...material RRL Rapid Research Letters SHG second-harmonic generation SNG single-negative SSR split-ring resonator A-1 Appendix A. October 2008...Pairs of Concentric Double-Negative (DNG), Single-Negative ( SNG ), and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl. Phys. 97, no. 9 (May

  11. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  12. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  13. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  14. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  15. Total Quality Management (TQM). Implementers Workshop

    DTIC Science & Technology

    1990-05-15

    SHEE’T :s t’ii ,rrl DEPARTMENT OF DEFENSE May 15, 1990 Lfl CN I TOTAL QUALITY MANAGEMENT (TQM) Implementers Workshop © Copyright 1990 Booz.Allen...must be continually performed in order to achieve successful TQM implementation. 1-5 = TOTAL QUALITY MANAGEMENT Implementers Workshop Course Content...information, please refer to the student manual, Total Quality Management (TOM) Awareness Seminar, that was provided for the Awareness Course. You may

  16. Application of a Micro Computer-Based Management Information System to Improve the USAF Service Reporting Process

    DTIC Science & Technology

    1990-09-01

    I. Introduction .......................................... 1 General Issue .................................. 1 Specific Research Problem...viii APPLICATION OF A MICRO COMPUTER-BASED MANAGEMENT INFORMATION SYSTEM TO IMPROVE THE USAF SERVICE REPORTING PROCESS I. Introduction General Issue...continued Transfer MIP Responsibility ,KNT WETSS0GEFORM UNCLASSIFIED 904 JAUG 19: iRR iRRl UUUUI HOWE271652_ D- FF:MCH INFO: NONE E. iUCH DATA DEF: NONE F

  17. Local Versus Long-Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Vrućinić, Milan; Matthiesen, Clemens; Sadhanala, Aditya; Divitini, Giorgio; Cacovich, Stefania; Dutton, Sian E; Ducati, Caterina; Atatüre, Mete; Snaith, Henry; Friend, Richard H; Sirringhaus, Henning; Deschler, Felix

    2015-09-01

    Radiative recombination in thin films of the archetypical, high-performing perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 shows localized regions of increased emission with dimensions ≈500 nm. Maps of the spectral emission line shape show narrower emission lines in high emission regions, which can be attributed to increased order. Excited states do not diffuse out of high emission regions before they decay, but are decoupled from nearby regions, either by slow diffusion rates or energetic barriers.

  18. Probing the Galactic Structure of the Milky Way with H II Regions

    NASA Astrophysics Data System (ADS)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas

    2018-01-01

    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.

  19. STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Knollmüller, Jakob; Frank, Philipp; Ensslin, Torsten A.

    2018-05-01

    STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.

  20. Origin and z-distribution of Galactic diffuse [C II] emission

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.

    2014-12-01

    Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the fractional [C ii] emission tracing (i) H2 gas in dense and diffuse molecular clouds as ~48% and ~14%, respectively, (ii) in the H i gas ~18%, and (iii) in the WIM ~21%. Including non-detections from H i increases the [C ii] in H i to ~27%. The z-scale distributions FWHM from smallest to largest are [C ii] sources with CO, ~130 pc, (CO-faint) diffuse H2 gas, ~200 pc, and the diffuse H i and WIM, ~330 pc. When combined with [C ii], CO observations probe the warm-H2 gas, tracing star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  2. Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board

    NASA Astrophysics Data System (ADS)

    Yuan, Huali; Little, John C.; Hodgson, Alfred T.

    Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.

  3. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  4. Sequencing Bands of Ribosomal Intergenic Spacer Analysis Fingerprints for Characterization and Microscale Distribution of Soil Bacterium Populations Responding to Mercury Spiking

    PubMed Central

    Ranjard, Lionel; Brothier, Elisabeth; Nazaret, Sylvie

    2000-01-01

    Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to β-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking. PMID:11097911

  5. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  6. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  7. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE PAGES

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; ...

    2015-10-29

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  8. Detection of Buckminsterfullerene emission in the diffuse interstellar medium.

    PubMed

    Berné, O; Cox, N L J; Mulas, G; Joblin, C

    2017-09-01

    Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 Å to electronic transitions of the buckminsterfullerene cation (i.e. [Formula: see text]) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 μ m emission bands commonly attributed to vibrational bands of neutral C 60 . According to classical models that compute the charge state of large molecules in space, C 60 is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C 60 we derive here from observations. We also find that C 60 is less abundant in the diffuse ISM than in star-forming regions, supporting the theory that C 60 can be formed in these regions.

  9. Diffuse X-Ray Emission in the Milky Way

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2011-01-01

    Our understanding of the diffuse X-ray emission from the Milky Way has evolved. extensively with time from when it was first observed in the 1960's, and its origin is still the subject of debate as much now as ever. This presentation will provide an overview of that evolution, the various emission components, emission mechanisms, an assessment of the current state of the field, and implications for eROSITA.

  10. Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data

    DOE PAGES

    Abdo, A. A.

    2010-03-08

    Here, we report on the first Fermi Large Area Telescope (LAT) measurements of the so-called “extragalactic” diffuse γ -ray emission (EGB). This component of the diffuse γ -ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic γ -ray emission, the detected LAT sources, and the solar γ -ray emission. We also find the spectrum of the EGB is consistent with a power law with a differential spectral index γ =more » 2.41 ± 0.05 and intensity I ( > 100 MeV ) = ( 1.03 ± 0.17 ) × 10 - 5 cm -2 s - 1 sr - 1 , where the error is systematics dominated. The EGB spectrum, presented here, is featureless, less intense, and softer than that derived from EGRET data.« less

  11. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  12. Feasibility study for detecting copper contaminants in transformer insulation using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Aparna, N.; Vasa, Nilesh J.; Sarathi, R.; Rajan, J. Sundara

    2014-10-01

    In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I-Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.

  13. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  14. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  15. Extracting spatial information from large aperture exposures of diffuse sources

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.

  16. A Guide to Oceanic Sedimentary Layering.

    DTIC Science & Technology

    1983-07-28

    Profiling," J. Geophys. Res. 73, 2597-2614. L3 Lee, H. J., 1980. "Physical Properties of Northeast Pacific Sedi- ments Related to Sedimentary Environment and...7i -AI33 060 A GUIDE TO OCEANIC SEDIMENTARY LAYERING(U) TEXAS UNIV 1/i AT AUSTIN APPLIED RESEARCH LABS C B BENNETT ET AL, 28 JUL 83 RRL-TR-83-25...Copy No. 3 A GUIDE TO OCEANIC SEDIMENTARY LAYERING Christopher B. Bennett J. Mark Daniels APPLIED RESEARCH LABORATORIES THE UNIVERSITY OF TEXAS AT

  17. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  18. How I Learned to Stop Worrying and Love the SWCX Emission

    NASA Technical Reports Server (NTRS)

    Snowden, Steven

    2011-01-01

    In the last twenty years solar wind change exchange (SWCX) X-ray emission has gone from a significant and irritating background component of unknown origin for astrophysical observations to a field of study in its own right. On one hand, it provides an uncertain offset to observations of extended astrophysical objects and the diffuse X-ray background, and severely compromises the interpretation of many results. On the other hand, SWCX emission has the potential to shed light on physical phenomena in the near-Earth environment and the solar system. In addition, charge exchange emission may prove significant in many other areas of astrophysical diffuse X-ray emission such as supernova remnants. I will present an historical background from the perspective of studying the diffuse X-ray background, cover a variety of SWCX observations and implications, and discuss the realm of possible research and practical applications based on SWCX emission

  19. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  20. Understanding uncertainties in modeling the galactic diffuse gamma-ray emission

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Calore, Francesca; Weniger, Christoph

    2017-01-01

    The nature of the Galactic diffuse gamma-ray emission as measured by the Fermi Gamma-ray Space Telescope has remained an active area of research for the last several years. A standard technique to disentangle the origins of the diffuse emission is the template fitting approach, where predictions for various diffuse components, such as emission from cosmic rays derived from Galprop or Dragon, are compared to the data. However, this method always results in an overall bad fit to the data, with strong residuals that are difficult to interpret. Additionally, there are instrinsic uncertainties in the predicted templates that are not accounted for naturally with this method. We therefore introduce a new template fitting approach to study the various components of the Galactic diffuse gamma-ray emission, and their correlations and uncertainties. We call this approach Sky Factorization with Adaptive Constrained Templates (SkyFACT). Rather than using fixed predictions from cosmic-ray propagation codes and examining the residuals to evaluate the quality of fits and the presence of excesses, we introduce additional fine-grained variations in the templates that account for uncertainties in the predictions, such as uncertainties in the gas tracers and from small scale variations in the density of cosmic rays. We show that fits to the gamma-ray diffuse emission can be dramatically improved by including an appropriate level of uncertainty in the initial spatial templates from cosmic-ray propagation codes. We further show that we can recover the morphology of the Fermi Bubbles from its spectrum alone with SkyFACT.

  1. Detection of the H92α recombination line from NGC 4945

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Oosterloo, T.; Goss, W. M.; Anantharamaiah, K. R.

    2010-07-01

    Context. Hydrogen ionized by young, high-mass stars in starburst galaxies radiates radio recombination lines (RRLs), whose strength can be used as a diagnostic of the ionization rate, conditions and gas dynamics in the starburst region, without problems of dust obscuration. However, the lines are weak and only few extragalactic starburst systems have been detected. Aims: We aimed to increase the number of known starburst systems with detectable RRLs for detailed studies, and we used the line properties to study the gas properties and dynamics. Methods: We searched for the RRLs H91α and H92α with rest frequencies of 8.6 GHz and 8.3 GHz in the nearby southern Seyfert galaxy NGC 4945 using the Australia Telescope Compact Array with resolution of 3”. This yielded a detection from which we derived conditions in the starburst regions. Results: We detected RRLs from the nucleus of NGC 4945 with a peak line strength integrated over the source of 17.8 mJy, making it the strongest extragalactic RRL emitter known at this frequency. The line and continuum emission from NGC 4945 can be matched by a model consisting of a collection of 10 to 300 H II regions with temperatures of 5000 K, densities of 103 cm-3 to 104 cm-3 and a total effective diameter of 2 pc to 100 pc. The Lyman continuum production rate required to maintain the ionization is 6 × 1052 s-1 to 3 × 1053 s-1, which requires 2000 to 10 000 O5 stars to be produced in the starburst, inferring a star formation rate of 2 M_⊙ yr-1 to 8 M_⊙ yr-1. We resolved the rotation curve within the central 70 pc region and this is well described by a set of rotating rings that were coplanar and edge on. We found no reason to depart from a simple flat rotation curve. The rotation speed of 120 km s-1 within the central 1” (19 pc) radius infers an enclosed mass of 3 × 107 M⊙, and an average surface density with the central 19 pc of 25 000 pc-2, which exceeds the threshold gas surface density for star formation. Conclusions: We discovered RRLs from NGC 4945. It is the strongest known extragalactic RRL emitter and is suited to high-quality spectroscopic study. We resolved the dynamics of the ionized gas in the central 70 pc and derived conditions and star formation rates in the ionized gas.

  2. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Oskinova, L. M.; Ignace, R.

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less

  3. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  4. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  5. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  6. Diffuse CO2 degassing monitoring of Cerro Negro volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Alonso, Mar; Ibarra, Martha; Rodríguez, Wesly; Melián, Gladys V.; Saballos, Armando; Barrancos, José; Pérez, Nemesio M.; Álvarez, Julio; Martínez, William

    2017-04-01

    We report the results of fourteen soil CO2 efflux surveys by the closed accumulation chamber method at Cerro Negro volcano, Nicaragua. The surveys were undertaken from 1999 to 2016 to constrain the diffuse CO2 emission from this volcano and to evaluate the spatial and temporal variations of CO2 degassing rate in relation to the eruptive cycle. Cerro Negro is an active basaltic volcano belonging to the active Central American Volcanic Arc which includes a 1,100 Km long chain of 41 active volcanoes from Guatemala to Panama. Cerro Negro first erupted in 1850 and has experienced 21 eruptive eruptions with inter eruptive average periods between 7 and 9 years. Since the last eruption occurred on 5 August 1999, with erupted lava flows and ash clouds together with gas emissions, a collaborative research program between INETER and ITER/INVOLCAN has been established for monitoring diffuse CO2 emissions from this volcano. The first survey carried out at Cerro Negro was in December 1999, just 3 months after the 1999 eruption, with a total diffuse CO2 emission output estimated on 1,869 ± 197 td-1. The second survey carried out in March 2003, three years after the eruption, yielded a value of 432 ± 54 td-1. Both values that can be considered within the post-eruptive phase. The last survey performed at Cerro Negro was in November 2016, with an estimated diffuse CO2 emission of 63 ± 14 tṡd-1and soil CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 7264 g m-2 d-1. The long-term record of diffuse CO2 emissions at Cerro Negro shows small temporal variations in CO2 emissions with a peak in 2004 (256 ± 26 td-1) followed by a peak in seismicity. Except this value, the rest of estimated values can be considered within the inter-eruptive phase, period during which a decreasing trend on the total diffuse CO2 output has been observed, with estimates between 10 and 83 tṡd-1. Regarding to the spatial distribution of diffuse CO2 values, most of relatively high CO2 efflux values were measured along the 1995 and 1999 craters together with higher soil H2S efflux and soil temperatures, and always close to the fumarolic areas, suggesting a structural control of the degassing process. The observed relationship between the long-term record of diffuse CO2 emissions and volcanic-seismic activity indicates that monitoring CO2 emission is an important geochemical tool for the volcanic surveillance at Cerro Negro.

  7. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    PubMed Central

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832

  8. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeley, Jillian R.; Marengo, Massimo; Trueba, Nicolas

    2017-06-01

    We present new theoretical period–luminosity–metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances ( Z = 0.0001–0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ {submore » 0}, and extinction, A {sub V}, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia ’ s first data release. For M4, we find a distance modulus of μ {sub 0} = 11.257 ± 0.035 mag with A {sub V}= 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.« less

  9. Crystalloids versus colloids for goal-directed fluid therapy in major surgery

    PubMed Central

    Hiltebrand, Luzius B; Kimberger, Oliver; Arnberger, Michael; Brandt, Sebastian; Kurz, Andrea; Sigurdsson, Gisli H

    2009-01-01

    Introduction Perioperative hypovolemia arises frequently and contributes to intestinal hypoperfusion and subsequent postoperative complications. Goal-directed fluid therapy might reduce these complications. The aim of this study was to compare the effects of goal-directed administration of crystalloids and colloids on the distribution of systemic, hepatosplanchnic, and microcirculatory (small intestine) blood flow after major abdominal surgery in a clinically relevant pig model. Methods Twenty-seven pigs were anesthetized and mechanically ventilated and underwent open laparotomy. They were randomly assigned to one of three treatment groups: the restricted Ringer lactate (R-RL) group (n = 9) received 3 mL/kg per hour of RL, the goal-directed RL (GD-RL) group (n = 9) received 3 mL/kg per hour of RL and intermittent boluses of 250 mL of RL, and the goal-directed colloid (GD-C) group (n = 9) received 3 mL/kg per hour of RL and boluses of 250 mL of 6% hydroxyethyl starch (130/0.4). The latter two groups received a bolus infusion when mixed venous oxygen saturation was below 60% ('lockout' time of 30 minutes). Regional blood flow was measured in the superior mesenteric artery and the celiac trunk. In the small bowel, microcirculatory blood flow was measured using laser Doppler flowmetry. Intestinal tissue oxygen tension was measured with intramural Clark-type electrodes. Results After 4 hours of treatment, arterial blood pressure, cardiac output, mesenteric artery flow, and mixed oxygen saturation were significantly higher in the GD-C and GD-RL groups than in the R-RL group. Microcirculatory flow in the intestinal mucosa increased by 50% in the GD-C group but remained unchanged in the other two groups. Likewise, tissue oxygen tension in the intestine increased by 30% in the GD-C group but remained unchanged in the GD-RL group and decreased by 18% in the R-RL group. Mesenteric venous glucose concentrations were higher and lactate levels were lower in the GD-C group compared with the two crystalloid groups. Conclusions Goal-directed colloid administration markedly increased microcirculatory blood flow in the small intestine and intestinal tissue oxygen tension after abdominal surgery. In contrast, goal-directed crystalloid and restricted crystalloid administrations had no such effects. Additionally, mesenteric venous glucose and lactate concentrations suggest that intestinal cellular substrate levels were higher in the colloid-treated than in the crystalloid-treated animals. These results support the notion that perioperative goal-directed therapy with colloids might be beneficial during major abdominal surgery. PMID:19302713

  10. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  11. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  12. The Born-again Planetary Nebula A78: An X-Ray Twin of A30

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Todt, H.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.; Schönberner, D.; Oskinova, L. M.; Marquez-Lugo, R. A.; Fang, X.; Ramos-Larios, G.

    2015-01-01

    We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T ≈ 1.0 × 106 K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L X, CSPN = (1.2 ± 0.3) × 1031 erg s-1 and L X, DIFF = (9.2 ± 2.3) × 1030 erg s-1 for the CSPN and diffuse components, respectively.

  13. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  14. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from material system (namely, substrate//glue//vinyl tile).

  15. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission of gas experiences crustal contamination, influence of magma chamber beneath the YMS, sub-surface processes and air dilution.

  16. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  17. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  18. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    NASA Astrophysics Data System (ADS)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  19. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  20. Multiwavelength analysis of the Lyman-α emitting galaxy Haro 2: relation between the diffuse Lyman-α and soft X-ray emissions

    NASA Astrophysics Data System (ADS)

    Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.

    2012-10-01

    Context. Lyman-α emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims: To understand how the Lyα escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Lyα emitters, like Haro 2. Methods: We study the Lyα emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Lyα emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Hα image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results: The UV, Hα and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to the southeast. Both compact and diffuse Lyα emission components are observed along the major and minor axes in STIS spectral images. Lyα is spatially decoupled from Balmer lines emission, Balmer decrement and UV continuum. However, the diffuse Lyα component is spatially correlated with the diffuse soft X-ray emission. Moreover, unlike the compact Lyα emission, diffuse Lyα shows luminosities larger than predicted from Hα, assuming case B recombination and considering the dust extinction as derived from Hα/Hβ. Conclusions: The Lyα emission closely associated to the massive stellar clusters is strongly affected by the properties of the surrounding neutral gas (presence of outflows, dust abundance), leading to even a range of escape fractions at different locations within the same starburst. On the other hand, we propose that the diffuse Lyα emission originates in gas ionized by the hot plasma responsible for the soft X-ray radiation, as suggested by their spatial correlation and by the measured L(Hα)/L0.4-2.4 keV ratios. Calibration of Lyα as star formation rate tracer should therefore include both effects (destruction vs. enhancement) to avoid biases in the study of galaxies at cosmological distances.

  1. Low-frequency polarization measurements of the diffuse radio emission of the galaxy

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.; Paseka, A. M.

    2015-07-01

    Polarization measurements of diffuse Galactic radio emission at 151.5, 198, 217, 237, and 290 MHz have been carried out in the direction of the North Celestial Pole, North Galactic Pole, one region of the North Polar Spur, minimum radio brightness of the Northern sky ( l = 190°, b = 50°), and in the direction l = 147°, b = 9° in the so-called FAN region with enhanced polarization. The results obtained testify to the presence of low spatial frequencies in the angular distribution of the Stokes parameters Q and U of the diffuse Galactic synchrotron emission that are not detectable in interferometric observations. The spectra of the brightness temperature of the polarized component, rotation measures, and intrinsic polarization position angles of the radio emission in the studied regions are presented.

  2. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    PubMed

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  3. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  4. A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2013-01-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.

  5. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-03

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.

  6. Fully Integrated Biopotential Acquisition Analog Front-End IC

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  7. Radial Velocities of RR Lyrae Stars in and around NGC 6441

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Mills, Arthur; Edgecomb, Joseph; Thomas, Mathew; Schilter, Levi; Boyle, Craig; Parker, Stephen; Bellevue, Gordon; Rich, R. Michael; Koch, Andreas; Johnson, Christian I.; Nataf, David M.

    2018-04-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H] ∼ ‑1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of GCs. Here, an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy GC NGC 6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of 40 RRLs centered on the GC NGC 6441. All 13 of the RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 ± 5 km s‑1 and a star-to-star scatter of 11 km s‑1. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC 6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster’s orbit. Therefore, either the tidal radius of NGC 6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC 6441 that are building up the old spheroidal bulge.

  8. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by eithermore » reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.« less

  9. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    NASA Astrophysics Data System (ADS)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  10. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  11. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-01-19

    We present that the γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy rangemore » between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. In conclusion, the total intensity attributed to the IGRB is (7.2 ± 0.6) × 10 –6 cm –2 s –1 sr –1 above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  12. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvementsmore » in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  13. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V.

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).« less

  14. Anomalous increase of diffuse CO_{2} emission from Brava (Cape Verde): evidence of volcanic unrest or increase gas release from a stationary magma body?

    NASA Astrophysics Data System (ADS)

    García-Merino, Marta; García-Hernández, Rubén; Montrond, Eurico; Dionis, Samara; Fernandes, Paulo; Silva, Sonia V.; Alfama, Vera; Cabral, Jeremías; Pereira, Jose M.; Padrón, Eleazar; Pérez, Nemesio M.

    2017-04-01

    Brava (67 km2) is the southwestern most and the smallest inhabited island of the Cape Verde archipelago. It is located 18 km west of Fogo Island and rises 976 m from the sea level. Brava has not any documented historical eruptions, but its Holocene volcanism and relatively high seismic activity clearly indicate that it is an active volcanic island. Since there have been no historic eruptions in Brava, volcanic hazard awareness among the population and the authorities is very low; therefore, its volcano monitoring program is scarce. With the aim of helping to provide a multidisciplinary monitoring program for the volcanic surveillance of the island, diffuse CO2 emission surveys have been carried out since 2010; approximately every 2 years. Soil CO2 efflux measurements are periodically performed at ˜ 275 observation sites all over the island and after taking into consideration their accessibility and the island volcano-structural characteristics. At each sampling site, soil CO2 efflux measurement was performed by means of a portable NDIR sensor according to the accumulation chamber method. To quantify the total diffuse CO2 emission from Brava volcanic system, soil CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). An increase trend of diffuse CO2 emission rate from 42 to 681 t d-1at Brava was observed; just one year prior the 2014-2015 Fogo eruption and almost three years before the anomalous seismic activity recorded on August 2016 with more than 1000 seismic events registered by the INMG on August 1st, 2016 (Bruno Faria, personal communication). Due to this anomalous seismic activity, a diffuse CO2 emission survey at Brava was performed from August 2 to 10, 2016, and the estimated degassing rate yield a value about 72 t d-1; typical background values. An additional survey was carried out from October 22 to November 6, 2016. For this last survey, the estimated diffuse CO2 emission from Brava showed the highest observed value with a degassing rate about 1.700 t d-1. These observed changes on diffuse CO2 emission are geochemical evidences which seem to support a volcanic unrest for the recent anomalous seismic activity registered at Brava.

  15. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations with a delta I/I method produces consistent results.

  16. Air Quality Impact of Diffuse and Inefficient Combustion Emissions in Africa (DICE-Africa).

    PubMed

    Marais, Eloise A; Wiedinmyer, Christine

    2016-10-04

    Anthropogenic pollution in Africa is dominated by diffuse and inefficient combustion sources, as electricity access is low and motorcycles and outdated cars proliferate. These sources are missing, out-of-date, or misrepresented in state-of-the-science emission inventories. We address these deficiencies with a detailed inventory of Diffuse and Inefficient Combustion Emissions in Africa (DICE-Africa) for 2006 and 2013. Fuelwood for energy is the largest emission source in DICE-Africa, but grows from 2006 to 2013 at a slower rate than charcoal production and use, and gasoline and diesel for motorcycles, cars, and generators. Only kerosene use and gas flaring decline. Increase in emissions from 2006 to 2013 in this work is consistent with trends in satellite observations of formaldehyde and NO 2 , but much slower than the explosive growth projected with a fuel consumption model. Seasonal biomass burning is considered a large pollution source in Africa, but we estimate comparable emissions of black carbon and higher emissions of nonmethane volatile organic compounds from DICE-Africa. Nitrogen oxide (NO x ≡ NO + NO 2 ) emissions are much lower than from biomass burning. We use GEOS-Chem to estimate that the largest contribution of DICE-Africa to annual mean surface fine particulate matter (PM 2.5 ) is >5 μg m -3 in populous Nigeria.

  17. Improved cosmic-ray injection models and the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Carlson, Eric; Linden, Tim; Profumo, Stefano

    2016-09-01

    Fermi-LAT observations of the Milky Way Galactic Center (GC) have revealed a spherically symmetric excess of GeV γ rays extending to at least 10° from the dynamical center of the Galaxy. A critical uncertainty in extracting the intensity, spectrum, and morphology of this excess concerns the accuracy of astrophysical diffuse γ -ray emission models near the GC. Recently, it has been noted that many diffuse emission models utilize a cosmic-ray injection rate far below that predicted based on the observed star-formation rate in the Central Molecular Zone. In this study, we add a cosmic-ray injection component which nonlinearly traces the Galactic H2 density determined in three dimensions, and find that the associated γ -ray emission is degenerate with many properties of the GC γ -ray excess. Specifically, in models that utilize a large sideband (4 0 ° ×4 0 ° surrounding the GC) to normalize the best-fitting diffuse emission models, the intensity of the GC excess decreases by approximately a factor of 2, and the morphology of the excess becomes less peaked and less spherically symmetric. In models which utilize a smaller region of interest (1 5 ° ×1 5 ° ) the addition of an excess template instead suppresses the intensity of the best-fit astrophysical diffuse emission, and the GC excess is rather resilient to changes in the details of the astrophysical diffuse modeling. In both analyses, the addition of a GC excess template still provides a statistically significant improvement to the overall fit to the γ -ray data. We also implement advective winds at the GC, and find that the Fermi-LAT data strongly prefer outflows of order several hundred km/s, whose role is to efficiently advect low-energy cosmic rays from the inner-few kpc of the Galaxy. Finally, we perform numerous tests of our diffuse emission models, and conclude that they provide a significant improvement in the physical modeling of the multiwavelength nonthermal emission from the GC region.

  18. Transient Infrared Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.

  19. Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.

    2007-12-01

    The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.

  20. Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Toulkeridis, Theofilos; Melián, Gladys; Barrancos, José; Virgili, Giorgio; Sumino, Hirochika; Notsu, Kenji

    2012-08-01

    Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11 ± 2 t day-1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3 t day-1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990 ± 85 t day-1, with 605 t day-1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6 mol% of H2O; the main noncondensable components amounted to 97.4 mol% CO2, 1.5 mol% SO2, 0.6 mol% H2S, and 0.35 mol% N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88 ± 0.25 R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47 %, respectively.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapala, M. J.; Sandstrom, K.; Groves, B.

    The [C II] 158 μm line is one of the strongest emission lines observed in star-forming galaxies and has been empirically measured to correlate with the star-formation rate (SFR) globally and on kiloparsec scales. However, because of the multiphase origins of [C II], one might expect this relation to break down at small scales. We investigate the origins of [C II] emission by examining high spatial resolution observations of [C II] in M31 with the Survey of Lines in M31. We present five ∼700 × 700 pc (3' × 3') fields mapping the [C II] emission, Hα emission, and themore » ancillary infrared (IR) data. We spatially separate star-forming regions from diffuse gas and dust emission on ∼50 pc scales. We find that the [C II]-SFR correlation holds even at these scales, although the relation typically has a flatter slope than found at larger (kiloparsec) scales. While the Hα emission in M31 is concentrated in the SFR regions, we find that a significant amount (∼20%-90%) of the [C II] emission comes from outside star-forming regions and that the total IR emission (TIR) has the highest diffuse fraction of all SFR tracers. We find a weak correlation of the [C II]/TIR to dust color in each field and find a large-scale trend of increasing [C II]/TIR with galactocentric radius. The differences in the relative diffuse fractions of [C II], Hα, and IR tracers are likely caused by a combination of energetic photon leakage from H II regions and heating by the diffuse radiation field arising from older (B-star) stellar populations. However, we find that by averaging our measurements over kiloparsec scales, these effects are minimized, and the relation between [C II] and SFR found in other nearby galaxy studies is retrieved.« less

  2. THE BORN-AGAIN PLANETARY NEBULA A78: AN X-RAY TWIN OF A30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Marquez-Lugo, R. A.

    We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances aremore » used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T ≈ 1.0 × 10{sup 6} K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L {sub X,} {sub CSPN} = (1.2 ± 0.3) × 10{sup 31} erg s{sup –1} and L {sub X,} {sub DIFF} = (9.2 ± 2.3) × 10{sup 30} erg s{sup –1} for the CSPN and diffuse components, respectively.« less

  3. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR-X-ray relation, finding that anywhere between 0% and 16% of the total hard X-ray emission is synchrotron for different parameters, and up to 2% in the densest starbursts assuming an E -2.2 injection spectrum and a diffusive escape time of 10 Myr (E/3 GeV)-1/2 (h/100 pc). Neutrino observations by IceCube and TeV γ-ray data from HESS, VERITAS, and CTA can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain the possibility of hard, second components of primary e ± from sources like pulsars in starbursts, which could enhance the synchrotron X-ray emission further.

  4. Forecasts of geomagnetic activities and HF radio propagation conditions made at Hiraiso/Japan

    NASA Technical Reports Server (NTRS)

    Marubashi, K.; Miyamoto, Y.; Kidokoro, T.; Ishii, T.

    1979-01-01

    The Hiraiso Branch of RRL prediction techniques are summarized separately for the 27 day recurrent storm and the flare-associated storm. The storm predictions are compared with the actual geomagnetic activities in two ways. The first one is the comparison on a day to day basis. In the second comparison, the accuracy of the storm predictions during 1965-1976 are evaluated. In addition to the storm prediction, short-term predictions of HF radio propagation conditions are conducted at Hiraiso. The HF propagation predictions are briefly described as an example of the applications of the magnetic storm prediction.

  5. Phase 2 Remedial Investigation Report Army Materials Technology Laboratory, Task Order 1 Remedial Investigation/Feasibility Study, Volume 5 - Appendices K-V

    DTIC Science & Technology

    1994-05-01

    and trivalent chromium . Environ. Res. 39:372-385. Kuperman EF. 1964. Maxium allowable hexa valent chromium concentrations in atmospheric pollutants... trivalent chromium administered in drinking water to I rats. AMA Arch. Ind. Health 18:232-234. NAS. 1989. National Academy of Sciences. Recommended dietary...yL I&C-7-Woi WELL. LOGI LOCATION: ’m A A WELL NUM13ER: G, -s WrUKORDERNMSEt 7.-r -,-c i--i PAGE I OF I ORILUNG CNTRACTOR: R 4 R Zel rrl-mA TIG -4 A

  6. Real-Time Adaptive Control of Mixing in a Plane Shear Layer

    DTIC Science & Technology

    1992-01-01

    ODAT1 3*as ypt AND OAIU COVusa3 Ja 192A6ua Technical 15 Jan 91 - 14 Jan 𔃼 rrlTLAND SUR0(U) T a 192= Pij. m F N IEu M Real-Time Adaptive Control of...0465 Submitted to Air Force Office of Scientific Research Boiling Air Force Base, Building 410 Washington, D.C. 20332 Submitted by A. Glezer Acc&:io n F1...t ibu_:ion i ... ..... ... . Aw ilfbility Cc.C’ Dist Spec I A-1 92-05643 92 1 3a 12 TABLE OF CONTENTS IN TRO D U CTIO N

  7. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  8. Energetic electron propagation in the decay phase of non-thermal flare emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Yan, Yihua; Tsap, Yuri T., E-mail: huangj@nao.cas.cn

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004more » November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.« less

  9. Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The diffuse very high-energy (VHE; >100 GeV) γ-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual γ-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total γ-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE γ-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.

  10. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  11. Is the Eagle Nebula powered by a hidden supernova remnant ?

    NASA Astrophysics Data System (ADS)

    Boulanger, Francois

    2008-10-01

    Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation

  12. A Chandra High-Resolution X-ray Image of Centaurus A.

    PubMed

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  13. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  14. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  15. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  16. Methods for reducing pollutant emissions from jet aircraft

    NASA Technical Reports Server (NTRS)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  17. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  18. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  19. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  20. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  1. Bird associations with shrubsteppe plant communities at the proposed reference repository location in southeastern Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuler, C.A.; Rickard, W.H.; Sargeant, G.A.

    1988-03-01

    This report provides information on te seasonal use of shrubsteppe vegetation by bird species at the RRL. Bird abundance and distribution were studied at the RRL to ensure that the DOE monitored migratory bird species pursuant to the Migratory Bird Treaty Act and to assess potential impacts of site characterization activities on bird populations. Birds were counted on two transects that together sampled an areas of 1.39 km/sup 2/. The relative abundance of birds, species richness, seasonal distribution, and the association of breeding shrubsteppe birds with major vegetation types were determined from Janurary through December 1987. Only 38 species weremore » counted during 82 surveys. Total bird density during the nesting season (March-June) was 42.96 birdskm/sup 2/ and the density for the entire year was 26.74 birdskm/sup 2/. The characteristic nesting birds in shrubsteppe habitats were western meadowlark, sage sparrow, burrowing owl, mourning dove, horned lark, long-billed curlew, lark sparrow, and loggerhead shrike. Western meadowlark and sage sparrows were the most abundant breeding birds with an average density of 11.25 and 7.76 birdskm/sup 2/, respectively. Seasonal distribution of birds varied with species, but most species were present from March to September. Distribution and abunandance of nesting birds were correlated with habitat type. About 63% of the habitat surveyed was sagebrush, 26% was cheatgrass, and 11% was spiny hopsage. Sagebrush habitat supproted a greeater total bird density than cheatgrass or hopsage habitats. Sage sparrows were closely associated with sagebrush habitats, while western meadowlarks showed no strong habitat affinities. 22 refs., 9 figs., 6 tabs« less

  2. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  3. [Renal length measured by ultrasound in adult mexican population].

    PubMed

    Oyuela-Carrasco, J; Rodríguez-Castellanos, F; Kimura, E; Delgado-Hernández, R; Herrera-Félix, J P

    2009-01-01

    Renal length estimation by ultrasound is an important parameter in clinical evaluation of kidney disease and healthy donors. Changes in renal volume may be a sign of kidney disease. Correct interpretation of renal length requires the knowledge of normal limits, these have not been described for Latin American population. To describe normal renal length (RL) by ultrasonography in a group of Mexican adults. Ultrasound measure of RL in 153 healthy Mexican adults stratified by age. Describe the association of RL to several anthropometric variables. A total of 77 males and 76 females were scanner. The average age for the group was 44.12 +/- 15.44 years. The mean weight, body mass index (BMI) and height were 68.87 +/- 11.69 Kg, 26.77 +/- 3.82 kg/m2 and 160 +/- 8.62 cm respectively. Dividing the population by gender, showed a height of 166 +/- 6.15 cm for males and 154.7 +/- 5.97 cm for females (p =0.000). Left renal length (LRL) in the whole group was 105.8 +/- 7.56 mm and right renal length (RRL) was 104.3 +/- 6.45 mm (p = 0.000.) The LRL for males was 107.16 +/- 6.97 mm and for females was 104.6 +/- 7.96 mm. The average RRL for males was 105.74 +/- 5.74 mm and for females 102.99 +/- 6.85 mm (p = 0.008.) We noted that RL decreased with age and the rate of decline accelerates alter 60 years of age. Both lengths correlated significantly and positively with weight, BMI and height. The RL was significantly larger in males than in females in both kidneys (p = 0.036) in this Mexican population. Renal length declines after 60 years of age and specially after 70 years.

  4. SIGGMA: A SURVEY OF IONIZED GAS IN THE GALAXY, MADE WITH THE ARECIBO TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B.; McIntyre, T.; Terzian, Y.

    A Survey of Ionized Gas in the Galaxy, made with the Arecibo telescope (SIGGMA), uses the Arecibo L-band Feed Array (ALFA) to fully sample the Galactic plane (30 Degree-Sign {<=} l {<=} 75 Degree-Sign and -2 Degree-Sign {<=} b {<=} 2 Degree-Sign ; 175 Degree-Sign {<=} l {<=} 207 Degree-Sign and -2 Degree-Sign {<=} b {<=} 1 Degree-Sign ) observable with the telescope in radio recombination lines (RRLs). Processed data sets are being produced in the form of data cubes of 2 Degree-Sign (along l) Multiplication-Sign 4 Degree-Sign (along b) Multiplication-Sign 151 (number of channels), archived and made public. Themore » 151 channels cover a velocity range of 600 km s{sup -1} and the velocity resolution of the survey changes from 4.2 km s{sup -1} to 5.1 km s{sup -1} from the lowest frequency channel to the highest frequency channel. RRL maps with 3.'4 resolution and a line flux density sensitivity of {approx}0.5 mJy will enable us to identify new H II regions, measure their electron temperatures, study the physics of photodissociation regions with carbon RRLs, and investigate the origin of the extended low-density medium. Twelve Hn{alpha} lines fall within the 300 MHz bandpass of ALFA; they are resampled to a common velocity resolution to improve the signal-to-noise ratio (S/N) by a factor of three or more and preserve the line width. SIGGMA will produce the most sensitive fully sampled RRL survey to date. Here, we discuss the observing and data reduction techniques in detail. A test observation toward the H II region complex S255/S257 has detected Hn{alpha} and Cn{alpha} lines with S/N > 10.« less

  5. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  6. Effects of surface diffusion on high temperature selective emitters

    DOE PAGES

    Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; ...

    2015-01-01

    Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure’s curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.

  7. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  8. Diffuse CO_{2} degassing monitoring of the oceanic active volcanic island of El Hierro, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Norrie, Janice; Withoos, Yannick; García-Merino, Marta; Melián, Gladys; Padrón, Eleazar; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Pérez, Nemesio M.

    2017-04-01

    Even during repose periods, volcanoes release large amounts of gases from both visible (fumaroles, solfataras, plumes) and non-visible emanations (diffuse degassing). In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs, particularly in those volcanic areas where there are no visible volcanic-hydrothermal gas emissions. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. As CO2 travels upward by advective-diffusive transport mechanisms and manifests itself at the surface, changes in its flux pattern over time provide important information for monitoring volcanic and seismic activity. Since 1998, diffuse CO2 emission has been monitored at El Hierro Island, the smallest and south westernmost island of the Canarian archipelago with an area of 278 km2. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become the most useful geochemical tool to monitor the volcanic activity in this volcanic island. The island experienced a volcano-seismic unrest that began in July 2011, characterized by the location of a large number of relatively small earthquakes (M<2.5) beneath El Hierro at depths between 8 and 15 km. On October 12, 2011, a submarine eruption was confirmed during the afternoon of October 12, 2011 by visual observations off the coast of El Hierro, about 2 km south of the small village of La Restinga in the southernmost part of the island. During the pre-eruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep seated magmatic gases to the surface. The second one, between October 24 and November 27, 2011, before the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The highest CO2 degassing rate measured in the last three years (1684 t/d) was observed during a seismo-volcanic unrest. This value decreased until close to background value (˜422 t/d, Melián et al., 2014) contemporaneously with the decline of the seismic activity during the first half of 2013. The last diffuse CO2 degassing survey was carried out in the summer of 2016, showing a emission rate of 854 t/d. Discrete surveys of diffuse CO2 emission have provided important information to optimize the early warning system in the volcano monitoring programs of El Hierro and to monitor the evolution of an ongoing volcanic eruption, even though is a submarine eruption.

  9. Chromium Diffusion Doping on ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Journigan, Troy D.; Chen, K.-T.; Chen, H.; Burger, A.; Schaffers, K.; Page, R. H.; Payne, S. A.

    1997-01-01

    Chromium doped zinc selenide crystal have recently been demonstrated to be a promising material for near-IR room temperature tunable lasers which have an emission range of 2-3 micrometers. In this study a new diffusion doping process has been developed for incorporation of Cr(+2) ion into ZnSe wafers. This process has been successfully performed under isothermal conditions, at temperatures above 800 C. Concentrations in excess of 10(exp 19) Cr(+2) ions/cu cm, an order of magnitude larger than previously reported in melt grown ZnSe material, have been obtained by diffusion doping, as estimated from optical absorption measurements. The diffusivity was estimated to be about 10(exp -8) sq cm/sec using a thin film diffusion model. Resistivity was derived from current-voltage measurements and in the range of 10(exp 13) and 10(exp 16) omega-cm. The emission spectra and temperature dependent lifetime data will also be presented and discussed.

  10. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  11. Far-Infrared sources and diffuse emission in M31

    NASA Technical Reports Server (NTRS)

    Xu, Cong; Helou, George

    1994-01-01

    A study on the far-infrared (FIR) emission of M31 has been carried out with the High Resolution (HiRes) maps (approx. 1 min) derived from IRAS data. Sixty-eight FIR sources are detected in M31, which in general coincide with optical HII regions, and contribute 15, 23, 29, and 23 percent to the fluxes in 12, 25, 60, and 100 micron bands, respectively. The remaining diffuse emission, which dominates the FIR emission of M31, is studied using a dust heating model which utilizes the UV and optical photometry maps and the HI maps available in the literature. It is found that the global dust-to-gas ratio in M31 disk is 6.5 10(exp -3), very close to the dust-to-gas ratio in the solar neighborhood. There is a significant galactocentric gradient of the dust-to-HI-gas ratio, with an e-folding scale length of 9 kpc. The diffuse dust correlates tightly with the HI gas. The model indicates that the non-ionizing UV (913-4000A) radiation from massive and intermediate massive stars contributes only about 30 percent of the heating of the diffuse dust, while the optical-NIR (4000-9000A) radiation from the old stellar population is responsible for the most of the heating.

  12. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less

  13. Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2009-09-01

    We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.

  14. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  15. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  16. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  17. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  18. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. Modelling the diffuse dust emission around Orion

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti

    2018-06-01

    We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.

  20. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

  1. Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago

    NASA Astrophysics Data System (ADS)

    Padron, E.; Hernandez Perez, P. A.; Perez, N.; Theofilos, T.; Melian, G.; Barrancos, J.; Virgil, G.; Sumino, H.; Notsu, K.

    2009-12-01

    The active shield-volcano Sierra Negra is part of the Galapagos hotspot. Sierra Negra is the largest shield volcano of Isabela Island, hosting a 10 km diameter caldera. Ten historic eruptions have occurred and some involved a frequently visited east caldera rim fissure zone called Volcan Chico. The last volcanic event occurred in October 2005 and lasted for about a week, covering approximately twenty percent of the eastern caldera floor. Sierra Negra volcano has experienced some significant changes in the chemical composition of its volcanic gas discharges after the 2005 eruption. This volcanic event produced an important SO2 degassing that depleted the magmatic content of this gas. Not significant changes in the MORB and plume-type helium contribution were observed after the 2005 eruption, with a 65.5 % of MORB and 35.5 % of plume contribution. In 2006 a visible and diffuse gas emission study was performed at the summit of Sierra Negra volcano, Galapagos, to evaluate degassing rate from this volcanic system. Diffuse degassing at Sierra Negra was mainly confined in three different DDS: Volcan Chico, the southern inner margin of the caldera, and Mina Azufral. These areas showed also visible degassing, which indicates highly fractured areas where volcano-hydrothermal fluids migrate towards surface. A total fumarole/plume SO2 emission of 11 ± 2 td-1 was calculated by mini-DOAS ground-based measurements at Mina Azufral fumarolic area. Molar ratios of major volcanic gas components were also measured in-situ at Mina Azufral with a portable multisensor. The results showed H2S/SO2, CO2/SO2 and H2O/SO2 molar ratios of 0.41, 52.2 and 867.9, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratio we have estimated other volatiles emission rates. The results showed that H2O, CO2 and H2S emission rates from Sierra Negra are 562, 394, and 2.4 t d-1, respectively. The estimated total output of diffuse CO2 emission from the summit of Sierra Negra was 989 ± 85 t d-1. Estimated diffuse/plume CO2 emission ratio was 2.5.

  2. Deep Chandra Observations of ESO 428-G014. II. Spectral Properties and Morphology of the Large-scale Extended X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng

    2018-03-01

    We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.

  3. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  4. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  5. The Galactic Center View with Simbol-X

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.

    2009-05-01

    The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.

  6. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  7. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.

    PubMed

    Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian

    2018-06-19

    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

  8. Short-term variations of diffuse CO2 emission from the summit crater of Teide volcano, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Melián, Gladys V.; Ocampo, Stephany; Nisbet, Andrew; McKnight, Samara; Monzón, Tania; Asensio-Ramos, María; Alonso, Mar; Rodríguez, Fátima; García-Merino, Marta; Amonte, Cecilia; Pérez, Nemesio M.

    2017-04-01

    Teide volcano in Tenerife, Canary Islands, is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83˚ C) corresponds to the boiling point of water at discharge conditions. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). During June, July and August 2016, twelve soil gas surveys were performed at the summit crater of Teide volcano in order to evaluate short-term variations of diffuse CO2 degassing pattern. Soil CO2 efflux and soil temperature were always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method and using a non-dispersive infrared (NDIR) LICOR-820 CO2analyzer. Soil CO2 efflux values presented a range from non-detectable (˜0.5 gṡm-2ṡd-1) to 10.8 kgṡm-2ṡd-1, with an average value of 2.7 kgṡm-2ṡd-1, while soil temperature ranged from 13.1 to 83.6˚ C with a mean value of 55.6˚ C. Sequential Gaussian simulations (sGs) were used for mapping and estimate the volcanic diffuse CO2 emission at each survey. The highest values of diffuse CO2 efflux were measured along the east (>8 kgṡm-2ṡd-1) and west (>5 kgṡm-2ṡd-1) sectors of the crater. Areas with highest diffuse CO2 effluxes were also characterized by a relatively high soil temperature (>60˚ C) and by an intense hydrothermal alteration. Weekly diffuse CO2 emission variations from the summit crater during the study period showed a range between 13.5 and 24.7 tṡd-1 with an average value of 18.9 tṡd-1. During these 3 months, the seismic activity rate was about 10 seismic events per month registered by the Instituto Geográfico Nacional (IGN; http://www.ign.es). We compared these observed weekly variations with monthly variations of a longer period with similar seismic rate such as 2014 (about 8 seismic events per month, and values ranged from 15.6 to 22.4 tṡd-1, and an average value of 19.0 tṡd-1. These values are in the same order than the observed during our study. However, for a longer period of observation, from 1999 to 2010, diffuse CO2 emission rates varied from 2.2 to 36.3 tṡd-1, with a mean value of 15.7 tṡd-1 (Melián et al., 2012). The long-term variations observed in the diffuse CO2 emission rates during this period of 10 years were significantly higher than short-term variations observed in the period of study. It is also important to note that the volcanic-seismic crisis of 2004 occurred with an increase on the CO2 emission from Teide summit crater (Melián et al., 2012). This study shows that during periods of seismic tranquility, diffuse CO2 emission rates will not suffer significant variations, whether performed on a weekly or monthly basis. References: Melián et al., 2012. Bull. Volcanol. DOI 10.1007/s00445-012-0613-1 Pérez et al., 2013. J. Geol. Soc. DOI 10.1144/jgs2012-125 .

  9. Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing

    EPA Science Inventory

    Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...

  10. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-04-09

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  11. Fermi-LAT Observations of the Diffuse γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Ziegler, M.; Zimmer, S.

    2012-05-01

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.

  12. Characteristics of dayside auroral displays in relation to magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Minow, Joseph I.

    1997-09-01

    The use of dayside aurorae as a ground based monitor of magnetopause activity is explored in this thesis. The origin of diffuse (OI) 630.0 nm emissions in the midday auroral oval is considered first. Analysis of low altitude satellite records of precipitating charged particles within the cusp show an unstructured electron component that will produce a 0.5-1 kR 630.0 nm emission throughout the cusp. Distribution of the electrons is controlled by the requirement of charge neutrality in the cusp, predicting a diffuse 630.0 nm background even if the magnetosheath plasma is introduced into the magnetosphere in discrete merging events. Cusp electron fluxes also contain a structured component characterized by enhancements in the electron energy and energy flux over background values in narrow regions a few 10's of kilometers in width. These structured features are identified as the source of the transient midday arcs. An auroral model is developed to study the morphology of (OI) 630.0 nm auroral emissions produced by the transient arcs. The model demonstrates that a diffuse 630.0 nm background emission is produced by transient arcs due to the long lifetime of the O(1D) state. Two sources of diffuse 630.0 nm background emissions exist in the cusp which may originate in discrete merging events. The conclusion is that persistent 630.0 nm emissions cannot be interpreted as prima facie evidence for continuous particle transport from the magnetosheath across the magnetopause boundary and into the polar cusp. The second subject that is considered is the analysis of temporal and spatial variations of the diffuse 557.7 nm pulsating aurora in relation to the 630.0 nm dominated transient aurora. Temporal variations at the poleward boundary of the diffuse 557.7 nm aurora correlate with the formation of the 630.0 nm transient aurorae suggesting that the two events are related. The character of the auroral variations is consistent with the behavior of particle populations reported during satellite observations of flux transfer events near the dayside magnetopause. An interpretation of the events in terms of impulsive magnetic reconnection yields a new observation that relates the poleward moving transient auroral arcs in the midday sector to the flux transfer events.

  13. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertaintiesmore » associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  14. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Atwood, W. B.

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  15. Origin, Emission, and Propagation of P-H Pulses

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.

  16. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  17. Limits on diffuse X-ray emission from M101

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Sanders, W. T.

    1984-01-01

    Observed limits on diffuse X-ray emission from M101 require that the temperature of any coronal or matrix hot gas which is radiating an appreciable part ( 10%) of the average supernova power be less than 10(5.7)K. Furthermore, the fraction of the galactic plane occupied by hot buttles similar to the one which apparently surrounds the Sun is at most 25% in the region between 10 kpc and 20 kpc from the galactic center.

  18. Static SPME sampling of VOCs emitted from indoor building materials: prediction of calibration curves of single compounds for two different emission cells.

    PubMed

    Mocho, Pierre; Desauziers, Valérie

    2011-05-01

    Solid-phase microextraction (SPME) is a powerful technique, easy to implement for on-site static sampling of indoor VOCs emitted by building materials. However, a major constraint lies in the establishment of calibration curves which requires complex generation of standard atmospheres. Thus, the purpose of this paper is to propose a model to predict adsorption kinetics (i.e., calibration curves) of four model VOCs. The model is based on Fick's laws for the gas phase and on the equilibrium or the solid diffusion model for the adsorptive phase. Two samplers (the FLEC® and a home-made cylindrical emission cell), coupled to SPME for static sampling of material emissions, were studied. A good agreement between modeling and experimental data is observed and results show the influence of sampling rate on mass transfer mode in function of sample volume. The equilibrium model is adapted to quite large volume sampler (cylindrical cell) while the solid diffusion model is dedicated to small volume sampler (FLEC®). The limiting steps of mass transfer are the diffusion in gas phase for the cylindrical cell and the pore surface diffusion for the FLEC®. In the future, this modeling approach could be a useful tool for time-saving development of SPME to study building material emission in static mode sampling.

  19. 40 CFR 63.6100 - What emission and operating limitations must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stationary combustion turbine, a lean premix oil-fired stationary combustion turbine, a diffusion flame gas-fired stationary combustion turbine, or a diffusion flame oil-fired stationary combustion turbine as...

  20. 40 CFR Table 1 to Subpart Yyyy of... - Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-fired stationary combustion turbine as defined in this subpart, 3. a diffusion flame gas-fired stationary combustion turbine as defined in this subpart, or 4. a diffusion flame oil-fired stationary...

  1. 40 CFR Table 1 to Subpart Yyyy of... - Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-fired stationary combustion turbine as defined in this subpart, 3. a diffusion flame gas-fired stationary combustion turbine as defined in this subpart, or 4. a diffusion flame oil-fired stationary...

  2. 40 CFR 63.6100 - What emission and operating limitations must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stationary combustion turbine, a lean premix oil-fired stationary combustion turbine, a diffusion flame gas-fired stationary combustion turbine, or a diffusion flame oil-fired stationary combustion turbine as...

  3. 40 CFR 63.6100 - What emission and operating limitations must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary combustion turbine, a lean premix oil-fired stationary combustion turbine, a diffusion flame gas-fired stationary combustion turbine, or a diffusion flame oil-fired stationary combustion turbine as...

  4. 40 CFR Table 1 to Subpart Yyyy of... - Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-fired stationary combustion turbine as defined in this subpart, 3. a diffusion flame gas-fired stationary combustion turbine as defined in this subpart, or 4. a diffusion flame oil-fired stationary...

  5. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    NASA Astrophysics Data System (ADS)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  6. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  7. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  8. Discovery of a radio nebula around PSR J0855-4644

    NASA Astrophysics Data System (ADS)

    Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.

    2018-06-01

    We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km s-1 through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.

  9. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  10. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.; Kastner, J. H.; Montez, R. Jr.

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted allmore » (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.« less

  11. 40 CFR Table 1 to Subpart Yyyy of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... turbine as defined in this subpart, 3. a diffusion flame gas-fired stationary combustion turbine as defined in this subpart, or 4. a diffusion flame oil-fired stationary combustion turbine as defined in...

  12. 40 CFR Table 1 to Subpart Yyyy of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turbine as defined in this subpart, 3. a diffusion flame gas-fired stationary combustion turbine as defined in this subpart, or 4. a diffusion flame oil-fired stationary combustion turbine as defined in...

  13. 40 CFR 63.6100 - What emission and operating limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion turbine, a lean premix oil-fired stationary combustion turbine, a diffusion flame gas-fired stationary combustion turbine, or a diffusion flame oil-fired stationary combustion turbine as defined by...

  14. 40 CFR 63.6100 - What emission and operating limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion turbine, a lean premix oil-fired stationary combustion turbine, a diffusion flame gas-fired stationary combustion turbine, or a diffusion flame oil-fired stationary combustion turbine as defined by...

  15. Interaction of the 100-year old X-Ray flare produced by a central black hole with diffuse gas in the Galactic center

    NASA Astrophysics Data System (ADS)

    Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.

    2017-10-01

    We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.

  16. Results of the WHAM Hα survey of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Smart, Brianna Marie; Haffner, Lawrence Matthew; Barger, Kat; Madsen, Greg

    2018-01-01

    We present the results of an Hα survey of the Small Magellanic Cloud (SMC) using the Wisconsin H-Alpha Mapper (WHAM) as the initial component of our WHAM Magellanic System Survey (SMC/LMC/Stream). Previous surveys of the SMC have focused on the bright H II regions (supernovae remnants/ HII bubbles, etc) centered around the stellar component of the galaxy. These surveys were not sensitive to the fainter Diffuse Ionized Gas (DIG) within and surrounding the galaxy. With WHAM, we detect a halo of diffuse Hα emission extending to radii well beyond the bright H II regions and comparable to extents of observed HI. Using WHAM's unprecedented sensitivity to trace diffuse emission (~ tens of mR) with a velocity resolution of 12 km/s, we have compiled the first comprehensive spatial and kinematic map of the extended Hα emission. With these new data in hand, we are able to delineate the considerable warm ionized component associated with the SMC, leading to better calculations of its present-day mass and providing new constraints for dynamical evolution simulations of the Magellanic System. Similar WHAM surveys of the diffuse ionized content of the LMC and Stream are also underway.

  17. VizieR Online Data Catalog: Diffuse ionized gas in the Antennae galaxy (Weilbacher+, 2018)

    NASA Astrophysics Data System (ADS)

    Weilbacher, P. M.; Monreal-Ibero, A.; Verhamme, A.; Sandin, C.; Steinmetz, M.; Kollatschny, W.; Krajnovic, D.; Kamann, S.; Roth, M. M.; Erroz-Ferrer, S.; Marino, R. A.; Maseda, M. V.; Wendt, M.; Bacon, R.; Dreizler, S.; Richard, J.; Wisotzki, L.

    2017-11-01

    We provide two-dimensional maps of two different ways to measure the diffuse ionized gas as traced by the Halpha emission line in the Antennae Galaxy, both for the central field and the field at the end of the southern tidal tail. We provide a velocity map derived from the Halpha emission line, binned to a S/N~30. Finally, we provide line measurements and derived properties for all HII regions discussed in the paper. (4 data files).

  18. Molecular emission characteristics of various fluorides in a low-temperature-hydrogen diffusion flame.

    PubMed

    Dagnall, R M; Fleet, B; Risby, T H; Deans, D R

    1971-02-01

    A capillary burner supporting a nitrogen/hydrogen diffusion flame has been evaluated as a possible means of detection for several volatile fluorides after their gas-chromatographic separation. The fluorides of As, B, C, Ge, I, Mo, P, Re, S, Sb, Se, Si, Te and W were formed by the reaction of the element with chlorine trifluoride, and the intense molecular emission given by each was recorded. An attempt was made to identify the emitting species.

  19. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.

    PubMed

    Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-07-06

    The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.

  20. Applications of fourier transform infrared spectroscopy to surface analysis problems 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Milosevic, M.

    Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less

  1. Applications of fourier transform infrared spectroscopy to surface analysis problems 2. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Milosevic, M.

    Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less

  2. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.

    PubMed

    de Lima Barros, Alessandra Maciel; do Carmo Sobral, Maria; Gunkel, Günter

    2013-01-01

    Emissions of pollutants and nutrients are causing several problems in aquatic ecosystems, and in general an excess of nutrients, specifically nitrogen and phosphorus, is responsible for the eutrophication process in water bodies. In most developed countries, more attention is given to diffuse pollution because problems with point pollution have already been solved. In many non-developed countries basic data for point and diffuse pollution are not available. The focus of the presented studies is to quantify nutrient emissions from point and diffuse sources in the Ipojuca river basin, Pernambuco State, Brazil, using the Moneris model (Modelling Nutrient Emissions in River Systems). This model has been developed in Germany and has already been implemented in more than 600 river basins. The model is mainly based on river flow, water quality and geographical information system data. According to the Moneris model results, untreated domestic sewage is the major source of nutrients in the Ipojuca river basin. The Moneris model has shown itself to be a useful tool that allows the identification and quantification of point and diffuse nutrient sources, thus enabling the adoption of measures to reduce them. The Moneris model, conducted for the first time in a tropical river basin with intermittent flow, can be used as a reference for implementation in other watersheds.

  3. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  4. Long- and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Padilla, G.; Calvo, D.; Padrón, E.; Melian, G.; Dionis, S.; Nolasco, D.; Barrancos, J.; Rodríguez, F.; Pérez, N.

    2012-04-01

    Lanzarote Island is an emergent part of the East Canary Ridge and it is situated approximately 100 km from the NW coast of Morocco, covering an area of about 795km2. The largest historical eruption of the Canary Islands, Timanfaya, took place during 1730-36 in this island when long-term eruptions from a NE-SW-trending fissure formed the Montañas del Fuego. The last eruption at Lanzarote Island occurred during 1824, Tinguaton volcano, and produced a much smaller lava flow that reached the SW coast. At present, one of the most prominent phenomena at Timanfaya volcanic field is the high maintained superficial temperatures occurring in the area since the 1730 volcanic eruption. The maximum temperatures recorded in this zone are 605°C, taken in a slightly inclined well 13 m deep. Since fumarolic activity is absent at the surface environment of Lanzarote, to study the diffuse CO2 emission becomes an ideal geochemical tool for monitoring its volcanic activity. Soil CO2 efflux surveys were conducted throughout Timanfaya volcanic field and surrounding areas during the summer periods of 2006, 2007, 2008, 2009, fall period of 2010 and winter, spring and summer periods of 2011 to investigate long and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano. Soil CO2 efflux surveys were undertaken at Timanfaya volcanic field always under stable weather conditions to minimize effects of meteorological conditions on the CO2 at the soil atmosphere. Approximately 370-430 sampling sites were selected at the surface environment of Timanfaya to obtain an even distribution of the sampling points over the study area. The accumulation chamber method (Parkinson et al., 1981) was used to perform soil CO2 efflux measurements in-situ by means of a portable non dispersive infrared (NDIR) CO2 analyzer, which was interfaced to a hand size computer that runs data acquisition software. At each sampling site, soil temperature at 15 and 40cm depth was also measured by means of a thermocouple together with soil gas samples collected during the campaign of 2010 to evaluate the chemical and isotopic composition of soil gases. Diffuse CO2 emission values have ranged between non detectable values to 34 g m-2 d-1, and most of the study area have shown relatively low values, around the detection limit of the instrument (~0,5 g m-2 d-1). Higher soil CO2 diffuse emission values were observed where thermal anomalies occur, indicating a convective mechanism transport of gas from depth at these areas. Total CO2 outputs of the study area have been estimated in the range 41-518 t d-1 during the study period. Long-term temporal variation on total CO2 diffuse emission shows a peak recorded on winter 2011, suggesting a seasonal control on the CO2 emission. As part of the volcanic surveillance program and to understand the dynamics of CO2 diffuse emission at Timanfaya volcanic zone, an automatic geochemical station was installed in July 2010 to monitor the CO2 emission and investigate the short-term temporal variation. Time series of soil CO2 efflux shows also a close relationship with seasonal changes mainly due to rainfall.

  5. Comparison of diffuse CO2 degassing at Miravalles and Rincón de la Vieja volcanoes (Guanacaste Province, Costa Rica)

    NASA Astrophysics Data System (ADS)

    Liegler, A.; Bakkar Hindeleh, H.; Deering, C. D.; Fentress, S. E.

    2015-12-01

    Volcanic gas emissions are a key component for monitoring volcanic activity, magmatic input of volatiles to the atmosphere and the assessment of geothermal potential in volcanic regions. Diffuse soil degassing has been shown to represent a major part of volcanic gas emissions. However, this type of gas emission has not yet been quantified in the Guanacaste province of Costa Rica; a region of the country with several large, active or dormant volcanoes. We conducted the first study of diffuse CO2 degassing at Rincón de la Vieja and Miravalles volcanoes, both located in Guanacaste. Diffuse degassing was measured using the accumulation chamber method to quantify CO2 flux in regions where hydrothermal surface features indicate anomalous activity. The total diffuse carbon dioxide flux estimated at Miravalles in two areas, together roughly 2 km2 in size, was 135 t/day and in several areas at Rincón de la Vieja a minimum of 4 t/day. Comparatively low flux values and a very local concentration (few m2) of CO2 flux were observed at the active Rincón de la Vieja volcano, compared to the dormant Miravalles volcano, where significant soil flux was found over extended areas, not only around vents. Our assessment of the origin of these differences leads to two possibilities depending on if the surface features on the two volcanoes are fed by a common hydrothermal system or two separate ones. In the former case, the different intensity of diffuse CO2 flux could indicate a different degassing behavior and stronger concentration of gas emissions at the active vent areas at Rincon de la Vieja. In the latter case, where the hydrothermal systems are not linked, the amount of CO2 degassed through the flanks of the volcanoes could indicate that different physical and chemical conditions are governing the degassing of the two systems.

  6. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  7. Detection of Extraplanar Diffuse Ionized Gas in M83

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Gallagher, J. S., III; Zweibel, Ellen G.

    2017-08-01

    We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Markov Chain Monte Carlo method to decompose the [N II]λ λ 6548, 6583, Hα, and [S II]λ λ 6717, 6731 emission lines into H II region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([N II]λ6583/Hα ≳ 1.0) and its rotational velocity lag with respect to the disk ({{Δ }}v=-24 km s-1 in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, σ =96 km s-1, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of {h}z=1 kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems. Based on observations made with the Southern African Large Telescope (SALT) under program 2015-2-SCI-004 (PI: E. Boettcher).

  8. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.

    PubMed

    Marcelino, A A; Santos, M A; Xavier, V L; Bezerra, C S; Silva, C R O; Amorim, M A; Rodrigues, R P; Rogerio, J P

    2015-05-01

    The role of greenhouse gas emissions from freshwater reservoirs and their contribution to increase greenhouse gas concentrations in the atmosphere is currently under discussion in many parts of the world. We studied CO2 and CH4 diffusive fluxes from two large neotropical hydropower reservoirs with different climate conditions. We used floating closed-chambers to estimate diffusive fluxes of these gaseous species. Sampling campaigns showed that the reservoirs studied were sources of greenhouse gases to the atmosphere. In the Serra da Mesa Reservoir, the CH4 emissions ranged from 0.530 to 396.96 mg.m(-2).d(-1) and CO2 emissions ranged from -1,738.33 to 11,166.61 mg.m(-2).d(-1) and in Três Marias Reservoir the CH4 fluxes ranged 0.720 to 2,578.03 mg.m(-2).d(-1) and CO2 emission ranged from -3,037.80 to 11,516.64 to mg.m(-2).d(-1). There were no statistically significant differences of CH4 fluxes between the reservoirs, but CO2 fluxes from the two reservoirs studied were significantly different. The CO2 emissions measured over the periods studied in Serra da Mesa showed some seasonality with distinctions between the wet and dry transition season. In Três Marias Reservoir the CO2 fluxes showed no seasonal variability. In both reservoirs, CH4 emissions showed a tendency to increase during the study periods but this was not statistically significant. These results contributed to increase knowledge about the magnitude of CO2 and CH4 emission in hydroelectric reservoirs, however due to natural variability of the data future sampling campaigns will be needed to better elucidate the seasonal influences on the fluxes of greenhouse gases.

  9. X-ray emission from galaxies - The distribution of low-luminosity X-ray sources in the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Heard, Victoria; Warwick, Robert

    2012-09-01

    We report a study of the extended X-ray emission observed in the Galactic Centre (GC) region based on archival XMM-Newton data. The GC diffuse emission can be decomposed into three distinct components: the emission from low-luminosity point sources; the fluorescence of (and reflection from) dense molecular material; and soft (kT ~1 keV), diffuse thermal plasma emission most likely energised by supernova explosions. Here, we examine the emission due to unresolved point sources. We show that this source component accounts for the bulk of the 6.7-keV and 6.9-keV line emission. We fit the surface brightness distribution evident in these lines with an empirical 2-d model, which we then compare with a prediction derived from a 3-d mass model for the old stellar population in the GC region. We find that the X-ray surface brightness declines more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the X-ray luminosity per solar mass characterising the GC source population is increasing towards the GC. Alternatively, some refinement of the mass-distribution within the nuclear stellar disc may be required. The unresolved X-ray source population is most likely dominated by magnetic CVs. We use the X-ray observations to set constraints on the number density of such sources in the GC region. Our analysis does not support the premise that the GC is pervaded by very hot (~ 7.5 keV) thermal plasma, which is truly diffuse in nature.

  10. Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.

    2007-01-01

    In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.

  11. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    NASA Astrophysics Data System (ADS)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  12. DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.

    2011-08-01

    Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less

  13. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be themore » result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.« less

  14. The Martian diffuse aurora: Monte Carlo simulations and comparison with IUVS-MAVEN observations

    NASA Astrophysics Data System (ADS)

    Gerard, J. C. M. C.; Soret, L.; Schneider, N. M.; Shematovich, V.; Bisikalo, D.; Bougher, S. W.; Jain, S.; Lillis, R. J.; Mitchell, D. L.; Jakosky, B. M.; Deighan, J.; Larson, D. E.

    2016-12-01

    A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions with the IUVS on board the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and visible auroral emissions for initial electron energies from 0.1 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox-Duffendack-Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb intensities of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 100-200 keV produce maximum CO2+ UVD emission near 75 km. We combine SWEA and SEP electron energy spectra measured during diffuse aurora to calculate the volume emission rates and compare with IUVS observations of the emission limb profiles. The strongest predicted emissions are the CO2+ FDB, UVD and the CO Cameron bands. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below 110 km. As a consequence, we show that the CO2+ UVD to the Cameron bands ratio increases at low altitude in the energetic diffuse aurora.

  15. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.

    2016-06-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.

  16. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Weniger, Christoph; Calore, Francesca

    2017-08-01

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|<90o and |b|<20o, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.

  17. MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Weeren, R. J. van; Clarke, T. E.

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  18. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  19. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE PAGES

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...

    2016-05-25

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  20. Observations of O VI Emission from the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kruk, J. W.; Murphy, E. M.; Andersson, B. G.; Blair, W. P.; Dixon, W. V.; Edelstein, J.; Fullerton, A. W.; Gry, C.; Howk, J. C.; hide

    2001-01-01

    We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O(VI) (lambda lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30 arcsec x 30 arcsec region of the sky centered at l = 315.0 deg and b = -41.3 deg. From the observed intensities (2930 +/- 290 (random) +/- 410 (systematic) and 1790 +/- 260 (random) +/- 250 (systematic) photons/sq cm/s/sr in the 1032 and 1038 angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O(VI)-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C(II) 3s 2S(1/2) to 2p 2P(3/2) emission line at 1037 angstrom and place upper limits on the intensities of ultraviolet line emission from C(I), C(III), Si(II), S(III), S(IV), S(VI), and Fe(III).

  1. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  2. INTEGRATED AND FIBER OPTICS: Unidirectional coupling of radiation out of a composite dielectric waveguide

    NASA Astrophysics Data System (ADS)

    Avrutskiĭ, I. A.; Sychugov, V. A.; Tishchenko, A. V.; Svakhin, A. S.

    1989-02-01

    An analysis is made of the emission of light from a composite system representing a thin film on the surface of a corrugated diffused waveguide. Expressions are obtained for the radiative light losses in this waveguide. There is no emission of light into the substrate for certain relationships between the amplitudes and phases of the corrugations at the interfaces between the film and the adjoining medium and between the film and the waveguide. Numerical estimates of the losses are obtained for a case of practical importance, which is a corrugated diffused waveguide in glass with a film of Nb2O5 on the surface. A report is given of an experiment in which a grating was formed for coupling radiation out of a composite Cs+-diffused waveguide coated by a film of Nb2O5, which was capable of preferential (80%) emission of radiation into air, and in the presence of an immersion liquid ensured practically unidirectional coupling out of radiation into air.

  3. The GeV Excess Shining Through: Background Systematics for the Inner Galaxy Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-02-10

    Recently, a spatially extended excess of gamma rays collected by the Fermi-LAT from the inner region of the Milky Way has been detected by different groups and with increasingly sophisticated techniques. Yet, any final conclusion about the morphology and spectral properties of such an extended diffuse emission are subject to a number of potentially critical uncertainties, related to the high density of cosmic rays, gas, magnetic fields and abundance of point sources. We will present a thorough study of the systematic uncertainties related to the modelling of diffuse background and to the propagation of cosmic rays in the inner partmore » of our Galaxy. We will test a large set of models for the Galactic diffuse emission, generated by varying the propagation parameters within extreme conditions. By using those models in the fit of Fermi-LAT data as Galactic foreground, we will show that the gamma-ray excess survives and we will quantify the uncertainties on the excess emission morphology and energy spectrum.« less

  4. Diffusion-plus-drift models for the mass leakage from centrifugal magnetospheres of magnetic hot-stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; Cranmer, Steven R.

    2018-03-01

    In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.

  5. Solution-processed multilayer polymer light-emitting diode without intermixing

    NASA Astrophysics Data System (ADS)

    Kasparek, C.; Blom, P. W. M.

    2017-01-01

    The intermixing of two emissive layers in a four-layer solution-processed polymeric light-emitting diode with a hole injection, two emissive layers, and one hole-blocking layer is investigated. The relative emission of both emissive layers is measured and compared to a calculated recombination profile across the device using drift-diffusion simulations. A good agreement between the measured and calculated relative emission was found, supporting that there is no intermixing in the two emissive materials.

  6. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  7. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  8. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    NASA Technical Reports Server (NTRS)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and very compact). In tabular form, the relation is shown between this classification and a morphologically disturbed appearance for the galaxy.

  9. Manifestations of the MHD and kinetic dynamo through soft x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartas, G.A.

    1991-08-01

    The underlying mechanisms that produce and sustain the reversed toroidal field in RFP's are investigated by analyzing 2Dx-ray emissivity reconstruction and by correlating the evolution of the hot electron properties to the reversed toroidal magnetic field. Reconnection of emissivity surfaces as seen in soft x-ray (SXR) reconstructing occur near the predicted resonant surface for the m=1, n=5, 6,-7 resistive tearing modes. Two distinct rates of reversed magnetic field generation are observed. First, in the MHD relaxation phase a sudden increase in B{sub t}(a) is detected. This event coincides with a large increase in the edge hot electron current density. Themore » second mode of flux generation is observed t have a slower rate and occurs during the diffusion phase. A variation of the edge hot electron current density by a factor of four produced only a small change in the measured B{sub t}(a), implying the contributions of the hot electrons to the dynamo during the diffusion phase is small. {tilde T}{sub e}, / was measured to be approximately 60%, which is much larger than the corresponding quantity for the bulk component which is about 30%. Scaling of the magnetic Reynolds number with the diffusion and MHD relaxation time, {tau}{sub MHD} indicated that the {tau}{sub MHD} does not have a strong dependence on the Spitzer resistivity whereas the diffusion time does depend on the classical resistivity. SXR emission mode analysis during the transition from a rotating to a locked plasma shows a decrease in the m=1 Fourier Bastille component of the emissivity. This is due to the flattening of the emissivity profile as seen in the SXR reconstructions.« less

  10. Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy

    NASA Astrophysics Data System (ADS)

    Granieri, D.; Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.

    2014-07-01

    La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater's rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000-7000 ppm in low-wind conditions and pose a health hazard for visitors.

  11. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  12. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  13. Geochemical monitoring of the Tenerife North-East Rift Zone (NERZ) volcano (Canary Islands) by means of diffuse CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    Barrancos, José; O'Neill, Ryan; Gould, Catherine E.; Padilla, Germán; Rodríguez, Fátima; Amonte, Cecilia; Padrón, Eleazar; Pérez, Nemesio M.

    2017-04-01

    Tenerife is the largest of the Canary Islands (2100 km2) and the North East Rift (NERZ) volcano is one of the three active volcanic rift-zones of the island (210 km2). The last eruptive activity at NERZ volcano occurred in 1704 and 1705, with three volcanic eruptions: Siete Fuentes, Fasnia and Arafo. In order to provide a multidisciplinary approach to monitor potential volcanic activity changes at the NERZ volcano, diffuse CO2 emission surveys have been undertaken in a yearly basis since 2001. This study shows the results of the last soil CO2 efflux survey undertaken in summer 2016, with 600 soil gas sampling sites homogenously distributed. Soil CO2 efflux measurements were performed at the surface environment by means of a portable non-dispersive infrared spectrophotometer (NDIR) LICOR Li800 following the accumulation chamber method. Soil CO2 efflux values ranged from non-detectable (˜0.5 g m-2 d-1) up to 70 g m-2 d-1, with an average value of 8.8 g m-2 d-1. In order to distinguish the existence of different geochemical populations on the soil CO2 efflux data, a Sinclair graphical analysis was done. The average value of background population was 2.9 g m-2 d-1 and that of peak population was 67.8 g m-2 d-1, value that has been increasing since the year 2014. To quantify the total CO2 emission rate from the NERZ volcano a sequential Gaussian simulation (sGs) was used as interpolation method to construct soil CO2 emission contour maps. The diffuse CO2 emission rate for the studied area was estimated in 1,675 ± 47 t d-1. If we compare the 2016 results with those ones obtained in previous surveys since 2001, two main pulses on diffuse CO2 emission are identified, the first one in 2007 and the second one between during 2014 and 2016. This long-term variation on the diffuse CO2 emission doesn't seem to be masked by the external-meteorological variations. However, the first peak precedes the anomalous seismicity recorded in and around Tenerife Island between 2009 and 2011, suggesting changes in strain-stress at depth as a possible cause of the observed changes in the diffuse CO2 emission rate. On the other hand, the second peak seems to be related to later changes in the seismicity, such as the seismic activity that occurred in Tenerife at the end of 2016. Again, this study demonstrates the importance of studies of soil CO2 efflux at the NERZ volcano of Tenerife island as an effective volcanic monitoring tool.

  14. Diffusion doping in quantum dots: bond strength and diffusivity.

    PubMed

    Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani

    2017-02-23

    Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M 2+ (Fe 2+ , Ni 2+ , Co 2+ , Mn 2+ ). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.

  15. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Su, L. Q.; Kon, J.

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in amore » spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.« less

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS Fibreoptic diffuse-light irradiators of biological tissues

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.

    2010-10-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.

  17. ESTIMATES OF ALPHA-PINENE EMISSIONS FROM A LOBLOLLY PINE FOREST USING AN ATMOSPHERIC DIFFUSION MODEL

    EPA Science Inventory

    The body of information presented in this paper is directed to atmospheric chemists and modelers who are concerned with assessing the impact of biogenic hydrocarbon emissions. A field study was conducted to determine the emission rate of alpha-pinene from a loblolly pine forest u...

  18. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; hide

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  19. A study of 173 nm light emission from discharge cells in plasma display panel

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Choi, Eun H.; Jung, Kyu B.

    2005-03-01

    Emission properties of the 173nm lights from the electrical discharge cells of the plasma display panel are investigated. The dimer formation and a theoretical model of 173nm emission are presented. It is shown that the diffusion loss of the excited xenon atoms in the metastable level is one of the most important population depreciation factor of excited xenon atoms. The decay time τd of excited atom number increases from zero, reaches its peak, and then decreases to zero, as the gas pressure p increases from zero, agreeing well with experimental data. A simple analytical expression Y of the total emission intensity is described in terms of the diffusion loss df, the three-body collision η, the gas pressure p, and the xenon mole fraction χ. The emission intensity Y of 173nm photon decreases with an increasing value of parameter df. Moreover, the emission intensity Y increases drastically with an increasing value of the gas pressure p and the xenon mole fraction χ. Results from the theoretical model agree remarkably well with experimental data.

  20. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  1. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment.

    PubMed

    Liu, Xiaoling; Zhang, Ke; Fan, Liangqian; Luo, Hongbing; Jiang, Mingshu; Anderson, Bruce C; Li, Mei; Huang, Bo; Yu, Lijuan; He, Guozhu; Wang, Jingting; Pu, Aiping

    2018-06-16

    It is very important to control methane emissions to mitigate global warming. An intermittent micro-aeration control system was used to control methane emissions from an integrated vertical-flow constructed wetland (IVCW) to treat agricultural domestic wastewater pollution in this study. The optimized intermittent micro-aeration conditions were a 20-min aeration time and 340-min non-aeration time, 3.9 m 3  h -1 aeration intensity, evenly distributed micro-aeration diffusers at the tank bottom, and an aeration period of every 6 h. Methane flux emission by intermittent micro-aeration was decreased by 60.7% under the optimized conditions. The average oxygen transfer efficiency was 26.73%. The control of CH 4 emission from IVCWs was most strongly influenced by the intermittent micro-aeration diffuser distribution, followed by aeration intensity, aeration time, and water depth. Scaling up of IVCWs is feasible in rural areas by using intermittent micro-aeration control as a mitigation measure for methane gas emissions for climate change.

  2. Diffusion-controlled reference material for VOC emissions testing: proof of concept.

    PubMed

    Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A

    2010-10-01

    Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.

  3. The Carina Project. VI. The Helium-burning Variable Stars

    NASA Astrophysics Data System (ADS)

    Coppola, G.; Stetson, P. B.; Marconi, M.; Bono, G.; Ripepi, V.; Fabrizio, M.; Dall'Ora, M.; Musella, I.; Buonanno, R.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Monelli, M.; Nonino, M.; Pulone, L.; Thévenin, F.; Walker, A. R.

    2013-09-01

    We present new optical (BVI) time-series data for the evolved variable stars in the Carina dwarf spheroidal galaxy. The quality of the data and the observing strategy allowed us to identify 14 new variable stars. Eight out of the 14 are RR Lyrae (RRL) stars, 4 are Anomalous Cepheids (ACs), and 2 are geometrical variables. Comparison of the period distribution for the entire sample of RRLs with similar distributions in nearby dwarf spheroidal galaxies and in the Large Magellanic Cloud indicates that the old stellar populations in these systems share similar properties. This finding is also supported by the RRL distribution in the Bailey diagram. On the other hand, the period distribution and the Bailey diagram of ACs display significant differences among the above stellar systems. This evidence suggests that the properties of intermediate-age stellar populations might be affected both by environmental effects and structural parameters. We use the BV Period-Wesenheit (PW) relation of RRLs together with evolutionary prescriptions and find a true distance modulus of 20.09 ± 0.07 (intrinsic) ± 0.1 (statistical) mag that agrees quite well with similar estimates available in the literature. We identified four peculiar variables. Taking into account their position in the Bailey diagram and in the BV PW relation, two of them (V14 and V149) appear to be candidate ACs, while two (V158 and V182) might be peculiar RRLs. In particular, the variable V158 has a period and a V-band amplitude very similar to the low-mass RRL—RRLR-02792—recently identified by Pietrzyński et al. in the Galactic bulge. Based on images collected with the MOSAICII camera available at the CTIO 4 m Blanco telescope, La Serena (2003B-0051, 2004B-0227, and 2005B-0092; PI: A. R. Walker) and in part with the WFI available at the 2.2 m MPG/ESO telescope (A064.L-0327) and with images obtained from the ESO/ST-ECF Science Archive Facility.

  4. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  5. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  6. Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations

    NASA Astrophysics Data System (ADS)

    Li, W.; Thorne, R. M.; Ma, Q.; Zhang, X.-J.; Gladstone, G. R.; Hue, V.; Valek, P. W.; Allegrini, F.; Mauk, B. H.; Clark, G.; Kurth, W. S.; Hospodarsky, G. B.; Connerney, J. E. P.; Bolton, S. J.

    2017-10-01

    Juno observed the low-altitude polar region during perijove 1 on 27 August 2016 for the first time. Auroral intensity and false-color maps from the Ultraviolet Spectrograph (UVS) instrument show extensive diffuse aurora observed equatorward of the main auroral oval. Juno passed over the diffuse auroral region near the System III longitude of 120°-150° (90°-120°) in the northern (southern) hemisphere. In the region where these diffuse auroral emissions were observed, the Jupiter Energetic Particle Detector Instrument (JEDI) and Jovian Auroral Distributions Experiment (JADE) instruments measured nearly full loss cone distributions for the downward going electrons over energies of 0.1-700 keV but very few upward going electrons. The false-color maps from UVS indicate more energetic electron precipitation at lower latitudes than less energetic electron precipitation, consistent with observations of precipitating electrons measured by JEDI and JADE. The comparison between particle and aurora measurements provides first direct evidence that these precipitating energetic electrons are mainly responsible for the diffuse auroral emissions at Jupiter.

  7. An X-Ray Atlas of Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burnstein, David

    2003-01-01

    A search was conducted for a hot intragroup medium in 10(exp 9) low-redshift galaxy groups observed with the ROSAT PSPC. Evidence for diffuse, extended X-ray emission is found in at least 61 groups. Approximately one-third of these detections have not been previously reported in the literature. Most of the groups are detected out to less than half of the virial radius with ROSAT. Although some spiral-rich groups do contain an intragroup medium, diffuse emission is restricted to groups that contain at least one early-type galaxy.

  8. The Diffuse X-ray Background, from Earth's Exosphere to the Edge of the Universe: Or, One Astronomer's Signal is Another Astronomer's Contamination

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    The "X-ray background" means various things to various people. It's origin is comprised of emission from objects as close as Earth's exosphere to as far away as the most distant clusters of galaxies. It is comprised of the emission of truly diffusely distributed plasmas and the superposition of the emission from unresolved point-like objects. To add to the confusion, in general there is no redshift information so there is very little information on where an individual X-ray may originate. This talk will address the evolution of our understanding of origin of the X-ray background and the current best-guess about what is really going on.

  9. The Connection between Different Tracers of the Diffuse Interstellar Medium: Kinematics

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, S. R.; Flagey, Nicolas; Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Lambert, D. L.

    2018-05-01

    Using visible, radio, microwave, and submillimeter data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare it to emission from H I, CO and its isotopologues, and C+ from the GOT C+ survey. The correspondence between components in emission and absorption helps create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H2 gas probed by C+ emission and discuss the kinematic connections among the species observed.

  10. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  11. Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.

    PubMed

    Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz

    2002-10-04

    Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).

  12. Ebullitive methane emissions from oxygenated wetland streams

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  13. THE ROLE OF THE DIFFUSIVE PROTONS IN THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANT RX J1713.7–3946—A TWO-ZONE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Chen, Yang

    2016-04-10

    RX J1713.7−3946 is a prototype in the γ-ray-bright supernova remnants (SNRs) and is in continuing debates on its hadronic versus leptonic origin of the γ-ray emission. We explore the role played by the diffusive relativistic protons that escape from the SNR shock wave in the γ-ray emission, apart from the high-energy particles’ emission from the inside of the SNR. In the scenario that the SNR shock propagates in a clumpy molecular cavity, we consider that the γ-ray emission from the inside of the SNR may arise either from the inverse Compton scattering or from the interaction between the trapped energetic protons and themore » shocked clumps. The dominant origin between them depends on the electron-to-proton number ratio. The diffusive protons that escaped from the shock wave during the expansion history can provide an outer hadronic γ-ray component by bombarding the surrounding dense matter. The broadband spectrum can be well explained by this two-zone model, in which the γ-ray emission from the inside governs the TeV band, while the outer emission component substantially contributes to the GeV γ-rays. The two-zone model can also explain the TeV γ-ray radial brightness profile that significantly stretches beyond the nonthermal X-ray-emitting region. In the calculation, we present a simplified algorithm for Li and Chen's “accumulative diffusion” model for escaping protons and apply the Markov Chain Monte Carlo method to constrain the physical parameters.« less

  14. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  15. C+ detection of warm dark gas in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+ (GOT C+) survey of the [CII] 2P3/2-2P1/2 fine-structure line at 1.9 THz (158 μm) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV < 1.3 mag) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H2, dark gas, component. This first [CII] 158 μm detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Precursory signals of the 2014-15 Fogo eruption (Cape Verde) detected by surface CO2 emission and heat flow observations

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Dionis, Samara; Fernandes, Paulo; Barrancos, José; Rodríguez, Fátima; Bandomo, Zuleyka; Hernández, Pedro A.; Melián, Gladys V.; Silva, Sónia; Padilla, Germán; Padrón, Eleazar; Cabral, Jeremias; Calvo, David; Asensio-Ramos, María; Pereira, José Manuel; Gonçalves, António A.; Barros, Inocencio; Semedo, Helio

    2015-04-01

    On November 23, 2014 a new eruption occurred at Fogo volcano (Cape Verde) after 19 years of the last eruptive event in 1995. In the case of the 1995 Fogo eruption, a volcano monitoring program for the volcanic surveillance of Fogo did not exist. On the contrary, a simple and multidisciplinary volcano monitoring program was initiated since 2007 to detect early warning signals of a new volcanic unrest such as the 2014-15 Fogo eruption. Diffuse CO2 emission surveys at the summit crater of Pico do Fogo volcano were periodically carried out from May 2007 to October 2014 to provide this multidisciplinary approach and to monitor potential volcanic activity changes. During this 7 year period, CO2 efflux ranged from non detectable (< 1.5 g m-2 d-1) up to relatively high (61.9 kg m-2 d-1) values. The observed average δ13C- CO2 values related to these diffuse CO2 emission surveys ranged from -22.1 to 1.6 ‰, and surface heat flux measurements, following the method of Dawson (1964), showed also a wide range of values from 0.1 to 460 W m-2. Areas with the highest observed CO2 efflux values were also characterized by a relatively high soil temperature and an intense surface hydrothermal alteration, which supports that degassing process is primary controlled by an advective mechanism generated by geothermal gradients (convection). Two periods of anomalous diffuse CO2 emission were observed between February 2009 to February 2010 and March to August 2014, respectively. Rest of surveys showed the lowest variability on diffuse CO2 emission, ranging from 23 to 186 t d-1 (average = 86 t d-1). The first anomalous period was characterized by a sharp increase on diffuse CO2 emission, suggesting the first magma intrusion beneath Pico do Fogo volcano. This observation is also supported by a significant change on the δ13C- CO2 signature from May 2009 (-10.2 ‰) to February 2010 (-6.1‰) of the diffuse CO2 degassing, indicating an enrichment on the magmatic CO2 component. On February 2010, the diffuse CO2 emission rate was 219 ± 36 t d-1 (Dionis et al., 2015). The second anomalous period started on March 2014, eight months before the 2014-15 Fogo eruption onset, and reached a relatively high value of 337 ± 119 t d-1 on August 30, 2014. It was likely caused by rising of magmatic gases from a second magma intrusion which ended on an eruption. Heat flow temporal evolution during the observation period also shows a quasi-continuous increase before the eruption onset, with the maximum observed heat flow (16.4 ± 3.4 MW) on March 2014. These geochemical and geophysical evidences are clearly precursory signals of the 2014-15 Fogo eruption. Dawson, G.B. (1964), N Z J Geol Geophys 7:155-171; Dionis S. et al. (2015), Bull. Volcanol., in press

  17. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Emma; Weniger, Christoph; Calore, Francesca, E-mail: e.m.storm@uva.nl, E-mail: c.weniger@uva.nl, E-mail: francesca.calore@lapth.cnrs.fr

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (∼> 10{sup 5}) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that aremore » motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |ℓ|<90{sup o} and | b |<20{sup o}, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.« less

  18. Observed anomalous changes on diffuse CO2 emission at the summit crater of Teide volcano (Tenerife, Canary Islands, Spain): a geochemical evidence of volcanic unrest?

    NASA Astrophysics Data System (ADS)

    Perez, N. M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Alonso Cótchico, M.; Hernández, P. A.; Rodríguez, F.; D'Auria, L.; García-Merino, M.; Padilla, G. D.; Burns, F.; Amonte, C.; García, E.; García-Hernández, R.; Barrancos, J.; Morales-Ocaña, C.; Calvo, D.; Vela, V.; Pérez, A.

    2017-12-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system Pico Viejo and Teide, has been developed. Although Teide volcano shows weak fumarolic system, volcanic gas emissions observed in the summit area are mainly controlled by high rates of diffuse CO2 degassing. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999 according to the accumulation chamber method to monitor changes of volcanic activity. Soil CO2 efflux and soil temperature have been measured in sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Historical seismic activity in Tenerife has been mainly characterized by low- to moderate-magnitude events (M <2.5), and most of epicenters clustered in an offshore area SE of Tenerife. Very few earthquakes have occurred in other areas, including Teide volcano. Since November 2016 more than 100 small magnitude earthquakes, with typical features of the microseismicity of hydrothermal systems, at depths usually ranging between 5 and 15 km located beneath Teide volcano have been recorded. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest events recorded since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered preceding the occurrence of the 2.5 seismic event, from 21.3±2.0 to 101.7±20.7 t d-1. In Febraury 2017, the diffuse CO2 emission rate showed a maximum value (176±35 t/d) and has remained at relatively high values in the range 67-176 t/d. The observed increase on the diffuse CO2 emission, likely due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife, might be a geochemical evidence of a future volcanic unrest at Tenerife Island.

  19. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire Yellowstone system.

  20. Improving our process understanding of methane emissions from a mid-latitude reservoir by combining eddy covariance monitoring with spatial surveys

    EPA Science Inventory

    Reservoirs are a globally important source of methane (CH4) to the atmosphere, but measuring CH4 emission rates from reservoirs is difficult due to the spatial and temporal variability of the various emission pathways, including ebullition and diffusion. We used the eddy covarian...

  1. Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

    USDA-ARS?s Scientific Manuscript database

    Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic and highly volatile which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-di...

  2. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  3. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  4. CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2011-07-01

    CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of 500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol-1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around 600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.

  5. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been carried out since 2006, showing an average emission rate of 8.0 kg/d. This value showed an anomalous increase up to 29 kg/d in the summer of 2010. The number of seismic events registered in and around Tenerife Island by the National Geographic Institute (IGN) reached also the highest value (1,176) in 2010. This excellent agreement between both times series suggest that the anomalous seismicity registered in 2010 was likely due to strain/stress changes caused by input of magmatic fluids beneath the central volcanic system of the island. These results suggest that monitoring of He degassing rates in oceanic volcanic islands is an excellent early warning geochemical precursory signal for volcanic unrest. References Padrón et al., 2013. Geology, DOI: 10.1130/G34027.1. Pérez et al., 2013. J. Geol. Soc., DOI: 10.1144/jgs2012-125.

  6. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  7. The peculiar cluster MACS J0417.5-1154 in the C and X-bands

    NASA Astrophysics Data System (ADS)

    Sandhu, Pritpal; Malu, Siddharth; Raja, Ramij; Datta, Abhirup

    2018-06-01

    We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope (http://www.mwatelescope.org)), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the `on' and `off' state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take.

  8. Ultraviolet to optical diffuse sky emission as seen by the Hubble Space Telescope Faint Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Kawara, Kimiaki; Matsuoka, Yoshiki; Sano, Kei; Brandt, Timothy D.; Sameshima, Hiroaki; Tsumura, Kohji; Oyabu, Shinki; Ienaka, Nobuyuki

    2017-04-01

    We present an analysis of the blank-sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed towards 54 fields distributed widely over the sky, with spectral coverage from 0.2 to 0.7 μm. In order to avoid contaminating light from earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ∼0.3 μm. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer 10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.

  9. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestakov, A I; Harte, J A; Bolstad, J H

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  10. Building materials. VOC emissions, diffusion behaviour and implications from their use.

    PubMed

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-10-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson's disease.

    PubMed

    Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus

    2013-10-01

    Signal abnormalities of the substantia nigra and the olfactory tract detected either by diffusion tensor imaging, including measurements of mean diffusivity, a parameter of brain tissue integrity, and fractional anisotropy, a parameter of neuronal fibre integrity, or transcranial sonography, were recently reported in the early stages of Parkinson's disease. In this study, changes in the nigral and olfactory diffusion tensor signal, as well as nigral echogenicity, were correlated with clinical scales of motor disability, odour function and putaminal dopamine storage capacity measured with 6-[(18)F] fluorolevodopa positron emission tomography in early and advanced stages of Parkinson's disease. Diffusion tensor imaging, transcranial sonography and positron emission tomography were performed on 16 patients with Parkinson's disease (mean disease duration 3.7 ± 3.7 years, Hoehn and Yahr stage 1 to 4) and 14 age-matched healthy control subjects. Odour function was measured by the standardized Sniffin' Sticks Test. Mean putaminal 6-[(18)F] fluorolevodopa influx constant, mean nigral echogenicity, mean diffusivity and fractional anisotropy values of the substantia nigra and the olfactory tract were identified by region of interest analysis. When compared with the healthy control group, the Parkinson's disease group showed significant signal changes in the caudate and putamen by 6-[(18)F] fluorolevodopa positron emission tomography, in the substantia nigra by transcranial sonography, mean diffusivity and fractional anisotropy (P < 0.001, P < 0.01, P < 0.05, respectively) and in the olfactory tract by mean diffusivity (P < 0.05). Regional mean diffusivity values of the substantia nigra and the olfactory tract correlated significantly with putaminal 6-[(18)F] fluorolevodopa uptake (r = -0.52, P < 0.05 and r = -0.71, P < 0.01). Significant correlations were also found between nigral mean diffusivity values and the Unified Parkinson's Disease Rating Scale motor score (r = -0.48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.

  12. Modeling diffuse phosphorus emissions to assist in best management practice designing

    NASA Astrophysics Data System (ADS)

    Kovacs, Adam; Zessner, Matthias; Honti, Mark; Clement, Adrienne

    2010-05-01

    A diffuse emission modeling tool has been developed, which is appropriate to support decision-making in watershed management. The PhosFate (Phosphorus Fate) tool allows planning best management practices (BMPs) in catchments and simulating their possible impacts on the phosphorus (P) loads. PhosFate is a simple fate model to calculate diffuse P emissions and their transport within a catchment. The model is a semi-empirical, catchment scale, distributed parameter and long-term (annual) average model. It has two main parts: (a) the emission and (b) the transport model. The main input data of the model are digital maps (elevation, soil types and landuse categories), statistical data (crop yields, animal numbers, fertilizer amounts and precipitation distribution) and point information (precipitation, meteorology, soil humus content, point source emissions and reservoir data). The emission model calculates the diffuse P emissions at their source. It computes the basic elements of the hydrology as well as the soil loss. The model determines the accumulated P surplus of the topsoil and distinguishes the dissolved and the particulate P forms. Emissions are calculated according to the different pathways (surface runoff, erosion and leaching). The main outputs are the spatial distribution (cell values) of the runoff components, the soil loss and the P emissions within the catchment. The transport model joins the independent cells based on the flow tree and it follows the further fate of emitted P from each cell to the catchment outlets. Surface runoff and P fluxes are accumulated along the tree and the field and in-stream retention of the particulate forms are computed. In case of base flow and subsurface P loads only the channel transport is taken into account due to the less known hydrogeological conditions. During the channel transport, point sources and reservoirs are also considered. Main results of the transport algorithm are the discharge, dissolved and sediment-bounded P load values at any arbitrary point within the catchment. Finally, a simple design procedure has been built up to plan BMPs in the catchments and simulate their possible impacts on diffuse P fluxes as well as calculate their approximately costs. Both source and transport controlling measures have been involved into the planning procedure. The model also allows examining the impacts of alterations of fertilizer application, point source emissions as well as the climate change on the river loads. Besides this, a simple optimization algorithm has been developed to select the most effective source areas (real hot spots), which should be targeted by the interventions. The fate model performed well in Hungarian pilot catchments. Using the calibrated and validated model, different management scenarios were worked out and their effects and costs evaluated and compared to each other. The results show that the approach is suitable to effectively design BMP measures at local scale. Combinative application of the source and transport controlling BMPs can result in high P reduction efficiency. Optimization of the interventions can remarkably reduce the area demand of the necessary BMPs, consequently the establishment costs can be decreased. The model can be coupled with a larger scale catchment model to form a "screening and planning" modeling system.

  13. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  14. A soft X-ray map of the Perseus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Cash, W.; Malina, R. F.; Wolff, R. S.

    1976-01-01

    A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.

  15. Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-05-01

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  16. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  17. Importing super-resolution imaging into nanoscale puzzles of materials dynamics

    NASA Astrophysics Data System (ADS)

    King, John; Tsang, Chi Hang Boyce; Wilson, William; Granick, Steve

    2014-03-01

    A limitation of the exciting recent advances in sub-diffraction microscopy is that they focus on imaging rather than dynamical changes. We are engaged in extending this technique beyond the usual biological applications to address materials problems instead. To this end, we employ stimulated emission depletion (STED) microscopy, which relies on selectively turning off fluorescence emitters through stimulated emission, allowing only a small subset of emitters to be detected, such that the excitation spot size can be downsized to tens of nanometers. By coupling the STED excitation scheme to fluorescence correlation spectroscopy (FCS), diffusive processes are studied with nanoscale resolution. Here, we demonstrate the benefits of such experimental capabilities in a diverse range of complex systems, ranging from the diffusion of nano-objects in crowded 3D environments to the study of polymer diffusion on 2D surfaces.

  18. Assessing the Gap Between Top-down and Bottom-up Measured Methane Emissions in Indianapolis, IN.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lamb, B. K.; Cambaliza, M. O. L.; Shepson, P. B.; Stirm, B. H.; Salmon, O. E.; Lavoie, T. N.; Lauvaux, T.; Ferrara, T.; Howard, T.; Edburg, S. L.; Whetstone, J. R.

    2014-12-01

    Releases of methane (CH4) from the natural gas supply chain in the United States account for approximately 30% of the total US CH4 emissions. However, there continues to be large questions regarding the accuracy of current emission inventories for methane emissions from natural gas usage. In this paper, we describe results from top-down and bottom-up measurements of methane emissions from the large isolated city of Indianapolis. The top-down results are based on aircraft mass balance and tower based inverse modeling methods, while the bottom-up results are based on direct component sampling at metering and regulating stations, surface enclosure measurements of surveyed pipeline leaks, and tracer/modeling methods for other urban sources. Mobile mapping of methane urban concentrations was also used to identify significant sources and to show an urban-wide low level enhancement of methane levels. The residual difference between top-down and bottom-up measured emissions is large and cannot be fully explained in terms of the uncertainties in top-down and bottom-up emission measurements and estimates. Thus, the residual appears to be, at least partly, attributed to a significant wide-spread diffusive source. Analyses are included to estimate the size and nature of this diffusive source.

  19. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Monitoring diffuse degassing in monogentic volcanic field during magmatic reactivation: the case of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Morales-Ocaña, C.; Feldman, R. C.; Pointer, Z. R.; Rodríguez, F.; Asensio-Ramos, M.; Melián, G.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    El Hierro (278 km2), the younger, smallest and westernmost island of the Canarian archipelago, is a 5-km-high edifice constructed by rapid constructive and destructive processes in 1.12 Ma, with a truncated trihedron shape and three convergent ridges of volcanic cones. It experienced a submarine eruption from 12 October, 2011 and 5 March 2012, off its southern coast that was the first one to be monitored from the beginning in the Canary Islands. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become a useful geochemical tool to monitor the volcanic activity in this volcanic island. Diffuse CO2 emission has been monitored at El Hierro Island since 1998 in a yearly basis, with much higher frequency in the period 2011-2012. At each survey, about 600 sampling sites were selected to obtain a homogeneous distribution. Measurements of soil CO2 efflux were performed in situ following the accumulation chamber method. During pre-eruptive and eruptive periods, the diffuse CO2 emission released by the whole island experienced significant increases before the onset of the submarine eruption and the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 53.1 g m-2 d-1. Statistical-graphical analysis of the data show two different geochemical populations; background (B) and peak (P) represented by 77.6% and 22.4% of the total data, respectively, with geometric means of 1.8 and 9.2 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the interception center of the three convergent ridges and the north of the island. To estimate the diffuse CO2 emission for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by El Hierro was at 1,150 ± 42 t d-1, value higher than the background average of CO2 emission estimated on 422 t d-1 and slightly higher than the background range of 181 t d-1 (-1σ) and 930 t d-1 (+1σ) estimated at El Hierro volcano during the quiescence period 1998-2010 (Melián et al., 2014, JGR). Monitoring the diffuse CO2 emission has proven to be a very effective tool to detect early warning signals of volcanic unrest at El Hierro.

  1. INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis

    2013-02-15

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of themore » detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.« less

  2. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; hide

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  3. Supernova remnants and diffuse ionized gas in M31

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene; Braun, Robert

    1990-01-01

    Researchers have compiled an initial list of radio/optical supernova remnants (SNRs) in M31, by searching for radio identifications of emission-line sources with a high (SII)/H alpha ratio (greater than 0.60). The (SII) filter included both sulfur lines and the H alpha filter did not include (NII). This search revealed 11 SNRs, of which only two were known. In addition, researchers detected radio emission from 3 SNRs that were identified in previous optical surveys (D'Odorico et al., 1980), but that were outside the charge coupled device (CCD) fields. The 14 objects only include the most obvious candidates, but a full search is in progress and the researchers expect to find several more SNRs. Also not all optical SNRs show detectable radio emission and a pure optical list of SNR candidates based only on the ratio of (SII)/H alpha emission contains many more objects. Two conclusions are apparent. First, the radio properties of the SNRs in M31 are quite similar to those of Galactic SNRs as is illustrated. The brightnesses are not systematically lower as has been suggested in the past (Dickel and D'Odorico, 1984). Second, the slope of the relation is close to -2; this slope is expected from the intrinsic dependence between surface brightness and diameter. The radio luminosity of the SNRs does not seem to depend strongly on diameter, or age, contrary to model predictions. Selection effects, however, play an important role in these plots. The CCD images show widespread diffuse ionized gas with a ratio of (SII)/H alpha that is higher than that of discrete HII regions. Discrete HII regions typically show ratios between 0.2 to 0.3, while the diffuse gas in the arms consistently shows ratios of 0.5. Researchers can trace this gas across the spiral arms to emission measures below 5 pc cm (-6). Its properties seem to be similar to that of the diffuse gas in the solar neighborhood.

  4. Uncertainty analysis of diffuse-gray radiation enclosure problems: A hypersensitive case study

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Luck, Rogelio; Hodge, B. K.; Steele, W. Glenn

    1993-01-01

    An uncertainty analysis of diffuse-gray enclosure problems is presented. The genesis was a diffuse-gray enclosure problem which proved to be hypersensitive to the specification of view factors. This genesis is discussed in some detail. The uncertainty analysis is presented for the general diffuse-gray enclosure problem and applied to the hypersensitive case study. It was found that the hypersensitivity could be greatly reduced by enforcing both closure and reciprocity for the view factors. The effects of uncertainties in the surface emissivities and temperatures are also investigated.

  5. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique

    NASA Astrophysics Data System (ADS)

    Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo

    2016-02-01

    A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.

  6. Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Castro-Morales, Karel; Kleinen, Thomas; Kaiser, Sonja; Zaehle, Sönke; Kittler, Fanny; Kwon, Min Jung; Beer, Christian; Göckede, Mathias

    2018-05-01

    Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %). This is followed by ebullition ( ˜ 35 %), while summertime molecular diffusion is negligible (0.02 %) compared to the diffusion through the snow during winter ( ˜ 4 %). We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.

  7. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  8. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  9. Nature of the Diffuse Source and Its Central Point-like Source in SNR 0509–67.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litke, Katrina C.; Chu, You-Hua; Holmes, Abigail

    We examine a diffuse emission region near the center of SNR 0509−67.5 to determine its nature. Within this diffuse region we observe a point-like source that is bright in the near-IR, but is not visible in the B and V bands. We consider an emission line observed at 6766 Å and the possibilities that it is Ly α , H α , and [O ii] λ 3727. We examine the spectral energy distribution (SED) of the source, comprised of Hubble Space Telescope B , V , I , J , and H bands in addition to Spitzer /IRAC 3.6, 4.5,more » 5.8, and 8 μ m bands. The peak of the SED is consistent with a background galaxy at z ≈ 0.8 ± 0.2 and a possible Balmer jump places the galaxy at z ≈ 0.9 ± 0.3. These SED considerations support the emission line’s identification as [O ii] λ 3727. We conclude that the diffuse source in SNR 0509−67.5 is a background galaxy at z ≈ 0.82. Furthermore, we identify the point-like source superposed near the center of the galaxy as its central bulge. Finally, we find no evidence for a surviving companion star, indicating a double-degenerate origin for SNR 0509−67.5.« less

  10. Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs

    PubMed Central

    2017-01-01

    The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874

  11. An X-ray investigation of the unusual supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Wang, Z. R.; Seward, F. D.

    1984-01-01

    The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.

  12. Enhanced photon indistinguishability in pulse-driven quantum emitters

    NASA Astrophysics Data System (ADS)

    Fotso, Herbert F.

    2017-04-01

    Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.

  13. Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila

    PubMed Central

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen

    2014-01-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933

  14. Analysis of the diffuse ionized gas database: DIGEDA

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Binette, L.

    2009-10-01

    Studies of the Diffuse Ionized Gas (DIG) have progressed without providing so far any strict criterion to distinguish DIGs from H II regions. In this work, we compile the emission line measurements of 29 galaxies that are available in the scientific literature, thereby setting up the first DIG database (DIGEDA). Making use of this database, we proceed to analyze the global properties of the DIG using the [NII]λ6583/Hα, [O I]λ6300/Hα, [O III]λ5007/Hβ and [SII]λ6716/Hα lines ratios, including the H α emission measure. This analysis leads us to conclude that the [N II]/Hα ratio provides an objective criterion for distinguishing whether an emission region is a DIG or an H II region, while the EM(Hα) is a useful quantity only when the galaxies are considered individually. Finally, we find that the emission regions of Irr galaxies classified as DIG in the literature appear in fact to be much more similar to H II regions than to the DIGs of spiral galaxies.

  15. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  16. Diffuse X-ray emission from Abell clusters 401 and 399 - A gravitationally bound system

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Kinzer, R.; Cruddace, R. G.; Wood, K.; Evans, W.; Byram, E. T.; Chubb, T. A.; Friedman, H.

    1979-01-01

    The X-ray emission from the Abell 401-399 region has been studied using data obtained by the A-1 proportional counter aboard HEAO 1 in two different ways. The first involved routine scanning of the region during the all-sky survey, and the second was an observation in which the instrument was pointed at A401 during a lunar occultation. The emission is shown to be unusually extended and to be centered on a point lying between A401 and A399. The best fit of a uniform disk model to the data yielded a radius of 25.5 + or -4.4 arcmin for the lunar occultation and 42 + or - 17 arcmin for the scans. A possible explanation of the results is that A401 and A399 are both diffuse cluster X-ray sources. Alternatively, the emission may come from a large gas cloud of at least 10 to the 15th solar masses enveloping both clusters.

  17. Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Junichiro; /Stanford U., HEPL /KIPAC, Menlo Park; Tanaka, Y.T.

    2012-08-17

    CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the {gamma} rays along the radio lobes, which is consistent with the lack of sourcemore » variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed {gamma}-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed {gamma}-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.« less

  18. Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Witt, A. N.

    2014-02-01

    Blue luminescence (BL) and extended red emission (ERE) are observed as diffuse, optical-wavelength emissions in interstellar space, resulting from photoluminescence by ultraviolet(UV)-illuminated interstellar grains. Faintness and the challenge of separating the BL and ERE from the frequently much brighter dust-scattered continuum present major observational hurdles, which have permitted only slow progress in testing the numerous models that have been advanced to explain these two phenomena. Both the ERE, peaking near 680 nm (FWHM ~ 60 - 120 nm) and the BL, asymmetrically peaking at ~ 378 nm (FWHM ~ 45 nm), were first discovered in the Red Rectangle nebula. Subsequently, ERE and BL have been observed in other reflection nebulae, and in the case of the ERE, in carbon-rich planetary nebulae, H II regions, high-latitude cirrus clouds, the galactic diffuse ISM, and in external galaxies. BL exhibits a close spatial and intensity correlation with emission in the aromatic emission feature at 3.3 micron, most likely arising from small, neutral polycyclic aromatic hydrocarbon (PAH) molecules. The spectral characteristics of the BL also agree with those of fluorescence by PAH molecules with 13 to 19 carbon atoms. The BL phenomenon is thus most readily understood as the optical fluorescence of small, UV-excited aromatic molecules. The ERE, by contrast, though co-existent with mid-IR PAH emissions, does not correlate with emissions from either neutral or ionized PAHs. Instead, the spatial ERE morphology appears to be strictly governed by the density of far-UV (E >= 10.5 eV) photons, which are required for the ERE excitation. The most restrictive observational constraint for the ERE process is its exceptionally high quantum efficiency. If the ERE results from photo-excitation of a nano-particle carrier by photons with E >= 10.5 eV in a single-step process, the quantum efficiency exceeds 100%. Such a process, in which one to three low-energy optical photons may be emitted following a single far-UV excitation, is possible in highly isolated small clusters, e.g. small, dehydrogenated carbon clusters with about 20 to 28 carbon atoms. A possible connection between the ERE carriers and the carriers of DIBs may exist in that both are ubiquitous throughout the diffuse interstellar medium and both have an abundance of low-lying electronic levels with E <= 2.3 eV above the ground state.

  19. Anomalous changes of diffuse CO_{2} emission and seismic activity at Teide volcano, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    García-Hernández, Rubén; Melián, Gladys; D'Auria, Luca; Asensio-Ramos, María; Alonso, Mar; Padilla, Germán D.; Rodríguez, Fátima; Padrón, Eleazar; Barrancos, José; García-Merino, Marta; Amonte, Cecilia; Pérez, Aarón; Calvo, David; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts four main active volcanic edifices: three volcanic rifts and a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system, Pico Viejo and Teide, has been developed. Although there are no visible gas emanations along the volcanic rifts of Tenerife, the existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999, to determine the diffuse CO2 emission from the summit crater and to evaluate the temporal variations of CO2 efflux and their relationships with seismic-volcanic activity. Soil CO2 efflux and soil temperature have been always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method by means of a non-dispersive infrared (NDIR) LICOR-820 CO2 analyzer. Historical seismic activity in Tenerife has been characterized by low- to moderate-magnitude events (M <2.5), and most of the earthquake's epicenters have been clustered in an offshore area SE of Tenerife. However, very few earthquakes have occurred in other areas, including Teide volcano. At 12:18 of January 6, 2017, the Canary Seismic Network belonged to the Instituto Volcanológico de Canarias (INVOLCAN) registered an earthquake of M 2.5 located in the vertical of Teide volcano with a depth of 6.6 km. It was the strongest earthquake located inside Cañadas caldera since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered, from 21.3 ± 2.0 to 101.7 ± 20.7 t d-1, suggesting the occurrence of future increase in the seismic-volcanic activity. In fact, this precursory signal preceded the occurrence of the 2.5 seismic event and no significant horizontal and vertical displacements were registered by the Canary GPS network belonged to INVOLCAN. This seismic event was probably due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife. With the aim of investigate the relationship of the observed temporal variation on diffuse CO2 emission and the seismic event occurred beneath Teide volcano in January 6, 2016, the anomalous peak of diffuse CO2 emission was tested following the Material Failure Forecast Method (FFM). To do so, a Geochemical Window Precursory Signal (GWPS) was selected between October 11 and December 13, 2016. Plotting the inverse of diffuse CO2 emission rate versus time, the interception of the linear fit of the data with the time axis indicates the theoretical moment when seismicity is most likely to occur. Surprisingly, interception of the linear fit occurred for a time window between January 6 and 9, 2017, showing an excellent correlation with the occurrence of the M 2.5 earthquake registered at Teide in January 6, 2017.

  20. Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macias, Oscar

    2014-05-01

    Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb with a <σ v> of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  1. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  2. Homogeneous free-form directional backlight for 3D display

    NASA Astrophysics Data System (ADS)

    Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying

    2017-08-01

    Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.

  3. Investigating Galactic Structure with COBE/DIRBE and Simulation

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1999-01-01

    In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE (Cosmic Background Explorer Satellite/Diffuse Infrared Background Experiment). The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic background."Faint Source Model" [FSM] was constructed to remove Galactic fore ground stars from the ZSMA products. The FSM mimics SKY version 1 but it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result.

  4. Polarimetric phenomenology in the reflective regime: a case study using polarized hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gibney, Mark

    2016-05-01

    Understanding the phenomenology of polarimetric data is necessary if we want to obtain the maximum benefit when we exploit that data. To first order, polarimetric phenomenology is driven by two things; the target material type (specular or diffuse) and the illuminating source (point (sun) or extended (body emission)). Polarimetric phenomenology can then be broken into three basic categories; ([specular material/sun source], [diffuse/sun], [specular/body]) where we have assigned body emission to the IR passband where materials are generally specular. The task of interest determines the category of interest since the task determines the dominant target material and the illuminating source (eg detecting diffuse targets under trees in VNIR = [diffuse/sun] category). In this paper, a specific case study for the important [diffuse/sun] category will be presented. For the reflective regime (0.3 - 3.0um), the largest polarimetric signal is obtained when the sun illuminates a significant portion of the material BRDF lobe. This naturally points us to problems whose primary target materials are diffuse since the BRDF lobe for specular materials is tiny (low probability of acquiring on the BRDF lobe) and glinty (high probability of saturating the sensor when on lobe). In this case study, we investigated signatures of solar illuminated diffuse paints acquired by a polarimetric hyperspectral sensor. We will discuss the acquisition, reduction and exploitation of that data, and use it to illustrate the primary characteristics of reflective polarimetric phenomenology.

  5. Exchange of nitrous oxide within the Hudson Bay lowland

    NASA Technical Reports Server (NTRS)

    Schiller, C. L.; Hastie, D. R.

    1994-01-01

    The source strength of atmospheric trace gases from natural ecosystems must be quantified in order to assess the effect of such inputs on the background tropospheric chemistry. A static chamber technique and a gas exchange technique were used to determine the emissions of nitrous oxide from five sites within the Hudson Bay Lowland, as part of the Northern Wetland Study. Two mechanisms, one diffusive and the other episodic, were found likely to be responsible for the emissions of nitrous oxide. The annual diffusive flux ranged from -3.8 mg(N2O)/sq m in a treed bog to 7.9 mg(N2O)/sq m in an open fen. The addition of the episodic flux, increased this range to -2.1 mg(N2O)/sq m and 18.5 mg(N2O)/sq m respectively. These episodic emissions occurred in from 2.5% to 16.7% of the samples during the late summer peak emission period. Since the gas exchange rate could not detect the episodic emissions, it was found to be a poor method for water emission rate determination within the wetland. LANDSAT-Thermatic Mapper (TM) imagery was used to scale the emissions, from the chamber level to an integrated average over the entire Hudson Bay Lowland. The total emission rate of N2O from the Hudson Bay Lowland, was determined to be 1.2 Gg(N2O)/year, of which 80% was attributed to episodic emissions.

  6. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-05-01

    X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  7. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-07-01

    X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  8. NuSTAR monitoring of the Galactic center diffuse emission

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo

    2017-08-01

    Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.

  9. The effects of ferrocene concentration on soot in an ethylene laminar diffusion flame

    EPA Science Inventory

    Metal fuel-borne catalysts are of interest in the combustion and environmental communities due principally to their ability to reduce carbon particulate mass emissions. However, a negative aspect to their use is the potential emission of the metals themselves. Post-combustion, th...

  10. Volcanic soil gas 4He/CO2 ratio: a useful geochemical tool for eruption forecasting

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, M.; Perez, N. M.; Padron, E.; Melián, G.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Rodríguez, F.; Sumino, H.; Calvo, D.

    2016-12-01

    Magmatic gases that percolate through volcano's porous flanks in a non-visible (diffuse) way disturb the chemical composition of soil gases at the surface environment of the volcano, generating enrichments of CO2, He and other gases. Two of the gases which have attracted attention in soil degassing studies are He and CO2 because both species have similar low solubility in silicate melts. However, once they are exsolved from the melts, their movement through the crust towards the surface is very different: CO2, which is a reactive gas, is affected by the occurrence of interfering processes, while interaction of He during its ascent is minimum. Their geochemical differences yield higher relative He/CO2 ratios in the fumarole gases than is actually present in the magma, but it decreases when the magma reservoir reaches enough pressure to generate incipient fracture systems approaching the eruption. In this work, we present quasi daily estimations of diffusive He through the whole surface of El Hierro, the youngest island of the Canarian archipelago, considering He emission data reported in the literature (Padrón et al., 2013. Geology, 41, 539-542), using the same procedure as for diffuse CO2 emission time series (Melián et al., 2014. J. Geophys. Res., 119, 6976-6991). After the occurrence of more than 11,000 seismic events, a shallow submarine eruption about 2 km off the south coast in the southernmost part of El Hierro, started in October 12, 2011 and lasted for 5 month. The herein presented methodology enables the calculation of the diffuse He/CO2 emission ratio of the entire island during the volcanic unrest. Two different emission peaks for both He and CO2, with approximately the same delay between them ( 23 days), were observed. The combination of both time series resulted in a drastic increase in the He/CO2 emission ratio of the island (up to 1.1×10-3) two weeks before the eruption onset. Additionally, a second significant He/CO2 emission peak (up to 5.5×10-4) was observed between 3 and 4 November, some days before the highest lava emission period. The detailed time series of He/CO2 emission ratio during El Hierro 2011-2012 submarine eruption presented here demonstrate the importance of its continuous monitoring in active volcanic regions, mainly in areas without visible manifestations of volcanic fluid discharges.

  11. Diurnal variability of CO2 and CH4 emissions from tropical reservoirs

    NASA Astrophysics Data System (ADS)

    Linkhorst, Annika; Reinaldo Paranaíba, José; Barros, Nathan; DelSontro, Tonya; Isidorova, Anastasija; Mendonça, Raquel; Sobek, Sebastian

    2017-04-01

    Reservoirs are important atmospheric sources of carbon dioxide (CO2) and methane (CH4) with CH4 being a greenhouse gas (GHG) at least 28 times more potent than CO2. Reservoir GHG emissions tend to be heterogeneous, however, and thus current emission estimates are likely conservative since they often overlook emission hot spots and hot moments, especially for CH4 ebullition. For CO2, diffusion is the dominant flux pathway, and diurnal patterns in CO2 emissions can largely be linked to photosynthesis. In contrast, ebullition, the release of gases through bubbles that are formed in the sediments and travel through the water column, is a major emission pathway for CH4 in shallow waters. We visually observed a change in quantity and size of bubbles at different times of the day, and therefore conducted a diurnal study in four different Brazilian reservoirs of different size, age, climatic and geographic characteristics. We hypothesized that sub-daily trends in CH4 ebullition occur in Brazilian reservoirs as bubble release depends on physical factors such as turbulence and hydrostatic pressure, which can exhibit sub-daily patterns in large, managed reservoirs. In each reservoir, we performed measurements of CO2 and CH4 fluxes at one location over 24 hours. CH4 ebullition was tracked continuously by an echosounder, and 13 anchored bubble traps per reservoir were sampled every three hours. Further, a custom-built equilibrator monitored dissolved CH4 and CO2 concentrations, and diffusive and total fluxes of CO2 and CH4 were measured using floating chambers in triplicates every 30 minutes during the same period. We observed that CH4 ebullition as well as CH4 and CO2 diffusion peaked during the day, with peak fluxes being up to four times higher than low fluxes. However, the exact timing and magnitude varied for the different sampling events, and could in part be linked to biological and physical properties of the respective reservoir. This study combined different state-of-the-art techniques to show, for the first time, short-scale temporal variability for both diffusion and ebullition of CO2 and CH4 in different tropical reservoirs. It shows substantial and non-negligable diurnal variability in GHG emission from tropical reservoirs. Further studies are needed to find out if the pattern of low flux during night needs to be accounted for in estimations of GHG emission from reservoirs.

  12. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.

    2014-09-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.

  13. Background model systematics for the Fermi GeV excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excessmore » emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E(break) = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bar bb final states a dark matter mass of m(χ)=49(+6.4)(-)(5.4)  GeV.« less

  14. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Hilley, George E.

    2014-01-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June–October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24–25 October soil CO2 flux surveys were 165, 172, and 231 t d− 1, respectively. The average (June–October) CO2 emission rate estimated for this area was 123 t d− 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time–frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July–August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d− 1, which may suggest that emissions returned to 1998–2009 levels, following an increase from 2009 to 2011.

  15. Observations of the birth of a small coronal hole

    NASA Technical Reports Server (NTRS)

    Solodyna, C. V.; Krieger, A. S.; Nolte, J. T.

    1977-01-01

    Using soft X-ray data from the S-054 X-ray spectrographic telescope aboard Skylab, we observed temporal changes in the emission structure of the X-ray corona associated with the birth of a small coronal hole. Designated as CH6, this coronal hole was born near the equator in a time interval less than 9-1/2 hr. By constructing a light curve for a point near the center of CH6, we observed a sudden 40% decrease in X-ray emission associated with the birth of this coronal hole. On a time scale of hours, the growth of CH6 in area proceeded faster than the average rate predicted by the diffusion of solar fields. The short term decay of CH6 followed the diffusive rate to within experimental uncertainty. On a time scale of one rotation, the subsequent development of CH6 was not consistent with steady growth at the average rate predicted by diffusion.

  16. Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.

  17. Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems.

    PubMed

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2012-11-30

    As back diffusion gases from automobiles are significant sources of in-vehicular pollution, we investigated eight automobiles, five for back diffusion (driving) measurements and three for reference conditions (non-driving). To characterize the back diffusion emission conditions, seven volatile organic compounds (VOC) and four carbonyl compounds (CCs) were measured along with dilution-to-threshold (D/T) ratio. The data obtained from back diffusion measurements were examined after having been divided into three subcategories: (i) driving and non-driving, (ii) with and without automobile upgrading (sealing the inner line), and (iii) differences in CO emission levels. Among the VOCs, the concentrations of toluene (T) was found to be the highest (range: 13.6-155 ppb), while benzene (0.19-1.47 ppb) was hardly distinguishable from its ambient levels. Other VOCs (xylene, trimethylbenzene, and styrene) were generally below <1 ppb. Unlike VOCs, the concentrations (ppb) of CCs were seen at fairly enhanced levels: 30.1-95 (formaldehyde), 34.6-87.2 (acetaldehyde), 4.56-34.7 (propionaldehyde), and 3.45-68.8 (butyraldehyde). The results of our study suggest that the back diffusion phenomenon, if occurring, can deteriorate in-vehicle air, especially with the most imminent health hazards from a compound such as formaldehyde in view of its exceedance pattern over common guidelines. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Laminar soot processes

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Lin, K.-C.; Faeth, G. M.

    1995-01-01

    Soot processes within hydrocarbon fueled flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, the present investigation is studying soot processes in laminar diffusion and premixed flames in order to better understand the soot and thermal radiation emissions of luminous flames. Laminar flames are being studied due to their experimental and computational tractability, noting the relevance of such results to practical turbulent flames through the laminar flamelet concept. Weakly-buoyant and nonbuoyant laminar diffusion flames are being considered because buoyancy affects soot processes in flames while most practical flames involve negligible effects of buoyancy. Thus, low-pressure weakly-buoyant flames are being observed during ground-based experiments while near atmospheric pressure nonbuoyant flames will be observed during space flight experiments at microgravity. Finally, premixed laminar flames also are being considered in order to observe some aspects of soot formation for simpler flame conditions than diffusion flames. The main emphasis of current work has been on measurements of soot nucleation and growth in laminar diffusion and premixed flames.

  19. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  20. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model.

    PubMed

    Prokhorov, Alexander

    2012-05-01

    This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.

  1. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  2. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).

    PubMed

    Mourad, D; van der Perk, M

    2004-01-01

    First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.

  3. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  4. Izu-Oshima volcano, Japan: ten years of geochemical monitoring by means of CO2 soil diffuse degassing

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, P. A.; Mori, T.; Notsu, K.; Morita, M.; Padron, E.; Onizawa, S.; Melián, G.; Sumino, H.; Asensio-Ramos, M.; Nogami, K.; Yamane, K.; Perez, N. M.

    2016-12-01

    Izu-Oshima is an active volcanic island located around 100 km SSW of Tokyo. The centre of the island is occupied by a caldera complex with a diameter of 3 km. A large post-caldera cone known as Mt. Mihara is located at the south-western quadrant of the caldera. Izu-Oshima has erupted 74 times, consisting mainly in fissure eruptions, both inside and outside of the caldera. The last eruption of Izu-Oshima occurred in 1986. Since 2007, eight soil gas surveys have been carried out to investigate the spatial and temporal evolution of diffuse CO2 emission from this volcanic system and to identify those structures controlling the degassing process. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. The location of the CO2 anomalies has always shown a close relationship with the structural characteristics of Miharayama, with most of the gas discharged from the rim of the summit crater. Temporal evolution of diffuse CO2 emission rate from Mt. Miharayama has shown a good temporal correlation with the main two peaks of seismic activity occur when highest CO diffuse emissions were computed, March 2007, August 2010 and July 2011, may be associated with fluid pressure fluctuations in the volcanic system due stress changes at depth. In order to strength the contribution of deep seated gases, we performed carbon isotopic analysis of soil gas samples at selected sites during 2010, 2013, 2015 and 2016 surveys. At isotopic compositions lighter than - 6‰, the soil CO2 effluxes were always low, while at heavier isotopic compositions an increasing number of points are characterized by relatively high soil CO efflux. Soil CO2 efflux peak values (xB) showed also a good correlation with the observed seismicity, with the largest value computed on June 2013. This parameter is a geochemical expression of the magnitude of the anomalous degassing, and the observed change in the trend may indicate an increase of the seismic-volcanic activity in the next future. Therefore, performing regularly soil CO2 efflux surveys seems to be an effective geochemical surveillance tool Izu-Oshima volcano in order to detect a change in the tendency of the CO2 emission rate in case of future episodes of volcanic unrest.

  5. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towardsmore » different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.« less

  6. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  7. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR.

    PubMed

    Chanudet, Vincent; Descloux, Stéphane; Harby, Atle; Sundt, Håkon; Hansen, Bjørn Henrik; Brakstad, Odd; Serça, Dominique; Guerin, Frédéric

    2011-11-15

    Gross CO2 and CH4 emissions (degassing and diffusion from the reservoir) and the carbon balance were assessed in 2009-2010 in two Southeast Asian sub-tropical reservoirs: the Nam Ngum and Nam Leuk Reservoirs (Lao PDR). These two reservoirs are within the same climatic area but differ mainly in age, size, residence time and initial biomass stock. The Nam Leuk Reservoir was impounded in 1999 after partial vegetation clearance and burning. However, GHG emissions are still significant 10 years after impoundment. CH4 diffusive flux ranged from 0.8 (January 2010) to 11.9 mmol m(-2) d(-1) (April 2009) and CO2 diffusive flux ranged from -10.6 (October 2009) to 38.2 mmol m(-2) d(-1) (April 2009). These values are comparable to other tropical reservoirs. Moreover, degassing fluxes at the outlet of the powerhouse downstream of the turbines were very low. The tentative annual carbon balance calculation indicates that this reservoir was a carbon source with an annual carbon export (atmosphere+downstream river) of about 2.2±1.0 GgC yr(-1). The Nam Ngum Reservoir was impounded in 1971 without any significant biomass removal. Diffusive and degassing CO2 and CH4 fluxes were lower than for other tropical reservoirs. Particularly, CO2 diffusive fluxes were always negative with values ranging from -21.2 (April 2009) to -2.7 mmol m(-2) d(-1) (January 2010). CH4 diffusive flux ranged from 0.1 (October 2009) to 0.6 mmol m(-2) d(-1) (April 2009) and no degassing downstream of the turbines was measured. As a consequence of these low values, the reservoir was a carbon sink with an estimated annual uptake of - 53±35 GgC yr(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Monitoring diffuse degassing in monogenetic volcanic field during seismic-volcanic unrest: the case of Tenerife North-West Rift Zone (NWRZ), Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    García, E.; Botelho, A. H.; Regnier, G. S. G.; Rodríguez, F.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    Tenerife North-West Rift-Zone (NWRZ) is the most active volcano of the oceanic active volcanic island of Tenerife and the scenario of three historical eruptions (Boca Cangrejo S. XVI, Arenas Negras 1706 and Chinyero 1909). Since no visible degassing (fumaroles, etc.) at Tenerife NWRZ occurs, a geochemical monitoring program at Tenerife NWRZ was established mainly consisting on performing soil CO2 efflux surveys (50 surveys since 2000) to evaluate the temporal and spatial variations of soil CO2 efflux measurements and the diffuse CO2 emission rate. To do so, about 340 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 46.6 g m-2 d-1. Statistical-graphical analysis of the 2017 data show two different geochemical populations; background (B) and peak (P) represented by 93.3% and 1.9% of the total data, respectively. The geometric means of the B and P populations are 2.4 and 19.1 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the N-W side of the volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Tenerife NWRZ (75 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by the Tenerife NWRZ volcano was 297 ± 13 t d-1. This 2017 diffuse CO2 emission rate value is relatively higher than the estimated background value (144 t d-1) and falls within the estimated background range (72 - 321 t d-1) observed for Tenerife NWRZ volcano during the 2000-2017 period. The observed temporal variation in the diffuse CO2 degassing output during this period does not seem to be driven by external factors and it shows a clear temporal correlation with the onsets of seismic activity (Hernández et al., 2017, Bull. Volcanol.). Monitoring the diffuse CO2 emission contributes to detect early warning signals of volcanic unrest at the Tenerife North-West Rift-Zone volcano.

  9. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  10. A SELF-CONSISTENT EXPLANATION OF TeV EMISSIONS FROM HESS J1640-465 AND HESS J1641-463

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yunyong; Yang, Chuyuan; Wang, Jiancheng

    2015-10-10

    The bright TeV source HESS J1640-465 is positionally coincident with the young supernova remnant (SNR) G338.3-0.0, and the nearby HESS J1641-463 with TeV gamma-ray emission seems to be closely associated with it. Based on the nonlinear diffusion shock acceleration model, we explore the emission from these two TeV sources, the particle diffusion is assumed to be different inside and outside the absorbing boundary of the particles accelerated in the SNR shock. The results indicate that (1) the GeV–TeV emission from the region of the HESS J1640-465 is produced as a result of the particle acceleration inside the SNR G338.3-0.0 andmore » (2) the runaway cosmic-ray particles outside the SNR are interacting with the nearby dense molecular cloud (MC) at the region of the HESS J1641-463, corresponding π{sup 0} decay gamma-ray in proton–proton collision contribute to the TeV emission from the HESS J1641-463. Also, we investigate the possible X-ray emission in MC from the synchrotron procedure by secondary e{sup ±} produced through escaped protons interaction with the MC.« less

  11. Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications

    PubMed Central

    Wang, Chun; Lai, Derrick Y. F.; Sardans, Jordi; Wang, Weiqi; Zeng, Congsheng; Peñuelas, Josep

    2017-01-01

    Paddy fields are major sources of global atmospheric greenhouse gases, including methane (CH4) and nitrous oxide (N2O). The different phases previous to emission (production, transport, diffusion, dissolution in pore water and ebullition) despite well-established have rarely been measured in field conditions. We examined them and their relationships with temperature, soil traits and plant biomass in a paddy field in Fujian, southeastern China. CH4 emission was positively correlated with CH4 production, plant-mediated transport, ebullition, diffusion, and concentration of dissolved CH4 in porewater and negatively correlated with sulfate concentration, suggesting the potential use of sulfate fertilizers to mitigate CH4 release. Air temperature and humidity, plant stem biomass, and concentrations of soil sulfate, available N, and DOC together accounted for 92% of the variance in CH4 emission, and Eh, pH, and the concentrations of available N and Fe3+, leaf biomass, and air temperature 95% of the N2O emission. Given the positive correlations between CH4 emission and DOC content and plant biomass, reduce the addition of a carbon substrate such as straw and the development of smaller but higher yielding rice genotypes could be viable options for reducing the release of greenhouse gases from paddy fields to the atmosphere. PMID:28081161

  12. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.

    The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found thatmore » after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.« less

  13. Delay-induced rebounds in CO2 emissions and critical time-scales to meet global warming targets

    NASA Astrophysics Data System (ADS)

    Manoli, Gabriele; Katul, Gabriel G.; Marani, Marco

    2016-12-01

    While climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human-energy-climate system can hold "rebound" surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human-energy-climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low-carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate-friendly technologies must occur with lags one-order of magnitude shorter (i.e., ˜6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.

  14. Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Warren, J. A.; Clarke, J. T.

    1989-01-01

    A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly-alpha and H2 bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. An in situ mechanism for accelerating photoelectrons (and ions is proposed, involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of about 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H2 atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro

    We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measuredmore » by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission.« less

  16. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Michael Mcneil; Lawson, Kyle; Zhitnitsky, Ariel R

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from themore » galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.« less

  17. A New Probe of Line-of-sight Magnetic Field Tangling

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-04-01

    The Galactic neutral hydrogen (H I ) sky at high Galactic latitudes is suffused with linear structure. Particularly prominent in narrow spectral intervals, these linear H I features are well aligned with the plane-of-sky magnetic field orientation as measured with optical starlight polarization and polarized thermal dust emission. We analyze the coherence of the orientation of these features with respect to line-of-sight velocity, and propose a new metric to quantify this H I coherence. We show that H I coherence is linearly correlated with the polarization fraction of 353 GHz dust emission. H I coherence constitutes a novel method for measuring the degree of magnetic field tangling along the line of sight in the diffuse interstellar medium. We propose applications of this property for H I -based models of the polarized dust emission in diffuse regions, and for studies of frequency decorrelation in the polarized dust foreground to the cosmic microwave background (CMB).

  18. An introduction to the water recovery x-ray rocket

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  19. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    PubMed

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  20. Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Ashworth, D. J.; Zheng, W.; Knuteson, J.; van Wesenbeeck, I. J.

    2016-07-01

    Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m-2 s-1 for 1,3-D and 0.22-3.2 μg m-2 s-1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23-41 kg ha-1, or 15-27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2-24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.

  1. Analysis of heavy metal sources in storm water from urban areas

    NASA Astrophysics Data System (ADS)

    Scherer, U.; Fuchs, S.

    2009-04-01

    The input of heavy metals into surface waters is a serious impairment of the aquatic environment. The emissions of heavy metals via point and diffuse pathways into the German river basins were thus quantified for the period of 1985 through 2005. The total emission into the German river systems decreased for each metal during the observed period. This reduction is mainly caused by the decline of emissions via point sources. The measures taken by industry and implemented within the scope of a stringently water legislation have decisively contributed to an improvement of environmental conditions. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. One of the most important diffuse input is the storm water discharged from paved urban areas into the surface waters via storm sewers and combined sewer overflows especially for the metals copper, zinc and lead. The objective of this project was to identify the sources of these three heavy metals washed of from paved urban areas. The use of copper, zinc and lead on the outsides of buildings results in emissions to water and soil via rainwater due to weathering and runoff of soluble and insoluble metallic compounds. Copper and zinc are traditionally used materials in the building sector especially for roofs, gutters and facades. Lead, in contrast, plays only a subordinate role due to its more limited outdoor use. The corrosion rates vary widely. Climatic factors (temperature, humidity etc.), above all the presence of corrosive gases (sulphur dioxide, nitrogen oxide, ozone etc.) influence the corrosion processes. Estimates of industrial associations were referred to in order to determine the corrosion relevant metal surfaces. Heavy metal emissions caused by traffic are complex and depend on many parameters which vary by locality, time and substance. In principle, substances can be emitted by vehicles, the road surface and by maintenance. Emissions of copper, lead and zinc are mainly caused by wear and tear of tyres and brake pads. The reference figures of the environmental emissions are usually the kilometres driven per vehicle. The emissions can then be calculated based on the road performance. Furthermore atmospheric deposition on paved urban areas was considered. The heavy metal emission from each individual source and the portion discharged into surface waters via storm sewers and combined sewer overflows was quantified. The emission sum of all sources was validated using emission data of storm sewers based on measured heavy metal concentrations and the discharge volume showing a good agreement.

  2. Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada.

    PubMed

    Pinti, Daniele L; Gelinas, Yves; Moritz, Anja M; Larocque, Marie; Sano, Yuji

    2016-10-01

    The increasing number of studies on the determination of natural methane in groundwater of shale gas prospection areas offers a unique opportunity for refining the quantification of natural methane emissions. Here methane emissions, computed from four potential sources, are reported for an area of ca. 16,500km(2) of the St. Lawrence Lowlands, Quebec (Canada), where Utica shales are targeted by the petroleum industry. Methane emissions can be caused by 1) groundwater degassing as a result of groundwater abstraction for domestic and municipal uses; 2) groundwater discharge along rivers; 3) migration to the surface by (macro- and micro-) diffuse seepage; 4) degassing of hydraulic fracturing fluids during first phases of drilling. Methane emissions related to groundwater discharge to rivers (2.47×10(-4) to 9.35×10(-3)Tgyr(-1)) surpass those of diffuse seepage (4.13×10(-6) to 7.14×10(-5)Tgyr(-1)) and groundwater abstraction (6.35×10(-6) to 2.49×10(-4)Tgyr(-1)). The methane emission from the degassing of flowback waters during drilling of the Utica shale over a 10- to 20-year horizon is estimated from 2.55×10(-3) to 1.62×10(-2)Tgyr(-1). These emissions are from one third to sixty-six times the methane emissions from groundwater discharge to rivers. This study shows that different methane emission sources need to be considered in environmental assessments of methane exploitation projects to better understand their impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-05-01

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by H.E.S.S. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  4. Timing is everything :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

    People save for retirement throughout their career because it is virtually impossible to save all youll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is, To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades? Existing models do not includemore » full regulatory constraints due to their often complex, and inflexible approaches to solve for optimal engineering instead of robust and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework or module to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the models capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technologys demand in the marketplace.« less

  5. A high resolution spectrum of the diffuse soft X-ray background

    NASA Astrophysics Data System (ADS)

    Crowder, S. Gwynne

    Galactic contributions to the diffuse X-ray background were believed to largely come from thermal emission of hot gas and models of the Galactic neighborhood within ˜ 100 pc reflected this belief. However, recent observations led to the realization that emission from charge exchange within the Solar System might produce comparable intensities to that of thermal emission. A high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV was obtained for a ˜ 1 sr region of the sky centered at l = 90°, b = +60° in May 2008 using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum can be used to separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced about a factor of four by contamination that occurred early in the flight, limiting the significance of the results. The observed ratio of helium-like O VII forbidden plus intercombination to resonance lines is 1.2 +/- 1.2 at 90% confidence. This indicates that at least 67% of the emission is thermal. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3+0.3-0.2 , requiring at least a 33% contribution from charge exchange. In addition to these astrophysical results, I present experimental improvements from the addition of a gold coating to the detector array substrate which greatly reduces extraneous signals and from the use of silicon support meshes which improves blocking filter robustness. I also detail a new optimal filtering analysis technique that preserves spectral resolution and live time in the presence of pulse overlap.

  6. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  7. [CII] observations of H2 molecular layers in transition clouds

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Mapping Boron Dioxide (BO2) Light Emission During Ballistic Initiation of Boron

    DTIC Science & Technology

    2016-03-03

    Dreizin; unreferenced). Essentially, 2 light sensors (cameras), each filtered over a narrow wavelength region, observe an event over the same line of...background incandescence (subtraction gave a qualitatively similar result). For imaging BO2 emission, the light sensors were 2 Phantom V7.3 monochrome...A check of the temperature measurement technique using emission from an acetylene/air diffusion flame gave reasonable results (1,800 K outer soot

  9. Spatial and temporal variations of diffuse CO_{2} degassing at the Tenerife North-South Rift Zone (NSRZ) volcano (Canary Islands) during the period 2002-2016

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.

    2017-04-01

    Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple isolated anomalies and did not show a clear relation with the main volcano-structural features of the area. The CO2 output released to the atmosphere in a diffuse way has been estimated at 524 t d-1, which represents a value lower than the previous one (707 t d-1 at summer of 2015) but higher than the background emission rate. These changes in the temporal series confirm the need of periodic diffuse emission surveys in the area as a powerful volcanic surveillance tool in volcanic systems where visible gas emanations are absent. References: Dóniz et al., 2008. J. Volcanol. Geotherm. Res. 173, 185.

  10. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; hide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  11. Single-molecule spectroscopy unmasks the lowest exciton state of the B850 assembly in LH2 from Rps. acidophila.

    PubMed

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen

    2014-05-06

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. On Complex Nuclei Energetics in LENR

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Hora, Heinz

    2005-03-01

    Swimming Electron Layer (SEL) theory plus fission of ``complex nuclei'' were proposed earlier to explain reaction products observed in electrolysis with multi-layer thin-film metallic electrodesootnotetext1.G.H. Miley, and J.A. Patterson, J. New Energy, Vol. 1, pp.11-15, (1996).. SEL was then extended to treat gas-diffusion driven transmutation experimentsootnotetextG. H. Miley and H. Hora, ``Nuclear Reactions in Solids,'' APS DNP Mtg., East Lansing, MI, Oct (2002).. It is also consistent with measured charged-particle emission during thin-film electrolysis and x-ray emission during plasma bombardment experimentsootnotetextA. Karabut, ``X-ray emission in high-current glow discharge,'' Proc., ICCF-9, Beijing China, May (2002).. The binding energy per complex nucleon can be estimated by an energy balance combined with identification of products for each complex e.g. complexes of A 39 have ˜ 0.05 MeV/Nucleon, etc, in thin film electrolysis. Energies in gas diffusion experiments are lower due to the reduced trap site potential at the multi-atom surface. In the case of x-ray emission, complexes involve subsurface defect center traps, giving only a few keV/Nucleon, consistent with experiments^3.

  13. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; de Oña Wilhelmi, Emma; Aharonian, Felix

    2018-04-01

    We report the results of our analysis of the publicly available data obtained by the Large Area Telescope (LAT) on board the Fermi satellite towards the direction of the young massive star cluster Westerlund 2. We found significant extended γ-ray emission in the vicinity of Westerlund 2 with a hard power-law energy spectrum extending from 1 to 250 GeV with a photon index of 2.0 ± 0.1. We argue that amongst several alternatives, the luminous stars in Westerlund 2 are likely sites of acceleration of particles responsible for the diffuse γ-ray emission of the surrounding interstellar medium. In particular, the young star cluster Westerlund 2 can provide sufficient non-thermal energy to account for the γ-ray emission. In this scenario, since the γ-ray production region is significantly larger than the area occupied by the star cluster, we conclude that the γ-ray production is caused by hadronic interactions of accelerated protons and nuclei with the ambient gas. In that case, the total energy budget in relativistic particles is estimated of the order of 1050 erg.

  14. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  15. Properties of grains derived from IRAS observations of dust

    NASA Technical Reports Server (NTRS)

    Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.

    1989-01-01

    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including catalytic H2 formation, for which iron grains could be the main site; differences in depletion patterns between iron and other refractory elements (Mg, Si); and superparamagnetic behavior of large grains with embedded iron clusters giving rise to the observed high degree of alignment by the galactic magnetic field.

  16. Beyond the Methanogenic Black-Box: Greenhouse Gas Fluxes (CO2, CH4, N2O) as Evidence for Wetlands as Dynamic Redox Systems

    NASA Astrophysics Data System (ADS)

    Mcnicol, G.; Knox, S. H.; Sturtevant, C. S.; Baldocchi, D. D.; Silver, W. L.

    2015-12-01

    Seminal wetland research in the 1990s demonstrated that annual methane (CH4) fluxes scaled positively with ecosystem production across distinctive wetlands globally. This relationship implies a model of flooded wetland ecosystems as 'methanogenic black-boxes'; poised at a low redox state, and tending to release a fixed fraction of incoming annual productivity as CH4. In contrast, recent studies have reported high ratios of carbon dioxide (CO2) to CH4 emissions, and are adding to a body of evidence suggesting wetlands can vary more widely in their redox state. To explore this apparent incongruence we used principles of redox thermodynamics and laboratory experiments to develop predictions of wetland greenhouse gas (GHG) fluxes under different redox regimes. We then used a field study to test the hypothesis that ecosystem seasonality in gross primary productivity (GPP) and temperature would drive changes in GHG emissions, mediated by a dynamic - as opposed to static - redox regime. We estimated wetland GHG emissions from an emergent marsh in the Sacramento Delta, CA from March 2014-2015. We measured CO2, CH4 and N2O emissions via diffusion and ebullition with manual sampling, and whole-ecosystem fluxes of CO2 and CH4 using eddy-covariance. Ebullition and diffusive CH4 fluxes were strongly seasonal, with minimum rates (0.86 and 0.35 mg C-CH­­4 m-2 yr-1, respectively) during winter, and maximum rates (1.3 and 1.8 g C-CH­­4 m-2 yr-1, respectively) during the summer growing season. In contrast, winter diffusive CO2 fluxes (494 g C-CO2 m-2 yr-1) and fall bubble CO2 concentrations (1.49%) were highest, despite being seasons of lower GPP, temperature, and CH4 flux. Further, diffusive and ebullition fluxes of N2O showed zero net flux only during spring and summer months, whereas the wetland was a significant source of N2O during winter (81.2 ± 24.4 mg N-N2O m-2 yr-1). These seasonal flux dynamics contradict a 'methanogenic black box' model of wetland redox, which predicts carbon limitation of, and concurrent maxima in, heterotrophic CO2 and CH4 emissions, and no significant N2O emissions. Rather these results suggest that wetlands can function as dynamic redox environments where GHG emission rate and composition varies predictably in time with seasonal changes in GPP and temperature.

  17. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less

  18. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  19. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest

    NASA Astrophysics Data System (ADS)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.

    2012-12-01

    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg/d on November 6, several days before the occurrence of the submarine eruption. A significant decrease to 13 kg/d was estimated almost 10 days after the beginning of the eruption, followed by a sudden increase to 38 kg/d several days before the largest seismic event of the volcanic crisis (M = 4.6) occurred on November 11. High volcanic-gas pressure in a magma surrounded by a less deformed and fractured crust could be responsible for the high magmatic-helium emission rate and eventual submarine eruption during the first segment of activity, whereas the second segment causing extensive crustal deformation and fracturing resulted in a low gas pressure on the magma and relatively low magmatic-helium diffuse emission rates. The energy loss in the system from the release of volcanic gases might be responsible for the observed decrease in the seismic energy released and the absence of a second volcanic eruption. The system continued to degas for one month, producing a gradual decrease in the helium emission rate. Helium emission data shown in this report demonstrate that diffuse helium surveys is a powerful tool for volcano monitoring. The geochemical parameters presented here are extremely important for forecasting the onset of volcanic unrest and subsequent volcanic eruptions, mainly when magma migrates aseismically, i.e., silently, toward the surface.

  20. Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer.

    PubMed

    Small, Ward; Buckley, Patrick R; Wilson, Thomas S; Loge, Jeffrey M; Maitland, Kristen D; Maitland, Duncan J

    2008-01-01

    We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  1. Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer

    PubMed Central

    Small, Ward; Buckley, Patrick R.; Wilson, Thomas S.; Loge, Jeffrey M.; Maitland, Kristen D.; Maitland, Duncan J.

    2009-01-01

    We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications. PMID:18465981

  2. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  3. Study of VOCs transport and storage in porous media and assemblies

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.

  4. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  5. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    NASA Astrophysics Data System (ADS)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  6. Molecular Diagnostics of Diffusive Boundary Layers

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Hartquist, T. W.

    1997-10-01

    We have examined the chemistry in thin (<~0.01 pc) boundary layers between dark star-forming cores and warm, shocked T Tauri winds on the assumption that turbulence-driven diffusion occurs within them. The results indicate that emissions from C+, CH, OH, H2O and the J = 6 --> 5 transition of CO, among others, may serve as diagnostics of the boundary layers.

  7. Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system

    NASA Astrophysics Data System (ADS)

    Pieczarka, M.; Syperek, M.; Biegańska, D.; Gilfert, C.; Pavelescu, E. M.; Reithmaier, J. P.; Misiewicz, J.; Sek, G.

    2017-05-01

    The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.

  8. Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy).

    PubMed

    Cardellini, C; Chiodini, G; Frondini, F; Avino, R; Bagnato, E; Caliro, S; Lelli, M; Rosiello, A

    2017-07-28

    In volcanoes with active hydrothermal systems, diffuse CO 2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO 2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO 2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO 2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO 2 tripled its extent. This expansion was accompanied by an increase of the background CO 2 flux, over most of the surveyed area (1.4 km 2 ), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO 2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d -1 ). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.

  9. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.

  10. Late-time particle emission from laser-produced graphite plasma

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-09-01

    We report a late-time "fireworks-like" particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  11. Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan

    NASA Astrophysics Data System (ADS)

    Iwata, Hiroki; Mano, Masayoshi; Ono, Keisuke; Tokida, Takeshi; Kawazoe, Takahiro; Kosugi, Yoshiko; Sakabe, Ayaka; Takahashi, Kenshi; Miyata, Akira

    2018-04-01

    Season-long methane (CH4) exchange was observed in a rice paddy field in central Japan (Kanto Region) using the eddy covariance technique to clarify the variations in environmental controls on CH4 exchange in different stages of cultivation. Before heading of rice plant, the CH4 emission depended on wind speed and soil temperature. The soil temperature dependence can be due to an increase in CH4 production, higher molecular diffusion, and higher conductance within rice plant at higher soil temperature. An occurrence of ebullitive emission was also suggested from the wind speed dependence. After heading was completed, relative humidity and water temperature influenced CH4 emission. The amplitude of the diurnal variation in emission increased from 0.03 μmolm-2s-1 in the late pre-heading stage to 0.13 μmolm-2s-1 in the post-heading stage. Induced convective throughflow within the rice aerenchyma after the change in plant structure was attributable to this variation in environmental controls after the heading. After drainage, CH4 emission was confined to short periods after strong rain events. The water level controlled the timing of emission, most likely by influencing the diffusion efficiency from the anoxic soil to the atmosphere and CH4 oxidation in the surface oxic zone. The variation in the dominant transport pathway needs to be accounted for in terrestrial ecosystem models to accurately predict CH4 emission from rice paddies.

  12. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Seo, Kyoung-Ae; Hui, Chung Yue

    2013-06-01

    We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×10^22 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  13. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the eastern United States

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-12-01

    Aerosol optical depth (AOD) has been shown to influence ecosystem carbon uptake by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Several modeling studies have hypothesized that this effect may be a significant driver of the historical terrestrial carbon sink, and may therefore be an important climate feedback associated with changing air quality. In this study, we quantify the impact of anthropogenic aerosols on gross primary production (GPP) in the eastern United States. We focus on the eastern U.S. because 1) rapid decreases in SO2 emissions over the past two decades create an opportunity to examine the effects of reduced SO4 mass and aerosol optical depth; 2) SO2 emissions in the United States have been well quantified; 3) carbon fluxes within temperate ecosystems in the eastern United States have been well observed. We use accurate SO2 emission data for 1995-2013 in the Community Earth System Model (CESM) to determine trends in AOD, surface radiation, and photosynthesis. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% y-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% y-1, leading to declines GPP of 0.07% y-1. Integrated over the analysis period and domain, this represents 0.5 PgC of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  14. Electron and ion acceleration in relativistic shocks with applications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang

    2015-09-01

    We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.

  15. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  16. Changing Bureaucratic Behavior Acquisition Reform in the United States Army

    DTIC Science & Technology

    2000-01-01

    I . Title. UC263.S32 2000 355.6��—dc21 99-39065 CIP RAND is a nonprofit...1 CO cu u a cu ■ä cu u a 1 2 a a .—1 CN i — I tN m •* in CO r~ 00 CT> rH l-H i —t 8 a o W CO CO. 1 cu cu ŗ J3 cu cu UJ E E ■S CU...p cu > äj § S3 ■43 ■n J3 X. CO cO rrl ■§ cu cu cu i o CO a CO a co a T3 O ■a ft o o o M 1*1 ■g ■g CO ’g ft ft) X II a a a. X V a E

  17. Status of the test phase of K-3 VLBi system developed in RRL

    NASA Astrophysics Data System (ADS)

    Saburi, Y.; Yoshimura, K.; Kawajiri, N.; Kawano, N.; Takahashi, F.

    An account is given of the last phase of a five-year plan to develop the K-3 system - a high precision VLBI system for applications in a wide variety of fields, such as geodesy, astrometry, and radio astronomy. At the end of 1983, the hardware and software of the K-3 system, were almost completed, and tests were undertaken to demonstrate compatibility with the Mark III system. Topics covered include: Characteristics of the 26-m antenna receiving system, the first U.S.-Japan test observations, and experiments to be conducted for the period up through 1989 at least. Precise time comparison experiments between atomic clocks at the Radio Research Laboratories and the U.S. Naval Observatory were to begin in 1985 and produce data at least once a month for several years.

  18. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et al., 2014). The above data demonstrate that discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption. References: Melián et al., 2014. J. Geophys. Res. DOI: 10.1002/2014JB011013.

  19. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

    USDA-ARS?s Scientific Manuscript database

    We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventor...

  20. Assessment of Mechanisms for Jovian Synchrotron Variability Associated with Comet SL-9

    NASA Technical Reports Server (NTRS)

    Bolton, S. J.; Thorne, R. M.

    1995-01-01

    The impact comet SL-9 with Jupiter induced a number of variations in Jupiter's synchrotron radiation, including an increase in emission intensity, spectral changes, and a possible broadening in the latitudinal distribution of the emission. Considered are three potential mechanisms for inducing such effects (electron acceleration, radial diffusion, and pitch-angle scattering), and their consequences.

  1. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  2. Mapping the Spatial Distribution of CO2 release from Kīlauea Volcano, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Elias, T.; Werner, C. A.; Kern, C.; Sutton, A. J.; Hauri, E. H.; Kelly, P. J.

    2014-12-01

    Kīlauea Volcano is a large emitter of volcanic CO2 with emission rates ranging from 7500-30,000 t/d. However, Kīlauea presents a challenging situation for CO2 emission rate measurement in that the main source of SO2 is the active vent in Halema'uma'u Crater, whereas CO2 emits mainly from a large (> 1km2) diffuse region east of the vent. Previous researchers recognized this issue and advocated for the use of a plume-integrated concentration ratio paired with the SO2 emission to determine CO2 emission rates; however, this worked best prior to the opening of the summit vent in 2008, or when SO2emission was still diffuse as opposed to focused degassing from the vent. We used two techniques to study the spatial distribution and temporal variability of CO2 release from the summit caldera in July, 2014. Eddy covariance measurements made at 14 locations in the area of diffuse emission resulted in elevated fluxes that generally ranged from 500 to > 5000 g/m2d, or typical of other volcanic and hydrothermal areas worldwide. MultiGas measurements of the CO2 and SO2 concentration in air at 1-m above the ground identified approximately seven areas of elevated area of CO2 degassing in the caldera. The CO2 concentrations in air were spatially well correlated to approximately 100 m and displayed anisotropy that was consistent with the measured wind direction. Areas of highest CO2 concentration correlated with the areas of highest flux using the eddy covariance method and were found near the middle of the caldera approximately 1 km NE of the active vent. This area overlies the inferred location of the shallow summit reservoir, and is characterized by linear fractures with adhered sublimate deposits at the surface. A few of the fractures are visibly fuming, but much of the degassing in the area is not apparent. Future work includes monitoring the fluxes in this area over time, and attempting to quantify emission rates from the areas of measured flux.

  3. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; hide

    2011-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.l and a lesser part located outside the western boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.l4 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  4. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.

  5. Reducing Methyl Halide Emissions from Soils

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.

    2011-12-01

    Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.

  6. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connectedmore » molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.« less

  7. Formaldehyde in the Diffuse Interstellar Cloud MBM40

    NASA Astrophysics Data System (ADS)

    Joy, Mackenzie; Magnani, Loris A.

    2018-06-01

    MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.

  8. Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well structures emitting at telecom spectral range

    NASA Astrophysics Data System (ADS)

    Rudno-Rudziński, W.; Biegańska, D.; Misiewicz, J.; Lelarge, F.; Rousseau, B.; Sek, G.

    2018-01-01

    We investigate the diffusion of photo-generated carriers (excitons) in hybrid two dimensional-zero dimensional tunnel injection structures, based on strongly elongated InAs quantum dots (called quantum dashes, QDashes) of various heights, designed for emission at around 1.5 μm, separated by a 3.5 nm wide barrier from an 8 nm wide In0.64Ga0.36As0.78P0.22 quantum well (QW). By measuring the spectrally filtered real space images of the photoluminescence patterns with high resolution, we probe the spatial extent of the emission from QDashes. Deconvolution with the exciting light spot shape allows us to extract the carrier/exciton diffusion lengths. For the non-resonant excitation case, the diffusion length depends strongly on excitation power, pointing at carrier interactions and phonons as its main driving mechanisms. For the case of excitation resonant with absorption in the adjacent QW, the diffusion length does not depend on excitation power for low excitation levels since the generated carriers do not have sufficient excess kinetic energy. It is also found that the diffusion length depends on the quantum-mechanical coupling strength between QW and QDashes, controlled by changing the dash size. It influences the energy difference between the QDash ground state of the system and the quantum well levels, which affects the tunneling rates. When that QW-QDash level separation decreases, the probability of capturing excitons generated in the QW by QDashes increases, which is reflected by the decreased diffusion length from approx. 5 down to 3 μm.

  9. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  10. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; ...

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  11. Diffuse CO_{2} and ^{222}Rn degassing monitoring of Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Sagiya, Takeshi; Meneses-Gutiérrez, Ángela; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Melián, Gladys; Padilla, Germán D.

    2017-04-01

    Mt. Ontake (3067 m.a.s.l.) is a stratovolcano located in central Honsu and around 100 Km northeast of Nagoya, Japan, with the last eruption occurring on September 27, 2014, killing 57 people, and creating a 7-10 km high ash plume (Kagoshima et. al., 2016). There were no significant earthquakes that might have warned authorities in the lead up to the phreatic eruption, caused by ground water flashing to steam in a hydrothermal explosion. At the time of the eruption there was no operational geochemical surveillance program. In order to contribute to the strengthening of this program, the Disaster Mitigation Research Center of Nagoya University and the Volcanological Institute of Canary Islands started a collaborative program. To do so, an automatic geochemical station was installed at Ontake volcano and a survey of diffuse CO2efflux and other volatiles was carried out at the surface environment of selected areas of the volcano. The station was installed 10.9 km east away from the eruptive vent, where some earthquakes occurred, and consists of a soil radon (Rn) monitor (SARAD RTM-2010-2) able to measure 222Rn and 220Rn activities. Monitoring of radon is an important geochemical tool to forecast earthquakes and volcanic eruptions due to its geochemical properties. Rn ascends from the lower to the upper part of earth's crust mainly through cracks or faults and its transport needs the existence of a naturally occurring flux of a carrier gas. Regarding to the soil gas survey, it was carried out in August 2016 with 183 measurement points performed in an area of 136 km2. Measurements of soil CO2 efflux were carried out following the accumulation chamber method by means of a portable soil CO2 efflux instrument. To estimate the total CO2 output, sequential Gaussian simulation (sGs) was used allowing the interpolation of the measured variable at not-sampled sites and assess the uncertainly of the total diffuse emission of carbon dioxide estimated for the entire studied area. The total emission rate of diffuse CO2 efflux was expressed as the mean value of 100 equiprobable sGs realizations, and its uncertainly was considered as one standard deviation of the 100 emission rates obtained after the sGs procedure. Soil CO2 efflux values ranged from 0.266 gm-2d-1 up to 66.238 gm-2d-1 with an average value of 23.350 gm-2d-1. The estimated average value for the total diffuse CO2 released for the Mt. Ontake volcanic complex during this study was 3,149 ± 98 td-1, with the main contributions arising from the NE zone of the complex. It is expected for future surveys to increase the density of sampling points and to sample the areas near the crater in order to obtain a better approximation of the diffuse CO2 efflux emission as well as obtain a long-term evolution to understand the dynamics of diffuse CO2 emission and its relationship with the volcanic activity of Mt. Ontake.

  12. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.

  13. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  14. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  15. Monitoring diffuse degassing in monogentic volcanic field during a quiescent period: the case of Cumbre Vieja (La Palma,Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Burns, F.; Cole, M.; Vaccaro, W.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padron, E.; Hernandez Perez, P. A.; Perez, N. M.

    2017-12-01

    Volcanic activity at La Palma (Canary Islands) in the last 123 ka has taken place exclusively at the southern part of the island, where Cumbre Vieja volcano, which is characterized by a main north-south rift zone 20 km long and up to 1950 m in elevation and covering an area of 220 km2 with vents located also at the northwest and northeast. Cumbre Vieja is the most active basaltic volcano in the Canaries with 7 historical eruptions being San Juan (1949) and Teneguía (1971) the most recent ones. Since no visible degassing (fumaroles, etc.) at Cumbre Vieja occurs, our geochemical program for the volcanic surveillance of Cumbre Vieja is mainly focused on diffuse degassing monitoring. Diffuse CO2 emission surveys are yearly performed in summer to minimize the influence of meteorological variations. About 570 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 47.7 g m-2 d-1. Statistical-graphical analysis of the data show two different geocheleemical populations; background (B) and peak (P) represented by 98.2% and 1.8% of the total data, respectively. The geometric means of the B and P populations are 2.9 and 36.5 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed both flanks of the main N-S volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Cumbre Vieja (220 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by Cumbre Vieja was at 801 ± 27 t d-1, value relatively higher than the background average of CO2 emission estimated on 374 t d-1 and within the background range of 132 t d-1 (-1σ) and 1.254 t d-1 (+1σ) observed at Cumbre Vieja volcano during the period 2001-2013 (Padrón et al., 2015. Bull. Volcanol. 77:28). Monitoring the diffuse CO2 emission contributes to detect early warning signals of volcanic unrest at Cumbre Vieja volcano.

  16. Potential of wind power projects under the Clean Development Mechanism in India

    PubMed Central

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    Background So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (≤ 15%) despite very high level of policy support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM) of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Results Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs) of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. Conclusion The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced. PMID:17663772

  17. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    NASA Astrophysics Data System (ADS)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  18. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  19. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  20. A scale model wind tunnel study of dispersion in the Cleveland area. Laboratory simulation of lake breeze effects on diffusion from ground level emissions

    NASA Technical Reports Server (NTRS)

    Hoydysh, W. G.

    1974-01-01

    A wind tunnel simulation of the diffusion patterns in a sea breeze was attempted. The results indicate that the low level onshore flow was well simulated for neutral, stable, unstable, and elevated inversion conditions. Velocity, turbulence, shear stress, and temperature data were taken, and the spread of emissions from ground level sources was investigated. Comparison is made with theoretical predictions by E. Inoue and with the open, homogeneous plane field results of Pasquill. Agreement with the predictions by Inoue is good, and the comparison with Pasquill's results shows that the wind tunnel flows are shifted two categories towards more stable. The discrepancy may be explained as a matter of averaging time.

  1. Thermionic emission current in a single barrier varactor

    NASA Technical Reports Server (NTRS)

    Hjelmgren, Hans; East, Jack; Kollberg, Erik

    1992-01-01

    From I-V measurements on Single Barrier Varactors (SBV) at different temperatures we concluded that thermionic emission across the barrier of the actual device is mainly due to transport through the X band. The same structure was also modeled with a one-dimensional drift-diffusion model, including a 'boundary condition' for thermionic emission across the heterojunction interface. By including thermionic field emission through the top of the triangular barrier of a biased diode and the effect of a non-abrupt interface at the heterojunction, we obtained good agreement between the modeled and measured I-V characteristics.

  2. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. Corresponding author: M.-A. Miville-Deschênes, e-mail: mamd@ias.u-psud.fr

  3. Analyzing γ rays of the Galactic Center with deep learning

    NASA Astrophysics Data System (ADS)

    Caron, Sascha; Gómez-Vargas, Germán A.; Hendriks, Luc; Ruiz de Austri, Roberto

    2018-05-01

    We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV γ rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the annihilation of dark matter particles and γ rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured γ ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of γ ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.

  4. STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu

    2011-09-10

    An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less

  5. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  6. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  7. Mercury Na exospheric emission related to solar disturbances

    NASA Astrophysics Data System (ADS)

    Orsini, S.; Mangano, V.; Milillo, A.; Plainaki, C.; Mura, A.; Massetti, S.; Raines, J. M.; De Angelis, E.; Rispoli, R.; Lazzarotto, F.; Aronica, A.

    2017-09-01

    A first attempt to use Na exospheric emission at Mercury as a proxy of CME transit is presented, in a kind of planetary space weather. The link existing between the dayside exosphere Na pattern at Mercury and the solar wind-magnetosphere-surface interactions is investigated. This goal is pursued by analyzing the Na hourly average distributions, as observed by the ground-based THEMIS solar telescope during 10 selected periods between 2012 and 2013 (seeing <2"), when also data from MESSENGER were available. Very often a two-peak pattern of variable intensity is observed, symmetrically located at high latitudes in both hemispheres. Occasionally, the signal is instead diffused above the sub-solar region. We compare these different Na emission patterns with the time profiles of proton fluxes and magnetic field data, as measured in-situ by MESSENGER. Among these 10 cases, only in one occasion the Na signal is all the time diffused above the subsolar region, and only in this case the MESSENGER data indicate the occurrence of significant solar CME perturbations.

  8. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak HBT'' (High Beta Tokamak)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Hua.

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n{sub e} {approx} 1 {minus} 5 {times} 10{sup 14} (cm{sup {minus}3}), T{sub e} {approx} 4 {minus} 10 (eV), B{sub t} {approx} 0.2 {minus} 0.4(T)). Carbon impurity light, mainly the strong lines of C{sub II}(4267A, emitted by the C{sup +} ions) and C{sub III} (4647A, emitted by the C{sup ++} ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ionsmore » is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H{sub {alpha}} emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time {tau}{sub p} is comparable with the plasma energy confinement time {tau}{sub E}; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy.« less

  9. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    NASA Astrophysics Data System (ADS)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  10. A young supernova remnant illuminating nearby molecular clouds with cosmic rays

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Pühlhofer, G.; Santangelo, A.

    2016-06-01

    The supernova remnant (SNR) HESS J1731-347 displays strong nonthermal TeV γ-ray and X-ray emission, thus the object is presently accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in projection) extended source HESS J1729-345, which is currently unidentified but is in spatial projection coinciding with known molecular clouds (MC). We model the SNR evolution to explore whether the TeV emission from HESS J1729-345 can be explained as emission from runaway hadronic cosmic rays (CRs) that are illuminating these MCs. The observational data of HESS J1729-345 and HESS J1731-347 can be reproduced using core-collapse SN models for HESS J1731-347. Starting with different progenitor stars and their presupernova environment, we model potential SNR evolution histories along with the CR acceleration in the SNR and the diffusion of the CRs. A simplified three-dimensional structure of the MCs is introduced based on data of that region, adopting a distance of 3.2 kpc to the source. A Monte Carlo based diffusion model for the escaping CRs is developed to deal with the inhomogeneous environment. The fast SNR forward shock speed, as implied from the X-ray data, can easily be explained when employing scenarios with progenitor star masses between 20 M⊙ and 25 M⊙, where the SNR shock is still expanding inside the main-sequence (MS) bubble at present time. The TeV spectrum of HESS J1729-345 is satisfactorily fitted by the emission from the highest energy CRs that have escaped the SNR, using a standard Galactic CR diffusion coefficient in the interclump medium. The TeV image of HESS J1729-345 can be explained with a reasonable three-dimensional structure of MCs. The TeV emission from the SNR itself is dominated by leptonic emission in this model. We also explore scenarios where the shock is starting to encounter the dense MS progenitor wind bubble shell. The escaping hadronic CR hypothesis for the γ-ray emission of HESS J1729-345 can still hold,but even in this case our model cannot easily account for the TeV emission from HESS J1731-347 in a hadronic scenario.

  11. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.

  12. Kinematics of the Diffuse Ionized Gas Disk of Andromeda

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander; Howley, K.; Guhathakurta, P.; Dorman, C.; SPLASH Collaboration

    2012-01-01

    This research focuses on the flattened rotating diffuse ionized gas (DIG) disk of the Andromeda Galaxy (M31). For this we use spectra from 25 multislit masks obtained by the SPLASH collaboration using the DEIMOS spectrograph on the Keck-II 10-meter telescope. Each mask contains 200 slits covering the region around M32 (S of the center of M31), the major axis of M31, and the SE minor axis. DIG emission was serendipitously detected in the background sky of these slits. By creating a normalized "sky spectrum” to remove various other sources of emission (such as night sky lines) in the background of these slits, we have examined the rotation of the DIG disk using individual line-of-sight velocity measurements of Hα, [NII] and [SII] emission. his emission is probably the result of newly formed stars ionizing the gas in the disk. The measured IG rotation will be compared to the rotation of M31's stellar disk and HI gas disk, as well as models of an infinitely thin rotating disk, to better understand the relationship between the components of the galactic disk and its differential rotation. We wish to acknowledge the NSF for funding on this project.

  13. The QUIJOTE experiment

    NASA Astrophysics Data System (ADS)

    López-Caniego, Marcos

    2015-08-01

    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is observing the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10-40 GHz. This experiment will provide valuable information about the polarization properties of synchrotron and anomalous microwave emission at these frequencies. The maps obtained with the multi-frequency instrument (10-20 GHz), in combination with data from other experiments like Planck and the VLA, will be used to clean the diffuse and compact foreground emission at 30 and 40 GHz, the cosmological channels. After three years of effective observations we expect to reach the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05. At the moment we have completed the Wide Survey with the multi-frequency instrument, covering 20.000 square degrees of the Northern hemisphere. In addition, we have deep integrations of our main calibrators Taurus A, Cassiopea A, Jupiter and of the Perseus molecular complex region, where we have measured the spectrum of the anomalous microwave emission. We also have observed several regions of interest for our science program where we plan to study the compact and diffuse polarized emission.

  14. Simulating Gamma-Ray Emission in Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate amore » bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.« less

  15. The Mars diffuse aurora: A model of ultraviolet and visible emissions

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Soret, L.; Shematovich, V. I.; Bisikalo, D. V.; Bougher, S. W.

    2017-05-01

    A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions from the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and violet auroral emissions for initial electron energies extending from 0.25 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox-Duffendack-Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb production rates of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 50-200 keV produce maximum CO2+ UVD emission below 75 km, in agreement with the MAVEN observations. We calculate the efficiency of photon production per unit precipitated electron power. The strongest emissions are the CO2+ FDB, UVD and CO Cameron bands and the oxygen emission at 297.2 nm. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below about 110 km. As a consequence, we show that the Cameron band emission is expected to peak at a higher altitude than the CO2+ UVD and FDB bands. Collisional quenching also causes the intensity ratio of the CO2+ UVD to CO Cameron bands to increase below ∼100 km in the energetic diffuse aurora.

  16. The magnetic field in the central parsec of the Galaxy

    NASA Astrophysics Data System (ADS)

    Roche, P. F.; Lopez-Rodriguez, E.; Telesco, C. M.; Schödel, R.; Packham, C.

    2018-05-01

    We present a polarization map of the warm dust emission from the minispiral in the central parsec of the Galactic Centre. The observations were made at a wavelength of 12.5 μm with CanariCam mounted on the 10.4-m Gran Telescopio Canarias. The magnetic field traced by the polarized emission from aligned dust grains is consistent with previous observations, but the increased resolution of the present data reveals considerably more information on the detailed structure of the B field and its correspondence with the filamentary emission seen in both mid-infrared continuum emission and free-free emission at cm wavelengths. The magnetic field appears to be compressed and pushed by the outflows from luminous stars in the Northern Arm, but it is not disordered by them. We identify some magnetically coherent filaments that cross the Northern Arm at a position angle of ˜45°, and which may trace orbits inclined to the primary orientation of the Northern Arm and circumnuclear disc. In the east-west bar, the magnetic fields implied by the polarization in the lower intensity regions lie predominantly along the bar at a position angle of 130°-140°. In contrast to the Northern Arm, the brighter regions of the bar tend to have lower degrees of polarization with a greater divergence in position angle compared to the local diffuse emission. It appears that the diffuse emission in the east-west bar traces the underlying field and that the bright compact sources are unrelated objects presumably projected on to the bar and with different field orientations.

  17. Simulating Gamma-Ray Emission in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  18. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework.

    PubMed

    Mockler, Eva M; Deakin, Jenny; Archbold, Marie; Gill, Laurence; Daly, Donal; Bruen, Michael

    2017-12-01

    More than half of surface water bodies in Europe are at less than good ecological status according to Water Framework Directive assessments, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. Agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water. However, additional measures may be required in Ireland to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given on-going agricultural intensification. The Source Load Apportionment Model (SLAM) framework characterises sources of phosphorus (P) and nitrogen (N) emissions to water at a range of scales from sub-catchment to national. The SLAM synthesises land use and physical characteristics to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, etc.). The predicted annual nutrient emissions were assessed against monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that total average annual emissions to surface water in Ireland are over 2700tyr -1 of P and 82,000tyr -1 of N. The proportional contributions from individual sources show that the main sources of P are from municipal wastewater treatment plants and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. These policy-relevant results synthesised large amounts of information in order to identify the dominant sources of nutrients at regional and local scales, contributing to the national nutrient risk assessment of Irish water bodies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (THE SUPERANTENNAE): X-Ray Emission From the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.

  20. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, butmore » the climate warming impact of lake CH 4 emissions was 2 times higher than that of CO 2. Ebullition and diffusion were the dominant modes of CH 4 and CO 2 emissions, respectively. IBS, ~10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO 2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO 2 emissions (e.g., catchment waters, pH equilibrium). Total CH 4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. In conclusion, our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  1. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; ...

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, butmore » the climate warming impact of lake CH 4 emissions was 2 times higher than that of CO 2. Ebullition and diffusion were the dominant modes of CH 4 and CO 2 emissions, respectively. IBS, ~10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO 2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO 2 emissions (e.g., catchment waters, pH equilibrium). Total CH 4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. In conclusion, our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, Bhaskaran; Cholis, Ilias; Fox, Patrick J.

    We analyze the gamma-ray sky at energies of 0.5 to 50 GeV using the undecimated wavelet transform on the sphere. Focusing on the innermore » $$60^{\\circ} \\times 60^{\\circ}$$ of the sky, we identify and characterize four separate residuals beyond the expected Milky Way diffuse emission. We detect the \\textit{Fermi} Bubbles, finding compelling evidence that they are diffuse in nature and contain very little small-scale structure. We detect the "cocoon" inside the Southern Bubble, and we also identify its northern counterpart above 2 GeV. The Northern Cocoon lies along the same axis but is $$\\sim 30 \\%$$ dimmer than the southern one. We characterize the Galactic center excess, which we find extends up to $$20^{\\circ}$$ in $|b|$. At latitudes $$|b| \\leq 5^{\\circ}$$ we find evidence for power in small angular scales that could be the result of point-source contributions, but for $$|b| \\geq 5^{\\circ}$$ the Galactic center excess is dominantly diffuse in its nature. Our findings show that either the Galactic center excess and {\\it Fermi} Bubbles connect smoothly or that the Bubbles brighten significantly below $$15^\\circ$$ in latitude. We find that the Galactic center excess appears off-center by a few degrees towards negative $$\\ell$$. Additionally, we find and characterize two emissions along the Galactic disk centered at $$\\ell \\simeq +25^{\\circ}$$ and $$-20^{\\circ}$$. These emissions are significantly more elongated along the Galactic disk than the Galactic center excess.« less

  3. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  4. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  5. Flame Stability Limit and Exhaust Emissions of Low Calorific Fuel Combustion in Turbulent Diffusion Combustor for a Small-Scale Fuel Cell

    NASA Astrophysics Data System (ADS)

    Koseki, Hidenori

    This paper describes an investigation conducted on flame stability and exhaust emissions from a turbulent diffusion combustor, fueled with low-calorific gas, for a small-scale fuel cell. It is important to maintain flame stability in the combustor, even under lean fuel conditions, and to suppress CO emission in the exhaust gas. An imitation off-gas, in which hydrogen and methane were diluted by adding nitrogen, with Wobbe indices ranging from ca. 4400-8700, corresponding to the fuel utility ratio of 90%-60%in the fuel cell, was supplied to the combustor, and the blow-off limits, CO, and NOx emissions were experimentally investigated. The results show that the blow-off excess air ratios increases with an increasing Wobbe index and with decreasing fuel input to the combustor, and that they are proportional to the hydrogen concentration in the fuel to the power of 0.5-1.0. In addition, it was found that the Damköhler numbers at blow-off limits decreased with decreasing fuel input and with increasing Wobbe indices, and that the product of (SS / V·M)A[H2][O2]0.5 was constant at blow-off limits. Furthermore, NOx emissions from the combustor were low, less than 20ppmV (O2=0%), it was also found that the apparent activation energy of NOx emission derived from Arrhenius plots was almost equal to that of prompt NO in the combustion of imitation off-gas.

  6. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  7. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

    DOE PAGES

    Wang, Tianyu; Xu, Shen; Hurley, David H.; ...

    2015-12-18

    Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less

  8. Technical Note: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.

    2015-08-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.

  9. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  10. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA

    USGS Publications Warehouse

    Werner, Cynthia A.; Bergfeld, Deborah; Farrar, Chris; Doukas, Michael P.; Kelly, Peter; Kern, Christoph

    2014-01-01

    Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989–1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000–2001 and 2011–2012, both of which follow peaks in seismicity by 2–3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d− 1). CO2emissions at the four smaller tree-kill areas also increased by factors of 2–3 between 2006 and 2011–2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2–3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d− 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2–3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3 Mt over 11 months), and significantly lower than long-term emissions from hydrothermal areas such as Solfatara in Campi Flegrei, Italy (16 Mt over 28 years).

  11. Optothermal in vitro diffusion measurements through silicone membranes

    NASA Astrophysics Data System (ADS)

    Cowen, J. A.; Liu, H.; Xiao, P.; Imhof, R. E.

    2003-01-01

    We report the development of a new method for measuring diffusion rates of surface-applied chemicals through polymer membranes such as polydimethylsiloxane (PDMS). An important feature of the approach is the use of optothermal transient emission radiometry to sense diffusant concentration in a noncontacting, noninvasive way. This allows the method to be adapted to perform similar measurements on human skin in vivo, thus providing a way of cross-verifying in vivo and in vitro measurements. The correlation between in vitro and in vivo diffusion measurements is also important for developing credible alternatives to in vivo testing, for use with toxic chemicals or animal substitution. We present the results of experiments with several polyols diffusing through PDMS membranes of thickness 125 or 250 μm, describing the experimental details, the measurement protocol, the data analysis methods, and a study of measurement errors.

  12. A Search for Plasma "Fingers" in the Io Torus

    NASA Astrophysics Data System (ADS)

    Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.

    1996-09-01

    We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.

  13. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  14. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less

  15. Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2010-01-01

    The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.

  16. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  17. Bi-color near infrared thermoreflectometry: a method for true temperature field measurement.

    PubMed

    Sentenac, Thierry; Gilblas, Rémi; Hernandez, Daniel; Le Maoult, Yannick

    2012-12-01

    In a context of radiative temperature field measurement, this paper deals with an innovative method, called bicolor near infrared thermoreflectometry, for the measurement of true temperature fields without prior knowledge of the emissivity field of an opaque material. This method is achieved by a simultaneous measurement, in the near infrared spectral band, of the radiance temperature fields and of the emissivity fields measured indirectly by reflectometry. The theoretical framework of the method is introduced and the principle of the measurements at two wavelengths is detailed. The crucial features of the indirect measurement of emissivity are the measurement of bidirectional reflectivities in a single direction and the introduction of an unknown variable, called the "diffusion factor." Radiance temperature and bidirectional reflectivities are then merged into a bichromatic system based on Kirchhoff's laws. The assumption of the system, based on the invariance of the diffusion factor for two near wavelengths, and the value of the chosen wavelengths, are then discussed in relation to a database of several material properties. A thermoreflectometer prototype was developed, dimensioned, and evaluated. Experiments were carried out to outline its trueness in challenging cases. First, experiments were performed on a metallic sample with a high emissivity value. The bidirectional reflectivity was then measured from low signals. The results on erbium oxide demonstrate the power of the method with materials with high emissivity variations in near infrared spectral band.

  18. Model for Ultrafast Carrier Scattering in Semiconductors

    DTIC Science & Technology

    2012-11-14

    energy transfer between semi-classical carrier drift-diffusion under an electric field and quantum kinetics of interband /intersubband transitions...from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation which depends ...energy-drift term under a strong dc field was demonstrated to reduce the field- dependent drift velocity and mobility. The Doppler shift in the energy

  19. Rocket and spacecraft studies of ultraviolet emissions from astrophysical targets

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.; Moos, H. W.; Feldman, P. D.; Henry, R. C.

    1975-01-01

    Rocket and spacecraft far-UV spectral measurements of several astrophysical targets are reviewed. These include observations of Ly-alpha emissions from Arcturus, Apollo-17 far-UV spectrometry of eta UMa and five other stars, Apollo-17 observations of the lunar atmosphere and the diffuse UV background, and far-UV spectral studies of Venus, Jupiter, and Comet Kohoutek. The Arcturus observations indicated a chromosphere with neutral atomic-hydrogen and atomic-oxygen emissions as well as a very weak atomic-carbon line. The planetary studies revealed O I and C I emissions in the Venusian spectrum as well as large Ly-alpha emissions and possible molecular-hydrogen emissions in that of Jupiter. The lunar observations demonstrated that solar protons do not produce an atomic-hydrogen atmosphere on the moon.

  20. A Multiwavelength Study of the Nature of Diffuse Atomic and Molecular Gas

    NASA Astrophysics Data System (ADS)

    Federman, Steven

    2015-10-01

    Our proposed observations under the UV Initiative form a key component of a multiwavelength study of diffuse atomic and molecular clouds. The Herschel GOT C+ survey associated [C II] emission at 158 microns with emission from H I at 21 cm and CO at 2.6 mm, revealing the presence of warm neutral gas, cold neutral gas, CO-dark H2 gas, and molecular clouds. Ground-based measurements of Ca II, CH+, CH, and CN at visible wavelengths show absorption at the same velocities as the components seen in the GOT C+ survey. A main focus of our project is a detailed investigation of the nature of CO-dark H2 gas, interstellar material not associated with H I and CO emission. The presence of this additional material alters our view of molecular gas in galaxies and its connection to star formation rates. We propose ultraviolet observations of three targets with STIS that probe two of the pointings in the GOT C+ survey. Absorption from CO, at much greater sensitivies than is possible from surveying CO emission, will be sought. Analysis of CO, C I, and C2 absorption will yield the physical conditions (gas density and temperature) along the sight lines. The results will be compared with those inferred from CN chemistry based on the observations at visible wavelengths. Other probes seen at UV wavelengths, such as O I, Cu II, and Cl I, will provide a more complete picture of the environment seen in the atomic components of the GOT C+ survey. The outcome of the project will be the most detailed study of diffuse atomic and molecular gas from spectral measurements spanning nearly seven orders of magnitude in wavelength.

  1. Modeling the Diffuse Cloud-Top Optical Emissions from Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Koshak, William

    2008-01-01

    A number of studies have indicated that the diffuse cloud-top optical emissions from intra-cloud (IC) lightning are brighter than that from normal negative cloud-to-ground (CG) lightning, and hence would be easier to detect from a space-based sensor. The primary reason provided to substantiate this claim has been that the IC is at a higher altitude within the cloud and therefore is less obscured by the cloud multiple scattering medium. CGs at lower altitudes embedded deep within the cloud are more obscured, so CG detection is thought to be more difficult. However, other authors claim that because the CG source current (and hence luminosity) is typically substantially larger than IC currents, the greater CG source luminosity is large enough to overcome the effects of multiple scattering. These investigators suggest that the diffuse cloud top emissions from CGs are brighter than from ICs, and hence are easier to detect from space. Still other investigators claim that the detection efficiency of CGs and ICs is about the same because modern detector sensitivity is good enough to "see" either flash type no matter which produces a brighter cloud top emission. To better assess which of these opinions should be accepted, we introduce an extension of a Boltzmann lightning radiative transfer model previously developed. It considers characteristics of the cloud (geometry, dimensions, scattering properties) and specific lightning channel properties (length, geometry, location, current, optical wave front propagation speed/direction). As such, it represents the most detailed modeling effort to date. At least in the few cases studied thus far, it was found that IC flashes appear brighter at cloud top than the lower altitude negative ground flashes, but additional model runs are to be examined before finalizing our general conclusions.

  2. Diffuse X-ray emission from the NGC 2300 group of galaxies - Implications for dark matter and galaxy evolution in small groups

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burstein, David

    1993-01-01

    The discovery of diffuse X-ray emission from the NGC 2300 group of galaxies using the ROSAT Position Sensitive Proportional Counter is reported. The gas distributions is roughly symmetric and extends to a radius of at least 0.2/h(50) Mpc. A Raymond-Smith hot plasma model provides an excellent fit the X-ray spectrum with a best-fit value temperature of 0.9 + -/15 or - 0.14 keV and abundance 0.06 + 0/.12 or - 0.05 solar. The assumption of gravitational confinement leads to a total mass of the group of 3.0 + 0.4 or - 0.5 x 10 exp 13 solar. Baryons can reasonably account for 4 percent of this mass, and errors could push this number not higher than 10-15 percent. This is one of the strongest pieces of evidence that dark matter dominates small groups such as this one. The intragroup medium in this system has the lowest metal abundance yet found in diffuse gas in a group or cluster.

  3. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  4. Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Stasinska, G.; Binette, L.

    2011-10-01

    The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical HII regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of [NII]/Hα, [SII]/Hα with galactic height.

  5. High Resolution IRAS Maps and IR Emission of M31 -- II. Diffuse Component and Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Xu, C.; Helou, G.

    1995-01-01

    Large-scale dust heating and cooling in the diffuse medium of M31 is studied using the high resolution (HiRes) IRAS maps in conjunction with UV, optical (UBV), and the HI maps. A dust heating/cooling model is developed based on a radiative transfer model which assumes a 'Sandwich' configuration of dust and stars takes account of the effect of dust grain scattering.

  6. SOFIA/FORCAST Resolves 30 - 40 μm Extended Emission in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ichikawa, Kohei; Togi, Aditya

    2018-06-01

    We present arcsecond-scale observations in the 30 - 40 μm range of seven nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the 31.5 and 37.1 μm filters of the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We find extended diffuse emission in the 37.1 μm images in our sample, and isolate this from unresolved torus emission. Using Spitzer/IRS spectra, we determine the dominant mid-infrared (MIR) emission source and attribute it to dust in the narrow line region (NLR) or star formation. We compare the optical NLR and radio jet axes to the extended 37.1 μm emission and find coincident axes for three sources.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400more » GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.« less

  8. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Allafort, A.; Bechtol, K.

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connectedmore » molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of {pi}{sup 0}s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.« less

  9. Coronet: A Star-Formation Neighbor

    NASA Image and Video Library

    2007-09-13

    This composite image shows the Coronet in X-rays from Chandra and infrared from NASA Spitzer Space Telescope orange, green, and cyan. The Spitzer data show young stars plus diffuse emission from dust.

  10. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.

    PubMed

    Rasilo, Terhi; Prairie, Yves T; Del Giorgio, Paul A

    2015-03-01

    Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2)  d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4  + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning. © 2014 John Wiley & Sons Ltd.

  11. The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Dong, Hui; Lang, Cornelia

    2006-09-01

    The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.

  12. Monitoring diffuse He degassing from the summit crater of Pico do Fogo volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Dionis, Samara; Fernandes, Paulo; Melián, Gladys; Asensio-Ramos, María; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; Silva, Sonia

    2017-04-01

    Fogo (476km2) is one of the Sotavento islands of Cape Verde archipelago. The main geomorphological feature is the presence of a 9 km wide caldera hosting one of the world's most active volcanoes, Pico do Fogo (2829 m.a.s.l.), with the last eruption occurring on November 2014. Pico do Fogo volcano is characterized by the existence of a fumarolic field situated NW inside the summit crater and composed by low- and high-temperature gas discharges (90 to above 200oC respectively) with widespread sulfur precipitates at the surface, typical of hydrothermal alteration. As part of the geochemical monitoring program for the volcanic surveillance of Fogo volcano, twelve surveys of diffuse Helium (He) emission through the surface of the crater have been performed since 2008. He emission has been measured because it is considered as an excellent geochemical indicator (Pogorsky and Quirt 1981) due to its geochemical properties. Recent results clearly show the importance of helium emission studies for the prediction of major volcanic events and the importance of continuous monitoring of this gas in active volcanic regions (Padrón et al. 2013). Soil He emission rates were measured always at the same 63 sampling sites distributed inside the crater and covering an area of 0.142km2. At each measurement site, soil gas was collected in 10 cc glass vials with a hypodermic syringe by inserting to 40 cm depth a 50 cm stainless probe and later analyzed for He content by a quadrupole mass spectrometer Pfeiffer Omnistar 422. Diffusive and convective emission values were estimated at each sampling site following the Fick and Darcy's laws. The He emission rate through the crater was estimated after making the spatial interpolation maps using sequential Gaussian simulation. The average emission rate during these eight years of study is 3.3 kg d-1. The emission rate showed an important increase (up to 5.7 kg d-1) eight months before the 2014 eruption onset. During the eruptive period the crater released the highest value (up to 8 kg d-1), followed by a decrease after the eruption. The last emission value was measured in October 2016 and represents the lowest value of the series (1 kg d-1). This data suggest that monitoring of He degassing rate in volcanic areas is an excellent warning geochemical precursory signal for volcanic unrest. This work demonstrates and reinforces the importance of performing helium emission studies as an important promising volcano monitoring technique that might help to detect early warning signals of volcanic unrest in oceanic volcanic islands.

  13. MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.

    NASA Astrophysics Data System (ADS)

    Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro

    2014-05-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and Virtual Globes (e.g., Google Earth) could easily access the database, and data could be exchanged with other database. At the moment the database includes: i) more than 1000 flux data about volcanic plume degassing from Etna and Stromboli volcanoes, ii) data from ~ 30 sites of diffuse soil degassing from Napoletan volcanoes, Azores, Canary, Etna, Stromboli, and Vulcano Island, several data on fumarolic emissions (~ 7 sites) with CO2 fluxes; iii) data from ~ 270 non volcanic gas emission site in Italy. We believe MAGA data-base is an important starting point to develop a large scale, expandable data-base aimed to excite, inspire, and encourage participation among researchers. In addition, the possibility to archive location and qualitative information for gas emission/sites not yet investigated, could stimulate the scientific community for future researches and will provide an indication on the current uncertainty on deep carbon fluxes global estimates

  14. Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.

    2017-04-01

    Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96oC. Although short-temp fluctuations in the diffuse CO2 emission time series at Daang Kastila were partially driven by meteorological parameters, the main CO2 efflux changes were not driven by fluctuations of meteorological variables such as wind speed or barometric pressure and seem clearly to be associated with fluid pressure fluctuations in the volcanic system. These results showed the potential of applying continuous and discrete monitoring of soil CO2 efflux to improve and optimize the detection of early warning signals of future volcanic unrest at Taal volcano.

  15. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    PubMed

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  16. A short dive into the complexity of Jupiter's aurorae - invited

    NASA Astrophysics Data System (ADS)

    Bonfond, Bertrand

    2015-04-01

    Aurorae are the atmospheric signatures of energetic processes taking place far in the magnetosphere. One of the most important results brought by high resolution imaging of the UV aurorae at Jupiter is the realization that there isn't such a thing as «the aurora» at Jupiter; as these light emissions appear to arise from a variety of processes. Some are related to the interaction of the magnetospheric plasma with the moons (the satellite footprints). Others are linked with the radial motion of flux tubes through centrifugal instabilities (the injection auroral signatures). Some diffuse emissions are connected with wave-particle interaction (the equatorward diffuse emissions). Another feature is associated with the magnetosphere-ionosphere coupling (the main emission/oval). Some auroral spots are related to internally driven reconnection (the polar dawn spots). Finally, the polar-most emissions remain to be understood and this list is still incomplete. In order to illustrate the discrepancies between these various features, I will show a set of recent results derived from the analysis of Hubble Space Telescope observations. For example, I will compare the vertical profile of satellite footprints and the main emissions, and show that the energy population of the precipitating particles varies from feature to feature. Moreover, even within a single feature, spatial variations do exist. As an example, I will characterize the dawn-dusk brightness discrepancy of the main emissions and discuss its implication regarding the magnetospheric currents. And finally, the dynamics of the features also helps differentiating one type of aurora from another. This will be shown through the description of the morphological evolution of the transient flares in the polar region.

  17. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; hide

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  18. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    PubMed

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  19. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  20. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  1. Chandra imaging of the kpc extended outflow in 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Kaastra, J. S.; Mehdipour, M.; Paltani, S.

    2017-12-01

    The Seyfert 1 galaxy 1H 0419-577 hosts a kpc extended outflow that is evident in the [O III] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a 30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least 16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [O III] outflow. Our spectral analysis indicates that one of the possible explanations for the extended emission is thermal emission from a low-density (nH 10-3 cm-3) hot plasma (Te 0.22 keV). If this is the case, we may be witnessing the cooling of a shock-heated wind bubble. In this scenario, the [O III] emission line and the X-ray/UV absorption lines may trace cooler clumps that are entrained in the hot outflow. Alternatively, the extended emission could be to due to a blend of emission lines from a photoionized gas component having a hydrogen column density of NH 2.1 × 1022 cm-2 and an ionization parameter of log ξ 1.3. Because the source is viewed almost edge-on we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.

  2. Verifying mixing in dilution tunnels How to ensure cookstove emissions samples are unbiased

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Daniel L.; Rapp, Vi H.; Caubel, Julien J.

    A well-mixed diluted sample is essential for unbiased measurement of cookstove emissions. Most cookstove testing labs employ a dilution tunnel, also referred to as a “duct,” to mix clean dilution air with cookstove emissions before sampling. It is important that the emissions be well-mixed and unbiased at the sampling port so that instruments can take representative samples of the emission plume. Some groups have employed mixing baffles to ensure the gaseous and aerosol emissions from cookstoves are well-mixed before reaching the sampling location [2, 4]. The goal of these baffles is to to dilute and mix the emissions stream withmore » the room air entering the fume hood by creating a local zone of high turbulence. However, potential drawbacks of mixing baffles include increased flow resistance (larger blowers needed for the same exhaust flow), nuisance cleaning of baffles as soot collects, and, importantly, the potential for loss of PM2.5 particles on the baffles themselves, thus biasing results. A cookstove emission monitoring system with baffles will collect particles faster than the duct’s walls alone. This is mostly driven by the available surface area for deposition by processes of Brownian diffusion (through the boundary layer) and turbophoresis (i.e. impaction). The greater the surface area available for diffusive and advection-driven deposition to occur, the greater the particle loss will be at the sampling port. As a layer of larger particle “fuzz” builds on the mixing baffles, even greater PM2.5 loss could occur. The micro structure of the deposited aerosol will lead to increased rates of particle loss by interception and a tendency for smaller particles to deposit due to impaction on small features of the micro structure. If the flow stream could be well-mixed without the need for baffles, these drawbacks could be avoided and the cookstove emissions sampling system would be more robust.« less

  3. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures

    NASA Astrophysics Data System (ADS)

    Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.

    2017-12-01

    The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7  ×  104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

  4. Effect of lost charged particles on the breakdown characteristics of the gaseous electrical discharge in non-uniform axial electric field

    NASA Astrophysics Data System (ADS)

    Noori, H.; Ranjbar, A. H.

    2017-10-01

    The secondary emission coefficient is a valuable parameter for numerical modeling of the discharge process in gaseous insulation. A theoretical model has been developed to consider the effects of the radial electric field, non-uniformity of the axial electric field, and radial diffusion of charged particles on the secondary emission coefficient. In the model, a modified breakdown criterion is employed to determine the effective secondary electron emission, γeff. Using the geometry factor gi which is introduced based on the effect of radial diffusion of charged particles on the fraction of ions which arrive at the cathode, the geometry-independent term of γeff (Δi) was obtained as a function of the energy of the incident ions on the cathode. The results show that Δi is approximately a unique function of the ion energy for the ratios of d/R = 39, 50, 77, 115, and 200. It means that the considered mechanisms in the model are responsible for the deviation from Paschen's law.

  5. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  6. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  7. Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03996d

    PubMed Central

    Shin, Sangbaie; Park, Yun Sung; Cho, Sunghwan; You, Insang; Kang, In Seok

    2018-01-01

    Electro-generated chemiluminescence (ECL) has attracted increasing attention as a new platform for light-emitting devices; in particular, the use of mechanically stretchable ECL gels opens up the opportunity to achieve deformable displays. The movements of radical ions under an external electric field include short-range diffusion near the electrodes and long-distance migration between the electrodes. So far, only the diffusion of radical ions has been considered as the operating principle behind ECL. In this study, electrochemical and optical analysis was performed systematically to investigate the role of ion migration in ECL devices. This study reveals that long-distance migration of radical ions can be a key variable in ECL at low frequencies and that this effect depends on the type of ion species and the operating conditions (e.g. voltage and frequency). We also report that the emissions from the two electrodes are not identical, and the emission behaviors are different in the optimal operating conditions for the red, green, and blue ECL emissions. PMID:29732124

  8. Measuring the 511 keV emission in the direction of 1E1740.7-2942 with BATSE

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Durouchoux, P.; Corbel, S.; Astier-Perret, L.; Poirot, L.

    1997-01-01

    Observations of the 511 keV emission in the direction of 1E 1740.7-2942 (1E) using the earth burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO), are presented. The CGRO phase 1 average spectrum of 1E is calculated using a method which assumes that a given source spectrum is the sum of the flux coming directly from the object and the contribution from the surrounding diffuse emission. The 1E light curve is calculated in the 40 to 150 keV range. It presents a constant flux excess of 70 mCrab in comparison with observations from the SIGMA gamma ray telescope onboard the GRANAT observatory. By removing this contribution, the 1E spectral transition from the low state to the high standard state observed by SIGMA is confirmed, and it is shown that the 511 keV flux is independent of the 1E long term evolution from low state to high standard state. It is concluded that the 511 keV emission of (4.2 +/- 1.3) x 140(exp -4) photons/sq cm s observed in the direction of 1E is mainly diffuse and spatially extended.

  9. FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.-J.; Min, K.-W.; Seon, K.-I.

    2012-07-20

    We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less

  10. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  11. Galactic wind X-ray heating of the intergalactic medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery; Khochfar, Sadegh; Paardekooper, Jan-Pieter; Dalla Vecchia, Claudio; Kohn, Saul

    2017-11-01

    The diffuse soft X-ray emissivity from galactic winds is computed during the Epoch of Reionization (EoR). We consider two analytic models, a pressure-driven wind and a superbubble model, and a 3D cosmological simulation including gas dynamics from the First Billion Years (FiBY) project. The analytic models are normalized to match the diffuse X-ray emissivity of star-forming galaxies in the nearby Universe. The cosmological simulation uses physically motivated star formation and wind prescriptions, and includes radiative transfer corrections. The models and the simulation all are found to produce sufficient heating of the intergalactic medium to be detectable by current and planned radio facilities through 21 cm measurements during the EoR. While the analytic models predict a 21 cm emission signal relative to the cosmic microwave backgroundsets in by ztrans ≃ 8-10, the predicted signal in the FiBY simulation remains in absorption until reionization completes. The 21 cm absorption differential brightness temperature reaches a minimum of ΔT ≃ -130 to -200 mK, depending on model. Allowing for additional heat from high-mass X-ray binaries pushes the transition to emission to ztrans ≃ 10-12, with shallower absorption signatures having a minimum of ΔT ≃ -110 to -140 mK. The 21 cm signal may be a means of distinguishing between the wind models, with the superbubble model favouring earlier reheating. While an early transition to emission may indicate X-ray binaries dominate the reheating, a transition to emission as early as ztrans > 12 would suggest the presence of additional heat sources.

  12. Effect of Nonionic Surfactant Additive in PEDOT:PSS on PFO Emission Layer in Organic-Inorganic Hybrid Light-Emitting Diode.

    PubMed

    Cho, Seong Rae; Porte, Yoann; Kim, Yun Cheol; Myoung, Jae-Min

    2018-03-21

    Poly(9,9-dioctylfluorene) (PFO) has attracted significant interests owing to its versatility in electronic devices. However, changes in its optical properties caused by its various phases and the formation of oxidation defects limit the application of PFO in light-emitting diodes (LEDs). We investigated the effects of the addition of Triton X-100 (hereinafter shortened as TX) in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to induce interlayer diffusion between PEDOT:PSS and PFO to enhance the stability of the PFO phase and suppress its oxidation. Photoluminescence (PL) measurement on PFO/TX-mixed PEDOT:PSS layers revealed that, upon increasing the concentration of TX in the PEDOT:PSS layer, the β phase of PFO could be suppressed in favor of the glassy phase and the wide PL emission centered at 535 nm caused by ketone defects formed by oxidation was decreased considerably. LEDs were then fabricated using PFO as an emission layer, TX-mixed PEDOT:PSS as hole-transport layer, and zinc oxide (ZnO) nanorods as electron-transport layer. As the TX concentration reached 3 wt %, the devices exhibited dramatic increases in current densities, which were attributed to the enhanced hole injection due to TX addition, along with a shift in the dominant emission wavelength from a green electroluminescence (EL) emission centered at 518 nm to a blue EL emission centered at 448 nm. The addition of TX in PEDOT:PSS induced a better hole injection in the PFO layer, and through interlayer diffusion, stabilized the glassy phase of PFO and limited the formation of oxidation defects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: Margaret.m@mail.ioffe.ru; Vinogradov, A. Ya.; Kuzmin, R. V.

    For ZnO films, nanorods, and bulk single crystals doped with Er{sup +} ions, it is shown that the effect of codopants introduced into the cation and ion sublattices and the observation of a high-intensity emission band at the wavelength λ{sub max} = 1535 nm are defined by the local environment of the Er{sup +} ion. Doping of the films and single crystals with Er{sup +} ions by diffusion brings about an infrared (IR) emission band with a low intensity because of an inadequate concentration of impurity ions. The emission intensity of this band can be raised by introducing additional Ag,more » Au, or N{sup +} impurities into the ZnO films. The UV-emission intensity of the Er-doped films and single crystals at λ{sub max} = 368–372 nm is identical to that of the undoped films. ZnO nanorods doped with Er only or together with Al or Ga codopants exhibit only one IR band (at λ{sub max} = 1535 nm), whose intensity decreases upon the introduction of codopants. Doping of the nanorods with the N{sup +} gaseous impurity during growth (930 < T < 960°C) and then with the Er{sup +} impurity by diffusion does not yield a substantial increase in the IR-emission intensity compared to the that of the corresponding band for nanorods not doped with the N{sup +} impurity. In the Er-doped nanorods, whose photoluminescence spectra exhibit a high-intensity band at λ{sub max} = 1535 nm, the UV emission band at λ{sub max} = 372 nm is practically lacking.« less

  14. C+/CO Transitions in the Diffuse ISM: Transitional Cloud Sample from the GOT C+ Survey of [CII] in the inner Galaxy at l = -30deg to 30deg

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Pineda, J. L.; Langer, W. D.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    Our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the well-shielded molecular phase traced by CO. Recently, using the first results of the Herschel Key Project GOT C+, a HIFI C+ survey of the Galactic plane, Velusamy, Langer, Pineda et al. (A&A 521, L18, 2010) have shown that in the diffuse interstellar transition clouds a significant fraction of the carbon exists primarily as C^+ with little C^0 and CO in a warm 'dark gas' layer in which hydrogen is mostly H_2 with little atomic H, surrounding a modest 12CO-emitting core. The [CII] fine structure transition, at 1.9 THz (158 μm) is the best tracer of this component of the interstellar medium, which is critical to our understanding of the atomic to molecular cloud transitions. The Herschel Key Project GOT C+ is designed to study such clouds by observing with HIFI the [CII] line emission along 500 lines of sight (LOSs) throughout the Galactic disk. Here we present the identification and chemical status of a few hundred diffuse and transition clouds traced by [CII], along with auxiliary HI and CO data covering ~100 LOSs in the inner Galaxy between l= -30° and 30°. We identify transition clouds as [CII] components that are characterized by the presence of both HI and 12CO, but no 13CO emission. The intensities, I(CII) and I(HI), are used as measures of the visual extinction, AV, in the cloud up to the C^+/C^0/CO transition layer and a comparison with I(12CO) yields a more complete H_2 molecular inventory. Our results show that [CII] emission is an excellent tool to study transition clouds and their carbon chemistry in the ISM, in particular as a unique tracer of molecular H_2, which is not easily observed by other means. The large sample presented here will serve as a resource to study the chemical and physical status of diffuse transition clouds in a wide range of Galactic environments and constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse ISM.

  15. Epilepsy Surgery for Individuals with TSC

    MedlinePlus

    ... tomography (PET), single-photon emission tomography (SPECT), magnetoencephalography (MEG), Diffusion Tensor Imaging (DTI), and functional MRI (fMRI). ... sclerosis: a comparison of high resolution EEG and MEG. Epilepsia 47:108-114 Jansen FE, Huffelen ACV, ...

  16. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.

  17. Oxygen and Fuel Jet Diffusion Flame Studies in Microgravity Motivated by Spacecraft Oxygen Storage Fire Safety

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.

    2003-01-01

    Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.

  18. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  19. First optical observation of the Moon's sodium exosphere from the lunar orbiter SELENE (Kaguya)

    NASA Astrophysics Data System (ADS)

    Kagitani, M.; Taguchi, M.; Yamazaki, A.; Yoshikawa, I.; Murakami, G.; Yoshioka, K.; Kameda, S.; Ezawa, F.; Toyota, T.; Okano, S.

    2009-08-01

    The first successful observations of resonant scattering emission from the lunar sodium exosphere were made from the lunar orbiter SELENE (Kaguya) using TVIS instruments during the period 17-19 December, 2008. The emission intensity of the NaD-line decreased by 12±6%, with an average value of 5.4 kR (kilorayleighs) in this period, which was preceded, by 1 day, by enhancement of the solar proton flux associated with a corotating interaction region. The results suggest that solar wind particles foster the diffusion of sodium atoms or ions in the lunar regolith up to the surface and that the time scale of the diffusion is a few tens of hours. The declining activity of the Geminid meteor shower is also one possible explanation for the decreasing sodium exosphere.

  20. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  1. Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya

    2018-04-01

    Context. Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. Aim. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. Methods: We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the 4.5 yr time separation between the two observations. Results: We found that there is no diffuse emission associated with AX J1714.1-3912, which is instead the point-like source CXOU J171343.9-391205. We discovered rapid time variability (timescale 103 s), together with a high intrinsic absorption and a hard nonthermal spectrum (power law with photon index Γ 1.4). We also found that the X-ray flux of the source drops down by 1-2 orders of magnitude on a timescale of a few years. Conclusions: Our results suggest a possible association between AX J1714.1-3912 and a previously unknown supergiant fast X-ray transient, although further follow-up observations are necessary to prove this association definitively.

  2. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.

    2007-01-01

    The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  3. Radon-222 in the lunar atmosphere.

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    In 1969 Yeh and Van Allen set upper limits for the alpha-particle emissivity of the moon. The equilibrium surface activity reported by Turkevich et al. (1970) for each alpha active Rn-222 daughter at Mare Tranquillitatis cannot be reconciled with existing diffusion theory. The data, therefore, suggest that earth based diffusion constants are not applicable in the vacuum conditions of the moon, or that there are substantial variations in the uranium content of the moon over relatively small distances.

  4. Evaluation of positron-emission-tomography for visualisation of migration processes in geomaterials

    NASA Astrophysics Data System (ADS)

    Kulenkampff, J.; Gründig, M.; Richter, M.; Enzmann, F.

    Positron-emission-tomography (PET) was applied for direct visualisation of solute transport in order to overcome the limitations of conventional methods for measuring advection and diffusion properties. At intervals from minutes to days the 3D-spatial distribution of the PET-tracer is determined. This spatiotemporal evolution of the tracer concentration can be used as experimental basis for clarification of the relevant transport processes, derivation of transport parameters, and model calibration. Here, 18F and 124I in 0.01 M carrier solution of KF and KI, respectively, have been chosen out of the limited number of available PET-tracers, primarily on account of their decay time and the time span of the experiments. The sample is a granite core from the Äspö Hard Rock Laboratory which carries an axial fracture with an aperture of ∼0.5 mm. Therefore, its permeability is high: high injection rates of 0.1 ml/min caused a pressure drop below 100 kPa. The experiments showed that the transport path through the fracture is modulated by the flow rate. The comparison of the experiments with different flow rates indicates diffusion into the matrix material at localized sites. However, the derived diffusion length falls below the resolution limits of the medical PET-scanner. With recently available dedicated high-resolution PET-scanners, which are usually applied in biomedical research, diffusion effects will be clearly resolvable.

  5. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.

    2003-01-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta(sub d) approx. = 2.2. Our model is driven to these conclusions by the low level of total foreground contamination at approx. 60 GHz. Microwave and Ha measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to less than 5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. The reliability of the catalog is 98%, i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is alpha approx. 0(beta approx. -2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +/- 1.4) x 10(exp -3)micro sq K sr at Q-band and negligible levels at V-band and W-band. The Sunyaev-Zeldovich effect is shown to be a negligible "contamination" to the maps.

  6. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.

    PubMed

    Liang, Yirui; Liu, Xiaoyu; Allen, Matthew R

    2018-05-15

    Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y 0 ) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y 0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y 0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y 0 measurements, a linear relationship between the ratio of y 0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.

  7. A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.

    We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less

  8. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the Galactic Center will be discussed. The first class are the giant molecular clouds, which are strong hard X-ray emitters. These hard X-rays are believed to be produced when one or more giant outbursts from the supermassive black hole Sgr A*, more than a century ago, resulted in hard X-rays being reflected from the clouds, and detected only today. I discuss how these hard X-rays are used to elucidate the past history of the supermassive black hole, and to compare and contrast these past giant outbursts with those observed from the supermassive black hole more recently. The second class are non-thermal filaments, magnetized structures with both radio and soft X-ray emission that have now been shown by NuSTAR to be hard X-ray emitters. The electrons generating the hard X-rays observed in one of these filaments are the most energetic that have been observed in the galaxy. The filaments are a heterogeneous class of hard X-ray emitters, and the various mechanisms by which they produce hard X-ray emission will be discussed. Future NuSTAR observations of the Galactic Center with NuSTAR will also be discussed.

  9. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  10. The diffuse galactic gamma radiation: The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C.

    1981-01-01

    The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.

  11. Infrared Coronet Cluster

    NASA Image and Video Library

    2007-09-13

    This image from NASA Spitzer Space Telescope shows young stars plus diffuse emission from dust. The Corona Australis region containing, at its heart, the Coronet cluster is one of the nearest and most active regions of ongoing star formation.

  12. Beam-plasma instability in the presence of low-frequency turbulence. [during type 3 solar emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Dubois, D. F.

    1982-01-01

    General equations are derived for a linear beam-plasma instability in the presence of low-frequency turbulence. Within a 'quasi-linear' statistical approximation, these equations contain Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a 'plasma laser' effect. It is proposed that naturally occurring density irregularities in the solar wind may stabilize the beam-unstable Langmuir waves which occur during type III solar emissions.

  13. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  14. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  15. Diffuse γ-ray emission from misaligned active galactic nuclei

    DOE PAGES

    Di Mauro, M.; Calore, F.; Donato, F.; ...

    2013-12-20

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. Here, we calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Furthermore, a correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with uppermore » limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. These results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.« less

  16. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  17. Optical Emission Associated with the Galactic Supernova Remnant G179.0+2.6

    NASA Astrophysics Data System (ADS)

    How, Thomas G.; Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Outters, Nicolas

    2018-04-01

    Narrow passband optical images of the large Galactic supernova remnant G179.0+2.6 reveal a faint but nearly complete emission shell dominated by strong [O 3] 4959,5007 Å line emission. The remnant's optical emission, which consists of both diffuse and filamentary features, is brightest along its southern and northeastern limbs. Deep Hα images detect little coincidence emission indicating an unusually high [O 3]/Hα emission ratio for such a large and apparently old remnant. Low-dispersion optical spectra of several regions confirm large [O 3]/Hα line ratios with typical values around 10. The dominance of [O 3] emission for the majority of the remnant's optical filaments suggests shock velocities above 100 km s-1 are present throughout most of the remnant, likely reflecting a relatively low density ambient ISM. The remnant's unusually strong [O 3] emission adds to the remnant's interesting set of properties which include a thick radio emission shell, radial polarization of its radio emission like that typically seen in young supernova remnants, and an unusually slow-rotating gamma-ray pulsar with a characteristic spin-down age ≃ 50 kyr.

  18. Monte Carlo Study of Cosmic-Ray Propagation in the Galaxy and Diffuse Gamma-Ray Production

    NASA Astrophysics Data System (ADS)

    Huang, C.-Y.; Pohl, M.

    This talk present preliminary results for the time-dependent cosmic-ray propagation in the Galaxy by a fully 3-dimensional Monte Carlo simulation. The distribution of cosmic-rays (both protons and helium nuclei) in the Galaxy is studied on various spatial scales for both constant and variable cosmic-ray sources. The continuous diffuse gamma-ray emission produced by cosmic-rays during the propagation is evaluated. The results will be compared with calculations made with other propagation models.

  19. Lifetime degradation of n-type Czochralski silicon after hydrogenation

    NASA Astrophysics Data System (ADS)

    Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.

    2018-04-01

    Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.

  20. Dust and Gas in Different Galactic Environments

    NASA Astrophysics Data System (ADS)

    Goncalves, Daniela Catarina Pinheiro

    2014-01-01

    This thesis encompasses the study of the mid-infrared (IR) dust properties in diffuse high latitude cirrus and in the dense environments of supernova remnants (SNRs) in the plane of our Galaxy. Unlike the well known emission properties of dust grains in the diffuse ISM in the far-IR and submillimeter, the mid-IR spectrum is still relatively unconstrained. We extend the correlation of dust emission with H I column densities to mid-IR wavelengths and look for evidence of variations in the emissivity of dust associated with local and halo gas. This is accomplished by spatially correlating the IR maps from the IRIS/IRAS survey at 12, 25, 60 and 100 μm with H I column density maps inferred from 21-cm line emission observations obtained with the GBT (at a 9' resolution). We find that IVCs (halo clouds thought to be part of the Galactic fountain) show color ratios consistent with a dust evolution scenario in which large dust grains are shattered into smaller ones (VSGs). The low 12 μm emission found suggests a reduced abundance of PAHs in IVCs. We also address the IR extragalactic emission seen in our residual maps and quantify its power spectrum behaviour. Continuing with the mid-IR theme, we conducted a comprehensive study of the morphology and energetics of SNRs in the plane of our Galaxy. We make use of the Spitzer MIPSGAL (at 24 and 70 μm) and GLIMPSE (at 8 μm) surveys to detected infrared counterparts to SNR candidates in Green's catalog. We find that a third of the sample shows IR emission and calculate the corresponding fluxes. We explore the relation between IR colors to place constraints on the different IR SNRs emission mechanisms. Aided by archival radio data, we find that most candidates detected show IR-to-radio ratios consistent with SNRs with a few exceptions displaying ratios seen in H II regions. Finally, we explore the connection between the IR and the high-energy X-ray emission of SNRs and find a good morphological association between the 24 μm emission and the X-ray features in younger remnants. The IR power is often greater.

Top