ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr
2012-10-20
It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less
Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro
2015-04-16
Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
NASA Astrophysics Data System (ADS)
Hopfenmüller, Bernhard; Zorn, Reiner; Holderer, Olaf; Ivanova, Oxana; Lehnert, Werner; Lüke, Wiebke; Ehlers, Georg; Jalarvo, Niina; Schneider, Gerald J.; Monkenbusch, Michael; Richter, Dieter
2018-05-01
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension dw and the Hausdorff dimension df have been determined on the length scales covered in the neutron scattering experiments.
The spectral energy distribution of the scattered light from dark clouds
NASA Technical Reports Server (NTRS)
Mattila, Kalevi; Schnur, G. F. O.
1989-01-01
A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf; ...
2018-05-29
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension
NASA Astrophysics Data System (ADS)
Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.
2016-06-01
A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.
Dynamic Light Scattering Study of Pig Vitreous Body
NASA Astrophysics Data System (ADS)
Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko
The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Diffusion studies with synchrotron Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Jackson, J. M.
2011-12-01
Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.
Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion
NASA Technical Reports Server (NTRS)
Baring, M. G.; Ellison, D. C.; Jones, F. C.
1995-01-01
The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.
The angular distribution of diffusely backscattered light
NASA Astrophysics Data System (ADS)
Vera, M. U.; Durian, D. J.
1997-03-01
The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.
Diffuse Scattering in the Icosahedral AL-Li-Cu Quasicrystal
NASA Astrophysics Data System (ADS)
Proult, A.; Donnadieu, P.; Wang, K.; Garoche, P.
1995-12-01
Electron diffraction patterns of icosahedral quasicrystals frequently exhibit diffuse scattering features. We report a detailed analysis of diffuse scattering in Al{6}Li{3}Cu (T2) quasicrystalline samples. The samples have been specifically heat-treated which allows to observe pronounced diffuse effects. Diffuse streaks are observed along the 5-fold and 2-fold symmetry axes and are elongated perpendicularly to these directions. These streaks are due to discs in the 3-dimensional reciprocal space. The diffuse disc positions are only indexable in the 6-dimensional hyperspace but the disc intensities do not agree with the ones predicted by the Cut-and-Project method. The diffuse discs we observed seem to be related to an original quasicrystalline phenomenon overlapping with the icosahedral phase. Les diagrammes de diffraction électronique des quasicristaux icosaédriques présentent fréquemment des diffusions diffuses. Nous les analysons ici en détails sur des échantillons de phase quasicristalline Al{6}Li{3}Cu (T2) traités thermiquement dans lesquels les diffusions diffuses sont trés prononcées. Les intensités diffuses forment des batônnets centrés sur des positions appartenant aux rangées réciproques d'ordre 5 et d'ordre 2 et allongés perpendiculairement à ces directions. On montre qu'il s'agit en fait de disques diffus. dans le réseau réciproque à 3 dimensions, dont les positions ne peuvent s'indexer que sur le réseau à 6 dimensions. Toutefois, les intensités ne correspondent pas à celle prédites par l'algorithme de Coupe-et-Projection. Les disques de diffusion diffuse semblent relever d'une organisation quasicristalline originale se superposant à la phase icosaédrique.
Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M
2003-07-18
We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.
Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra
2016-09-15
Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.
NASA Technical Reports Server (NTRS)
Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.;
2016-01-01
Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
Effect of the scattering delay on time-dependent photon migration in turbid media.
Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J
1997-09-01
We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.
Welberry, T R; Goossens, D J; Edwards, A J; David, W I
2001-01-01
A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.
Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers
Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...
2016-03-16
Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less
Diffusion limit of Lévy-Lorentz gas is Brownian motion
NASA Astrophysics Data System (ADS)
Magdziarz, Marcin; Szczotka, Wladyslaw
2018-07-01
In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.
Effect of Diffuse Backscatter in Cassini Datasets on the Inferred Properties of Titan's surface
NASA Astrophysics Data System (ADS)
Sultan-Salem, A. K.; Tyler, G. L.
2006-12-01
Microwave (2.18 cm-λ) backscatter data for the surface of Titan obtained with the Cassini Radar instrument exhibit a significant diffuse scattering component. An empirical scattering law of the form Acos^{n}θ, with free parameters A and n, is often employed to model diffuse scattering, which may involve one or more unidentified mechanisms and processes, such as volume scattering and scattering from surface structure that is much smaller than the electromagnetic wavelength used to probe the surface. The cosine law in general is not explicit in its dependence on either the surface structure or electromagnetic parameters. Further, the cosine law often is only a poor representation of the observed diffuse scattering, as can be inferred from computation of standard goodness-of-fit measures such as the statistical significance. We fit four Cassini datasets (TA Inbound and Outbound, T3 Outbound, and T8 Inbound) with a linear combination of a cosine law and a generalized fractal-based quasi-specular scattering law (A. K. Sultan- Salem and G. L. Tyler, J. Geophys. Res., 111, E06S08, doi:10.1029/2005JE002540, 2006), in order to demonstrate how the presence of diffuse scattering increases considerably the uncertainty in surface parameters inferred from the quasi-specular component, typically the dielectric constant of the surface material and the surface root-mean-square slope. This uncertainty impacts inferences concerning the physical properties of the surfaces that display mixed scattering properties.
NASA Astrophysics Data System (ADS)
Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.
2012-01-01
Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
NASA Astrophysics Data System (ADS)
Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot
2018-02-01
We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goossens, D. J.; Chan, E. J.
Terephthalic acid (TPA, C 8H 6O 4) is an industrially important chemical, one that shows polymorphism and disorder. Three polymorphs are known, two triclinic [(I) and (II)] and one monoclinic (III). Of the two triclinic polymorphs, (II) has been shown to be more stable in ambient conditions. This paper presents models of the local order of polymorphs (I) and (II), and compares the single-crystal diffuse scattering (SCDS) computed from the models with that observed from real crystals. TPA shows relatively weak and less-structured diffuse scattering than some other polymorphic materials, but it does appear that the SCDS is less wellmore » modelled by a purely harmonic model in polymorph (I) than in polymorph (II), according to the idea that the diffuse scattering is sensitive to anharmonicity that presages a structural phase transition. The work here verifies that displacive correlations are strong along the molecular chains and weak laterally, and that it is not necessary to allow the —COOH groups to librate to successfully model the diffuse scattering – keeping in mind that the data are from X-ray diffraction and not directly sensitive to H atoms.« less
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
2018-02-21
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M
2018-06-01
Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.
Modelling the diffuse dust emission around Orion
NASA Astrophysics Data System (ADS)
Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti
2018-06-01
We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.
Merrill, Frank E.; Morris, Christopher
2005-05-17
A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.
Observations of the diffuse near-UV radiation field
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.
1990-01-01
The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.
Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods
NASA Astrophysics Data System (ADS)
Phan, The-Long; Vincent, Roger; Cherns, David; Dan, Nguyen Huy; Yu, Seong-Cho
2008-08-01
We have studied Raman scattering in Co-doped ZnO nanorods prepared by thermal diffusion. Experimental results show that the features of their non-resonant spectra are similar to Raman spectra from Co-doped ZnO materials investigated previously. Under resonant conditions, however, there is a strong enhancement of multiple-phonon Raman scattering processes. Longitudinal optical (LO)-phonon overtones up to eleventh order are observed. The modes become more obvious when the Co concentration diffused into ZnO nanorods goes to an appropriate value. This phenomenon is explained due to the shift of the band-gap energy and also due to the decrease in the intensity of near-band-edge luminescence. Our observation is in agreement with the prediction [J. F. Scott, Phys. Rev. B 2, 1209 (1970)] that the number of LO-phonon lines in ZnO is higher than that observed for CdS.
Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.
2000-01-01
An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.
Diffusion in translucent media.
Shi, Zhou; Genack, Azriel Z
2018-05-10
Diffusion is the result of repeated random scattering. It governs a wide range of phenomena from Brownian motion, to heat flow through window panes, neutron flux in fuel rods, dispersion of light in human tissue, and electronic conduction. It is universally acknowledged that the diffusion approach to describing wave transport fails in translucent samples thinner than the distance between scattering events such as are encountered in meteorology, astronomy, biomedicine, and communications. Here we show in optical measurements and numerical simulations that the scaling of transmission and the intensity profiles of transmission eigenchannels have the same form in translucent as in opaque media. Paradoxically, the similarities in transport across translucent and opaque samples explain the puzzling observations of suppressed optical and ultrasonic delay times relative to predictions of diffusion theory well into the diffusive regime.
An empirical correction for moderate multiple scattering in super-heterodyne light scattering.
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-28
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
Neoclassical diffusion at low L-shel
NASA Astrophysics Data System (ADS)
Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.
2017-12-01
At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.
NASA Astrophysics Data System (ADS)
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
RAPID COMMUNICATION: Diffusion thermopower in graphene
NASA Astrophysics Data System (ADS)
Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.
2010-09-01
The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.
Asymptotic radiance and polarization in optically thick media: ocean and clouds.
Kattawar, G W; Plass, G N
1976-12-01
Deep in a homogeneous medium that both scatters and absorbs photons, such as a cloud, the ocean, or a thick planetary atmosphere, the radiance decreases exponentially with depth, while the angular dependence of the radiance and polarization is independent of depth. In this diffusion region, the asymptotic radiance and polarization are also independent of the incident distribution of radiation at the upper surface of the medium. An exact expression is derived for the asymptotic radiance and polarization for Rayleigh scattering. The approximate expression for the asymptotic radiance derived from the scalar theory is shown to be in error by as much as 16.4%. An exact expression is also derived for the relation between the diffusion exponent k and the single scattering albedo. A method is developed for the numerical calculation of the asymptotic radiance and polarization for any scattering matrix. Results are given for scattering from the haze L and cloud C3 distributions for a wide range of single scattering albedos. When the absorption is large, the polarization in the diffusion region approaches the values obtained for single scattered photons, while the radiance approaches the value calculated from the expression: phase function divided by (1 + kmicro), where micro is the cosine of the zenith angle. The asymptotic distribution of the radiation is of interest since it depends only on the inherent optical properties of the medium. It is, however, difficult to observe when the absorption is large because of the very low radiance values in the diffusion region.
Heterodyne x-ray diffuse scattering from coherent phonons
Kozina, M.; Trigo, M.; Chollet, M.; ...
2017-08-10
Here in this paper, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons frommore » the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.« less
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics
NASA Astrophysics Data System (ADS)
Musset, S.; Kontar, E. P.; Vilmer, N.
2018-02-01
Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.
NASA Astrophysics Data System (ADS)
Qiao, Haijun; Tomita, Yasuo; Xu, Jingjun; Wu, Qiang; Zhang, Guoquan; Zhang, Guangyin
2005-09-01
We report on the observation of diffusion-dominant photorefraction and light-induced nonlinear forward and backward scattering in highly Mg-doped LiNbO3 at 351 nm. We also demonstrate what we believe to be the first continuous-wave self-pumped phase conjugation via stimulated photorefractive backscattering in the ultraviolet.
Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves
NASA Astrophysics Data System (ADS)
Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.
2018-02-01
The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.
Bringing diffuse X-ray scattering into focus
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
2018-02-16
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
Bringing diffuse X-ray scattering into focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
NASA Astrophysics Data System (ADS)
Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.
2016-03-01
Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.
NASA Astrophysics Data System (ADS)
Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.
2007-11-01
We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.
Solar-energetic particles as a probe of the inner heliosphere
NASA Astrophysics Data System (ADS)
Chollet, Eileen Emily
2008-06-01
In this dissertation, I explore the relationship between solar energetic particles (SEPs) and the interplanetary magnetic field, and I use observations of SEPs to probe the region of space between the Sun and the Earth. After an introduction of major concepts in heliospheric physics, describing some of the history of energetic particles and defining the data sets used in the work, the rest of this dissertation is organized around three major concepts related to energetic particle transport: magnetic field-line length, interplanetary turbulence, and particle scattering and diffusion. In Chapter 2, I discuss how energetic particles can be used to measure the lengths of field lines and how particle scattering complicates the interpretation of these measurements. I then propose applying these measurements to a particular open problem: the origin and properties of heliospheric current sheets. In the next chapter, I move from the large to small scale and apply energetic particle measurements to important problems in interplanetary turbulence. I introduce two energetic- particle features, one of which I discovered in the course of this work, which have size scales roughly that of the correlation scale of the turbulence (the largest scale over which observations are expected to be similar). I discuss how multi-spacecraft measurements of these energetic particle features can provide a measure of the correlation scale independent of the magnetic field measurements. Finally, I consider interplanetary scattering and diffusion in detail. I describe new observations of particle diffusion in the direction perpendicular to the average magnetic field, showing that particles only scatter a few times between their injection at the Sun and observation at the Earth. I also provide numerical simulation results of diffusion parallel to the field which can be used to correct for the effects of transport on the particles. These corrections allow inferences to be made about the particle energies at injection from observations of the event-integrated fluences at 1 AU. By carefully including scattering, cooling, field line meandering and turbulence effects, solar-energetic particles become a powerful tool for studying the inner heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, T.M.; Pecora, R.
1988-03-24
The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less
Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN
Perret, Edith; Xu, Dongwei; Highland, M. J.; ...
2017-12-04
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less
Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perret, Edith; Xu, Dongwei; Highland, M. J.
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growthmore » rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less
Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perret, Edith; Xu, Dongwei; Highland, M. J.
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less
NASA Astrophysics Data System (ADS)
Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.
2004-04-01
Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.
Theoretical and experimental models of the diffuse radar backscatter from Mars
NASA Technical Reports Server (NTRS)
England, A. W.
1995-01-01
The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.
Scattering of Gaussian Beams by Disordered Particulate Media
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.
2016-01-01
A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.
Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2010-02-01
Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.
Indium diffusion through high-k dielectrics in high-k/InP stacks
NASA Astrophysics Data System (ADS)
Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.
2013-08-01
Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.
Invariance property of wave scattering through disordered media
Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan
2014-01-01
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671
Flexible and polarization-controllable diffusion metasurface with optical transparency
NASA Astrophysics Data System (ADS)
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng
2017-11-01
In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.
NASA Astrophysics Data System (ADS)
Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko
1995-07-01
The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.
Abeykoon, A M Milinda; Donner, Wolfgang; Brunelli, Michela; Castro-Colin, Miguel; Jacobson, Allan J; Moss, Simon C
2009-09-23
The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.
Intermediate scattering function of an anisotropic active Brownian particle
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-01-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719
Intermediate scattering function of an anisotropic active Brownian particle.
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-10
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Intermediate scattering function of an anisotropic active Brownian particle
NASA Astrophysics Data System (ADS)
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy
Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael
2009-01-01
Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M
We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less
Microscopic video observation of capillary vessel systems using diffuse back lighting
NASA Astrophysics Data System (ADS)
Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki
2017-04-01
We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.
Li, W.; Ma, Q.; Thorne, R. M.; ...
2016-06-10
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.; Ma, Q.; Thorne, R. M.
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
Cloaking through cancellation of diffusive wave scattering
Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.
2016-01-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925
Cloaking through cancellation of diffusive wave scattering
NASA Astrophysics Data System (ADS)
Farhat, M.; Chen, P. Y.; Guenneau, S.; Bağc, H.; Salama, K. N.; Alù, A.
2016-08-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging.
A Novel Effect of Scattered-Light Interference in Misted Mirrors
ERIC Educational Resources Information Center
Bridge, N. James
2005-01-01
Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.
2015-07-28
A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
Polarization of the diffuse galactic light.
NASA Technical Reports Server (NTRS)
Sparrow, J. G.; Ney, E. P.
1972-01-01
Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Diffuse Scattering Investigations of Orientational Pair Potentials in C_60
NASA Astrophysics Data System (ADS)
Wochner, Peter
1996-03-01
Premonitory orientational fluctuations above the first order phase transition of C_60 at 260K have been studied by diffuse X-ray scattering experiments. These experiments probe the orientational pair correlations between C_60 molecules as a function of their separation and therefore the orientational pair potential. In addition to the diffuse scattering due to the orientational disorder of single molecules, we have observed zone boundary diffuse scattering at the X-points related to the Pabar 3 low temperature structure up to 300K. An additional set of diffuse peaks, which are even at room temperature comparable in intensity to the former ones, have been found at (0.5,0.5,0.5) positions (L-point). Similar results have recently been reported by P. Launois et al. (P. Launois, S. Ravy, R. Moret, PRB 52), 5414 (1995) and L. Pintschovius et al. (L. Pintschovius, S.L. Chaplot, G. Roth, G. Heger, PRL 75), 2843 (1995) The temperature dependence of the integrated intensity of both sets of diffuse peaks shows only a weak increase in approaching T_c, indicative of a strongly first order transition. Additional intensity with a very weak temperature dependence but similar correlation length has also been found at (0.5,0.5,0) and (0.5,0,0) positions. The diffuse intensity at the L, Σ and Δ points has probably its origin in competing phases which are not stabilized at low temperatures. Recent DSC measurements show close lying transitions at 260K with a separation of ~= 0.2-0.3K which might be related to these competing phases footnote J. Fischer, private communication. The data will be compared with model calculations using orientational pair potentials which have been used in literature to describe the orientational phase transition in C_60.
Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David
2017-12-13
Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.
Single Crystal Diffuse Neutron Scattering
Welberry, Richard; Whitfield, Ross
2018-01-11
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Single Crystal Diffuse Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welberry, Richard; Whitfield, Ross
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
PROBABILISTIC CHARACTERIZATION OF ATMOSPHERIC TRANSPORT AND DIFFUSION
The observed scatter of observations about air quality model predictions stems from a combination of naturally occurring stochastic variations that are impossible for any model to explicitly simulate and variations arising from limitations in our knowledge and from imperfect inpu...
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.
2015-01-01
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...
2015-07-28
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
NASA Astrophysics Data System (ADS)
Liang, Xiaoping; Zhang, Qizhi; Staal, Stephen; Grobmyer, Stephen; Jiang, Huabei
2009-02-01
Multispectral and phase-contrast diffuse optical tomography are used to track treatment progress in a patient with locally advanced invasive carcinoma of the breast cancer during neoadjuvant chemotherapy. Two types of chemotherapy treatment including four cycles of Adriamycin/Cytoxin (AC cycles) and twelve cycles of Taxol/Herceptin (TH cycles) were applied to patient. A total of eight optical exams were performed before and within the chemotherapy. Images of tissue refractive index, and absorption and scattering coefficients, as well as oxy-hemoglobin and deoxy-hemoglobin concentrations along with scattering particle volume fraction and mean diameter of cellular components were all obtained. The tumor was identified through absorption and scattering images. Tumor shrinkage was observed during the course of chemotherapy from all the optical images. Our results show that oxy-hemoglobin, deoxy-hemoglobin and total hemoglobin in tumor decreased after chemotherapy compared to that of before chemotherapy. Significant changes in tumor refractive index along with tumor cellular morphology during the entire chemotherapy are also observed.
Light-scattering signal may indicate critical time zone to rescue brain tissue after hypoxia
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2011-02-01
A light-scattering signal, which is sensitive to cellular/subcellular structural integrity, is a potential indicator of brain tissue viability because metabolic energy is used in part to maintain the structure of cells. We previously observed a unique triphasic scattering change (TSC) at a certain time after oxygen/glucose deprivation for blood-free rat brains; TSC almost coincided with the cerebral adenosine triphosphate (ATP) depletion. We examine whether such TSC can be observed in the presence of blood in vivo, for which transcranial diffuse reflectance measurement is performed for rat brains during hypoxia induced by nitrogen gas inhalation. At a certain time after hypoxia, diffuse reflectance intensity in the near-infrared region changes in three phases, which is shown by spectroscopic analysis to be due to scattering change in the tissue. During hypoxia, rats are reoxygenated at various time points. When the oxygen supply is started before TSC, all rats survive, whereas no rats survive when the oxygen supply is started after TSC. Survival is probabilistic when the oxygen supply is started during TSC, indicating that the period of TSC can be regarded as a critical time zone for rescuing the brain. The results demonstrate that light scattering signal can be an indicator of brain tissue reversibility.
On the use of the earth resources technology satellite /LANDSAT-1/ in optical oceanography
NASA Technical Reports Server (NTRS)
Maul, G. A.; Gordon, H. R.
1975-01-01
Observations of the Gulf Stream System in the Gulf of Mexico were obtained in synchronization with LANDSAT-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed by color (diffuse radiance) or sea state (specular radiance) effects associated with the cyclonic boundary even in the absence of a surface thermal signature. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
Ma, Q.; Li, W.; Thorne, R. M.; ...
2017-09-29
Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.
Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram
2014-01-01
Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.
Diffusion Raman stimulée à trois ondes dans une fibre optique.
Saissy, A; Botineau, J; Azema, A; Gires, F
1980-05-15
Three-wave stimulated Raman scattering in optical fibers has been studied theoretically in connection with the characteristics of the fiber (core diameter, core-cladding refractive-index difference) and excitation conditions. We observe experimentally this type of scattering in a silica fiber, from which we can estimate the nonlinearity of silica and the index difference of the fiber.
Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix
NASA Astrophysics Data System (ADS)
Sun, Bingqiang; Kattawar, George W.; Yang, Ping
2016-11-01
Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2007-01-01
We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.
Dust scattering from the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty
2017-04-01
We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).
Diffusive charge transport in graphene on SiO 2
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.
2009-07-01
We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Brownian motion of solitons in a Bose–Einstein condensate
Aycock, Lauren M.; Hurst, Hilary M.; Efimkin, Dmitry K.; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M.; Spielman, I. B.
2017-01-01
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated Rb87 Bose–Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton’s diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment. PMID:28196896
Bosak, A; Chernyshov, D; Vakhrushev, Sergey; Krisch, M
2012-01-01
The available body of experimental data in terms of the relaxor-specific component of diffuse scattering is critically analysed and a collection of related models is reviewed; the sources of experimental artefacts and consequent failures of modelling efforts are enumerated. Furthermore, it is shown that the widely used concept of polar nanoregions as individual static entities is incompatible with the experimental diffuse scattering results. Based on the synchrotron diffuse scattering three-dimensional data set taken for the prototypical ferroelectric relaxor lead magnesium niobate-lead titanate (PMN-PT), a new parameterization of diffuse scattering in relaxors is presented and a simple phenomenological picture is proposed to explain the unusual properties of the relaxor behaviour. The model assumes a specific slowly changing displacement pattern, which is indirectly controlled by the low-energy acoustic phonons of the system. The model provides a qualitative but rather detailed explanation of temperature, pressure and electric-field dependence of diffuse neutron and X-ray scattering, as well as of the existence of a hierarchy in the relaxation times of these materials.
Filamentation of ultrashort light pulses in a liquid scattering medium
NASA Astrophysics Data System (ADS)
Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.
2009-01-01
We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.
Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides
Goossens, D. J.
2013-01-01
Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less
NASA Astrophysics Data System (ADS)
Lin, J. Q.; Liu, X.; Blackburn, E.; Wakimoto, S.; Ding, H.; Islam, Z.; Sinha, S. K.
2018-05-01
The nanometer scale lattice deformation brought about by the dopants in the high temperature superconducting cuprate La2 -xSrx CuO4 (x =0.08 ) was investigated by measuring the associated x-ray diffuse scattering around multiple Bragg peaks. A characteristic diffuse scattering pattern was observed, which can be well described by continuum elastic theory. With the fitted dipole force parameters, the acoustic-type lattice deformation pattern was reconstructed and found to be of similar size to lattice thermal vibration at 7 K. Our results address the long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer scale lattice deformation is marginal and cannot, alone, be responsible for the patched variation in the spectral gaps observed with scanning tunneling microscopy in the cuprates.
Relativistic Electron Precipitation: An Observational Study.
1980-01-01
al., 1970). These so-called "n + 1/2" waves (- n + 1/2) are found throughout the magnetosphere outside the plasmapause (Kennel et al., 1970; Shaw and...diffusion scattering one requires 2 L D~ . LSD - z ~.(21) 73 where aL = loss cone pitch angle D SD = coefficient for strong diffusion. Equation (20) can be...with substitutions yields a fluctuating field wave amplitude for strong electron diffusion: a." 0- x(23) and 00for f= LSD (24) LRo LRo + For ions
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Monte Carlo analysis of neutron diffuse scattering data
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.
2006-11-01
This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.
Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy
NASA Astrophysics Data System (ADS)
Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.
1998-05-01
Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.
Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C
2014-12-16
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.
On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhole, Kiran, E-mail: kirandipali@gmail.com; Gandhi, Prasanna; Kundu, T.
Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profilemore » of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.« less
NASA Astrophysics Data System (ADS)
Gillet, K.; Margerin, L.; Calvet, M.; Monnereau, M.
2017-01-01
We report measurements of the attenuation of short period seismic waves in the Moon based on the quantitative analysis of envelope records of lunar quakes. Our dataset consists of waveforms corresponding to 62 events, including artificial and natural impacts, shallow moonquakes and deep moonquakes, recorded by the four seismometers deployed during Apollo missions 12, 14, 15 and 16. To quantify attenuation and distinguish between elastic (scattering) and inelastic (absorption) mechanisms we measure the time of arrival of the maximum of energy tmax and the coda quality factor Qc . The former is controlled by both scattering and absorption, while the latter is an excellent proxy for absorption. Consistent with the strong broadening of seismogram envelopes in the Moon, we employ diffusion theory in spherical geometry to model the propagation of seismic energy in depth-dependent scattering and absorbing media. To minimize the misfit between predicted and observed tmax for deep moonquakes and impacts, we employ a genetic algorithm and explore a large number of depth-dependent attenuation models quantified by the scattering quality factor Qsc or equivalently the wave diffusivity D, and the absorption quality factor Qi . The scattering and absorption profiles that best fit the data display very strong scattering attenuation (Qsc ≤ 10) or equivalently very low wave diffusivity (D ≈ 2 km2/s) in the first 10 km of the Moon. These values correspond to the most heterogeneous regions on Earth, namely volcanic areas. Below this surficial layer, the diffusivity rises very slowly up to a depth of approximately 80 km where Qsc and D exhibit an abrupt increase of about one order of magnitude. Below 100 km depth, Qsc increases rapidly up to approximately 2000 at a depth of about 150 km, a value similar to the one found in the Earth's mantle. By contrast, the absorption quality factor on the Moon Qi ≈ 2400 is about one order or magnitude larger than on Earth. Our results suggest the existence of an approximately 100 km thick megaregolith, which is much larger than what was previously thought. The rapid decrease of scattering attenuation below this depth is compatible with crack healing through viscoelastic mechanisms. Using our best attenuation model, we invert for the depth of shallow moonquakes based on the observed variation of tmax with epicentral distance. On average, they are found to originate from a depth of about 50 km ± 20 km, which suggests that these earthquakes are caused by the failure of deep faults in the brittle part of the Moon.
Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1992-01-01
This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.
Anomalous diffusion of poly(ethylene oxide) in agarose gels.
Brenner, Tom; Matsukawa, Shingo
2016-11-01
We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm. Copyright © 2016. Published by Elsevier B.V.
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-10
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
NASA Astrophysics Data System (ADS)
Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji
2005-04-01
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.
Focal ratio degradation: a new perspective
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Withford, Michael J.; Dawes, Judith M.; Haynes, Roger; Bland-Hawthorn, Joss
2008-07-01
We have developed an alternative FRD empirical model for the parallel laser beam technique which can accommodate contributions from both scattering and modal diffusion. It is consistent with scattering inducing a Lorentzian contribution and modal diffusion inducing a Gaussian contribution. The convolution of these two functions produces a Voigt function which is shown to better simulate the observed behavior of the FRD distribution and provides a greatly improved fit over the standard Gaussian fitting approach. The Voigt model can also be used to quantify the amount of energy displaced by FRD, therefore allowing astronomical instrument scientists to identify, quantify and potentially minimize the various sources of FRD, and optimise the fiber and instrument performance.
Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.
Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut
2013-08-01
The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.
Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance
NASA Technical Reports Server (NTRS)
Verstraete, Michel M.
1988-01-01
The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
NASA Astrophysics Data System (ADS)
Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.
2006-05-01
Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
Bulk properties and velocity distributions of water group ions at Comet Halley - Giotto measurements
NASA Astrophysics Data System (ADS)
Coates, A. J.; Wilken, B.; Johnstone, A. D.; Jockers, K.; Glassmeier, K.-H.; Huddleston, D. E.
1990-07-01
In the region upstream of Comet Halley, pickup heavy ions of cometary origin were directly observed by the implanted ion spectrometer on Giotto. Diffusion of this population in pitch angle and in energy, during the approach to the comet and on the outbound leg is discussed. The two data sets are compared and qualitative ideas on scattering timescales are inferred. In addition the bulk parameters of these distributions have been computed and a comparison of the observed speed in the solar wind frame and the observed density with expectations is presented. Pitch angle scattering occurs more slowly than expected with filled shells appearing at 2,500,000 km, and significant energy diffusion does not occur until the bow shock region. Also the shell distributions downstream of the shock flow at the bispherical bulk speed (related to the Alfven speed) along the magnetic field with respect to the solar wind in accordance with conservation of energy between the pickup ions and the wave turbulence.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...
2014-12-01
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less
Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.
2014-01-01
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D; Ma, Jie; Delaire, Olivier A
2015-01-01
Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.
Temporal evolution of the Green's function reconstruction in the seismic coda
NASA Astrophysics Data System (ADS)
Clerc, V.; Roux, P.; Campillo, M.
2013-12-01
In presence of multiple scattering, the wavefield evolves towards an equipartitioned state, equivalent to ambient noise. CAMPILLO and PAUL (2003) reconstructed the surface wave part of the Green's function between three pairs of stations in Mexico. The data indicate that the time asymmetry between causal and acausal part of the Green's function is less pronounced when the correlation is performed in the later windows of the coda. These results on the correlation of diffuse waves provide another perspective on the reconstruction of Green function which is independent of the source distribution and which suggests that if the time of observation is long enough, a single source could be sufficient. The paper by ROUX et al. (2005) provides a theoretical frame for the reconstruction of the Green's function in a homogeneous middle. In a multiple scattering medium with a single source, scatterers behave as secondary sources according to the Huygens principle. Coda waves are relevant to multiple scattering, a regime which can be approximated by diffusion for long lapse times. We express the temporal evolution of the correlation function between two receivers as a function of the secondary sources. We are able to predict the effect of the persistence of the net flux of energy observed by CAMPILLO and PAUL (2003) in numerical simulations. This method is also effective in order to retrieve the scattering mean free path. We perform a partial reconstruction of the Green's function in a strongly scattering medium in numerical simulations. The prediction of the flux asymmetry allows defining the parts of the coda providing the same information as ambient noise cross correlation.
System for diffusing light from an optical fiber or light guide
Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [
2008-06-10
A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.
Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region
NASA Astrophysics Data System (ADS)
Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji
2003-06-01
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.
Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji
2003-06-01
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng
2015-11-20
The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.
Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z
2014-08-14
The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.
Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy
NASA Astrophysics Data System (ADS)
Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit
2017-12-01
Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.
Morphology of the scattering targets: Fresnel and turbulent mechanisms, part 2.1A
NASA Technical Reports Server (NTRS)
Royrvik, O.
1984-01-01
Refractive index fluctuations cause coherent scattering and reflection of VHF radio waves from the clear air in the altitude region between 0 and approximately 90 km. Similar echoes from the stratosphere/troposphere and the mesosphere are observed at UHF and MF/HF frequencies, respectively. The nature of the refractive index fluctuations has been studied for many years without producing a clear consensus on what mechanism causes them. It is believed that the irregularities can originate from two different mechanisms: turbulent mixing of the gradient of refractive index, and stable horizontally stratified laminae of sharp gradients in the refractive index. In order to explain observations of volume dependence and aspect sensitivity of the echo power in the MST region, a diversity of submechanisms has been proposed. They include isotropic and anisotropic turbulent scattering, Fresnel scattering and reflection, and diffuse reflection. Isotropic turbulent scattering is believed to cause a majority of the clear air echoes observed by MST radars. The mechanism requires active turbulence mixing of a preexisting gradient in the refractive index profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cable, J.W.
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recentmore » neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.« less
Relativistic theory of particles in a scattering flow III: photon transport.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
Pretransitional diffuse neutron scattering in the mixed perovskite relaxor K1-xLixTaO3
NASA Astrophysics Data System (ADS)
Yong, Grace; Toulouse, Jean; Erwin, Ross; Shapiro, Stephen M.; Hennion, Bernard
2000-12-01
Several previous studies of K1-xLixTaO3 (KLT) have revealed the presence, above the structural transition, of polar nanoregions. Recently, these have been shown to play an essential role in the relaxor behavior of KLT. In order to characterize these regions, we have performed a neutron-scattering study of KLT crystals with different lithium concentrations, both above and below the critical concentration. This study reveals the existence of diffuse scattering that appears upon formation of these regions. The rodlike distribution of the diffuse scattering along cubic directions indicates that the regions form in the shape of discs in the various cubic planes. From the width of the diffuse scattering we extract values for a correlation length or size of the regions as a function of temperature. Finally, on the basis of the reciprocal lattice points around which the diffuse scattering is most intense, we conclude that the regions have tetragonal symmetry. The large increase in Bragg intensities at the first-order transition suggests that the polar regions freeze to form large structural domains and the transition is triggered by the percolation of strain fields through the crystals.
Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.
Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E
2016-04-13
Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
The Western Hemisphere of Venus: 3.5 CM Dual Circular-Polarization Radar Images
NASA Astrophysics Data System (ADS)
Haldemann, Albert F. C.; Muhleman, Duane O.; Butler, Bryan J.; Slade, Martin A.
1997-08-01
We present new dual circular-polarization radar maps of the western hemisphere of Venus. The results are from a 1993 experiment imaging Venus with 3.5 cm radar. Continuous-wave right circularly polarized flux was transmitted toward Venus from the 70 m Deep Space Network antenna in Goldstone, California. The echo was received in both the same sense (SS) and the opposite sense (OS) of circular polarization at the Very Large Array in New Mexico. By spatially reconstructing the echo with the interferometer, maps of Venusian radar albedo were made for each of two days of observation in both OS (echo principally due to specular reflection) and SS (diffuse echo) channels. On both days, the sub-earth longitude was near 300 E. The SS maps are dominated by a significant component of diffuse backscatter from the 285 E longitude highlands: Beta, Phoebe, and Themis Regiones. Beta Regio includes radar-anomalous regions with high reflectivity and low emissivity. The nature of these altitude-related electrical properties on Venus is one of the outstanding surface process questions that remain after Magellan. Our experiment adds the first full-disk polarization ratio (μc) maps to the discussion. The data show that different geology determines different radar scattering properties within Beta. Diffuse scattering is very important in Beta, and may be due to either surface or volume scattering. We find a strong correlation of the SS albedo σSSwith altitudeRp(km) in Beta, σSS∝ 0.3Rp. Also, σOS∝ 0.7Rp. The onset of this relationship is at theRp∼ 6054 km planetary radius contour. The nature and morphology of the highland radar anomalies in Beta is consistent with a diffuse scattering mechanism. In Beta Regio we find μc> 0.5 in general, with μcas high as 0.8 between Rhea and Theia Montes, to the west of Devana Chasma. These values are compatible with measurements of blocky terrestrial lava flows if surface scattering dominates. If volume scattering is important, the high RCP cross-sections may indicate an important decrease in embedded scatterer size with altitude, which could be related to enhanced weathering.
Prediction of nonlinear evolution character of energetic-particle-driven instabilities
Duarte, Vinicius N.; Berk, H. L.; Gorelenkov, N. N.; ...
2017-03-17
A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. Furthermore, the latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.
Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams
NASA Astrophysics Data System (ADS)
Hammer, Markus; Seidel, Wolfhart
1997-10-01
Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.
Prediction of nonlinear evolution character of energetic-particle-driven instabilities
NASA Astrophysics Data System (ADS)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Tobias, B. J.; Van Zeeland, M. A.
2017-05-01
A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. The latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Wall, Michael E.
2016-01-01
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering. PMID:27035972
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; ...
2016-03-28
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practicesmore » for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. In conclusion, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.« less
Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.
Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem
2015-11-17
We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois
In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...
2018-03-30
In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells
NASA Astrophysics Data System (ADS)
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael
2018-04-01
In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackowski, Daniel W.; Mishchenko, Michael I.
The conventional orientation-averaging procedure developed in the framework of the superposition T-matrix approach is generalized to include the case of illumination by a Gaussian beam (GB). The resulting computer code is parallelized and used to perform extensive numerically exact calculations of electromagnetic scattering by volumes of discrete random medium consisting of monodisperse spherical particles. The size parameters of the scattering volumes are 40, 50, and 60, while their packing density is fixed at 5%. We demonstrate that all scattering patterns observed in the far-field zone of a random multisphere target and their evolution with decreasing width of the incident GBmore » can be interpreted in terms of idealized theoretical concepts such as forward-scattering interference, coherent backscattering (CB), and diffuse multiple scattering. It is shown that the increasing violation of electromagnetic reciprocity with decreasing GB width suppresses and eventually eradicates all observable manifestations of CB. This result supplements the previous demonstration of the effects of broken reciprocity in the case of magneto-optically active particles subjected to an external magnetic field.« less
Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-04-28
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less
Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin
2010-03-01
Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.
A diffuse radar scattering model from Martian surface rocks
NASA Technical Reports Server (NTRS)
Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
Including scattering within the room acoustics diffusion model: An analytical approach.
Foy, Cédric; Picaut, Judicaël; Valeau, Vincent
2016-10-01
Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.
Direct Simulation of Multiple Scattering by Discrete Random Media Illuminated by Gaussian Beams
NASA Technical Reports Server (NTRS)
Mackowski, Daniel W.; Mishchenko, Michael I.
2011-01-01
The conventional orientation-averaging procedure developed in the framework of the superposition T-matrix approach is generalized to include the case of illumination by a Gaussian beam (GB). The resulting computer code is parallelized and used to perform extensive numerically exact calculations of electromagnetic scattering by volumes of discrete random medium consisting of monodisperse spherical particles. The size parameters of the scattering volumes are 40, 50, and 60, while their packing density is fixed at 5%. We demonstrate that all scattering patterns observed in the far-field zone of a random multisphere target and their evolution with decreasing width of the incident GB can be interpreted in terms of idealized theoretical concepts such as forward-scattering interference, coherent backscattering (CB), and diffuse multiple scattering. It is shown that the increasing violation of electromagnetic reciprocity with decreasing GB width suppresses and eventually eradicates all observable manifestations of CB. This result supplements the previous demonstration of the effects of broken reciprocity in the case of magneto-optically active particles subjected to an external magnetic field.
Quantum angular momentum diffusion of rigid bodies
NASA Astrophysics Data System (ADS)
Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus
2017-12-01
We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.
Embs, Jan P; Burankova, Tatsiana; Reichert, Elena; Hempelmann, Rolf
2012-11-08
Quasielastic neutron scattering (QENS) has been used to study the cation dynamics in the pyridinium based ionic liquid (IL) 1-N-butylpyridinium bis((trifluoromethyl)sulfonyl)imide (BuPy-Tf(2)N). This IL allows for a detailed investigation of the dynamics of the cations only, due to the huge incoherent scattering cross section of the cation (σ(inc)(cation) > σ(inc)(anion)). The measured spectra can be decomposed into two Lorentzian lines, indicative of two distinct dynamic processes. The slower of these two processes is diffusive in nature, whereas the faster one can be attributed to localized motions. The temperature dependence of the diffusion coefficient of the slow process follows an Arrhenius law, with an activation energy of E(A) = 14.8 ± 0.3 kJ/mol. Furthermore, we present here results from experiments with polarized neutrons. These experiments clearly show that the slower of the two observed processes is coherent, while the faster one is incoherent in nature.
Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...
2016-06-11
Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less
Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts
NASA Astrophysics Data System (ADS)
Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.
2017-08-01
We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Observations of the diffuse UV radiation field
NASA Technical Reports Server (NTRS)
Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.
1989-01-01
Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.
Chan, E J; Welberry, T R; Goossens, D J; Heerdegen, A P; Beasley, A G; Chupas, P J
2009-06-01
The drug benzocaine (ethyl 4-aminobenzoate), commonly used as a local anaesthetic, is a bimorphic solid at room temperature. Form (I) is monoclinic P2(1)/c, while the metastable form (II) is orthorhombic P2(1)2(1)2(1). Three-dimensional diffuse X-ray scattering data have been collected for the two forms on the 11-ID-B beamline at the Advanced Photon Source (APS). Both forms show strong and highly structured diffuse scattering. The data have been interpreted and analysed using Monte Carlo (MC) modelling on the basis that the scattering is purely thermal in origin and indicates the presence of highly correlated molecular motions. In both forms (I) and (II) broad diffuse streaks are observed in the 0kl section which indicate strong longitudinal displacement correlations between molecules in the 031 directions, extending over distances of up to 50 A. Streaks extending between Bragg peaks in the hk0 section normal to [100] correspond to correlated motions of chains of molecules extending along a that are linked by N-H...O=C hydrogen bonds and which occur together as coplanar ribbon pairs. The main difference between the two forms is in the dynamical behaviour of the ribbon pairs and in particular how they are able to slide relative to each other. While for form (I) a model involving harmonic springs is able to describe the motion satisfactorily, as simple excursions away from the average structure, there is evidence in form (II) of anharmonic effects that are precursors of a phase transition to a new low-temperature phase, form (III), that was subsequently found.
NASA Astrophysics Data System (ADS)
Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.
2014-05-01
Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Hansen, F. Y.
2010-03-01
Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently demonstrated the feasibility of using quasielastic neutron scattering to study on a ˜1 ns time scale the diffusion of water bound to single-supported bilayer lipid membranes. Two different membrane samples characterized by AFM were investigated: protonated DMPC + D2O and tail-deuterated DMPC + H2O. Both fully hydrated membranes were deposited onto SiO2-coated Si(100) substrates. Measurements of elastic neutron intensity as a function of temperature on the High Flux Backscattering Spectrometer at NIST reveal features in the diffusive motion of water that have not been observed previously using multilayer membrane stacks. On slow cooling, the elastic intensity shows sharp step-like increases in the temperature range 265 to 272 K that we tentatively interpret as successive mobile-to-immobile transitions of water bound to the membrane.
NASA Astrophysics Data System (ADS)
Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua
2016-10-01
Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated discrete ELF/VLF waves.
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Comparison and prediction of chirping in NSTX and DIII-D
NASA Astrophysics Data System (ADS)
Duarte, Vinicius; Berk, Herbert; Gorelenkov, Nikolai; Heidbrink, William; Kramer, Gerrit; Nazikian, Raffi; Pace, David; Podesta, Mario; van Zeeland, Michael
2016-10-01
We present an explanation of why frequency chirping of Alfven waves is ubiquitous in NSTX and rarely observed in DIII-D. A time-delayed cubic nonlinear equation is employed for the study of the onset of nonlinear phase-space structures. Its explosive solutions are chirping precursors. We employ NOVA and NOVA-K codes to provide consistent Alfvenic eigenmodes and weighted physical contributions from all regions of phase space. In addition, TRANSP is employed to determine the diffusivity needed to fulfill power balance. Though background micro-turbulence is usually unimportant in determining the energetic particle spatial profile, it may still be important with regard to whether chirping structures likely form. We show that the energetic particle micro-turbulent induced scattering often competes with collisional pitch-angle scattering. This competition explains the tendency for NSTX, where micro-turbulence is weak, to exhibit Alfvénic chirping, whereas in DIII-D turbulent diffusion usually dominates and chirping is not observed except when micro-turbulence markedly reduces.
NASA Technical Reports Server (NTRS)
Henry, Richard C.
1994-01-01
Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.
Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polikanov, Yury S.; Moore, Peter B.
2015-09-26
The diffuse scattering pattern produced by frozen crystals of the 70S ribosome fromThermus thermophilusis as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.
Observation of the Leggett-Rice Effect in a Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Trotzky, S.; Beattie, S.; Luciuk, C.; Smale, S.; Bardon, A. B.; Enss, T.; Taylor, E.; Zhang, S.; Thywissen, J. H.
2015-01-01
We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ =1.08 (9 ) and a bare transverse spin diffusivity D0⊥=2.3 (4 )ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ =0 at unitarity, where two-body scattering is purely dissipative. We observe γ →0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ . Tuning the scattering length a , we find that a sign change in γ occurs in the range 0 <(kFa )-1≲1.3 , where kF is the Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.
DREAM3D simulations of inner-belt dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, Gregory Scott
2015-05-26
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less
Multiple-scattering coefficients and absorption controlled diffusive processes
NASA Astrophysics Data System (ADS)
Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor
1999-11-01
Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.
Using late arriving photons for diffuse optical tomography of biological objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurin, S G
2011-05-31
The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)
Diffusing Wave Spectroscopy Used to Study Foams
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Durian, Douglas J.
2000-01-01
The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering
NASA Astrophysics Data System (ADS)
Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.
2010-02-01
With the development of computer simulation methods there is, for the first time, the possibility of having a single general method that can be used for any diffuse scattering problem in any type of system. As computers get ever faster it is expected that current methods will become increasingly powerful and applicable to a wider and wider range of problems and materials and provide results in increasingly fine detail. In this article we discuss two contrasting recent examples. The first is concerned with the two polymorphic forms of the pharmaceutical compound benzocaine. The strong and highly structured diffuse scattering in these is shown to be symptomatic of the presence of highly correlated molecular motions. The second concerns Ag+ fast ion conduction in the pearceite/polybasite family of mineral solid electrolytes. Here Monte-Carlo simulation is used to model the diffuse scattering and gain insight into how the ionic conduction arises.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Fast internal dynamics in alcohol dehydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.
2015-08-21
Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less
NASA Astrophysics Data System (ADS)
Patel, J. R.
2002-06-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.
NASA Astrophysics Data System (ADS)
Polat, S.; Chen, Haydn; Epperson, J. E.
1989-04-01
The kinetic behavior of precipitation in a supersaturated Ni-12.5 at. pct Si alloy single crystal has been studied by the small-angle neutron scattering (SANS) technique to supplement earlier transmission electron microscopy (TEM) and wide-angle X-ray diffraction (XRD) work. The SANS measurements performed at room temperature on quenched specimens subjected to isothermal anneals at 400, 450, 505, and 550 °C for various amounts of time have revealed the presence of an interference peak in the scattering function. The particle size, determined according to the Guinier approximation, is found to grow in accordance with the diffusion controlled model put forth by Lifshitz and Slyozov, and independently by Wagner. The activation energy for solute diffusion is determined using the rate constants governing the growth of particle size and the variation of the mean interparticle distance. Results are in agreement with the values given in the literature. Transition from an earlier growth stage has been observed, and enhanced diffusion is noted at temperatures below 505 °C; both observations are consistent with the previous X-ray results. The dynamical scaling law appears to be followed by the data obtained in the coarsening stage. A disruption of scaling occurs at the point when the particle growth changes from a parabolic rate behavior to a cubic coarsening rate. Dynamical scaling offers the potential for projecting the service lifetimes for components from experimental measurements carried out over a much shorter time interval. Discrepancies in the size parameters determined by different techniques are discussed.
NASA Astrophysics Data System (ADS)
Pfeilsticker, K.; Davis, A.; Marshak, A.; Suszcynsky, D. M.; Buldryrev, S.; Barker, H.
2001-12-01
2-stream RT models, as used in all current GCMs, are mathematically equivalent to standard diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. In other words, after the conventional van de Hulst rescaling by 1/(1-g) in R3 and also by (1-g) in t, solar photons follow convoluted fractal trajectories in the atmosphere. For instance, we know that transmitted light is typically scattered about (1-g)τ 2 times while reflected light is scattered on average about τ times, where τ is the optical depth of the column. The space/time spread of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows from directly from first principles (the RT equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the '1-g' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as anomalous diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state-of-the-art observations that offer compelling empirical support for the Lévy/anomalous diffusion model in atmospheric radiation: (1) high-resolution spectroscopy of differential absorption in the O2 A-band from ground; (2) temporal transient records of lightning strokes transmitted through clouds to a sensitive detector in space; and (3) the Gamma-distributions of optical depths derived from Landsat cloud scenes at 30-m resolution. We will then introduce a rigorous analytical formulation of anomalous transport through finite media based on fractional derivatives and Sonin calculus. A remarkable result from this new theoretical development is an extremal property of the α = 1+ case (divergent mean-free-path), as is observed in the cloudy atmosphere. Finally, we will discuss the implications of anomalous transport theory for bulk 3D effects on the current enhanced absorption problem as well as its role as the basis of a next-generation GCM RT parameterization.
NASA Astrophysics Data System (ADS)
Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.
2010-10-01
We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.
Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C
2017-11-08
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
Asymptotic neutron scattering laws for anomalously diffusing quantum particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette
2016-07-28
The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less
Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...
2015-11-23
The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less
Dynamic Displacement Disorder of Cubic BaTiO3
NASA Astrophysics Data System (ADS)
Paściak, M.; Welberry, T. R.; Kulda, J.; Leoni, S.; Hlinka, J.
2018-04-01
The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic approximation in the analysis of phonons and phonon-related scattering.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.
NASA Astrophysics Data System (ADS)
Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.
2018-01-01
The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.
Takahashi, Mei; Ito, Arisa; Kajihara, Takuro; Matsuo, Hiroki; Arai, Tsunenori
2010-01-01
The purpose of this study is to investigate transient process of the charring at the laser catheter-tip in blood during therapeutic laser irradiation by the back scattering light measurement to detect precursor state of the charring. We took account of using photodynamic therapy for arrhythmia in blood through the laser catheter. We observed the influence of the red laser irradiation (λ=663 nm) upon the shape of red blood cells (RBCs). The RBCs aggregation, round formation, and hemolysis were took place sequentially before charring. With a model blood sandwiched between glass plates simulated as a catheter-tip boundary, we measured diffuse-reflected-light power and transmitted-light power simultaneously and continuously by a microscopic optics during the laser irradiation. We found that measured light power changes were originated with RBCs shape change induced by temperature rise due to the laser irradiation. A gentle peak following a slow descending was observed in the diffuse-reflected-light power history. This history might indicate the precursor state of the charring, in which the hemolysis might be considered to advance rapidly. We think that the measurement of diffuse-reflected-light power history might be able to detect precursor state of charring at the catheter-tip in blood.
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
Particle Transport through Scattering Regions with Clear Layers and Inclusions
NASA Astrophysics Data System (ADS)
Bal, Guillaume
2002-08-01
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.
Photon migration in non-scattering tissue and the effects on image reconstruction
NASA Astrophysics Data System (ADS)
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
NASA Technical Reports Server (NTRS)
Kottarchyk, M.; Chen, S.-H.; Asano, S.
1979-01-01
The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.
The color of the Martian sky and its influence on the illumination of the Martian surface
Thomas, N.; Markiewicz, W.J.; Sablotny, R.M.; Wuttke, M.W.; Keller, H.U.; Johnson, J. R.; Reid, R.J.; Smith, R.H.
1999-01-01
The dust in the atmosphere above the Mars Pathfinder landing site produced a bright, red sky that increases in redness toward the horizon at midday. There is also evidence for an absorption band in the scattered light from the sky at 860 nm. A model of the sky brightness has been developed [Markiewicz et al., this issue] and tested against Imager for Mars Pathfinder (IMP) observations of calibration targets on the lander. The resulting model has been used to quantify the total diffuse flux onto a surface parallel to the local level for several solar elevation angles and optical depths. The model shows that the diffuse illumination in shadowed areas is strongly reddened while areas illuminated directly by the Sun (and the blue forward scattering peak) see a more solar-type spectrum, in agreement with Viking and IMP observations. Quantitative corrections for the reddening in shadowed areas are demonstrated. It is shown quantitatively that the unusual appearance of the rock Yogi (the east face of which appeared relatively blue in images taken during the morning but relatively red during the afternoon) can be explained purely by the changing illumination geometry. We conclude that any spectrophotometric analysis of surfaces on Mars must take into account the diffuse flux. Specifically, the reflectances of surfaces viewed under different illumination geometries cannot be investigated for spectral diversity unless a correction has been applied which removes the influence of the reddened diffuse flux. Copyright 1999 by the American Geophysical Union.
Short- and long-range magnetic order in LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Garlea, Vasile Ovidiu
2016-02-02
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less
Guo, Z; Kumar, S
2000-08-20
An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.
Dewetting of thin polymer films: an X-ray scattering study
NASA Astrophysics Data System (ADS)
Müller-Buschbaum, P.; Stamm, M.
1998-06-01
The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.
Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
NASA Astrophysics Data System (ADS)
Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.
2015-10-01
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
NASA Technical Reports Server (NTRS)
Roberts, A.
1979-01-01
The volume covers categories on inelastic neutrino scattering and the W-boson, and other ultra-high-energy processes, on pulsars, quasars and galactic nuclei, as well as other point sources and constants from gamma ray astronomy. Individual subjects include weak intermediate vector bosons and DUMAND, the Monte Carlo simulation of inelastic neutrino scattering in DUMAND, and Higgs boson production by very high-energy neutrinos. The observability of the neutrino flux from the inner region of the galactic disk, the diffuse fluxes of high-energy neutrinos, as well as the significance of gamma ray observations for neutrino astronomy are also among the topics covered.
Modeling boundary measurements of scattered light using the corrected diffusion approximation
Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.
2012-01-01
We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102
Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2
Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...
2016-12-01
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baig, Mohammad Saad, E-mail: saad110baig@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
NaF-ZrF{sub 4} is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF{sub 4} system were studied along with Onsagercoefficients and Maxwell–Stefan (MS) Diffusivities applying Green–Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity Đ{sub Na-F} shows interesting behavior with the increase in concentration of ZrF{submore » 4}. This is because of network formation in NaF-ZrF{sub 4}. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.« less
Metallic behavior and periodical valence ordering in a MMX chain compound, Pt(2)(EtCS(2))(4)I.
Mitsumi, M; Murase, T; Kishida, H; Yoshinari, T; Ozawa, Y; Toriumi, K; Sonoyama, T; Kitagawa, H; Mitani, T
2001-11-14
A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X-ray diffraction photographs taken utilizing the fixed-film and fixed-crystal method for the metallic state revealed the presence of diffuse scattering with line shapes parallel to the a* axis indexed as (-, n + 0.5, l) (n; integer). Diffuse scattering with k = n + 0.5 is considered to originate from the 2-fold periodical ordering corresponding to -Pt(2+)-Pt(2+)-I-Pt(3+)-Pt(3+)-I- or -Pt(2+)-Pt(3+)-I-Pt(3+)-Pt(2+)-I- in an extremely short time scale. Diffuse lines corresponding to 2-D ordering progressively decrease in intensity below 252 K and are converted to the diffuse planes corresponding to 1-D ordering near T(M-S). Furthermore, diffuse planes condensed into superlattice reflections below T(M-S). Polarized Raman spectra show temperature dependence through a drastic low-energy shift of the Pt-I stretching mode and also through broadening of bands above T(M-S).
Static and dynamic light scattering by red blood cells: A numerical study.
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.
Static and dynamic light scattering by red blood cells: A numerical study
Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard
2017-01-01
Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125
Effects of whistler mode hiss waves on the radiation belts structure during quiet times
NASA Astrophysics Data System (ADS)
Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Denton, M.; Loridan, V.; Thaller, S. A.; Cunningham, G.; Kletzing, C.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, S.; Drozdov, A.; Cervantes Villa, J. S.; Shprits, Y.
2017-12-01
We present dynamic Fokker-Planck simulations of the electron radiation belts and slot formation during the quiet days that can follow a storm. Simulations are made for all energies and L-shells between 2 and 6 in the view of recovering the observations of two particular events. Pitch angle diffusion is essential to energy structure of the belts and slot region. Pitch angle diffusion is computed from data-driven spatially and temporally-resolved whistler mode hiss wave and ambient plasma observations from the Van Allen Probes satellites. The simulations are performed either with a 3D formulation that uses pitch angle diffusion coefficients or with a simpler 1D Fokker-Planck equation based on losses computed from a lifetime. Validation is carried out globally against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion coefficients, electron lifetimes, and pitch angle diffusion coefficients. We discuss which models allow to recover the observed "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. Periods when the plasmasphere extends beyond L 5 favor long-lasting hiss losses from the outer belt. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during quiet storm recovery.
NASA Astrophysics Data System (ADS)
Marley, N. A.; Gaffney, J. S.; Castro, T.; Salcido, A.; Frederick, J.
2008-07-01
Measurements of aerosol absorption and scattering were obtained in Mexico City during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006. A comparison of aerosol absorption and scattering was obtained in Mexico City at site T0 located in the northern part of Mexico City at the Instituto Mexicano del Petróleo Laboratories and at site T1 located at the Universidad Tecnológica de Tecamac, 18 miles northwest of T0. Hourly averages of aerosol absorption were similar at both sites, ranging from 6 93 Mm-1 with an average of 31 Mm-1 at T0; and from 2 104 Mm-1 with an average of 19 Mm-1 at T1. Aerosol scattering at T0 ranged from 16 344 Mm-1 with an average of 105 Mm-1; while the scattering values at T1 were lower than T0 ranging from 2 136 with an average of 53 Mm-1. Aerosol single scattering albedos (SSAs) were determined at both sites using these data. SSAs at T1 ranged from 0.44 0.90 with an average 0.75 as compared to hose at T0, range 0.51 0.93 with an average of 0.77. Broadband UV-B intensity was found to be higher at site T0, with an average of 64 μW/cm2 at solar noon, than at site T1, which had an average of 54 μW/cm2 at solar noon. Comparisons of clear-sky modeled UV-B intensities with the simultaneous UV-B measurements obtained at site T0 and at site T1 for cloudless days indicate a larger diffuse radiation field at site T0 than at site T1. The determination of aerosol scattering Ångstrom coefficient at T0 suggests the larger diffuse radiation is due to the predominance of submicron aerosols at T0 with aerosol scattering of UV-B radiation peaked in the forward direction, leading to the enhancement observed at ground level.
Tumor proliferation and diffusion on percolation clusters.
Jiang, Chongming; Cui, Chunyan; Zhong, Weirong; Li, Gang; Li, Li; Shao, Yuanzhi
2016-10-01
We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.
X-ray-diffraction study of in-plane and interlayer correlations in layered compounds AgxTiS2
NASA Astrophysics Data System (ADS)
Kuroiwa, Yoshihiro; Ohshima, Ken-Ichi; Watanabe, Yousuke
1990-12-01
X-ray measurements have been performed on the development of in-plane and interplanar correlations of intercalated Ag atoms in stage-2 and -1 AgxTiS2 single crystals. The abrupt change of the c-axis parameter for stage-2 Ag0.15TiS2 at around 250 K, due to the structural transformation of the stacking sequence, was observed, although the a-axis parameter changes continuously. Rodlike diffuse scattering parallel to c* at 1/31/3.0, 2/32/3.0, and their equivalent positions is observed for stage-2 Ag0.15TiS2 above 250 K and shows the two-dimensional (2D) feature of the disordered state. Such a diffuse rod is modulated below 250 K, with maxima appearing at every half-integer. This reveals an enhancement of the three-dimensional nature and a stacking sequence αβαβ... . By analyzing rodlike diffuse scattering at 350, 300, 280, and 250 K for stage-2 Ag0.15TiS2, the 2D short-range-order parameters were determined. By comparing the 2D short-range-order parameters with the 2D Ornstein-Zernike correlation function, it was obtained that the correlation length varies from 4.1+/-0.6 Å at 350 K to 37.1+/-1.6 Å at 250 K. These results can be interpreted with the use of the Daumas-Hérold island model. On the other hand, for stage-1 AgxTiS2, the modulation of the diffuse rod parallel to the c* axis at 1/31/3.0, 2/32/3.0, and their equivalent positions was observed at room temperature, which shows the 3D nature.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald
2014-11-11
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, B. J.; Rosenkranz, S.; Kang, H. J.
2015-07-01
Utilizing single-crystal synchrotron x-ray scattering, we observe distorted CuO 2 planes in the electron- doped superconductor Pr 1-xLaCe xCuO 4+δ , x =0.12. Resolution-limited rods of scattering are indicative of a long-range two-dimensional 2√2 × 2√2 superstructure in the a-b plane, adhering to planar space-group symmetry p4gm, which is subject to stacking disorder perpendicular to the planes. This superstructure is present only in annealed, superconducting samples, but not in the as-grown, nonsuperconducting samples. These long-range distortions of the CuO 2 planes, which are generally considered to be detrimental to superconductivity, have avoided detection to date due to the challenges ofmore » observing and interpreting subtle diffuse-scattering features.« less
NASA Astrophysics Data System (ADS)
Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya
2012-01-01
Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.
Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1981-01-01
The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.
Angular intensity and polarization dependence of diffuse transmission through random media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, D.; Rosenbluh, M.; Feund, I.
1993-03-01
A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Exploiting Optical Contrasts for Cervical Precancer Diagnosis via Diffuse Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan
Among women worldwide, cervical cancer is the third most common cancer with an incidence rate of 15.3 per 100,000 and a mortality rate of 7.8 per 100,000 women. This is largely attributed to the lack of infrastructure and resources in the developing countries to support the organized screening and diagnostic programs that are available to women in developed nations. Hence, there is a critical global need for a screening and diagnostic paradigm that is effective in low-resource settings. Various strategies are described to design an optical spectroscopic sensor capable of collecting reliable diffuse reflectance data to extract quantitative optical contrasts for cervical cancer screening and diagnosis. A scalable Monte Carlo based optical toolbox can be used to extract absorption and scattering contrasts from diffuse reflectance acquired in the cervix in vivo. [Total Hb] was shown to increase significantly in high-grade cervical intraepithelial neoplasia (CIN 2+), clinically the most important tissue grade to identify, compared to normal and low-grade intraepithelial neoplasia (CIN 1). Scattering was not significantly decreased in CIN 2+ versus normal and CIN 1, but was significantly decreased in CIN relative to normal cervical tissues. Immunohistochemistry via anti-CD34, which stains the endothelial cells that line blood vessels, was used to validate the observed absorption contrast. The concomitant increase in microvessel density and [total Hb] suggests that both are reactive to angiogenic forces from up-regulated expression of VEGF in CIN 2+. Masson's trichrome stain was used to assess collagen density changes associated with dysplastic transformation of the cervix, hypothesized as the dominant source of decreased scattering observed. Due to mismatch in optical and histological sampling, as well as the small sample size, collagen density and scattering did not change in a similar fashion with tissue grade. Dysplasia may also induce changes in cross-linking of collagen without altering the amount of collagen present. Further work would be required to elucidate the exact sources of scattering contrast observed. Common confounding variables that limit the accuracy and clinical acceptability of optical spectroscopic systems are calibration requirements and variable probe-tissue contact pressures. Our results suggest that using a real-time self-calibration channel, as opposed to conventional post-experiment diffuse reflectance standard calibration measurements, significantly improved data integrity for the extraction of scattering contrast. Extracted [total Hb] and scattering were also significantly associated with applied contact probe pressure in colposcopically normal sites. Hence, future contact probe spectroscopy or imaging systems should incorporate a self-calibration channel and ensure spectral acquisition at a consistent contact pressure to collect reliable data with enhanced absorption and scattering contrasts. Another method to enhance optical contrast is to selectively interrogate different depths in the dysplastic cervix. For instance, scattering has been shown to increase in the epithelium (increase in nuclear-to-cytoplasmic ratio) while decrease in the stroma (re-organization of the extra-cellular matrix and changes in of collagen fiber cross-links). A fiber-optic probe with 45° illumination and collection fibers with a separation distance of 330 μm was designed and constructed to selectively interrogate the cervical epithelium. Mean extraction errors from liquid phantoms with optical properties mimicking the cervical epithelium for μa and μs' were 11.3 % and 12.7 %, respectively. Diffuse reflectance spectra from 9 sites in four loop electrosurgical excision procedure (LEEP) patients were analyzed. Preliminary data demonstrate the utility of the oblique fiber geometry in extracting scattering contrast in the cervical epithelium. Further work is needed to study the systematic error in optical property extraction and to incorporate simultaneous extraction of epithelial and stromal contrasts using both flat and oblique illumination and collection fibers. Various strategies, namely self-calibration, consistent contact pressure, and the incorporation of depth-selective sensing, have been proposed to improve the data integrity of an optical spectroscopic system for maximal contrast. In addition to addressing field operation requirements (such as power and operator training requirement), these improvements should enable the collection of reliable spectral data to aid in the adoption of optical smart sensors in the screening and diagnosis of cervical precancer, especially in a global health setting.
FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.-J.; Min, K.-W.; Seon, K.-I.
2012-07-20
We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less
Regression approach to non-invasive determination of bilirubin in neonatal blood
NASA Astrophysics Data System (ADS)
Lysenko, S. A.; Kugeiko, M. M.
2012-07-01
A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
NASA Astrophysics Data System (ADS)
Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric
2008-03-01
We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.
Spatially inhomogeneous acceleration of electrons in solar flares
NASA Astrophysics Data System (ADS)
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet
NASA Astrophysics Data System (ADS)
Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.
2004-11-01
The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.
NASA Astrophysics Data System (ADS)
Haynes, D. M.; Withford, M. J.; Dawes, J. M.; Lawrence, J. S.; Haynes, R.
2011-06-01
Focal ratio degradation (FRD) is a major contributor to light loss in astronomical instruments employing multimode optical fibres. We present a powerful diagnostic model that uniquely quantifies the various sources of FRD in multimode fibres. There are three main phenomena that can contribute to FRD: scattering, diffraction and modal diffusion. We propose a Voigt FRD model where the diffraction and modal diffusion are modelled by the Gaussian component and the end-face scattering is modelled by the Lorentzian component. The Voigt FRD model can be deconvolved into its Gaussian and Lorentzian components and used to analyse the contribution of each of the three major components. We used the Voigt FRD model to analyse the FRD of modern astronomical grade fibre for variations in (i) end-face surface roughness, (ii) wavelength, (iii) fibre length and (iv) external fibre stress. The elevated FRD we observed was mostly due to external factors, i.e. fibre end effects such as surface roughness, subsurface damage and environmentally induced microbending caused by the epoxy, ferrules and fibre cable design. The Voigt FRD model has numerous applications such as a diagnostic tool for current fibre instrumentation that show elevated FRD, as a quality control method for fibre manufacture and fibre cable assembly and as a research and development tool for the characterization of new fibre technologies.
NASA Astrophysics Data System (ADS)
Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.
2018-04-01
The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.
Multiple scattering of broadband terahertz pulses
NASA Astrophysics Data System (ADS)
Pearce, Jeremiah Glen
Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal phase of the radiation demonstrate that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect distinguishes photons that have been scattered only a few times from those that are propagating diffusively.
Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.
Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong
2018-05-25
In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.
Wall, Michael E
2018-03-01
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structure to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering
Wall, Michael E.
2018-01-25
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy
NASA Astrophysics Data System (ADS)
Svanberg, S.
2010-01-01
An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, P., E-mail: purushd@barc.gov.in; Sharma, V. K.; Mitra, S.
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. Here we report dynamics of cetyltrimethylammonium bromide (CTAB) in HAp composite, prepared by co-precipitation method, as studied by quasielastic neutron scattering (QENS) technique. It is found that the observed dynamics involved two time scales associated with fast torsional motion and segmental motion of the CTAB monomers. In addition to segmental motion of the hydrogen atoms, few undergo torsional motion as well. Torsional dynamics was described by a 2-fold jump diffusion model. The segmental dynamics of CTAB has been described assumimg the hydrogen atomsmore » undergoing diffusion inside a sphere of confined volume. While the diffusivity is found to increase with temperature, the spherical volumes within which the hydrogen atoms are undergoing diffusion remain almost unchanged.« less
Localized diffusive motion on two different time scales in solid alkane nanoparticles
NASA Astrophysics Data System (ADS)
Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.
2010-09-01
High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.
NASA Astrophysics Data System (ADS)
Wang, W. B.; Gozali, Richard; Nguyen, Thien An; Alfano, R. R.
2015-03-01
Light scattering and transmission of optical Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) states in turbid scattering media were investigated in comparison with Gaussian (G) beam. The scattering media used in the experiments consist of various sizes and concentrations of latex beads in water solutions. The LG beams were generated using a spatial light modulator in reflection mode. The ballistic transmissions of LG and G beams were measured with different ratios of thickness of samples (z) to scattering mean free path (ls) of the turbid media, z/ls. The results show that in the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is large, LG beams show higher transmission than Gaussian beam. In the diffusive region, the LG beams with higher orbital angular momentum L values show higher transmission than the beams with lower L values. The transition points from ballistic to diffusive regions for different scattering media were studied and determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
NASA Astrophysics Data System (ADS)
Nikitin, Sergei Yu
2009-07-01
Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.
Study of CCT varying by volume scattering diffuser with moving and rotating white light LED
NASA Astrophysics Data System (ADS)
Ma, Shih-Hsin; Chen, Liang-Shiun; Huang, Wen-Chao
2014-09-01
In this study, the corrected color temperature (CCT) of white light, which originates from a white light LED (WLLED) and passes through a volume-scattering diffuser (VSD), is investigated. The VSD with thickness of 2mm is fabricated by mixing the 2um-sized PMMA scattering particles and the epoxy glue with different concentration values. Moreover, in order to understand the influences of the illuminated area and the scattering path of VSD on CCT values, the bulletheaded and lambertian-type WLLEDs are assembled for different positions and distinct orientations along the optical axis in a black cavity. A detailed comparison between results regarding the white light with and without passing through the VSD is offered. The results of this research will help to improve the colorful consistency of the LED lamps which use diffusers.
NASA Astrophysics Data System (ADS)
Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.
2001-12-01
Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state-of-the-art observations that offer compelling empirical support for the Lévy/anomalous diffusion model in atmospheric radiation: (1) high-resolution spectroscopy of differential absorption in the O2 A-band from ground; (2) temporal transient records of lightning strokes transmitted through clouds to a sensitive detector in space; and (3) the Gamma-distributions of optical depths derived from Landsat cloud scenes at 30-m resolution. We will then introduce a rigorous analytical formulation of Lévy/anomalous transport through finite media based on fractional derivatives and Sonin calculus. A remarkable result from this new theoretical development is an extremal property of the α = 1+ case (divergent mean-free-path), as is observed in the cloudy atmosphere. Finally, we will discuss the implications of anomalous transport theory for bulk 3D effects on the current enhanced absorption problem as well as its role as the basis of a next-generation GCM radiation parameterization.
Mode-converted diffuse ultrasonic backscatter.
Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A
2013-08-01
Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.
Gabel, Frank; Bellissent-Funel, Marie-Claire
2007-01-01
We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998
Statistics of multiply scattered broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2003-07-25
We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; Webber, W. R.; Friling, L. A.; Macri, J.; Hsieh, L.
1981-01-01
Balloon-borne measurements of the atmospheric and diffuse gamma-ray flux in the energy range 0.4-7.0 MeV with a Compton telescope, which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements, are reported. Comparison of the diffuse cosmic gamma-ray flux to the atmospheric gamma rays indicates that 0.2-5.0 MeV is the optimum energy range for measurements made at the top of the earth's atmosphere. The measured total atmospheric gamma-ray flux between zero and 40 deg has an energy spectrum that agrees with the calculations of Ling (1975). Observations indicate that the ratio of the diffuse to atmospheric gamma ray fluxes at 3.5 g/sq cm is a maximum, about 1.0, between 0.7 and 3.0 MeV.
Radar evidence for liquid surfaces on Titan.
Campbell, Donald B; Black, Gregory J; Carter, Lynn M; Ostro, Steven J
2003-10-17
Arecibo radar observations of Titan at 13-centimeter wavelength indicate that most of the echo power is in a diffusely scattered component but that a small specular component is present for about 75% of the subearth locations observed. These specular echoes have properties consistent with those expected for areas of liquid hydrocarbons. Knowledge of the areal extent and depth of any deposits of liquid hydrocarbons could strongly constrain the history of Titan's atmosphere and surface.
Thermal diffusion behavior of nonionic surfactants in water.
Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone
2006-06-08
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
Zhang, Steven S. -L.; Heinonen, Olle
2018-04-02
In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Heinonen, Olle
In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less
Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
Gao, M; Huang, X; Yang, P; Kattawar, G W
2013-08-20
The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Heinonen, Olle
2018-04-01
We study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does the TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004), 10.1103/PhysRevLett.93.096806]. We derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.
Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study
NASA Astrophysics Data System (ADS)
Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.
2017-12-01
In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2008-01-01
The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.
X-ray Diffuse Scattering from Ultrafast Laser Excited Solids
NASA Astrophysics Data System (ADS)
Trigo, Mariano; Sheu, Yu-Miin; Chen, Jian; Reis, David; Fahy, Stephen; Murray, Eamonn; Graber, Timothy; Henning, Robert
2009-03-01
Intense, ultrashort laser pulses can be used to excite and detect coherent phonons in solids. However, optical experiments can only probe a reduced fraction of the Brillouin zone and hence most of the decay channels of such coherent phonons become invisible. In contrast, time-resolved x-ray diffuse scattering (TRXDS) has the potential to be the ultimate tool to study these phonon decay processes throughout the Brillouin-zone of the crystal. In our work, performed at the BioCARS beamline at the Advanced Photon Source, we use synchrotron time-resolved diffuse x-ray scattering to study Si and Bi under intense laser excitation with 100 ps resolution. We show that reasonable signal levels can be achieved with incident flux of 10^12 photons comparable to the flux that will be available at future 4th generation sources such as the LCLS in a single pulse. These sources will also provide three orders of magnitude shorter pulses; thus, this experiment serves as a test of the feasibility of time-resolved X-ray diffuse scattering as a tool for studying nonequilibrium phonon dynamics in solids.
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2008-02-01
We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.
A review of light-scattering techniques for the study of colloids in natural waters
Rees, T.F.
1987-01-01
In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.
Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
NASA Astrophysics Data System (ADS)
Hatakeyama, S.; Horiuchi, W.; Kohama, A.
2018-05-01
The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties
NASA Astrophysics Data System (ADS)
Eide, Marius B.; Gronke, Max; Dijkstra, Mark; Hayes, Matthew
2018-04-01
Lyα is a powerful astrophysical probe. Not only is it ubiquitous at high redshifts, it is also a resonant line, making Lyα photons scatter. This scattering process depends on the physical conditions of the gas through which Lyα propagates, and these conditions are imprinted on observables such as the Lyα spectrum and its surface brightness profile. In this work, we focus on a less-used observable capable of probing any scattering process: polarization. We implement the density matrix formalism of polarization into the Monte Carlo radiative transfer code tlac. This allows us to treat it as a quantum mechanical process where single photons develop and lose polarization from scatterings in arbitrary gas geometries. We explore static and expanding ellipsoids, biconical outflows, and clumpy multiphase media. We find that photons become increasingly polarized as they scatter and diffuse into the wings of the line profiles, making scattered Lyα polarized in general. The degree and orientation of Lyα polarization depends on the kinematics and distribution of the scattering H I gas. We find that it generally probes spatial or velocity space asymmetries and aligns itself tangentially to the emission source. We show that the mentioned observables, when studied separately, can leave similar signatures for different source models. We conclude by revealing how a joint analysis of the Lyα spectra, surface brightness profiles, and polarization can break these degeneracies and help us extract unique physical information on galaxies and their environments from their strongest, most prominent emission line.
Arnold diffusion for a complete family of perturbations
NASA Astrophysics Data System (ADS)
Delshams, Amadeu; Schaefer, Rodrigo G.
2017-01-01
In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H( p, q, I, φ, s) = p 2/2+ cos q - 1 + I 2/2 + h( q, φ, s; ɛ) — proving that for any small periodic perturbation of the form h( q, φ, s; ɛ) = ɛ cos q ( a 00 + a 10 cos φ + a 01 cos s) ( a 10 a 01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case ( I* π/2 μ, μ = a 10/ a 01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.
Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria
NASA Astrophysics Data System (ADS)
Cox, Trevor John
Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field are not perceived differently from specular reflections; and (ii) the initial time delay gap is not significant to listener preference.
A new theory for X-ray diffraction.
Fewster, Paul F
2014-05-01
This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.
NASA Astrophysics Data System (ADS)
Ji, Y.; Shen, C.
2014-03-01
With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.
Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank
2017-06-26
We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.
Light distribution modulated diffuse reflectance spectroscopy.
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-06-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.
Light distribution modulated diffuse reflectance spectroscopy
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-01-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Glenn; Gaspar, Andras; Grady, Carol A.
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth–Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both ∼2.3 Gyr) currently the oldest CDSs imaged in visible or near-IRmore » light. These deep (10–14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F {sub disk}/ F {sub star} optical brightness ∼ t {sup −0.8}, similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.« less
Deep HST/STIS Visible-Light Imaging of Debris Systems Around Solar Analog Hosts
NASA Technical Reports Server (NTRS)
Schneider, Glenn; Grady, Carol A.; Stark, Christopher C.; Gaspar, Andras; Carson, Joseph; Debes, John H.; Henning, Thomas; Hines, Dean C.; Jang-Condell, Hannah; Kuchner, Marc J.
2016-01-01
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar systems Edgeworth Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both approx. 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F disk /F star optical brightness approx. t( exp.-0.8), similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.
NASA Technical Reports Server (NTRS)
Casay, G. A.; Wilson, W. W.
1992-01-01
One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.
NASA Astrophysics Data System (ADS)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier
2017-11-01
Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.
Optical vortex beam transmission with different OAM in scattering beads and brain tissue media
NASA Astrophysics Data System (ADS)
Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.
2016-03-01
Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.
Diagnosis of cardiovascular diseases based on diffuse optical tomography system
NASA Astrophysics Data System (ADS)
Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei
2008-02-01
Diffuse optical tomography (DOT) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues. DOT provides the measurement of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. The oxygenation images are reconstructed by the measured optical signals with nearest-neighbor pairs of sources and detectors. In our study, a portable DOT system is built with optode design on a flexible print circuit board (FPCB). In experiments, the hemodynamics temporal evolution of exercises and vessel occlusions are observed with in vivo measurements form normal subjects and some patients in intensive care unit.
Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water
NASA Astrophysics Data System (ADS)
Tan, Pan; Liang, Yihao; Xu, Qin; Mamontov, Eugene; Li, Jinglai; Xing, Xiangjun; Hong, Liang
2018-06-01
Dynamics of hydration water is essential for the function of biomacromolecules. Previous studies have demonstrated that water molecules exhibit subdiffusion on the surface of biomacromolecules; yet the microscopic mechanism remains vague. Here, by performing neutron scattering, molecular dynamics simulations, and analytic modeling on hydrated perdeuterated protein powders, we found water molecules jump randomly between trapping sites on protein surfaces, whose waiting times obey a broad distribution, resulting in subdiffusion. Moreover, the subdiffusive exponent gradually increases with observation time towards normal diffusion due to a many-body volume-exclusion effect.
Use of cylindrical diffusing fibers as detectors for interstitial tissue spectroscopy
NASA Astrophysics Data System (ADS)
Baran, Timothy M.; Foster, Thomas H.
2015-03-01
Interstitial photodynamic therapy (iPDT) describes the use of implanted optical fibers for delivery of treatment light to activate photosensitizer in regions that can be located deep within the body. Since sensitive healthy structures are often located nearby, this requires careful treatment planning that is dependent on tissue optical properties. Determination of these values usually involves the insertion of additional fibers into the volume, or the use of flat-cleaved optical fibers as both treatment sources and detectors. The insertion of additional fibers is undesirable, and cylindrical diffusers have been shown to offer superior treatment characteristics compared to flat-cleaved fibers. Using cylindrical diffusers as detectors for spectroscopic measurement is therefore attractive. We describe the determination of the detection profile for a particular cylindrical diffuser design and derive the scatterer concentration gradient within the diffuser core. This detection profile is compared to previously characterized diffusers, and is shown to be dependent on the diffuser design. For diffusers with a constant scatterer concentration and distal mirror, the detection profile is localized to the proximal end of the diffusing region. For diffusers with variable scattering concentration along their length and no distal mirror, the detection profile is shown to be more uniform along the diffusing region. We also present preliminary results showing the recovery of optical properties using arrays of cylindrical diffusing fibers as sources and detectors, with a mean error of 4.4% in the determination of μeff. The accuracy of these results is comparable to those obtained with other methods of optical property recovery.
Ghorai, Pradip Kr; Yashonath, S
2005-03-10
Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).
NASA Astrophysics Data System (ADS)
Danila, B.; McGurn, A. R.
2005-03-01
A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less
NASA Technical Reports Server (NTRS)
Muschol, Martin; Rosenberger, Franz
1995-01-01
We have performed multiangle static and dynamic light scattering studies of lysozyme solutions at pH=4.7. The Rayleigh ratio R(sub g) and the collective diffusion coefficient D(sub c) were determined as function of both protein concentration c(sub p) and salt concentration c(sub s) with two different salts. At low salt concentrations, the scattering ratio K(sub c)(sub p)/R(sub theta) and diffusivity increased with protein concentration above the values for a monomeric, ideal solution. With increasing salt concentration this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution, extracted from the combination of static and dynamic scattering data, decreased significantly with increasing salt concentration. These observations reflect changes in protein interactions, in response to increased salt screening, from net repulsion to net attraction. Both salts had the same qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution. This indicates the presence of salt specific effects. At low protein concentrations, the slopes of K(sub c)(sub p)/R(sub theta) and D(sub c) vs c(sub p) were obtained. The dependence of the slopes on ionic strength was modeled using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Z(sub e) and Hamaker constant A(sub H) as fitting parameters. The model reproduces the observed variations with ionic strength quite well. Independent fits to the static and dynamic data, however, led to different values of the fitting parameters. These and other shortcomings suggest that colloidal interaction models alone are insufficient to explain protein interactions in solutions.
Anisotropy of low-energy Galactic cosmic rays in the outer heliosheath
NASA Astrophysics Data System (ADS)
Zhang, M.; Pogorelov, N.
2017-12-01
Since Voyager 1 crossed the heliopause into the local interstellar medium in August 2012, it has been observing nearly unmodulated low-energy Galactic cosmic rays for over 5 years and 18 AU beyond the heliopause. The angular distribution of these cosmic rays is not isotropic, showing a slight depletion at 90-degree pitch-angle to the magnetic field lines. The anisotropy was interrupted episodically by solar disturbances transmitting through the heliopause into the local interstellar medium of outer heliosheath. These observations indicate the heliosphere still affects cosmic rays in the local interstellar medium. The paper presents a theoretical analysis of the particle transport mechanisms responsible for the observed anisotropy. In order to explain the phenomenon, we argue that cosmic rays of near 90-degree pitch angles do not a quick access to the interstellar cosmic-ray source and in the meantime, they experience some loss in the outer heliosheath. Magnetic field barriers on the both sides of the observer may reduce the access to cosmic ray source, but it still requires that pitch scattering of these particles is very weak in the magnetic field of the outer heliosheath. A possible particle loss mechanism is diffusion into the heliospheric magnetic field where they get modulated by the solar wind plasma. Our model simulation will put constraints on the rates of particle scattering and cross-field diffusion in the interstellar magnetic field of the outer heliosheath.
NASA Astrophysics Data System (ADS)
Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.
2002-03-01
NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.
NASA Astrophysics Data System (ADS)
Clancy, R. T.
1986-09-01
Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.
NASA Technical Reports Server (NTRS)
Clancy, R. T.
1986-01-01
Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.
Soft x-ray speckle from rough surfaces
NASA Astrophysics Data System (ADS)
Porter, Matthew Stanton
Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.
Influence of the angular scattering of electrons on the runaway threshold in air
NASA Astrophysics Data System (ADS)
Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.
2016-04-01
The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.
Cosmic ray propagation in interplanetary space
NASA Technical Reports Server (NTRS)
Voelk, H. J.
1975-01-01
The validity of the test-particle picture, the approximation of static fields, and the spatial-diffusion approximation are discussed in a general way before specific technical assumptions are introduced. It is argued that the spatial-diffusion equation for the intensity per unit energy has a much wider range of applicability than the kinetic (Fokker-Planck) equation it is derived from. This gives strong weight to the phenomenological propagation theory. The general success (and possible failure at small energies) of the phenomenological theory for the modulation of galactic cosmic rays and solar events is described. Apparent effects such as the 'free boundary' are given disproportionate weight since they establish the connection with the detailed plasma physics of the solar wind. Greatest attention is paid to the pitch-angle diffusion theory. A general theory is presented which removes the well-known secularities of the quasi-linear approximation. The possible breakdown of any pitch-angle diffusion theory at very small energies is perhaps connected with the observed 'turn up' of the spectrum at low energies. A first attempt to derive the spatial dependence of the diffusion coefficient in the solar cavity, using such a divergence free scattering theory, is described and compared with recent observations out to 5 AU.
Tsuchiya, Y; Urakami, T
1998-02-09
To determine the concentrations of an absorber in variously shaped turbid media such as human tissue, we propose analytical expressions for diffuse re-emission in time and frequency domains, based on the microscopic Beer-Lambert law that holds true when we trace a zigzag photon path in the medium. Our expressions are implicit for the scattering properties, the volume shape, and the source-detector separation. We show that three observables are sufficient to determine the changes in the concentration and the absolute concentrations of an absorber in scattering media as long as the scattering property remains constant. The three observables are: the re-emission, the mean pathlength or group delay, and the extinction coefficient of the absorber. We also show that our equations can be extended to describe photon migration in nonuniform media. The validity of the predictions is confirmed by measuring a tissue-like phantom.
Direct evidence for EMIC wave scattering of relativistic electrons in space
NASA Astrophysics Data System (ADS)
Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Blake, J. B.; Fennell, J. F.
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth's outer radiation belt.
Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements
NASA Astrophysics Data System (ADS)
Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.
2008-12-01
Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.
Multiple Light Scattering Probes of Soft Materials
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2007-02-01
I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.
Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Zylstra, Gregory J.
1991-01-01
A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.
A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.
2017-12-01
A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.
Scattering and/or diffusing elements in a variety of recently completed music auditoria
NASA Astrophysics Data System (ADS)
McKay, Ronald L.
2002-11-01
Architectural elements which provide effective acoustic scattering and/or diffusion in a variety of recently completed auditoria for music performance will be presented. Color slides depicting the various elements will be shown. Each will be discussed with respect to its acoustic performance and architectural logic. Measured time-energy reflection patterns will be presented in many cases.
Effects of Solar Dimming and Brightening on the Terrestrial Carbon Sink
NASA Astrophysics Data System (ADS)
Mercado, L. M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Cox, P. M.
2008-12-01
A decrease in total solar radiation (Liepert, 2002, Stanhill and Cohen, 2001, Wild et al., 2005) has been observed at the earth surface over the 1950-1990 period, called solar dimming. Such dimming gradually started to transform into brightening in some regions of the world since the late 1980s (Wild et al. 2005). Both dimming and brightening are likely to be linked to an increase and decrease in cloud cover and scattering and absorption of light by tropospheric and stratospheric aerosols respectively (Kvalevag and Myhre, 2007). Theoretical and observational studies have shown that plant photosynthesis of forest and crop ecosystems is more efficient under diffuse light conditions (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). However, this effect has not yet been accounted for in global carbon cycle simulations because such models lack the mechanism that includes the diffuse irradiance effects on photosynthesis. The aim of this study is to estimate the impact of changes in radiation during the 1900-2100 period on land productivity and carbon storage. We use an offline version of the land surface scheme of the Hadley centre model (Mercado et al., 2007) which has been modified to account for variations of direct and diffuse radiation on sunlit and shaded canopy photosynthesis. Additionally, we use short wave and photosynthetic active radiation fields reconstructed from the Hadley centre climate model which takes into account the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the simulation of the land carbon cycle through the dimming-brightening periods, and diagnose the impact that changes in diffuse radiation had on the land carbon sink. We also discuss the implications of these results for the future land carbon-sink, under likely changes in the atmospheric aerosol loading.
Photovoltaic structures having a light scattering interface layer and methods of making the same
Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj
2015-10-13
Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.
Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.
Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G
2014-07-01
It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.
Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, E.; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115; Kumzerov, Yu.A.
We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scalemore » of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.« less
Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid
NASA Astrophysics Data System (ADS)
Silverman, M. P.; Strange, Wayne; Badoz, J.; Vitkin, I. A.
1996-02-01
Optical rotation and degree of polarization of linearly polarized light were observed by forward, lateral, and back scattering from solutions of D-glucose containing a dispersion of micron-size polystyrene spheres. Rotations increased linearly with glucose concentration at a rate determined by the microsphere concentration and were large even at optical thicknesses sufficiently great to extinguish transmission of the incident beam. Depolarization of light with increasing microsphere concentration occurred at a much slower rate in chiral glucose solution than in pure water. These experiments suggest new possibilities for studying turbid chiral media for which light transmission and specular reflection techniques are inappropriate.
FCC-HCP coexistence in dense thermo-responsive microgel crystals
NASA Astrophysics Data System (ADS)
Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.
2017-06-01
Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ < 0.74 and sub-diffusive at short times in PNIPAM crystals with ϕ > 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.
Diffusing wave spectroscopy studies of gelling systems
NASA Astrophysics Data System (ADS)
Horne, David S.
1991-06-01
The recognition that the transmission of light through a concentrated, opaque system can be treated as a diffusion process has extended the application of photon correlation techniques to the study of particle size, mobility and interactions in such systems. Solutions of the photon diffusion equation are sensitive to the boundary conditions imposed by the geometry of the scattering apparatus. The apparatus, incorporating a bifurcated fiber optic bundle for light transmission between source, sample and detector, takes advantage of the particularly simple solution for a back-scattering configuration. Its ability to measure particle size using monodisperse polystyrene latices and to respond to concentration dependent particle interactions in a study of casein micelle mobility in skim and concentrated milks is demonstrated. Finally, the changes in dynamic light scattering behavior occurring during colloidal gel formation are described and discussed.
Atmospheric scattering corrections to solar radiometry
NASA Technical Reports Server (NTRS)
Box, M. A.; Deepak, A.
1979-01-01
Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.
Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols
NASA Technical Reports Server (NTRS)
Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.
2007-01-01
In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.
Non-translational Molecular Diffusive Motion on Two Different Time Scales in Alkane Nanoparticles
NASA Astrophysics Data System (ADS)
Wang, S.-K.; Bai, M.; Taub, H.; Mamontov, E.; Herwig, K. W.; Hansen, F. Y.; Copley, J. R. D.; Jenkins, T.; Tyagi, M.; Volkmann, U. G.
2009-03-01
Using quasielastic neutron scattering, we have investigated molecular diffusive motion in n-C32H66 nanoparticles whose structure and phase transitions have been studied previously.^2 The spectra reveal non-translational (dispersionless) diffusive motion occurring simultaneously on time scales of ˜1 ns and ˜40 ps. The onset of the faster motion occurs in the crystalline phase at least 15 K below the melting point and is tentatively identified with rotation about the long molecular axis. Similarly, we suggest that the slower motion involves molecular conformational changes whose onset appears to coincide with the abrupt transition to the bulk rotator phase about 3 K below melting. These two types of diffusive motion bear a strong resemblance to those observed previously in C24 monolayers adsorbed on a graphite surface.^3 ^2M. Bai et al., Europhys. Lett. 79, 26003 (2007). ^3F. Y. Hansen et al., Phys. Rev. Lett. 92, 046103 (2004)].
Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60ṡC8H8
NASA Astrophysics Data System (ADS)
Bousige, Colin; Rols, Stéphane; Cambedouzou, Julien; Verberck, Bart; Pekker, Sándor; Kováts, Éva; Durkó, Gábor; Jalsovsky, István; Pellegrini, Éric; Launois, Pascale
2010-11-01
The dynamics of fullerene-cubane (C60ṡC8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the “rotor-stator” description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.
Interior radiances in optically deep absorbing media. III Scattering from Haze L
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1975-01-01
The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium.
Diffusion mechanism in the sodium-ion battery material sodium cobaltate.
Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P
2018-02-16
High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.
A new theory for X-ray diffraction
Fewster, Paul F.
2014-01-01
This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975
NASA Astrophysics Data System (ADS)
Yokokawa, Takumi; Nishidate, Izumi
2016-04-01
We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.
Photon diffusion coefficient in scattering and absorbing media.
Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi
2006-05-01
We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.
Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ≤ 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximationmore » may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.« less
Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model
NASA Astrophysics Data System (ADS)
Zhao, Yi-Nan; Shao, Lang
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a <= 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.
Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.
Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie
2017-05-01
The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p < 0.0117) and sponge phantom (r = -0.9932, p < 0.0068) experiments. Ex vivo measurements of a rat lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Kyu-Gong
2000-12-01
In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.
Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.
Sakadzić, Sava; Wang, Lihong V
2006-04-28
We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei
2010-02-01
Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.
NASA Astrophysics Data System (ADS)
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.
2018-02-01
Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
An investigation of light transport through scattering bodies with non-scattering regions.
Firbank, M; Arridge, S R; Schweiger, M; Delpy, D T
1996-04-01
Near-infra-red (NIR) spectroscopy is increasingly being used for monitoring cerebral oxygenation and haemodynamics. One current concern is the effect of the clear cerebrospinal fluid upon the distribution of light in the head. There are difficulties in modelling clear layers in scattering systems. The Monte Carlo model should handle clear regions accurately, but is too slow to be used for realistic geometries. The diffusion equation can be solved quickly for realistic geometries, but is only valid in scattering regions. In this paper we describe experiments carried out on a solid slab phantom to investigate the effect of clear regions. The experimental results were compared with the different models of light propagation. We found that the presence of a clear layer had a significant effect upon the light distribution, which was modelled correctly by Monte Carlo techniques, but not by diffusion theory. A novel approach to calculating the light transport was developed, using diffusion theory to analyze the scattering regions combined with a radiosity approach to analyze the propagation through the clear region. Results from this approach were found to agree with both the Monte Carlo and experimental data.
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...
2017-11-10
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhao, Lulu
2017-09-01
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.
Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2004-12-15
We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.
COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan
2015-09-20
Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
Enhancing scattering images for orientation recovery with diffusion map
Winter, Martin; Saalmann, Ulf; Rost, Jan M.
2016-02-12
We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America
Atlan, Michael; Desbiolles, Pierre; Gross, Michel; Coppey-Moisan, Maïté
2010-03-01
We developed a microscope intended to probe, using a parallel heterodyne receiver, the fluctuation spectrum of light quasi-elastically scattered by gold nanoparticles diffusing in viscous fluids. The cutoff frequencies of the recorded spectra scale up linearly with those expected from single-scattering formalism in a wide range of dynamic viscosities (1 to 15 times water viscosity at room temperature). Our scheme enables ensemble-averaged optical fluctuations measurements over multispeckle recordings in low light, at temporal frequencies up to 10 kHz, with a 12 Hz framerate array detector.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
Measurement and Modeling of the Optical Scattering Properties of Crop Canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Grant, L.
1984-01-01
Efforts in measuring, analyzing, and mathematically modeling the specular, polarized, and diffuse light scattering properties of several plant canopies and their component parts (leaves, stems, fruit, soil) as a function of view angle and illumination angle are reported. Specific objectives were: (1) to demonstrate a technique for determining the specular and diffuse components of the reflectance factor of plant canopies; (2) to acquire the measurements and begin assembling a data set for developing and testing canopy reflectance models; (3) to design and build a new optical instrument to measure the light scattering properties of individual leaves; and (4) to use this instrument to survey and investigate the information in the light scattering properties of individual leaves of crops, forests, weeds, and horticulture.
NASA Astrophysics Data System (ADS)
Handwerg, M.; Mitdank, R.; Galazka, Z.; Fischer, S. F.
2016-12-01
The monoclinic crystal structure of β-{{Ga}}2{{{O}}}3 leads to significant anisotropy of the thermal properties. The 2ω-method is used to measure the thermal diffusivity D in [010] and [001] direction respectively and to determine the thermal conductivity values λ of the [100], [010] and [001] direction from the same insulating Mg-doped β-{{Ga}}2{{{O}}}3 single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of {D}[010]/{D}[001]={λ }[010]/{λ }[001]=1.4+/- 0.1. The temperature dependence is in accord with phonon-phonon-Umklapp-scattering processes from 300 K down to 150 K. Below 150 K point-defect-scattering lowers the estimated phonon-phonon-Umklapp-scattering values.
Wang, Muzhou; Timachova, Ksenia; Olsen, Bradley D.
2014-01-01
The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing. PMID:25484454
Chowdhury, Mithun; Sajjad, Muhammad T; Savikhin, Victoria; Hergué, Noémie; Sutija, Karina B; Oosterhout, Stefan D; Toney, Michael F; Dubois, Philippe; Ruseckas, Arvydas; Samuel, Ifor D W
2017-05-17
The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS 2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.
Can 3D light localization be reached in ‘white paint’?
NASA Astrophysics Data System (ADS)
Sperling, T.; Schertel, L.; Ackermann, M.; Aubry, G. J.; Aegerter, C. M.; Maret, G.
2016-01-01
When waves scatter multiple times in 3D random media, a disorder driven phase transition from diffusion to localization may occur (Anderson 1958 Phys. Rev. 109 1492-505 Abrahams et al 1979 Phys. Rev. Lett. 42 673-6). In ‘The question of classical localization: a theory of white paint?’ Anderson suggested the possibility to observe light localization in TiO2 samples (Anderson 1985 Phil. Mag. B 52 505-9). We recently claimed the observation of localization effects measuring photon time of flight (ToF) distributions (Störzer et al 2006 Phys. Rev. Lett. 96 063904) and evaluating transmission profiles (TPs) (Sperling et al 2013 Nat. Photonics 7 48-52) in such TiO2 samples. Here we present a careful study of the long time tail of ToF distributions and the long time behavior of the TP width for very thin samples and different turbidities that questions the localization interpretation. We further show new data that allow an alternative consistent explanation of these previous data by a fluorescence process. An adapted diffusion model including an appropriate exponential fluorescence decay accounts for the shape of the ToF distributions and the TP width. These observations question whether the strong localization regime can be reached with visible light scattering in polydisperse TiO2 samples, since the disorder parameter can hardly be increased any further in such a ‘white paint’ material.
Studying Dust Scattering Halos with Galactic X-ray Binaries
NASA Astrophysics Data System (ADS)
Beeler, Doreen; Corrales, Lia; Heinz, Sebastian
2018-01-01
Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.
Diffusing-wave polarimetry for tissue diagnostics
NASA Astrophysics Data System (ADS)
Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor
2014-03-01
We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
Structure and Bonding in Noncrystalline Solids Abstracts
1983-06-02
displacement cascades are unlikely. Related damage studies as diffuse X- ray scattering, magnetic susceptibility and positron - annihilation lifetime...the positron annihilation lifetime data; diffuse X-ray scattering studies give evidence for "amorphized" clusters in neutron but not in elec-ron...feldspar glasses and glasses in the system CaO- MgO -SiO 2 . These results indicate that the nearest-neighbor and next- nearest-neighbor environments are very
Optical Interactions at Randomly Rough Surfaces
2003-03-10
frequency range. The design of a random surface that acts as a Lambertian diffuser, especially in the infrared region of the optical spectrum, is...FTIR grazing angle microscopy. Recently, an experimental study was performed of the far-field scattering at small grazing angles, especially the enhanced...a specular component in the scattered light, in this frequency range. The design of a random surface that acts as a Lambertian diffuser, especially in
NASA Astrophysics Data System (ADS)
Hyvönen, Nuutti
2007-10-01
The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.
Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon
NASA Astrophysics Data System (ADS)
Horng, S. T.; Goorsky, M. S.
1996-03-01
High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.
Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul
2018-06-11
This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Li, Zan; Millan, Robyn M.; Hudson, Mary K.; ...
2014-12-23
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zan; Millan, Robyn M.; Hudson, Mary K.
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.
Quasielastic neutron scattering in biology: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu
Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less
Quasielastic neutron scattering in biology: Theory and applications
Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu; ...
2016-06-15
Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less
Interface structure in nanoscale multilayers near continuous-to-discontinuous regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in
2016-07-28
Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less
Diffusive dynamics during the high-to-low density transition in amorphous ice
Perakis, Fivos; Amann-Winkel, Katrin; Lehmkuhler, Felix; ...
2017-06-26
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distributionmore » function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. In conclusion, the diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid–liquid transition in the ultraviscous regime.« less
Diffusive dynamics during the high-to-low density transition in amorphous ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perakis, Fivos; Amann-Winkel, Katrin; Lehmkuhler, Felix
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distributionmore » function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. In conclusion, the diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid–liquid transition in the ultraviscous regime.« less
Diffusive dynamics during the high-to-low density transition in amorphous ice
NASA Astrophysics Data System (ADS)
Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders
2017-08-01
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi
The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less
Zhang, X. -J.; Li, W.; Ma, Q.; ...
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes.more » EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.« less
Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.
Kong, Steven H; Shore, Joel D
2007-03-01
We study the propagation of light through a medium containing isotropic scattering and absorption centers. With a Monte Carlo simulation serving as the benchmark solution to the radiative transfer problem of light propagating through a turbid slab, we compare the transmission and reflection density computed from the telegrapher's equation, the diffusion equation, and multiple-flux theories such as the Kubelka-Munk and four-flux theories. Results are presented for both normally incident light and diffusely incident light. We find that we can always obtain very good results from the telegrapher's equation provided that two parameters that appear in the solution are set appropriately. We also find an interesting connection between certain solutions of the telegrapher's equation and solutions of the Kubelka-Munk and four-flux theories with a small modification to how the phenomenological parameters in those theories are traditionally related to the optical scattering and absorption coefficients of the slab. Finally, we briefly explore how well the theories can be extended to the case of anisotropic scattering by multiplying the scattering coefficient by a simple correction factor.
NASA Astrophysics Data System (ADS)
Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.
2013-07-01
Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.
First optical observation of the Moon's sodium exosphere from the lunar orbiter SELENE (Kaguya)
NASA Astrophysics Data System (ADS)
Kagitani, M.; Taguchi, M.; Yamazaki, A.; Yoshikawa, I.; Murakami, G.; Yoshioka, K.; Kameda, S.; Ezawa, F.; Toyota, T.; Okano, S.
2009-08-01
The first successful observations of resonant scattering emission from the lunar sodium exosphere were made from the lunar orbiter SELENE (Kaguya) using TVIS instruments during the period 17-19 December, 2008. The emission intensity of the NaD-line decreased by 12±6%, with an average value of 5.4 kR (kilorayleighs) in this period, which was preceded, by 1 day, by enhancement of the solar proton flux associated with a corotating interaction region. The results suggest that solar wind particles foster the diffusion of sodium atoms or ions in the lunar regolith up to the surface and that the time scale of the diffusion is a few tens of hours. The declining activity of the Geminid meteor shower is also one possible explanation for the decreasing sodium exosphere.
NASA Technical Reports Server (NTRS)
Gordon, H. R.
1979-01-01
The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.
NASA Astrophysics Data System (ADS)
Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian
2018-06-01
Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50 ⩽ t ⩽ 100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
Structural Investigations of Fibers and Films of Poly(p-phenylene benzobisthiazole). Volume 1
1982-05-01
differential scanning calorimetry, is unrelated to the diffuse scattered intensity [45]. Cellulose acetate which is known to be noncrystalline exhibits a high...Weidinger [45] found the diffuse scattered intensity increased with decreasing density and therefore, increasing void fraction, in air swollen cellulose ... Cellulose , and Poly(y-Benzyl-L-Glutamate)." J. Polym. Sci., Polym. Phys. Ed., 18, 663-682 (1980). 39. C.H. Kao and J.M. Ottino, personal communication
Cloaks for suppression or enhancement of scattering of diffuse photon density waves
NASA Astrophysics Data System (ADS)
Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan
2018-07-01
Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods
NASA Astrophysics Data System (ADS)
Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.
Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komornicka, Dorota; Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl; Pietraszko, Adam
2012-08-15
Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomainsmore » can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.« less
Improved Optics For Quasi-Elastic Light Scattering
NASA Technical Reports Server (NTRS)
Cheung, Harry Michael
1995-01-01
Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.
Determining biological tissue optical properties via integrating sphere spatial measurements
Baba, Justin S [Knoxville, TN; Letzen, Brian S [Coral Springs, FL
2011-01-11
An optical sample is mounted on a spatial-acquisition apparatus that is placed in or on an enclosure. An incident beam is irradiated on a surface of the sample and the specular reflection is allowed to escape from the enclosure through an opening. The spatial-acquisition apparatus is provided with a light-occluding slider that moves in front of the sample to block portions of diffuse scattering from the sample. As the light-occluding slider moves across the front of the sample, diffuse light scattered into the area of the backside of the light-occluding slider is absorbed by back side surface of the light-occluding slider. By measuring a baseline diffuse reflectance without a light-occluding slider and subtracting measured diffuse reflectance with a light-occluding slider therefrom, diffuse reflectance for the area blocked by the light-occluding slider can be calculated.
Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław
2009-03-01
Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.
Unsupervised classification of scattering behavior using radar polarimetry data
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob J.
1989-01-01
The use of an imaging radar polarimeter data for unsupervised classification of scattering behavior is described by comparing the polarization properties of each pixel in a image to that of simple classes of scattering such as even number of reflections, odd number of reflections, and diffuse scattering. For example, when this algorithm is applied to data acquired over the San Francisco Bay area in California, it classifies scattering by the ocean as being similar to that predicted by the class of odd number of reflections, scattering by the urban area as being similar to that predicted by the class of even number of reflections, and scattering by the Golden Gate Park as being similar to that predicted by the diffuse scattering class. It also classifies the scattering by a lighthouse in the ocean and boats on the ocean surface as being similar to that predicted by the even number of reflections class, making it easy to identify these objects against the background of the surrounding ocean. The algorithm is also applied to forested areas and shows that scattering from clear-cut areas and agricultural fields is mostly similar to that predicted by the odd number of reflections class, while the scattering from tree-covered areas generally is classified as being a mixture of pixels exhibiting the characteristics of all three classes, although each pixel is identified with only a single class.
Effect of temperature and pressure on the dynamics of nanoconfined propane
NASA Astrophysics Data System (ADS)
Gautam, Siddharth; Liu, Tingting; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene; Welch, Susan; Cole, David
2014-04-01
We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.
Methane mobility in carbon nanotubes
NASA Astrophysics Data System (ADS)
Bienfait, M.; Asmussen, B.; Johnson, M.; Zeppenfeld, P.
2000-07-01
Quasi-elastic neutron scattering has been used to characterize the diffusivity of CH 4 molecules condensed in single-wall carbon nanotubes. It is shown that the two sites of adsorption, previously observed by adsorption volumetry and calorimetry measurements, correspond to a solid-like phase for the more strongly bound site at T<120 K and to a liquid-like component for the more weakly bound site at 70< T<120 K. The diffusion coefficients of the mobile molecules range between 3×10 -7 to 15×10 -7 cm 2 s -1. The fraction of this viscous liquid diminishes as the temperature is decreased; the adsorbate is fully solidified at 50 K and below.
Diffusion of Small Sticky Nanoparticles in a Polymer Melt: A Dynamic Light Scattering Study
NASA Astrophysics Data System (ADS)
Carroll, Bobby; Bocharova, Vera; Cheng, Shiwang; Yamamoto, Umi; Kisliuk, Alex; Schweizer, Ken; Sokolov, Alexei
The study of dynamics in complex fluids such as polymers has gained a broad interest in advanced materials and biomedical applications. Of particular interest is the motion of nanoparticles in these systems, which influences the mechanical and structural properties of composite materials, properties of colloidal systems, and biochemical processes in biological systems. Theoretical work predicts a violation of Stokes-Einstein (SE) relationship for diffusion of small nanoparticles in strongly-entangled polymer melt systems, with diffusion of nanoparticles much faster than expected DSE. It is attributed to differences between local and macroscopic viscosity. In this study, the diffusion of nanoparticles in polymer melts below and above entanglement molecular weight is measured using dynamic light scattering. The measured results are compared with simulations that provide quantitative predictions for SE violations. Our results are two-fold: (1) diffusion at lower molecular weights is slower than expected DSE due to chain absorption; and (2) diffusion becomes much (20 times) faster than DSE, at higher entanglements due to a reduced local viscosity.
Surface diffusion of cyclic hydrocarbons on nickel
NASA Astrophysics Data System (ADS)
Silverwood, I. P.; Armstrong, J.
2018-08-01
Surface diffusion of adsorbates is difficult to measure on realistic systems, yet it is of fundamental interest in catalysis and coating reactions. quasielastic neutron scattering (QENS) was used to investigate the diffusion of cyclohexane and benzene adsorbed on a nickel metal sponge catalyst. Molecular dynamics simulations of benzene on a model (111) nickel surface showed localised motion with diffusion by intermittent jumps. The experimental data was therefore fitted to the Singwi-Sjölander model and activation energies for diffusion of 4.0 kJ mol-1 for benzene and 4.3 kJ mol-1 for cyclohexane were calculated for the two dimensional model. Limited motion out-of plane was seen in the dynamics simulations and is discussed, although the resolution of the scattering experiment is insufficient to quantify this. Good agreement is seen between the use of a perfect crystal as a model for a disordered system over short time scales, suggesting that simple models are adequate to describe diffusion over polycrystalline metal surfaces on the timescale of QENS measurement.
Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions
NASA Astrophysics Data System (ADS)
Tobita, M.; Omura, Y.; Summers, D.
2017-12-01
We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y. Omura, D. Summers, and C. A. Kletzing (2016), Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss, Geophys. Res. Lett., 43, 10,040-10,049. [4] Omura, Y., Katoh, Y., and Summers, D., Theory and simulation of the generation of whistler-mode chorus (2008), J. Geophys. Res., 113, A04223.
Mechanisms of decoherence in electron microscopy.
Howie, A
2011-06-01
The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng
2018-05-01
Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
Light scattering properties of new materials for glazing applications
NASA Astrophysics Data System (ADS)
Bergkvist, Mikael; Roos, Arne
1991-12-01
Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.
Increased diffuse radiation fraction does not significantly accelerate plant growth
NASA Astrophysics Data System (ADS)
Angert, Alon; Krakauer, Nir
2010-05-01
A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009), will result in a measurable decrease (~0.6ppm) in the seasonal CO2 minimum. This holds regardless of whether the sink is the result of 1) An increase in NPP, or 2) The combined effect of a temperature-driven decrease in heterotrophic respiration (Rh) and no change in NPP. This is since both NPP and Rh peak in summer. By contrast, observations from the NOAA global CO2 monitoring network show the opposite change in the seasonal minimum in 1992 and 1993 (~0.2ppm increase) both at Mauna Loa, and in the Marine Boundary Layer mean (>20° N), which is hard to reconcile with increased NPP in northern summer. Another indicator of annual NPP is tree wood increment. Previous work (Krakauer et al., 2003) showed that the average response in tree ring series after past Pinatubo-size volcanic eruptions implied lower NPP north of 45° N, presumably as a result of shorter growing season and lower total irradiance induced by scattering aerosols, and no significant change in NPP at lower latitudes. Here we show that In 1992, after the Pinatubo eruption, ring width in the 25° N-45° N band was 99.3±2.9% of average (n=351 sites), similar to the average of 100.4±2.2% over past eruptions (n=15 eruptions) (Uncertainty is given as 2 SE.). These results are also inconsistent with substantial NPP enhancement, although a limitation of the tree-ring approach is that available measurements do not uniformly sample the latitude band. The combined evidence of tree rings and the CO2 seasonal cycle shows that the enhancement of NPP by scattering aerosols on annual timescales is weak. This result suggests that reducing aerosols through stricter pollution controls may strengthen the land carbon sink, while geo-engineering schemes which aim to mitigate global warming by spreading scattering aerosols in the stratosphere may weaken it.
Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue
NASA Astrophysics Data System (ADS)
Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo
2015-05-01
Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.
Application of Blue Laser Triangulation Sensors for Displacement Measurement Through Fire.
Hoehler, Matthew S; Smith, Christopher M
2016-11-01
This paper explores the use of blue laser triangulation sensors to measure displacement of a target located behind or in the close proximity of natural gas diffusion flames. This measurement is critical for providing high-quality data in structural fire tests. The position of the laser relative to the flame envelope can significantly affect the measurement scatter, but has little influence on the mean values. We observe that the measurement scatter is normally distributed and increases linearly with the distance of the target from the flame along the beam path. Based on these observations, we demonstrate how time-averaging can be used to achieve a standard uncertainty associated with the displacement error of less than 0.1 mm, which is typically sufficient for structural fire testing applications. Measurements with the investigated blue laser sensors were not impeded by the thermal radiation emitted from the flame or the soot generated from the relatively clean-burning natural gas.
Using Directional Emissivity as a Probe of Particle Microphysical Properties
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clayton, G. C.
2002-09-01
Real surfaces are not expected to be diffuse emitters, thus observed emissivity values are a function of viewing geometry. This fact has strong implications for analyses of the MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset. As reviewed previously [1], in the absence of strong thermal gradients, directional emissivity may be obtained via a combination of reciprocity and Kirchhoff's Law. Here we focus on the potential utility of directional emissivity as a direct probe of surface particle microphysical properties. We explore the effects of particle size and composition on observed radiances in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to TES EPF observations of typical surface units (e.g., high and low albedo regions) will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP). [1] Pitman, K.M., et al. (2001), AAS-DPS meeting # 33, # 36.01.
Density Determination of Metallic Melts from Diffuse X-Ray Scattering
NASA Astrophysics Data System (ADS)
Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Washenfelder, R. A.
2016-09-01
Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% yr-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yr-1, leading to declines in gross primary production (GPP) of 0.07% yr-1. Integrated over the analysis period and domain, this represents 0.5 Pg C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.
Fresnel zone considerations for reflection and scatter from refractive index irregularities
NASA Technical Reports Server (NTRS)
Doviak, R. J.; Zrnic, D. S.
1983-01-01
Several different echoing mechanisms are proposed to explain VHF/UHF scatter from clear air; (1) anisotropic scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account for the spatial (angle and range) and temporal dependence of the echoes. The term diffuse reflection describes the echoing mechanism when both scatter and reflection coexist. A unifying formulation is presented incorporating a statistical approach that embraces all mechanisms the above mechanisms and gives conditions under which reflection or scatter dominates. A distinction between Fraunhofer and Fresnel scatter and a criterion is presented under which Fresnel scatter is important.
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
NASA Astrophysics Data System (ADS)
Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso
2017-12-01
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, William; Hysell, David
2016-07-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, W. A.; Hysell, D. L.
2016-12-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
New description of charged particle propagation in random magnetic fields
NASA Technical Reports Server (NTRS)
Earl, James A.
1994-01-01
When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.
Generalized Landauer equation: Absorption-controlled diffusion processes
NASA Astrophysics Data System (ADS)
Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor
1999-05-01
The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes.
NASA Astrophysics Data System (ADS)
Santhanam, Parthiban; Ram, Rajeev J.
2010-09-01
We present a microscopic model of the Seebeck effect based on a generalized drift-diffusion equation and use it to predict a simple relationship between the electric field within an operating thermoelectric and the scattering parameter. Our model replicates existing theoretical results and permits an intuitive spatial picture of the Seebeck effect. A similar formalism was independently developed by Cai and Mahan, but this work includes numerical results for high dopant concentrations where the thermoelectric power factor is maximized. Based on these results, we propose that measurement of the bulk electric field should constitute a measurement of the scattering parameter, the improvement of which could lead to greater thermoelectric efficiency.
NASA Astrophysics Data System (ADS)
Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.
2002-10-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.
NASA Astrophysics Data System (ADS)
Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas
2010-09-01
We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x
Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon
2017-01-01
The thermal diffusivity in the ab plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25–300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron–phonon “soup” picture characterized by a diffusion constant D∼vB2τ, where vB is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time τ∼ℏ/kBT. PMID:28484003
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
Characterization of target camouflage structures by means of different microwave imaging procedures
NASA Astrophysics Data System (ADS)
Inaebnit, Christian; John, Marc-Andre; Aulenbacher, Uwe; Akyol, Zeynrep; Hueppi, Rudolf; Wellig, Peter
2009-05-01
This paper presents two different test methods for camouflage layers (CL) like nets or foam based structures. The effectiveness of CL in preventing radar detection and recognition of targets depends on the interaction of CL properties as absorption and diffuse scattering with target specific scattering properties. This fact is taken into account by representing target backscattering as interference of different types of GTD contributions and evaluating the impact of CL onto these individual contributions separately. The first method investigates how a CL under test alters these individual scattering contributions and which "new" contributions are produced by "self-scattering" at the CL. This information is gained by applying ISAR imaging technique to a test structure with different types of scattering contributions. The second test method aims for separating the effects of absorption and "diffuse scattering" in case of a planar metallic plate covered by CL. For this, the equivalent source distribution in the plane of the CL is reconstructed from bistatic scattering data. Both test methods were verified by experimental results obtained from X-band measurements at different CL and proved to be well suited for an application specific evaluation of camouflage structures from different manufacturers.
Interior radiances in optically deep absorbing media. 3: Scattering from Haze L
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1974-01-01
The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium. The heating rate is calculated and found to have a maximum value at an optical depth of two within a Haze L layer when the sun is at the zenith.
Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, S.; Li, C.; Scripa, R.; Lehoczky, S. L.; Kim, Y. M.; Baird, J. K.; Lin, B.; Ban, H.; Benmore, Chris;
2002-01-01
The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. Thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range of 500 C to 900 C. The measured diffusivity as a function of temperature agrees fairly well with published data. However, a relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the melt, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed a similar relaxation behavior to the measured diffusivity. The density and volume expansion coefficients for pure Te and HgTe melts were measured as a function of temperature using a pycnometric method. A density maximum was found for both melts but no relaxation behavior was observed. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previously reported. A simple kinetic theory, which contains the formation reactions of Te polymerization that increases the molecular weight, was proposed to interpret the relaxation behavior of HgZnTe viscosity data.
Simulating synchrotron radiation in accelerators including diffuse and specular reflections
Dugan, G.; Sagan, D.
2017-02-24
An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less
Ion Beam Analysis of Diffusion in Diamondlike Carbon Films
NASA Astrophysics Data System (ADS)
Chaffee, Kevin Paul
The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.
Dynamics of associating networks
NASA Astrophysics Data System (ADS)
Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley
Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.
Resistivity bound for hydrodynamic bad metals
Lucas, Andrew; Hartnoll, Sean A.
2017-01-01
We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ∼T2 in a Fermi liquid and the crossover to ρ∼T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity. PMID:29073054
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng
2018-02-01
The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.
NASA Astrophysics Data System (ADS)
Kotovsky, D. A.; Moore, R. C.
2017-07-01
We present results of a cylindrically symmetric, coupled electrodynamic, and photochemical model which simulates diffuse ionization of the middle atmosphere induced by strong lightning discharges (peak currents >150 kA). Scattering of subionospherically propagating, very low frequency radio waves is then evaluated using the Long-Wave Propagation Capability code. Some modeled sprite halos exhibit continued electron density growth up to timescales of seconds due to O- detachment, though it is not yet clear how this might relate to the slower onset durations (>20 ms) of some early VLF events. Modeled electron density enhancements in sprite halos, capable of strong VLF scattering, can persist for long periods of time (greater than hundreds of seconds) even at lower altitudes where their recovery is initially controlled by fast attachment processes. Consequently, our modeling results indicate that both typical recovery (20 to 240 s) and long recovery (LOREs, >300 s) VLF scattering events can be explained by scattering from conductivity changes associated with sprite halos. In contrast, modeled scattered fields resulting from elve-associated conductivity changes, though exhibiting long recovery times, are too weak to sufficiently explain typical LORE observations. Theoretical scattering from structured ionization events (e.g., sprites columns and gigantic jets) is not considered in this work.
Photopolarimetry of scattering surfaces and their interpretation by computer model
NASA Technical Reports Server (NTRS)
Wolff, M.
1979-01-01
Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel
2009-05-01
In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.
Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles
NASA Astrophysics Data System (ADS)
Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard
2018-04-01
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.
1998-01-01
We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.
NASA Astrophysics Data System (ADS)
Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi
2015-07-01
Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.
Electron diffusion deduced from eiscat
NASA Astrophysics Data System (ADS)
Roettger, J.; Fukao, S.
The EISCAT Svalbard Radar (ESR) operates on 500 MHz; collocated with it is the SOUSY Svalbard Radar (SSR), which operates on 53.5 MHz. We have used both radars during Polar Mesosphere Summer Echoes (PMSE) coherent scatter conditions, where the ESR can also detect incoherent scatter and thus allows to estimate the electron density. We describe obser-vations during two observing periods in summer 1999 and 2000. Well calibrated sig-nal power was obtained with both radars, from which we deduced the radar reflec-tivity. Estimating the turbulence dissipation rate from the narrow beam observations of PMSE with the ESR, using the estimate of the electron density and the radar reflec-tivity on both frequencies we can obtain estimates of the Schmidt number by compar-ing our observational results with the model of Cho and Kelley (1993). Schmidt num-bers of at least 100 are necessary to obtain the measured radar reflectivities, which ba-sically support the model of Cho and Kelley claiming that the inertial-viscous subrange in the electron gas can extend down to small scales of some ten centimeters (namely, the Bragg scale of the ESR).
NASA Astrophysics Data System (ADS)
Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri
2010-03-01
An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.
Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud
2006-09-14
Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion for bulk water. This reduction of the water diffusion is discussed in terms of the interaction of the water with the calcium silicate gel and the ions present in the pore water.
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...
2017-04-27
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Do protein crystals nucleate within dense liquid clusters?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maes, Dominique, E-mail: dommaes@vub.ac.be; Vorontsova, Maria A.; Potenza, Marco A. C.
2015-06-27
The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clustersmore » serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.« less
Multiple Scattering in Random Mechanical Systems and Diffusion Approximation
NASA Astrophysics Data System (ADS)
Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun
2013-10-01
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.
NASA Astrophysics Data System (ADS)
Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre
2016-01-01
A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.
Diffusive-light invisibility cloak for transient illumination
NASA Astrophysics Data System (ADS)
Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.
2016-12-01
Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.
Photorefraction in the ultraviolet: Materials and effects
NASA Astrophysics Data System (ADS)
Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.
1995-10-01
Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.
Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-12-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.
Frequency-constant Q, unity and disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargreaves, N.D.
1995-12-31
In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less
Quantitative interpretations of Visible-NIR reflectance spectra of blood.
Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H
2008-10-27
This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.
Dynamics of lipid saccharide nanoparticles by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Di Bari, M. T.; Gerelli, Y.; Sonvico, F.; Deriu, A.; Cavatorta, F.; Albanese, G.; Colombo, P.; Fernandez-Alonso, F.
2008-04-01
Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H 2O hydrated nanoparticles ( h = 0.47 w H 2O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.
NASA Astrophysics Data System (ADS)
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto
2016-09-01
Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander
2016-08-24
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander
2016-01-01
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506
Re-examination of a Classic Experiment to Measure the Positronium-Helium Cross Section
NASA Technical Reports Server (NTRS)
Drachman, Richard J.; DiRienzi, Joseph
1998-01-01
In 1975, before the advent of positronium beams, a clever experiment was carried out in an attempt to measure low-energy Ps-atom scattering cross-sections, especially that of Ps-He. A series of parallel thin plates was placed in the vessel containing the sample of gas, and positrons were allowed to enter the chamber from a radioactive source. The time spectrum of annihilation radiation was observed in the traditional way, and the pickoff annihilation due to thermalized Ps striking one of the plates was to be the special feature of the experiment. Using a diffusion analysis the authors derived cross- sections for several gases, and for helium the value obtained was sigma = 0.0166 pi(alpha)(sub o, sup 2). Even then this value was thought to be very much too small, while recent measurements and some calculations suggest a more reasonable value would be sigma = 3 to 13 pi(alpha)(sub o,sup 2). It has always been puzzling that an apparently well-designed experiment should give such an unsatisfactory result. We have now re-examined the analysis of the data with some interesting consequences which may explain the discrepancy. Two main observations support our re-analysis. First, we note that the mean free path for Ps-He scattering would be quite long if the cross-section were as small as that quoted above; the diffusion method itself would seem to be questionable. For the larger values, however, there would be no such problem. Second, it was assumed that when the annihilation rate had settled down and was following an exponential decay curve the asymptotic solution of the diffusion equation had been reached. We find, instead, that a superposition of exponentials can accurately represent the decay curve, consistent with the higher cross-section value.
NASA Astrophysics Data System (ADS)
Singh, Namita; Sharma, Roopam; Khenata, R.; Varshney, Dinesh
2018-05-01
The carrier diffusion contribution to the thermoelectric power (Scdiff) is calculated for MgB2, Mg0.9A10.1B2 and drag Mg0.8Al0.2B2 within two energy gap method. The phonon drag thermoelectric power (Sphdrag) in normal state dominate and is an artifact of strong phonon-impurity and phonon scattering mechanism. The conductivity within the relaxation time approximation for π and σ band carriers has been taken into account ignoring a possible energy dependence of the scattering rates. Both these channels for heat transfer are clubbed to get total thermoelectric power (Stotal) which starts departing from linear temperature dependence at about 150 K, before increasing at higher temperatures weakly. The anomalies reported are well accounted in terms of the scattering mechanism by phonon drag and carrier scattering with impurities, shows similar results as those revealed from experiments.
Haltrin, V I
1998-06-20
A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.
Wahle, Chris W.; Ross, David S.; Thurston, George M.
2012-01-01
We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)10.1063/1.2937902], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two minutes of measurement time is, in principle, sufficient to determine the dimensionless mixing free energy of a non-associating ternary mixture to within an integrated error norm of 0.003. These findings establish a quantitative framework for designing light scattering experiments to determine the Gibbs free energy of ternary liquid mixtures. PMID:22830693
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2018-02-01
The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.
Non-Local Diffusion of Energetic Electrons during Solar Flares
NASA Astrophysics Data System (ADS)
Bian, N. H.; Emslie, G.; Kontar, E.
2017-12-01
The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.
Pore-size dependence and characteristics of water diffusion in slitlike micropores
Diallo, S. O.
2015-07-16
The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less
Monte Carlo study of disorder in HMTA
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Welberry, T. R.
2001-12-01
We investigate disordered solids by automated fitting of a Monte Carlo simulation of a crystal to observed single-crystal diffuse X-ray scattering. This method has been extended to the study of crystals of relatively large organic molecules by using a z-matrix to describe the molecules. This allows exploration of motions within molecules. We refer to the correlated thermal motion observed in benzil, and to the occupational and thermal disorder in the 1:1 adduct of hexamethylenetetramine and azelaic acid, HMTA. The technique is capable of giving insight into modes of vibration within molecules and correlated motions between molecules.
Holographic investigation of silver electromigration in nano-sized As2S3 films
NASA Astrophysics Data System (ADS)
Sainov, S.; Todorov, R.; Bodurov, I.; Yovcheva, Temenuzhka
2013-10-01
Holographic gratings with a diffraction efficiency (DE) greater than 8% and a spatial resolution of 2237 mm-1 are recorded in very thin As2S3 films with a thickness of 100 nm. Silver photo-diffusion is observed during the holographic recording process while applying a corona discharge. We use the method of holographic grating relaxation spectroscopy (forced Rayleigh scattering) based on the evanescent waves to determine that the silver diffusion coefficient in the thin As2S3 film is in the range of (0.9-10.3) × 10-13 cm2 s-1 depending on the corona charge polarity. This work is dedicated to the 90th anniversary of the birth of Academician Jordan Malinowski.
Diffusion induced atomic islands on the surface of Ni/Cu nanolayers
NASA Astrophysics Data System (ADS)
Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán
2018-05-01
Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.
Breakdown of equipartition in diffuse fields caused by energy leakage
NASA Astrophysics Data System (ADS)
Margerin, L.
2017-05-01
Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.
Long range magnetic ordering of ultracold fermions in an optical lattice
NASA Astrophysics Data System (ADS)
Duarte, P. M.; Hart, R. A.; Yang, T.-L.; Hulet, R. G.
2013-05-01
We present progress towards the observation of long range antiferromagnetic (AFM) ordering of fermionic 6Li atoms in an optical lattice. We prepare a two spin state mixture of 106 atoms at T /TF = 0 . 1 by evaporatively cooling in an optical dipole trap. The sample is then transferred to a dimple trap formed by three retroreflected laser beams at 1064 nm that propagate in orthogonal directions. The polarization of the retroreflected light is controlled using liquid crystal retarders, which allow us to adiabatically transform the dimple trap into a 3D lattice. Overlapped with each of the three dimple/lattice beams is a beam at 532 nm, which can cancel the harmonic confinement and flatten the band structure in the lattice. This setup offers the possibility of implementing proposed schemes which enlarge the size of the AFM phase in the trap. As a probe for AFM we use Bragg scattering of light. We have observed Bragg scattering off of the (100) lattice planes, and using an off-angle probe we can see the diffuse scattering from the sample which serves as background for the small signals expected before the onset of AFM ordering. Supported by NSF, ONR, DARPA, and the Welch Foundation.
Comparison with CLPX II airborne data using DMRT model
Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.
2009-01-01
In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.
NASA Astrophysics Data System (ADS)
Frins, E.; Platt, U.; Wagner, T.
2008-12-01
Topographic Target Light scattering - Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (diffuse or specular) reflected from natural or artificial targets located at different distances are analyzed to retrieve the spatial distribution of the concentration of different trace gases like NO2, SO2 and others. We report high spatial resolution measurements of NO2 mixing ratios in the city of Montevideo (Uruguay) observing three buildings as targets with a Mini-DOAS instrument. Our instrument was 146 m, 196 m, and 280 m apart from three different buildings located along a main Avenue. We obtain temporal variation of NO2 mixing ratios between 30 ppb and 65 ppb from measurements of November 2007 and mixing ratios up to 50 ppb from measurements of August and September 2008. Our measurements demonstrate that ToTaL-DOAS observations can be made over relative short distances. In polluted air masses, the retrieved absorption signal was found to be sufficiently strong to allow measurements over distances in the range of several tens of meters.
Thirty years since diffuse sound reflection by maximum length
NASA Astrophysics Data System (ADS)
Cox, Trevor J.; D'Antonio, Peter
2005-09-01
This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.
NASA Astrophysics Data System (ADS)
Shih, Marian Pei-Ling
The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.
FIREBall, CHaS, and the diffuse universe
NASA Astrophysics Data System (ADS)
Hamden, Erika Tobiason
The diffuse universe, consisting of baryons that have not yet collapsed into structures such as stars, galaxies, etc., has not been well studied. While the intergalactic and circumgalactic mediums (IGM & CGM) may contain 30-40% of the baryons in the universe, this low density gas is difficult to observe. Yet it is likely a key driver of the evolution of galaxies and star formation through cosmic time. The IGM provides a reservoir of gas that can be used for star formation, if it is able to accrete onto a galaxy. The CGM bridges the IGM and the galaxy itself, as a region of both inflows from the IGM and outflows from galactic star formation and feedback. The diffuse interstellar medium (ISM) gas and dust in the galaxy itself may also be affected by the CGM of the galaxy. Careful observations of the ISM of our own Galaxy may provide evidence of interaction with the CGM. These three regions of low density, the IGM, CGM, and ISM, are arbitrary divisions of a continuous flow of low density material into and out of galaxies. My thesis focuses on observations of this low density material using existing telescopes as well as on the development of technology and instruments that will increase the sensitivity of future missions. I used data from the Galaxy Evolution Explorer (GALEX) to create an all sky map of the diffuse Galactic far ultraviolet (FUV) background, probing the ISM of our own galaxy and comparing to other Galactic all sky maps. The FUV background is primarily due to dust scattered starlight from bright stars in the Galactic plane, and the changing intensity across the sky can be used to characterize dust scattering asymmetry and albedo. We measure a consistent low level non-scattered isotropic component to the diffuse FUV, which may be due in small part to an extragalactic component. There are also several regions of unusually high FUV intensity given other Galactic quantities. Such regions may be the location of interactions between Galactic super-bubbles and the CGM. Other ways of probing the CGM including direct detection via emission lines. I built a proto-type of the Circumgalactic Halpha Spectrograph (CHalphaS), a wide-field, low-cost, narrow-band integral field unit (IFU) that is designed to observe Halpha emission from the CGM of nearby, low-z galaxies. This proto-type has had two recent science runs, with preliminary data on several nearby galaxies. Additional probes of the CGM are emission lines in the rest ultra-violet. These include OVI, Lyalpha, CIV, SiIII, CIII, CII, FeII, and MgII. Such lines are accessible for low redshift galaxies in the space UV, historically a difficult wavelength range in which to work due in part to low efficiency of the available detectors. I have worked with NASA's Jet Propulsion Laboratory to develop advanced anti-reflection (AR) coatings for use on thinned, delta-doped charge coupled device (CCD) detectors. These detectors have achieved world record quantum efficiency (QE) at UV wavelengths (>50% between 130 nm and 300nm), with the potential for even greater QE with a more complex coating. One of these AR coated detectors will be used on the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), a balloon-born UV spectrograph designed to observe the CGM at 205 nm via redshifted Lyalpha (at z=0.7), CIV (at z=0.3), and OVI (at z=1.0). FIREBall-2 will launch in the fall of 2015.
MIRIS observation of near-infrared diffuse Galactic light
NASA Astrophysics Data System (ADS)
Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki
2018-06-01
We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.
The single scattering properties of the aerosol particles as aggregated spheres
NASA Astrophysics Data System (ADS)
Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.
2012-08-01
The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
NASA Astrophysics Data System (ADS)
Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.
2002-11-01
An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.
Limits to Maximum Absorption Length in Waveguide Photodiodes
2011-04-13
InGaAsP to InGaAs graded layer (35 nm), a very thin undoped InGaAs absorber layer (20 nm), a p- InP cla~din~ layer (1 J.Lm, Zn = 1x1018 em·\\ a p- InP ...expected excess opticall_oss results from non-ideal coupling, excess waveguide scattering, Zn diffusion from the p-doped InP , larger than...waveguide scattering, Zn diffusion from the p-doped InP , n-doped region absorption, or a combination of the above. The SCOWPD has demonst:r:ated an
Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Migliardo, F.; Magazù, S.; Migliardo, P.
2001-07-01
Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.
The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase
NASA Astrophysics Data System (ADS)
Rajapaksha Mudalige, Ajith Rathnaweera
Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40% PEG did not change compared to the SOD structure in water. It therefore appears that under the conditions of our simulations MD could not describe the experimentally observed effects of macromolecular crowding. In a separate project, we measured the rate of diffusive transport in excised porcine corneal stroma using FCS for fluorescent labeled dextran molecules with hydrodynamic radii ranging from 1.3 to 34 nm. Dextran molecules diffuse more slowly in cornea as compared to buffer solution. The reduction in diffusion coefficient is modest however (67% smaller), and is uniform over the range of sizes that we measured. Diffusion coefficients measured parallel vs. perpendicular to the collagen lamellae were indistinguishable. This indicates that diffusion in the corneal stroma is not highly anisotropic. Delivery of therapeutic agents to the eye requires efficient transport through cellular and extracellular barriers. Our measurements bring important insights into how macromolecular and nanoparticle therapeutics might permeate through the eyes.
Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System
ERIC Educational Resources Information Center
Honnicke, M. G.; Gavinho, L.; Cusatis, C.
2008-01-01
Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…
Coding metasurface for broadband microwave scattering reduction with optical transparency.
Chen, Ke; Cui, Li; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-03-06
Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.
Time of flight imaging through scattering environments (Conference Presentation)
NASA Astrophysics Data System (ADS)
Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas
2017-02-01
Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meftah, B.
1982-01-01
Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less
Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.
1998-01-01
This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.
Worldwide Ocean Optics Database (WOOD)
2002-09-30
attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading
Worldwide Ocean Optics Database (WOOD)
2001-09-30
user can obtain values computed from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error ...from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for...properties, including diffuse attenuation, beam attenuation, and scattering. The database shall be easy to use, Internet accessible, and frequently updated
S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer
2016-01-01
Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...
Translational and Rotational Diffusion in Water in the Gigapascal Range
NASA Astrophysics Data System (ADS)
Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.
2013-11-01
First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
Kanick, Stephen Chad; McClatchy, David M; Krishnaswamy, Venkataramanan; Elliott, Jonathan T; Paulsen, Keith D; Pogue, Brian W
2014-10-01
This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
Unusual refilling of the slot region between the Van Allen radiation belts
NASA Astrophysics Data System (ADS)
Yang, X.; Yu, J.; Ni, B.; Zhang, Y.; Zhang, X.
2017-12-01
Using multi-satellite measurements, the dynamics of relativistic electrons in the slot region are investigated from 2000 to 2011. The dependences of relativistic electron enhancements in the slot region on interplanetary and magnetospheric conditions are researched. It is resulted that the relativistic electron enhancements in the slot region occurred under remarkable interplanetary and magnetospheric conditions. A uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is studied especially. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by chorus could account for the major feature of observed enhancement outside the plasmapause. When the plasmasphere recovered, the refilled slot region was enveloped inside the plasmapause. In the plasmasphere, while the efficiency of hiss scattering loss increases by including unusually low frequency hiss waves, the interaction with hiss alone cannot fully explain the decay of this event, especially at higher energies, which suggests that EMIC waves contribute to the relativistic electron loss process at such low L-shells for this refilling event.
NASA Astrophysics Data System (ADS)
Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.
2017-12-01
Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.
Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics
NASA Astrophysics Data System (ADS)
Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.
2017-07-01
Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.
Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Warren, J. A.; Clarke, J. T.
1989-01-01
A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly-alpha and H2 bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. An in situ mechanism for accelerating photoelectrons (and ions is proposed, involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of about 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H2 atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.
Tavakoli, Behnoosh; Zhu, Quing
2013-01-01
Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.
John A. Schneeloch; Xu, Zhijun; Winn, B.; ...
2015-12-28
We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less
New techniques for diffusing-wave spectroscopy
NASA Technical Reports Server (NTRS)
Mason, T. G.; Gang, HU; Krall, A. H.; Weitz, David A.
1994-01-01
We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension.
Thermal conductivity of III-V semiconductor superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu
2015-11-07
This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Microscopic diffusion processes measured in living planarians
Mamontov, Eugene
2018-03-08
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Microscopic diffusion processes measured in living planarians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Identification of structural relaxation in the dielectric response of water
Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; ...
2016-06-09
One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Here, comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.
NASA Technical Reports Server (NTRS)
Eichler, D.
1986-01-01
Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.
3-Fluorobenzoic acid–4-acetylpyridine (1/1) at 100 K
Craig, Gavin A.; Thomas, Lynne H.; Adam, Martin S.; Ballantyne, Angela; Cairns, Andrew; Cairns, Stephen C.; Copeland, Gary; Harris, Clifford; McCalmont, Eve; McTaggart, Robert; Martin, Alan R. G.; Palmer, Sarah; Quail, Jenna; Saxby, Harriet; Sneddon, Duncan J.; Stewart, Graeme; Thomson, Neil; Whyte, Alex; Wilson, Chick C.; Parkin, Andrew
2009-01-01
In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one molecule and the pyridine N atom of the other. The benzoic acid molecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern. PMID:21581976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michels-Clark, Tara M.; Savici, Andrei T.; Lynch, Vickie E.
Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributable to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular sparse grid of intense discrete points in reciprocal space. Traditionally, the intensity of each Bragg peak is extracted by integration of each individual reflection first, followed by application of the required corrections. In contrast, mDS is weak and covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a representative measurement of the diffuse scattering, multiple sample orientationsmore » are generally required, where many points in reciprocal space are measured multiple times and the resulting data are combined. The common post-integration data reduction method is not optimal with regard to counting statistics. A general and inclusive data processing method is needed. In this contribution, a comprehensive data analysis approach is introduced to correct and merge the full volume of scattering data in a single step, while correctly accounting for the statistical weight of the individual measurements. Lastly, development of this new approach required the exploration of a data treatment and correction protocol that includes the entire collected reciprocal space volume, using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory.« less
Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves
NASA Astrophysics Data System (ADS)
Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng
2018-02-01
Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within ±3° of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5°-9.2° both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of—(15.7°-17.5°) outside the plasmasphere with a smaller amplitude about 81 pT. Detailed test particle simulations quantify the electron resonant scattering rates by the off-equatorial MS waves to find that they can cause the pitch angle scattering and momentum diffusion of radiation belt electrons with equatorial pitch angles < 75° or < 58° (depending on the wave latitudinal coverage) on timescales of a day. Subsequent two-dimensional Fokker-Planck diffusion simulations indicate that the strong off-equatorial MS waves are capable of efficiently transporting high pitch angle electrons to lower pitch angles to facilitate the formation of radiation belt electron butterfly distributions for a broad energy range from 100 keV to >1 MeV within an hour. Our study clearly demonstrates that the presence of off-equatorial MS waves, in addition to equatorial MS waves, can contribute importantly to the dynamical variations of radiation belt electron fluxes and their pitch angle distribution.
Michels-Clark, Tara M.; Savici, Andrei T.; Lynch, Vickie E.; ...
2016-03-01
Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributable to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular sparse grid of intense discrete points in reciprocal space. Traditionally, the intensity of each Bragg peak is extracted by integration of each individual reflection first, followed by application of the required corrections. In contrast, mDS is weak and covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a representative measurement of the diffuse scattering, multiple sample orientationsmore » are generally required, where many points in reciprocal space are measured multiple times and the resulting data are combined. The common post-integration data reduction method is not optimal with regard to counting statistics. A general and inclusive data processing method is needed. In this contribution, a comprehensive data analysis approach is introduced to correct and merge the full volume of scattering data in a single step, while correctly accounting for the statistical weight of the individual measurements. Lastly, development of this new approach required the exploration of a data treatment and correction protocol that includes the entire collected reciprocal space volume, using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory.« less
Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
Banchio, Adolfo J; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard
2018-04-07
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, f c (q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of f c (q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with f c (q, t), there is indication of long-time exponential decay of f c (q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of f c (q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for f c (q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, f s (q, t), and its non-Gaussian parameter α 2 (t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from f c (q, t) is theoretically validated.
UHV-TEM-REM Studies of Si(111) Surfaces
NASA Astrophysics Data System (ADS)
Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.
Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.
THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall
2016-02-10
We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physicalmore » mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.« less
Observations concerning the generation and propagation of Type III solar bursts
NASA Technical Reports Server (NTRS)
Kellogg, P. J.
1986-01-01
A number of Type III bursts were observed during the Helios missions in which the burst exciter passed over the spacecraft, as evidenced by strong electric field fluctuations near the plasma frequency. Six of these were suitable for detailed study. Of the six events, one was ambiguous, one showed what is interpreted as a switchover from harmonic to fundamental, and the rest all generated fundamental at onset. This would be expected if both fundamental and harmonic are generated, as, at a fixed frequency, the fundamental will be generated earlier. For the event which seems to show both fundamental and harmonic emission, the frequency ratio is not exactly 2. This is explained in terms of a time delay of the fundamental, due to scattering and diffusion in the source region. A time delay of the order of 600 seconds at 1 AU and 20 kHz, and inversely proportional to frequency, is required to explain the observations. Crude estimates show that delay times at least this long may be attributed to trapping and scattering.
NASA Astrophysics Data System (ADS)
Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan
2012-03-01
We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.
A new Monte Carlo code for light transport in biological tissue.
Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia
2018-04-01
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
Phonon Mapping in Flowing Equilibrium
NASA Astrophysics Data System (ADS)
Ruff, J. P. C.
2015-03-01
When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.
Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons
NASA Technical Reports Server (NTRS)
Schlickeiser, R.
1979-01-01
The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.
Johnson, J. R.; Grundy, W.M.; Lemmon, M.T.; Bell, J.F.; Johnson, M.J.; Deen, R.; Arvidson, R. E.; Farrand, W. H.; Guinness, E.; Hayes, A.G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.
2006-01-01
The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150??) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (???0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (???0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission. Copyright 2006 by the American Geophysical Union.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu
2017-02-01
The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze thismore » approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.« less
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng
2018-03-01
We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.