Sample records for diffuse scattering patterns

  1. Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix

    NASA Astrophysics Data System (ADS)

    Sun, Bingqiang; Kattawar, George W.; Yang, Ping

    2016-11-01

    Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

  2. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikanov, Yury S.; Moore, Peter B.

    2015-09-26

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome fromThermus thermophilusis as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.

  3. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  4. Scattering of Gaussian Beams by Disordered Particulate Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2016-01-01

    A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.

  5. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    PubMed

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  6. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling.

    PubMed

    Bosak, A; Chernyshov, D; Vakhrushev, Sergey; Krisch, M

    2012-01-01

    The available body of experimental data in terms of the relaxor-specific component of diffuse scattering is critically analysed and a collection of related models is reviewed; the sources of experimental artefacts and consequent failures of modelling efforts are enumerated. Furthermore, it is shown that the widely used concept of polar nanoregions as individual static entities is incompatible with the experimental diffuse scattering results. Based on the synchrotron diffuse scattering three-dimensional data set taken for the prototypical ferroelectric relaxor lead magnesium niobate-lead titanate (PMN-PT), a new parameterization of diffuse scattering in relaxors is presented and a simple phenomenological picture is proposed to explain the unusual properties of the relaxor behaviour. The model assumes a specific slowly changing displacement pattern, which is indirectly controlled by the low-energy acoustic phonons of the system. The model provides a qualitative but rather detailed explanation of temperature, pressure and electric-field dependence of diffuse neutron and X-ray scattering, as well as of the existence of a hierarchy in the relaxation times of these materials.

  7. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  8. Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.

  9. Scattering and/or diffusing elements in a variety of recently completed music auditoria

    NASA Astrophysics Data System (ADS)

    McKay, Ronald L.

    2002-11-01

    Architectural elements which provide effective acoustic scattering and/or diffusion in a variety of recently completed auditoria for music performance will be presented. Color slides depicting the various elements will be shown. Each will be discussed with respect to its acoustic performance and architectural logic. Measured time-energy reflection patterns will be presented in many cases.

  10. Spatially resolved, diffuse reflectance imaging for subsurface pattern visualization toward development of a lensless imaging platform: phantom experiments

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre

    2016-01-01

    A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.

  11. Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.

    PubMed

    Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram

    2014-01-01

    Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.

  12. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    DOE PAGES

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; ...

    2017-07-31

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. Furthermore, the reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  13. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios

    2017-07-01

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  14. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers

    PubMed Central

    Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun

    2017-01-01

    Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268

  15. Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.

    2009-01-01

    Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.

  16. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na ,Bi ) Ti O3-x BaTi O3 single crystals near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier

    2017-11-01

    Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.

  17. Diffuse X-ray scattering from benzil, C(14)H(10)O(2): analysis via automatic refinement of a Monte Carlo model.

    PubMed

    Welberry, T R; Goossens, D J; Edwards, A J; David, W I

    2001-01-01

    A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.

  18. Dynamics of proteins: Light scattering study of dilute and dense colloidal suspensions of eye lens homogenates

    NASA Astrophysics Data System (ADS)

    Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.

    2007-11-01

    We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.

  19. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE PAGES

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...

    2017-11-10

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  20. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  1. Quantitative Characterization of the Nanoscale Local Lattice Strain Induced by Sr Dopants in La1.92Sr0.08CuO4

    NASA Astrophysics Data System (ADS)

    Lin, J. Q.; Liu, X.; Blackburn, E.; Wakimoto, S.; Ding, H.; Islam, Z.; Sinha, S. K.

    2018-05-01

    The nanometer scale lattice deformation brought about by the dopants in the high temperature superconducting cuprate La2 -xSrx CuO4 (x =0.08 ) was investigated by measuring the associated x-ray diffuse scattering around multiple Bragg peaks. A characteristic diffuse scattering pattern was observed, which can be well described by continuum elastic theory. With the fitted dipole force parameters, the acoustic-type lattice deformation pattern was reconstructed and found to be of similar size to lattice thermal vibration at 7 K. Our results address the long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer scale lattice deformation is marginal and cannot, alone, be responsible for the patched variation in the spectral gaps observed with scanning tunneling microscopy in the cuprates.

  2. Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anthony B.; Marshak, Alexander

    2001-03-15

    In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less

  3. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  4. Diffuse Scattering in the Icosahedral AL-Li-Cu Quasicrystal

    NASA Astrophysics Data System (ADS)

    Proult, A.; Donnadieu, P.; Wang, K.; Garoche, P.

    1995-12-01

    Electron diffraction patterns of icosahedral quasicrystals frequently exhibit diffuse scattering features. We report a detailed analysis of diffuse scattering in Al{6}Li{3}Cu (T2) quasicrystalline samples. The samples have been specifically heat-treated which allows to observe pronounced diffuse effects. Diffuse streaks are observed along the 5-fold and 2-fold symmetry axes and are elongated perpendicularly to these directions. These streaks are due to discs in the 3-dimensional reciprocal space. The diffuse disc positions are only indexable in the 6-dimensional hyperspace but the disc intensities do not agree with the ones predicted by the Cut-and-Project method. The diffuse discs we observed seem to be related to an original quasicrystalline phenomenon overlapping with the icosahedral phase. Les diagrammes de diffraction électronique des quasicristaux icosaédriques présentent fréquemment des diffusions diffuses. Nous les analysons ici en détails sur des échantillons de phase quasicristalline Al{6}Li{3}Cu (T2) traités thermiquement dans lesquels les diffusions diffuses sont trés prononcées. Les intensités diffuses forment des batônnets centrés sur des positions appartenant aux rangées réciproques d'ordre 5 et d'ordre 2 et allongés perpendiculairement à ces directions. On montre qu'il s'agit en fait de disques diffus. dans le réseau réciproque à 3 dimensions, dont les positions ne peuvent s'indexer que sur le réseau à 6 dimensions. Toutefois, les intensités ne correspondent pas à celle prédites par l'algorithme de Coupe-et-Projection. Les disques de diffusion diffuse semblent relever d'une organisation quasicristalline originale se superposant à la phase icosaédrique.

  5. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  6. Phase-coherent elastic scattering of electromagnetic waves from a random array of resonant dielectric ridges on a dielectric substrate: Weak roughness limit

    NASA Astrophysics Data System (ADS)

    Danila, B.; McGurn, A. R.

    2005-03-01

    A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.

  7. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering.

    PubMed

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-10-24

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.

  8. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  9. Structure functions in decomposing Au-Pt systems

    NASA Astrophysics Data System (ADS)

    Glas, R.; Blaschko, O.; Rosta, L.

    1992-09-01

    The evolution of Au-Pt alloys quenched within the miscibility gap is investigated by small-angle neutron-scattering techniques. Moreover, in the vicinity of fundamental Bragg reflections the evolution of ``sideband'' satellites induced by a lattice-parameter modulation connected with the precipitation pattern is investigated by diffuse scattering methods. Structure functions are evaluated for a series of concentrations within the miscibility gap and compared to recent results of the literature.

  10. Measurement of the magneto-optical correlation length in turbid media

    NASA Astrophysics Data System (ADS)

    Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg

    2002-11-01

    In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.

  11. Electron radiography

    DOEpatents

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  12. Monte Carlo analysis of neutron diffuse scattering data

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.

    2006-11-01

    This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.

  13. Increased understanding of cellulose crystallinity

    USDA-ARS?s Scientific Manuscript database

    According to the International Union of Crystallography, “material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering.”...

  14. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging.

    PubMed

    Kanick, Stephen Chad; McClatchy, David M; Krishnaswamy, Venkataramanan; Elliott, Jonathan T; Paulsen, Keith D; Pogue, Brian W

    2014-10-01

    This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.

  15. Bringing diffuse X-ray scattering into focus

    DOE PAGES

    Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.

    2018-02-16

    X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.

  16. Bringing diffuse X-ray scattering into focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.

    X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.

  17. Soft x-ray speckle from rough surfaces

    NASA Astrophysics Data System (ADS)

    Porter, Matthew Stanton

    Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.

  18. High-speed imaging using compressed sensing and wavelength-dependent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shin, Jaewook; Bosworth, Bryan T.; Foster, Mark A.

    2017-02-01

    The process of multiple scattering has inherent characteristics that are attractive for high-speed imaging with high spatial resolution and a wide field-of-view. A coherent source passing through a multiple-scattering medium naturally generates speckle patterns with diffraction-limited features over an arbitrarily large field-of-view. In addition, the process of multiple scattering is deterministic allowing a given speckle pattern to be reliably reproduced with identical illumination conditions. Here, by exploiting wavelength dependent multiple scattering and compressed sensing, we develop a high-speed 2D time-stretch microscope. Highly chirped pulses from a 90-MHz mode-locked laser are sent through a 2D grating and a ground-glass diffuser to produce 2D speckle patterns that rapidly evolve with the instantaneous frequency of the chirped pulse. To image a scene, we first characterize the high-speed evolution of the generated speckle patterns. Subsequently we project the patterns onto the microscopic region of interest and collect the total light from the scene using a single high-speed photodetector. Thus the wavelength dependent speckle patterns serve as high-speed pseudorandom structured illumination of the scene. An image sequence is then recovered using the time-dependent signal received by the photodetector, the known speckle pattern evolution, and compressed sensing algorithms. Notably, the use of compressed sensing allows for reconstruction of a time-dependent scene using a highly sub-Nyquist number of measurements, which both increases the speed of the imager and reduces the amount of data that must be collected and stored. We will discuss our experimental demonstration of this approach and the theoretical limits on imaging speed.

  19. Laser inscription of pseudorandom structures for microphotonic diffuser applications.

    PubMed

    Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider

    2018-04-19

    Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.

  20. Flexible and polarization-controllable diffusion metasurface with optical transparency

    NASA Astrophysics Data System (ADS)

    Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng

    2017-11-01

    In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.

  1. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  2. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    PubMed Central

    Lee, KyeoReh; Park, YongKeun

    2016-01-01

    The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290

  3. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    PubMed

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  4. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    NASA Astrophysics Data System (ADS)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted optical properties of the epithelium and the stroma can be estimated accurately. Adjoint model is applied to 926 clinical measurements from 503 patients. Mean values of extracted optical properties have demonstrated to characterize the biological changes associated with dysplastic progression. Finally, penalized logistic regression algorithms are applied to discriminate dysplastic stages in tissue based on extracted optical features. This work provides understandable and interpretable information regarding predictive and generalization ability of optical spectroscopy in neoplastic changes using a minimum subset of optical measurements. Ultimately these methodologies would facilitate the transfer of these optical technologies into clinical practice.

  5. Cloaking through cancellation of diffusive wave scattering

    PubMed Central

    Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.

    2016-01-01

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925

  6. Cloaking through cancellation of diffusive wave scattering

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Chen, P. Y.; Guenneau, S.; Bağc, H.; Salama, K. N.; Alù, A.

    2016-08-01

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging.

  7. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.

    1998-12-01

    We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.

  8. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix F

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  9. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  10. Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation

    PubMed Central

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-01-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461

  11. Diffusely scattered and transmitted elastic waves by random rough solid-solid interfaces using an elastodynamic Kirchhoff approximation

    NASA Astrophysics Data System (ADS)

    Shi, Fan; Lowe, Mike; Craster, Richard

    2017-06-01

    Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.

  12. Single Crystal Diffuse Neutron Scattering

    DOE PAGES

    Welberry, Richard; Whitfield, Ross

    2018-01-11

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  13. Single Crystal Diffuse Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welberry, Richard; Whitfield, Ross

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  14. Dewetting of thin polymer films: an X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, P.; Stamm, M.

    1998-06-01

    The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.

  15. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    PubMed Central

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-01-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophos­phodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347

  16. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE PAGES

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  17. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  18. Speckle suppression by doubly scattering systems.

    PubMed

    Li, Dayan; Kelly, Damien P; Sheridan, John T

    2013-12-10

    Speckle suppression in a two-diffuser system is examined. An analytical expression for the speckle space-time correlation function is derived, so that the speckle suppression mechanism can be investigated statistically. The grain size of the speckle field illuminating the second diffuser has a major impact on the speckle contrast after temporal averaging. It is shown that, when both the diffusers are rotating, the one with the lower rotating speed determines the period of the speckle correlation function. The coherent length of the averaged speckle intensity is shown to equal the mean speckle size of the individual speckle pattern before averaging. Numerical and experimental results are presented to verify our analysis in the context of speckle reduction.

  19. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  20. X-ray scattering by edge-dislocations in the S_A phase of mesomorphic side chain polyacrylates

    NASA Astrophysics Data System (ADS)

    Davidson, P.; Pansu, B.; Levelut, A. M.; Strzelecki, L.

    1991-01-01

    The X-ray diffraction patterns of mesomorphic side chain polymers in the S_A phase present diffuse streaks in shape of “butterfly wings”. We show that this diffuse scattering may be due to the presence of edge dislocations. On the basis of a previous description of edge dislocations within the framework of the elastic continuum theory of the S_A phase given by De Gennes, we have calculated the Fourier transform of the deformation field. Optical diffraction experiments on sketches of defects have also been made to reproduce the X-ray scattering patterns. Both methods show that this diffuse scattering may indeed be due to the presence of edge dislocations. Their density may be roughly estimated to some 10^8/cm^2. The size of their cores should be only a few Ångströms. From the decay of their elastic deformation field, a typical length λ = (K/B)^{1/2}≈ 1,5 Å can be obtained which shows that the elastic constant B of compression of the layers should be about two orders of magnitude larger in the “polymeric” S_A phase than in the “conventional” one. Les clichés de diffraction des rayons X par des polymères mésomorphes en peigne, en phase S_A, présentent des trainées diffuses en forme d'“ ailes de papillon ”. Nous montrons que cette diffusion diffuse peut s'expliquer par la présence de dislocations-coin. En partant de la description des dislocations-coin donnée par De Gennes dans le cadre de la théorie du continuum élastique de la phase S_A, nous avons calculé la transformée de Fourier du champ de déformation. Des expériences de diffraction optique sur des modèles de défauts ont aussi été effectuées afin de reproduire les clichés de diffraction des rayons X. Les deux méthodes montrent que cette diffusion diffuse peut en effet bien s'expliquer par la présence de dislocations-coin. Leur densité a été grossièrement estimée à quelques 10^8/cm^2. La taille de leurs coeurs ne devrait pas dépasser quelques Ångströms. D'après l'allure du champ de déformation élastique, on peut tirer une longueur typique λ = (K/B)^{1/2}≈ 1,5 Å, ce qui montre que la constante élastique B de compression des couches devrait être environ 100 fois plus élevée en phase S_A “ polymérique ” qu'en phase S_A “ usuelle ”.

  1. Direct Measurement of Lateral Correlations under Controlled Nanoconfinement

    NASA Astrophysics Data System (ADS)

    Kékicheff, P.; Iss, J.; Fontaine, P.; Johner, A.

    2018-03-01

    Lateral correlations along hydrophobic surfaces whose separation can be varied continuously are measured by x-ray scattering using a modified surface force apparatus coupled with synchrotron radiation, named SFAX. A weak isotropic diffuse scattering along the equatorial plane is revealed for mica surfaces rendered hydrophobic and charge neutral by immersion in cationic surfactant solutions at low concentrations. The peak corresponds to a lateral surface correlation length ξ ≈12 nm , without long-range order. These findings are compatible with the atomic force microscopy imaging of a single surface, where adsorbed surfactant stripes appear surrounded by bare mica zones. Remarkably, the scattering patterns remain stable for gap widths D larger than the lateral period but change in intensity and shape (to a lesser extent) as soon as D <ξ . This evolution codes for a redistribution of counterions (counterion release from antagonistic patches) and the associated new x-ray labeling of the patterns. The redistribution of counterions is also the key mechanism to the long-range electrostatic attraction between similar, overall charge-neutral walls, reported earlier.

  2. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  3. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  4. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  5. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  6. Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides

    DOE PAGES

    Goossens, D. J.

    2013-01-01

    Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less

  7. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  8. Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.S.; Krishnan, S.K.; Faeth, G.M.

    1996-11-01

    Measurements of the optical properties of soot, emphasizing refractive indices, are reported for visible wavelengths. The experiments considered soot in the fuel-lean (overfire) region of buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and residence time. Flames fueled with acetylene, propylene, ethylene and propane burning in still air provided a range of soot physical and structure properties. Measurements included soot composition, density, structure, gravimetric volume fraction, scattering properties and absorption properties. These data were analyzed to find soot fractal dimensions, refractive indices and dimensionless extinction coefficients, assumingmore » Rayleigh-Debye-Gans scattering for polydisperse mass fractal aggregates (RDG-PFA theory). RDG-PFA theory was successfully evaluated, based on measured scattering patterns. Soot fractal dimensions were independent of both fuel type and wavelength, yielding a mean value of 1.77 with a standard deviation of 0.04. Refractive indices were independent of fuel type within experimental uncertainties and were in reasonably good agreement with earlier measurements for soot in the fuel-lean region of diffusion flames due to Dalzell and Sarofim (1969). Dimensionless extinction coefficients were independent of both fuel type and wavelength, yielding a mean value of 5.1 with a standard deviation of 0.5, which is lower than earlier measurements for reasons that still must be explained.« less

  9. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  10. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  11. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  12. Detection of early seizures by diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  13. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory.

    PubMed

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-10

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.

  14. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory

    NASA Astrophysics Data System (ADS)

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-01

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackowski, Daniel W.; Mishchenko, Michael I.

    The conventional orientation-averaging procedure developed in the framework of the superposition T-matrix approach is generalized to include the case of illumination by a Gaussian beam (GB). The resulting computer code is parallelized and used to perform extensive numerically exact calculations of electromagnetic scattering by volumes of discrete random medium consisting of monodisperse spherical particles. The size parameters of the scattering volumes are 40, 50, and 60, while their packing density is fixed at 5%. We demonstrate that all scattering patterns observed in the far-field zone of a random multisphere target and their evolution with decreasing width of the incident GBmore » can be interpreted in terms of idealized theoretical concepts such as forward-scattering interference, coherent backscattering (CB), and diffuse multiple scattering. It is shown that the increasing violation of electromagnetic reciprocity with decreasing GB width suppresses and eventually eradicates all observable manifestations of CB. This result supplements the previous demonstration of the effects of broken reciprocity in the case of magneto-optically active particles subjected to an external magnetic field.« less

  16. Thermal defect annealing of swift heavy ion irradiated ThO 2

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; ...

    2017-05-19

    Neutron total scattering and Raman spectroscopy were used to characterize the structural recovery of irradiated polycrystalline ThO 2 (2.2 GeV Au, = 1 x 10 13 ions/cm 2) during isochronal annealing. Here, neutron diffraction patterns showed that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275$-$425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  17. Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.

  18. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  19. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  20. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  1. Electromagnetic wave scattering from rough terrain

    NASA Astrophysics Data System (ADS)

    Papa, R. J.; Lennon, J. F.; Taylor, R. L.

    1980-09-01

    This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.

  2. A diffusion approximation for ocean wave scatterings by randomly distributed ice floes

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley

    2016-11-01

    This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.

  3. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  4. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  5. A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2001-01-01

    Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.

  6. Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Hopfenmüller, Bernhard; Zorn, Reiner; Holderer, Olaf; Ivanova, Oxana; Lehnert, Werner; Lüke, Wiebke; Ehlers, Georg; Jalarvo, Niina; Schneider, Gerald J.; Monkenbusch, Michael; Richter, Dieter

    2018-05-01

    The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension dw and the Hausdorff dimension df have been determined on the length scales covered in the neutron scattering experiments.

  7. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  8. Determination of crystal residence timescales in magma reservoirs by diffusion modeling of dendritic phosphorus zoning patterns in olivine

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Potrafke, A.

    2016-12-01

    Deciphering the early stages of crystallization and the chronological evolution of phenocrysts in magma reservoirs is one of the main goals in volcanology. Established approaches that model the concentration evolution of fast diffusing elements like Fe/Mg carry limited information on timescales once the concentration gradients are homogenized. Elements that diffuse more slowly, such as P and Al, become useful in these cases. We present a novel modeling tool that combines high-resolution EMP mapping of slow diffusing phosphorus in olivine with 2D kinetic modeling of the diffusive relaxation of initial chemical zoning pattern of P as well as Fe/Mg. The modeling approach offers a new possibility for determining crystal residence times in magma reservoirs. P diffusion coefficients from the experimental determination of [1] and Fe/Mg diffusion coefficients from [2] were used. The method yields a time-bracket between the minimum time required to homogenize the zoning of fast-diffusing Fe/Mg and the maximum time period for which details of chemical zoning of slow-diffusing P may be retained. To illustrate the approach we have studied the compositional zoning patterns of 7 olivine crystals from Piton de la Fournaise volcano, La Réunion. All crystals show a narrow range of forsterite contents (=Fo82-84) with fully homogenized Fe/Mg distribution, whereas P-mapping reveals oscillatory to dendritic zoning patterns [3]. P concentrations scatter in the range of 0.4 wt-% to below detection limit. Revealed phosphorus zoning patterns were considered to display the initial crystal architecture, whereas Fe and Mg zoning has been wiped out due to faster diffusion. For La Réunion magmas at 1453 K, timescales between few days to weeks were determined to be the time brackets for growth and residence of the olivine crystals in the magmas. These short residence times combined with knowledge of very fast developing dendritic crystals that have recently been revealed worldwide [e.g. 3] indicate that dendritic crystal growth in such rapidly evolving dynamic environments should be considered as a widespread feature of olivine growth and evolution of many basaltic volcanic systems. [1] Watson et al., 2015, Am Min, 100, pp. 2053-2065 [2] Dohmen et al., 2007, Phys Chem Miner, 34(6), pp. 389-407 [3] Welsch et al., 2014, Geology, 42, pp. 867-870

  9. Direct Simulation of Multiple Scattering by Discrete Random Media Illuminated by Gaussian Beams

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Mishchenko, Michael I.

    2011-01-01

    The conventional orientation-averaging procedure developed in the framework of the superposition T-matrix approach is generalized to include the case of illumination by a Gaussian beam (GB). The resulting computer code is parallelized and used to perform extensive numerically exact calculations of electromagnetic scattering by volumes of discrete random medium consisting of monodisperse spherical particles. The size parameters of the scattering volumes are 40, 50, and 60, while their packing density is fixed at 5%. We demonstrate that all scattering patterns observed in the far-field zone of a random multisphere target and their evolution with decreasing width of the incident GB can be interpreted in terms of idealized theoretical concepts such as forward-scattering interference, coherent backscattering (CB), and diffuse multiple scattering. It is shown that the increasing violation of electromagnetic reciprocity with decreasing GB width suppresses and eventually eradicates all observable manifestations of CB. This result supplements the previous demonstration of the effects of broken reciprocity in the case of magneto-optically active particles subjected to an external magnetic field.

  10. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  11. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  12. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  13. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  14. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  15. Devitrite-based optical diffusers.

    PubMed

    Butt, Haider; Knowles, Kevin M; Montelongo, Yunuen; Amaratunga, Gehan A J; Wilkinson, Timothy D

    2014-03-25

    Devitrite is a novel material produced by heat treatment of commercial soda-lime-silica glass. It consists of fans of needle-like crystals which can extend up to several millimeters and have interspacings of up to a few hundred nanometers. To date, only the material properties of devitrite have been reported, and there has been a distinct lack of research on using it for optical applications. In this study, we demonstrate that randomly oriented fans of devitrite crystals can act as highly efficient diffusers for visible light. Devitrite crystals produce phase modulation of light because of their relatively high anisotropy. The nanoscale spacings between these needles enable light to be diffused to large scattering angles. Experimentally measured results suggest that light diffusion patterns with beam widths of up to 120° are produced. Since devitrite is an inexpensive material to produce, it has the potential to be used in a variety of commercial applications.

  16. Effect of Diffuse Backscatter in Cassini Datasets on the Inferred Properties of Titan's surface

    NASA Astrophysics Data System (ADS)

    Sultan-Salem, A. K.; Tyler, G. L.

    2006-12-01

    Microwave (2.18 cm-λ) backscatter data for the surface of Titan obtained with the Cassini Radar instrument exhibit a significant diffuse scattering component. An empirical scattering law of the form Acos^{n}θ, with free parameters A and n, is often employed to model diffuse scattering, which may involve one or more unidentified mechanisms and processes, such as volume scattering and scattering from surface structure that is much smaller than the electromagnetic wavelength used to probe the surface. The cosine law in general is not explicit in its dependence on either the surface structure or electromagnetic parameters. Further, the cosine law often is only a poor representation of the observed diffuse scattering, as can be inferred from computation of standard goodness-of-fit measures such as the statistical significance. We fit four Cassini datasets (TA Inbound and Outbound, T3 Outbound, and T8 Inbound) with a linear combination of a cosine law and a generalized fractal-based quasi-specular scattering law (A. K. Sultan- Salem and G. L. Tyler, J. Geophys. Res., 111, E06S08, doi:10.1029/2005JE002540, 2006), in order to demonstrate how the presence of diffuse scattering increases considerably the uncertainty in surface parameters inferred from the quasi-specular component, typically the dielectric constant of the surface material and the surface root-mean-square slope. This uncertainty impacts inferences concerning the physical properties of the surfaces that display mixed scattering properties.

  17. Complementary Speckle Patterns: Deterministic Interchange of Intrinsic Vortices and Maxima through Scattering Media.

    PubMed

    Gateau, Jérôme; Rigneault, Hervé; Guillon, Marc

    2017-01-27

    Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1 to the impinging coherent beam. This transform arises from the expectation that tightly focused beams, which have a planar wave front around the focus, are so changed into vortex beams and vice versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor of sqrt[3]. A cyclic permutation of optical vortices and intensity maxima is unexpectedly observed and discussed.

  18. Complex index of refraction estimation from degree of polarization with diffuse scattering consideration.

    PubMed

    Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng

    2015-11-20

    The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

  19. The spectral energy distribution of the scattered light from dark clouds

    NASA Technical Reports Server (NTRS)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less

  1. Relativistic theory of particles in a scattering flow III: photon transport.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  2. Pretransitional diffuse neutron scattering in the mixed perovskite relaxor K1-xLixTaO3

    NASA Astrophysics Data System (ADS)

    Yong, Grace; Toulouse, Jean; Erwin, Ross; Shapiro, Stephen M.; Hennion, Bernard

    2000-12-01

    Several previous studies of K1-xLixTaO3 (KLT) have revealed the presence, above the structural transition, of polar nanoregions. Recently, these have been shown to play an essential role in the relaxor behavior of KLT. In order to characterize these regions, we have performed a neutron-scattering study of KLT crystals with different lithium concentrations, both above and below the critical concentration. This study reveals the existence of diffuse scattering that appears upon formation of these regions. The rodlike distribution of the diffuse scattering along cubic directions indicates that the regions form in the shape of discs in the various cubic planes. From the width of the diffuse scattering we extract values for a correlation length or size of the regions as a function of temperature. Finally, on the basis of the reciprocal lattice points around which the diffuse scattering is most intense, we conclude that the regions have tetragonal symmetry. The large increase in Bragg intensities at the first-order transition suggests that the polar regions freeze to form large structural domains and the transition is triggered by the percolation of strain fields through the crystals.

  3. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations.

    PubMed

    Eggeman, A S; London, A; Midgley, P A

    2013-11-01

    Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.

  4. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  5. Measuring and modeling diffuse scattering in protein X-ray crystallography

    PubMed Central

    Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Wall, Michael E.

    2016-01-01

    X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering. PMID:27035972

  6. Measuring and modeling diffuse scattering in protein X-ray crystallography

    DOE PAGES

    Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; ...

    2016-03-28

    X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practicesmore » for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. In conclusion, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.« less

  7. Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf

    In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less

  8. Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

    DOE PAGES

    Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf; ...

    2018-05-29

    In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less

  9. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.

    PubMed

    Chen, Chen; Florian, Klämpfl; Rajesh, Kanawade; Max, Riemann; Christian, Knipfer; Florian, Stelzle; Michael, Schmidt

    2015-09-30

    Diffuse reflection imaging could potentially be used to recover the superficial microvasculature under cutaneous tissue and the associated blood oxygenation status with a modified imaging resolution. The aim of this work is to deliver a new approach of local off-axis scanning diffuse reflection imaging, with the revisit of the modified Beer-Lambert Law (MBLL). To validate this, the system is used to recover the micron-scale subsurface vessel structure interiorly embedded in a skin equivalent tissue phantom. This vessel structure is perfused with oxygenated meta-hemoglobin solution. Our preliminary results confirm that the thin vessel structure can be mapped into a 2-D planar image. The distributions of oxygenated hemoglobin concentration ([Formula: see text]) and deoxygenated hemoglobin concentration ([Formula: see text]) can be co-registerated through the MBLL upon the CW spectroscopy, the scattering issue is addressed in the reformed MBLL. The recovered pattern matches to the estimation from the simultaneous optical coherence tomography studies. With further modification, this system may serve as the first prototype to investigate the superficial microvasculature in the expotential skin cancer loci, or a micro-lesion of vascular dermatosis.

  10. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  11. Thermal defect annealing of swift heavy ion irradiated ThO2

    NASA Astrophysics Data System (ADS)

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik

    2017-08-01

    Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  12. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  13. A diffuse radar scattering model from Martian surface rocks

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  14. A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.

    2016-12-01

    We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.

  15. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  16. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping.

    PubMed

    Hemphill, Ashton S; Shen, Yuecheng; Liu, Yan; Wang, Lihong V

    2017-11-27

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  17. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping

    NASA Astrophysics Data System (ADS)

    Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.

    2017-11-01

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  18. Quantum angular momentum diffusion of rigid bodies

    NASA Astrophysics Data System (ADS)

    Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus

    2017-12-01

    We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.

  19. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE PAGES

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    2018-02-21

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  20. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  1. Lensless digital holography with diffuse illumination through a pseudo-random phase mask.

    PubMed

    Bernet, Stefan; Harm, Walter; Jesacher, Alexander; Ritsch-Marte, Monika

    2011-12-05

    Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.

  2. Currents and Associated Electron Scattering and Bouncing Near the Diffusion Region at Earth's Magnetopause

    NASA Technical Reports Server (NTRS)

    Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.; hide

    2016-01-01

    Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).

  3. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  4. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    NASA Astrophysics Data System (ADS)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  5. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  6. Super-resolution photoacoustic microscopy using joint sparsity

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Haltmeier, M.; Berer, T.; Leiss-Holzinger, E.; Murray, T. W.

    2017-07-01

    We present an imaging method that uses the random optical speckle patterns that naturally emerge as light propagates through strongly scattering media as a structured illumination source for photoacoustic imaging. Our approach, termed blind structured illumination photoacoustic microscopy (BSIPAM), was inspired by recent work in fluorescence microscopy where super-resolution imaging was demonstrated using multiple unknown speckle illumination patterns. We extend this concept to the multiple scattering domain using photoacoustics (PA), with the speckle pattern serving to generate ultrasound. The optical speckle pattern that emerges as light propagates through diffuse media provides structured illumination to an object placed behind a scattering wall. The photoacoustic signal produced by such illumination is detected using a focused ultrasound transducer. We demonstrate through both simulation and experiment, that by acquiring multiple photoacoustic images, each produced by a different random and unknown speckle pattern, an image of an absorbing object can be reconstructed with a spatial resolution far exceeding that of the ultrasound transducer. We experimentally and numerically demonstrate a gain in resolution of more than a factor of two by using multiple speckle illuminations. The variations in the photoacoustic signals generated with random speckle patterns are utilized in BSIPAM using a novel reconstruction algorithm. Exploiting joint sparsity, this algorithm is capable of reconstructing the absorbing structure from measured PA signals with a resolution close to the speckle size. Another way to excite random excitation for photoacoustic imaging are small absorbing particles, including contrast agents, which flow through small vessels. For such a set-up, the joint-sparsity is generated by the fact that all the particles move in the same vessels. Structured illumination in that case is not necessary.

  7. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less

  8. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  9. Synchrotron X-ray diffuse scattering from a stable polymorphic material: terephthalic acid, C 8 H 6 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, D. J.; Chan, E. J.

    Terephthalic acid (TPA, C 8H 6O 4) is an industrially important chemical, one that shows polymorphism and disorder. Three polymorphs are known, two triclinic [(I) and (II)] and one monoclinic (III). Of the two triclinic polymorphs, (II) has been shown to be more stable in ambient conditions. This paper presents models of the local order of polymorphs (I) and (II), and compares the single-crystal diffuse scattering (SCDS) computed from the models with that observed from real crystals. TPA shows relatively weak and less-structured diffuse scattering than some other polymorphic materials, but it does appear that the SCDS is less wellmore » modelled by a purely harmonic model in polymorph (I) than in polymorph (II), according to the idea that the diffuse scattering is sensitive to anharmonicity that presages a structural phase transition. The work here verifies that displacive correlations are strong along the molecular chains and weak laterally, and that it is not necessary to allow the —COOH groups to librate to successfully model the diffuse scattering – keeping in mind that the data are from X-ray diffraction and not directly sensitive to H atoms.« less

  10. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  11. Multiple-scattering coefficients and absorption controlled diffusive processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-11-01

    Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.

  12. Using late arriving photons for diffuse optical tomography of biological objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proskurin, S G

    2011-05-31

    The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)

  13. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  14. Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering

    NASA Astrophysics Data System (ADS)

    Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.

    2010-02-01

    With the development of computer simulation methods there is, for the first time, the possibility of having a single general method that can be used for any diffuse scattering problem in any type of system. As computers get ever faster it is expected that current methods will become increasingly powerful and applicable to a wider and wider range of problems and materials and provide results in increasingly fine detail. In this article we discuss two contrasting recent examples. The first is concerned with the two polymorphic forms of the pharmaceutical compound benzocaine. The strong and highly structured diffuse scattering in these is shown to be symptomatic of the presence of highly correlated molecular motions. The second concerns Ag+ fast ion conduction in the pearceite/polybasite family of mineral solid electrolytes. Here Monte-Carlo simulation is used to model the diffuse scattering and gain insight into how the ionic conduction arises.

  15. Effect of the scattering delay on time-dependent photon migration in turbid media.

    PubMed

    Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J

    1997-09-01

    We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.

  16. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    PubMed

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  17. Physical properties and application in the confined geometrical systems

    NASA Astrophysics Data System (ADS)

    Pak, Hunkyun

    Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.

  18. X-Ray Diffuse Scattering Study of the Kinetics of Stacking Fault Growth and Annihilation in Boron-Implanted Silicon.

    NASA Astrophysics Data System (ADS)

    Patel, J. R.

    2002-06-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.

  19. Mechanisms of decoherence in electron microscopy.

    PubMed

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS Fibreoptic diffuse-light irradiators of biological tissues

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.

    2010-10-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.

  1. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less

  2. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGES

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...

    2015-11-23

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  3. Dynamic Displacement Disorder of Cubic BaTiO3

    NASA Astrophysics Data System (ADS)

    Paściak, M.; Welberry, T. R.; Kulda, J.; Leoni, S.; Hlinka, J.

    2018-04-01

    The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic approximation in the analysis of phonons and phonon-related scattering.

  4. Detection of the presence of Chlamydia trachomatis bacteria using diffusing wave spectroscopy with a small number of scatterers

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina

    2018-04-01

    Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.

  5. Milne problem for non-absorbing medium with extremely anisotropic scattering kernel in the case of specular and diffuse reflecting boundaries

    NASA Astrophysics Data System (ADS)

    Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.

    2018-01-01

    The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.

  6. Investigating Whistler Mode Wave Diffusion Coefficients at Mars

    NASA Astrophysics Data System (ADS)

    Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.

    2017-12-01

    Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.

  7. Interactions that know no boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).

  8. Interactions that know no boundaries

    DOE PAGES

    Wall, Michael E.

    2018-03-01

    Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).

  9. 3-Fluoro­benzoic acid–4-acetyl­pyridine (1/1) at 100 K

    PubMed Central

    Craig, Gavin A.; Thomas, Lynne H.; Adam, Martin S.; Ballantyne, Angela; Cairns, Andrew; Cairns, Stephen C.; Copeland, Gary; Harris, Clifford; McCalmont, Eve; McTaggart, Robert; Martin, Alan R. G.; Palmer, Sarah; Quail, Jenna; Saxby, Harriet; Sneddon, Duncan J.; Stewart, Graeme; Thomson, Neil; Whyte, Alex; Wilson, Chick C.; Parkin, Andrew

    2009-01-01

    In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one mol­ecule and the pyridine N atom of the other. The benzoic acid mol­ecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern. PMID:21581976

  10. Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2003-07-18

    We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.

  11. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juices

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Lu, Renfu

    2005-11-01

    Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.

  12. Particle Transport through Scattering Regions with Clear Layers and Inclusions

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume

    2002-08-01

    This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.

  13. Photon migration in non-scattering tissue and the effects on image reconstruction

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  14. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  15. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. [Rayleigh-Gans-Debye

    NASA Technical Reports Server (NTRS)

    Kottarchyk, M.; Chen, S.-H.; Asano, S.

    1979-01-01

    The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.

  16. Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media.

    PubMed

    Guo, Z; Kumar, S

    2000-08-20

    An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.

  17. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    NASA Astrophysics Data System (ADS)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  18. Intravascular lymphoma: magnetic resonance imaging correlates of disease dynamics within the central nervous system

    PubMed Central

    Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F

    2005-01-01

    Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442

  19. Modeling boundary measurements of scattered light using the corrected diffusion approximation

    PubMed Central

    Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.

    2012-01-01

    We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102

  20. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    NASA Astrophysics Data System (ADS)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  1. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  2. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  3. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    PubMed Central

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031

  4. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    PubMed

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  5. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  6. Angular intensity and polarization dependence of diffuse transmission through random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Rosenbluh, M.; Feund, I.

    1993-03-01

    A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.

  7. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  8. Regression approach to non-invasive determination of bilirubin in neonatal blood

    NASA Astrophysics Data System (ADS)

    Lysenko, S. A.; Kugeiko, M. M.

    2012-07-01

    A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.

  9. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  10. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  11. Diffusion limit of Lévy-Lorentz gas is Brownian motion

    NASA Astrophysics Data System (ADS)

    Magdziarz, Marcin; Szczotka, Wladyslaw

    2018-07-01

    In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.

  12. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  13. Multiple scattering of broadband terahertz pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Jeremiah Glen

    Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal phase of the radiation demonstrate that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect distinguishes photons that have been scattered only a few times from those that are propagating diffusively.

  14. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.

    PubMed

    Wall, Michael E

    2018-03-01

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structure to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.

  15. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  16. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.

    2018-01-25

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  17. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  18. Asymptotic radiance and polarization in optically thick media: ocean and clouds.

    PubMed

    Kattawar, G W; Plass, G N

    1976-12-01

    Deep in a homogeneous medium that both scatters and absorbs photons, such as a cloud, the ocean, or a thick planetary atmosphere, the radiance decreases exponentially with depth, while the angular dependence of the radiance and polarization is independent of depth. In this diffusion region, the asymptotic radiance and polarization are also independent of the incident distribution of radiation at the upper surface of the medium. An exact expression is derived for the asymptotic radiance and polarization for Rayleigh scattering. The approximate expression for the asymptotic radiance derived from the scalar theory is shown to be in error by as much as 16.4%. An exact expression is also derived for the relation between the diffusion exponent k and the single scattering albedo. A method is developed for the numerical calculation of the asymptotic radiance and polarization for any scattering matrix. Results are given for scattering from the haze L and cloud C3 distributions for a wide range of single scattering albedos. When the absorption is large, the polarization in the diffusion region approaches the values obtained for single scattered photons, while the radiance approaches the value calculated from the expression: phase function divided by (1 + kmicro), where micro is the cosine of the zenith angle. The asymptotic distribution of the radiation is of interest since it depends only on the inherent optical properties of the medium. It is, however, difficult to observe when the absorption is large because of the very low radiance values in the diffusion region.

  19. Propagation and transmission of optical vortex beams through turbid scattering wall with orbital angular momentums

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Gozali, Richard; Nguyen, Thien An; Alfano, R. R.

    2015-03-01

    Light scattering and transmission of optical Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) states in turbid scattering media were investigated in comparison with Gaussian (G) beam. The scattering media used in the experiments consist of various sizes and concentrations of latex beads in water solutions. The LG beams were generated using a spatial light modulator in reflection mode. The ballistic transmissions of LG and G beams were measured with different ratios of thickness of samples (z) to scattering mean free path (ls) of the turbid media, z/ls. The results show that in the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is large, LG beams show higher transmission than Gaussian beam. In the diffusive region, the LG beams with higher orbital angular momentum L values show higher transmission than the beams with lower L values. The transition points from ballistic to diffusive regions for different scattering media were studied and determined.

  20. Spin-scattering rates in metallic thin films measured by ferromagnetic resonance damping enhanced by spin-pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, C. T.; Shaw, J. M.; Nembach, H. T.

    2015-06-14

    We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less

  1. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Transient coherent anti-Stokes Raman scattering spectroscopy as a tool for measuring the diffusion coefficient and size of gas molecules

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergei Yu

    2009-07-01

    Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.

  2. Study of CCT varying by volume scattering diffuser with moving and rotating white light LED

    NASA Astrophysics Data System (ADS)

    Ma, Shih-Hsin; Chen, Liang-Shiun; Huang, Wen-Chao

    2014-09-01

    In this study, the corrected color temperature (CCT) of white light, which originates from a white light LED (WLLED) and passes through a volume-scattering diffuser (VSD), is investigated. The VSD with thickness of 2mm is fabricated by mixing the 2um-sized PMMA scattering particles and the epoxy glue with different concentration values. Moreover, in order to understand the influences of the illuminated area and the scattering path of VSD on CCT values, the bulletheaded and lambertian-type WLLEDs are assembled for different positions and distinct orientations along the optical axis in a black cavity. A detailed comparison between results regarding the white light with and without passing through the VSD is offered. The results of this research will help to improve the colorful consistency of the LED lamps which use diffusers.

  3. Simultaneously extracting multiple parameters via multi-distance and multi-exposure diffuse speckle contrast analysis

    PubMed Central

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-01-01

    Recent advancements in diffuse speckle contrast analysis (DSCA) have opened the path for noninvasive acquisition of deep tissue microvasculature blood flow. In fact, in addition to blood flow index αDB, the variations of tissue optical absorption μa, reduced scattering coefficients μs′, as well as coherence factor β can modulate temporal fluctuations of speckle patterns. In this study, we use multi-distance and multi-exposure DSCA (MDME-DSCA) to simultaneously extract multiple parameters such as μa, μs′, αDB, and β. The validity of MDME-DSCA has been validated by the simulated data and phantoms experiments. Moreover, as a comparison, the results also show that it is impractical to simultaneously obtain multiple parameters by multi-exposure DSCA (ME-DSCA). PMID:29082083

  4. Mode-converted diffuse ultrasonic backscatter.

    PubMed

    Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A

    2013-08-01

    Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.

  5. C-Phycocyanin Hydration Water Dynamics in the Presence of Trehalose: An Incoherent Elastic Neutron Scattering Study at Different Energy Resolutions

    PubMed Central

    Gabel, Frank; Bellissent-Funel, Marie-Claire

    2007-01-01

    We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998

  6. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  8. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    DOE PAGES

    Zhang, Steven S. -L.; Heinonen, Olle

    2018-04-02

    In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less

  9. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Heinonen, Olle

    In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less

  10. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  11. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Heinonen, Olle

    2018-04-01

    We study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does the TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004), 10.1103/PhysRevLett.93.096806]. We derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.

  12. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    NASA Astrophysics Data System (ADS)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  13. Dissolution Rates of Allophane, FE-Containing Allophane, and Hisingerite and Implications for Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Christoffersen, R.

    2018-01-01

    Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.

  14. Structure functions in decomposing CuRh systems

    NASA Astrophysics Data System (ADS)

    Prem, M.; Blaschko, O.; Rosta, L.

    1997-02-01

    The time evolution of a CuRh alloy quenched within the miscibility gap is investigated by small and wide angle neutron scattering techniques. Near fundamental Bragg reflections diffuse satellites arising from a lattice parameter modulation induced by the precipitation pattern are investigated. The results show that in CuRh the precipitation morphology and its time evolution are quite different from decomposition characteristics recently observed in the system AuPt. The results are discussed and related to the larger lattice misfit present in CuRh in comparison to AuPt.

  15. Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory.

    PubMed

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2016-09-15

    Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.

  16. X-ray Diffuse Scattering from Ultrafast Laser Excited Solids

    NASA Astrophysics Data System (ADS)

    Trigo, Mariano; Sheu, Yu-Miin; Chen, Jian; Reis, David; Fahy, Stephen; Murray, Eamonn; Graber, Timothy; Henning, Robert

    2009-03-01

    Intense, ultrashort laser pulses can be used to excite and detect coherent phonons in solids. However, optical experiments can only probe a reduced fraction of the Brillouin zone and hence most of the decay channels of such coherent phonons become invisible. In contrast, time-resolved x-ray diffuse scattering (TRXDS) has the potential to be the ultimate tool to study these phonon decay processes throughout the Brillouin-zone of the crystal. In our work, performed at the BioCARS beamline at the Advanced Photon Source, we use synchrotron time-resolved diffuse x-ray scattering to study Si and Bi under intense laser excitation with 100 ps resolution. We show that reasonable signal levels can be achieved with incident flux of 10^12 photons comparable to the flux that will be available at future 4th generation sources such as the LCLS in a single pulse. These sources will also provide three orders of magnitude shorter pulses; thus, this experiment serves as a test of the feasibility of time-resolved X-ray diffuse scattering as a tool for studying nonequilibrium phonon dynamics in solids.

  17. A review of light-scattering techniques for the study of colloids in natural waters

    USGS Publications Warehouse

    Rees, T.F.

    1987-01-01

    In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.

  18. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  19. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  20. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  1. Arnold diffusion for a complete family of perturbations

    NASA Astrophysics Data System (ADS)

    Delshams, Amadeu; Schaefer, Rodrigo G.

    2017-01-01

    In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H( p, q, I, φ, s) = p 2/2+ cos q - 1 + I 2/2 + h( q, φ, s; ɛ) — proving that for any small periodic perturbation of the form h( q, φ, s; ɛ) = ɛ cos q ( a 00 + a 10 cos φ + a 01 cos s) ( a 10 a 01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case ( I* π/2 μ, μ = a 10/ a 01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.

  2. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    NASA Astrophysics Data System (ADS)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field are not perceived differently from specular reflections; and (ii) the initial time delay gap is not significant to listener preference.

  3. Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion

    NASA Technical Reports Server (NTRS)

    Baring, M. G.; Ellison, D. C.; Jones, F. C.

    1995-01-01

    The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.

  4. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    PubMed

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  5. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  6. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  7. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  8. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  9. Optical vortex beam transmission with different OAM in scattering beads and brain tissue media

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.

    2016-03-01

    Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.

  10. A programmable metasurface with dynamic polarization, scattering and focusing control

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  11. A programmable metasurface with dynamic polarization, scattering and focusing control

    PubMed Central

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-01-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997

  12. A programmable metasurface with dynamic polarization, scattering and focusing control.

    PubMed

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-24

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  13. Use of cylindrical diffusing fibers as detectors for interstitial tissue spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.; Foster, Thomas H.

    2015-03-01

    Interstitial photodynamic therapy (iPDT) describes the use of implanted optical fibers for delivery of treatment light to activate photosensitizer in regions that can be located deep within the body. Since sensitive healthy structures are often located nearby, this requires careful treatment planning that is dependent on tissue optical properties. Determination of these values usually involves the insertion of additional fibers into the volume, or the use of flat-cleaved optical fibers as both treatment sources and detectors. The insertion of additional fibers is undesirable, and cylindrical diffusers have been shown to offer superior treatment characteristics compared to flat-cleaved fibers. Using cylindrical diffusers as detectors for spectroscopic measurement is therefore attractive. We describe the determination of the detection profile for a particular cylindrical diffuser design and derive the scatterer concentration gradient within the diffuser core. This detection profile is compared to previously characterized diffusers, and is shown to be dependent on the diffuser design. For diffusers with a constant scatterer concentration and distal mirror, the detection profile is localized to the proximal end of the diffusing region. For diffusers with variable scattering concentration along their length and no distal mirror, the detection profile is shown to be more uniform along the diffusing region. We also present preliminary results showing the recovery of optical properties using arrays of cylindrical diffusing fibers as sources and detectors, with a mean error of 4.4% in the determination of μeff. The accuracy of these results is comparable to those obtained with other methods of optical property recovery.

  14. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.

    2012-01-15

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less

  15. Dynamic Light Scattering Study of Pig Vitreous Body

    NASA Astrophysics Data System (ADS)

    Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko

    The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.

  16. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    NASA Astrophysics Data System (ADS)

    Purwins, H.-G.

    2008-03-01

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating "molecules" and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed.

  17. Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements

    NASA Astrophysics Data System (ADS)

    Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.

    2008-12-01

    Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.

  18. Multiple Light Scattering Probes of Soft Materials

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2007-02-01

    I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.

  19. Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Zylstra, Gregory J.

    1991-01-01

    A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.

  20. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  1. An empirical correction for moderate multiple scattering in super-heterodyne light scattering.

    PubMed

    Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas

    2017-05-28

    Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

  2. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    PubMed

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  3. Diffusing wave spectroscopy studies of gelling systems

    NASA Astrophysics Data System (ADS)

    Horne, David S.

    1991-06-01

    The recognition that the transmission of light through a concentrated, opaque system can be treated as a diffusion process has extended the application of photon correlation techniques to the study of particle size, mobility and interactions in such systems. Solutions of the photon diffusion equation are sensitive to the boundary conditions imposed by the geometry of the scattering apparatus. The apparatus, incorporating a bifurcated fiber optic bundle for light transmission between source, sample and detector, takes advantage of the particularly simple solution for a back-scattering configuration. Its ability to measure particle size using monodisperse polystyrene latices and to respond to concentration dependent particle interactions in a study of casein micelle mobility in skim and concentrated milks is demonstrated. Finally, the changes in dynamic light scattering behavior occurring during colloidal gel formation are described and discussed.

  4. Atmospheric scattering corrections to solar radiometry

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.

  5. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  6. Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60ṡC8H8

    NASA Astrophysics Data System (ADS)

    Bousige, Colin; Rols, Stéphane; Cambedouzou, Julien; Verberck, Bart; Pekker, Sándor; Kováts, Éva; Durkó, Gábor; Jalsovsky, István; Pellegrini, Éric; Launois, Pascale

    2010-11-01

    The dynamics of fullerene-cubane (C60ṡC8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the “rotor-stator” description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.

  7. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    DOE PAGES

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less

  8. Diffuse Scattering Investigations of Orientational Pair Potentials in C_60

    NASA Astrophysics Data System (ADS)

    Wochner, Peter

    1996-03-01

    Premonitory orientational fluctuations above the first order phase transition of C_60 at 260K have been studied by diffuse X-ray scattering experiments. These experiments probe the orientational pair correlations between C_60 molecules as a function of their separation and therefore the orientational pair potential. In addition to the diffuse scattering due to the orientational disorder of single molecules, we have observed zone boundary diffuse scattering at the X-points related to the Pabar 3 low temperature structure up to 300K. An additional set of diffuse peaks, which are even at room temperature comparable in intensity to the former ones, have been found at (0.5,0.5,0.5) positions (L-point). Similar results have recently been reported by P. Launois et al. (P. Launois, S. Ravy, R. Moret, PRB 52), 5414 (1995) and L. Pintschovius et al. (L. Pintschovius, S.L. Chaplot, G. Roth, G. Heger, PRL 75), 2843 (1995) The temperature dependence of the integrated intensity of both sets of diffuse peaks shows only a weak increase in approaching T_c, indicative of a strongly first order transition. Additional intensity with a very weak temperature dependence but similar correlation length has also been found at (0.5,0.5,0) and (0.5,0,0) positions. The diffuse intensity at the L, Σ and Δ points has probably its origin in competing phases which are not stabilized at low temperatures. Recent DSC measurements show close lying transitions at 260K with a separation of ~= 0.2-0.3K which might be related to these competing phases footnote J. Fischer, private communication. The data will be compared with model calculations using orientational pair potentials which have been used in literature to describe the orientational phase transition in C_60.

  9. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.

    PubMed

    Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David

    2017-12-13

    Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.

  10. Vibrational properties of nanocrystals from the Debye Scattering Equation

    DOE PAGES

    Scardi, P.; Gelisio, L.

    2016-02-26

    One hundred years after the original formulation by Petrus J.W. Debije (aka Peter Debye), the Debye Scattering Equation (DSE) is still the most accurate expression to model the diffraction pattern from nanoparticle systems. A major limitation in the original form of the DSE is that it refers to a static domain, so that including thermal disorder usually requires rescaling the equation by a Debye-Waller thermal factor. The last is taken from the traditional diffraction theory developed in Reciprocal Space (RS), which is opposed to the atomistic paradigm of the DSE, usually referred to as Direct Space (DS) approach. Besides beingmore » a hybrid of DS and RS expressions, rescaling the DSE by the Debye-Waller factor is an approximation which completely misses the contribution of Temperature Diffuse Scattering (TDS). The present work proposes a solution to include thermal effects coherently with the atomistic approach of the DSE. Here, a deeper insight into the vibrational dynamics of nanostructured materials can be obtained with few changes with respect to the standard formulation of the DSE, providing information on the correlated displacement of vibrating atoms.« less

  11. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lütgebaucks, Cornelis; Gonella, Grazia; Roke, Sylvie

    2016-11-01

    The electrostatic environment of aqueous systems is an essential ingredient for the function of any living system. To understand the electrostatic properties and their molecular foundation in soft, living, and three-dimensional systems, we developed a table-top model-free method to determine the surface potential of nano- and microscopic objects in aqueous solutions. Angle-resolved nonresonant second harmonic (SH) scattering measurements contain enough information to determine the surface potential unambiguously, without making assumptions on the structure of the interfacial region. The scattered SH light that is emitted from both the particle interface and the diffuse double layer can be detected in two different polarization states that have independent scattering patterns. The angular shape and intensity are determined by the surface potential and the second-order surface susceptibility. Calibrating the response with the SH intensity of bulk water, a single, unique surface potential value can be extracted. We demonstrate the method with 80 nm bare oil droplets in water and ˜50 nm dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) liposomes at various ionic strengths.

  12. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface.

    PubMed

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-02-08

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements "00", "01", "10", and "11", respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source.

  13. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface

    PubMed Central

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-01-01

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements “00”, “01”, “10”, and “11”, respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source. PMID:28176870

  14. Interior radiances in optically deep absorbing media. III Scattering from Haze L

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1975-01-01

    The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium.

  15. Diffusive transport of several hundred keV electrons in the Earth's slot region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.

    2017-12-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  16. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.

    2017-10-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  17. Diffusion mechanism in the sodium-ion battery material sodium cobaltate.

    PubMed

    Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P

    2018-02-16

    High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.

  18. Self-organized broadband light trapping in thin film amorphous silicon solar cells.

    PubMed

    Martella, C; Chiappe, D; Delli Veneri, P; Mercaldo, L V; Usatii, I; Buatier de Mongeot, F

    2013-06-07

    Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.

  19. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  20. Diffusion in translucent media.

    PubMed

    Shi, Zhou; Genack, Azriel Z

    2018-05-10

    Diffusion is the result of repeated random scattering. It governs a wide range of phenomena from Brownian motion, to heat flow through window panes, neutron flux in fuel rods, dispersion of light in human tissue, and electronic conduction. It is universally acknowledged that the diffusion approach to describing wave transport fails in translucent samples thinner than the distance between scattering events such as are encountered in meteorology, astronomy, biomedicine, and communications. Here we show in optical measurements and numerical simulations that the scaling of transmission and the intensity profiles of transmission eigenchannels have the same form in translucent as in opaque media. Paradoxically, the similarities in transport across translucent and opaque samples explain the puzzling observations of suppressed optical and ultrasonic delay times relative to predictions of diffusion theory well into the diffusive regime.

  1. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    NASA Astrophysics Data System (ADS)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  2. Photon diffusion coefficient in scattering and absorbing media.

    PubMed

    Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi

    2006-05-01

    We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.

  3. From Philharmonic Hall to number theory: The way to more diffusion

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred R.

    2005-09-01

    In September 1962, in the presence of Mrs. Jacqueline Kennedy, Philharmonic Hall in New York was inaugurated-the first building of the new Lincoln Center for the Performing Arts. To address the soon-apparent acoustic problems, Lincoln Center turned to Bell Laboratories for help, and I was asked to join a ``committee of experts,'' chaired by Vern O. Knudsen of UCLA. My work on Philharmonic Hall, assisted by B.S. Atal, G.M. Sessler, and J.E. West, and later, after my move to Göttingen, by my students D. Gottlob, F.K. Siebrasse, and U. Eysholdt, indicated a need for energetic early lateral sound. It was clear that better lateral diffusion could improve the acoustic quality and the feeling of ``envelopment'' by the sound. Knowing some Galois field mathematics, I lucked upon the design of diffusors which scattered incident waves into broad lateral patterns-but only for a single musical octave. Then, in 1977, during a celebration of the 200th anniversary of Gauss's birth, I heard a talk by André Weil on Gauss sums and quadratic residues and, in a flash, it became clear to me that diffusors based on quadratic residues were the answer to broadly scattering waves comprising many musical octaves.

  4. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  5. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  6. An investigation of light transport through scattering bodies with non-scattering regions.

    PubMed

    Firbank, M; Arridge, S R; Schweiger, M; Delpy, D T

    1996-04-01

    Near-infra-red (NIR) spectroscopy is increasingly being used for monitoring cerebral oxygenation and haemodynamics. One current concern is the effect of the clear cerebrospinal fluid upon the distribution of light in the head. There are difficulties in modelling clear layers in scattering systems. The Monte Carlo model should handle clear regions accurately, but is too slow to be used for realistic geometries. The diffusion equation can be solved quickly for realistic geometries, but is only valid in scattering regions. In this paper we describe experiments carried out on a solid slab phantom to investigate the effect of clear regions. The experimental results were compared with the different models of light propagation. We found that the presence of a clear layer had a significant effect upon the light distribution, which was modelled correctly by Monte Carlo techniques, but not by diffusion theory. A novel approach to calculating the light transport was developed, using diffusion theory to analyze the scattering regions combined with a radiosity approach to analyze the propagation through the clear region. Results from this approach were found to agree with both the Monte Carlo and experimental data.

  7. Intermediate scattering function of an anisotropic active Brownian particle

    PubMed Central

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-01-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719

  8. Intermediate scattering function of an anisotropic active Brownian particle.

    PubMed

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-10

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  9. Intermediate scattering function of an anisotropic active Brownian particle

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  10. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    PubMed Central

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  11. Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-12-15

    We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.

  12. COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan

    2015-09-20

    Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  13. Enhancing scattering images for orientation recovery with diffusion map

    DOE PAGES

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  14. Parallel heterodyne detection of dynamic light-scattering spectra from gold nanoparticles diffusing in viscous fluids.

    PubMed

    Atlan, Michael; Desbiolles, Pierre; Gross, Michel; Coppey-Moisan, Maïté

    2010-03-01

    We developed a microscope intended to probe, using a parallel heterodyne receiver, the fluctuation spectrum of light quasi-elastically scattered by gold nanoparticles diffusing in viscous fluids. The cutoff frequencies of the recorded spectra scale up linearly with those expected from single-scattering formalism in a wide range of dynamic viscosities (1 to 15 times water viscosity at room temperature). Our scheme enables ensemble-averaged optical fluctuations measurements over multispeckle recordings in low light, at temporal frequencies up to 10 kHz, with a 12 Hz framerate array detector.

  15. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.

  16. Soret forced Rayleigh scattering instrument for simultaneous detection of two-wavelength signals to measure Soret coefficient and thermodiffusion coefficient in ternary mixtures

    NASA Astrophysics Data System (ADS)

    Matsuura, H.; Nagasaka, Y.

    2018-02-01

    We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).

  17. Modeling of Outer Radiation Belt Electron Scattering due to Spatial and Spectral Properties of ULF Waves

    NASA Astrophysics Data System (ADS)

    Tornquist, Mattias

    The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift frequency within the spectral band via dynamic phases. Each mode contributes maximally at a phase reset frequency fr = 2.63fk, where fk is the mode frequency. We experiment with electron diffusion due to interaction with wave broadband spectra in MLT sectors and find the phase reset effect being strongest when there is no azimuthal wave vector (msec = 0) within the sector. DLL rapidly coheres to the local PSD as the wave number increases and, for example, at msec = 1.00+/-0.25 the effect of phase resets is only 10-30% as strong as for msec = 0. Since phase resets depend on particle drift frequencies when MLT sectors are involved, a consequence is that DLL must adjust as a function of L-shell as well. For example, from the local PSD as the sole contributor to diffusion Schulz and Lanzerotte (1979) has shown that DLL ˜ L6 , but we prove that the function becomes DLL ˜ L5 with some variations due to fd and MLT sector width. The final part of this dissertation evaluates a pre storm commencement event on November 7, 2004, when Earth's magnetopause was struck by a high-speed solar wind with a mostly northward component of interplanetary magnetic field. We obtained a global MHD field simulated by the OpenGGC model for the interval 17:00-18:40 in universal time from NASA's Community Coordinated Modeling Center. Global distribution plots of the electric and magnetic field PSD reveal strong ULF waves spanning the whole dayside sector. There are distinct electric field modes at approximately 0.9, 2.3 and 3.7-6.3 mHz within the dayside sector, which we then used in test-particle simulations and the variance calculations in order to evaluate the diffusion coefficients. To ensure diffusion by sufficient stochasticity, we run the event by repeating the interval 10 times in series for a total duration of 12 hours. For the wave electric fields, the predicted diffusion coefficient due to local PSD matches the outcome from simulated electron scattering at 0.9 and 2.3 mHz. The diffusion due to the wider frequency band at 3.7-6.3 mHz does not fit the PSD profile alone, and requires phase resets in non-resonant modes within the spectrum to yield an agreement between the calculations and the simulations. Furthermore, only msec = 1 provides the correct solution. We have thus demonstrated the importance in including both the MLT sector width and wave number as additional significant factors apart from the local PSD in determining the diffusion coefficient for a realistic wave field. (Abstract shortened by UMI.).

  18. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    Efforts in measuring, analyzing, and mathematically modeling the specular, polarized, and diffuse light scattering properties of several plant canopies and their component parts (leaves, stems, fruit, soil) as a function of view angle and illumination angle are reported. Specific objectives were: (1) to demonstrate a technique for determining the specular and diffuse components of the reflectance factor of plant canopies; (2) to acquire the measurements and begin assembling a data set for developing and testing canopy reflectance models; (3) to design and build a new optical instrument to measure the light scattering properties of individual leaves; and (4) to use this instrument to survey and investigate the information in the light scattering properties of individual leaves of crops, forests, weeds, and horticulture.

  19. Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001

    NASA Astrophysics Data System (ADS)

    Handwerg, M.; Mitdank, R.; Galazka, Z.; Fischer, S. F.

    2016-12-01

    The monoclinic crystal structure of β-{{Ga}}2{{{O}}}3 leads to significant anisotropy of the thermal properties. The 2ω-method is used to measure the thermal diffusivity D in [010] and [001] direction respectively and to determine the thermal conductivity values λ of the [100], [010] and [001] direction from the same insulating Mg-doped β-{{Ga}}2{{{O}}}3 single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of {D}[010]/{D}[001]={λ }[010]/{λ }[001]=1.4+/- 0.1. The temperature dependence is in accord with phonon-phonon-Umklapp-scattering processes from 300 K down to 150 K. Below 150 K point-defect-scattering lowers the estimated phonon-phonon-Umklapp-scattering values.

  20. Diffusing-wave polarimetry for tissue diagnostics

    NASA Astrophysics Data System (ADS)

    Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor

    2014-03-01

    We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.

  1. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.

    2012-05-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.

  2. Structure and Bonding in Noncrystalline Solids Abstracts

    DTIC Science & Technology

    1983-06-02

    displacement cascades are unlikely. Related damage studies as diffuse X- ray scattering, magnetic susceptibility and positron - annihilation lifetime...the positron annihilation lifetime data; diffuse X-ray scattering studies give evidence for "amorphized" clusters in neutron but not in elec-ron...feldspar glasses and glasses in the system CaO- MgO -SiO 2 . These results indicate that the nearest-neighbor and next- nearest-neighbor environments are very

  3. Optical Interactions at Randomly Rough Surfaces

    DTIC Science & Technology

    2003-03-10

    frequency range. The design of a random surface that acts as a Lambertian diffuser, especially in the infrared region of the optical spectrum, is...FTIR grazing angle microscopy. Recently, an experimental study was performed of the far-field scattering at small grazing angles, especially the enhanced...a specular component in the scattered light, in this frequency range. The design of a random surface that acts as a Lambertian diffuser, especially in

  4. Fréchet derivative with respect to the shape of a strongly convex nonscattering region in optical tomography

    NASA Astrophysics Data System (ADS)

    Hyvönen, Nuutti

    2007-10-01

    The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.

  5. Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon

    NASA Astrophysics Data System (ADS)

    Horng, S. T.; Goorsky, M. S.

    1996-03-01

    High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.

  6. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2017-09-29

    Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less

  7. Influence of Liquid Structure on Fickian Diffusion in Binary Mixtures of n-Hexane and Carbon Dioxide Probed by Dynamic Light Scattering, Raman Spectroscopy, and Molecular Dynamics Simulations.

    PubMed

    Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul

    2018-06-11

    This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.

  8. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  9. Quasielastic neutron scattering in biology: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less

  10. Quasielastic neutron scattering in biology: Theory and applications

    DOE PAGES

    Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu; ...

    2016-06-15

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less

  12. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  13. Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.

  14. Evaluation of the telegrapher's equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab.

    PubMed

    Kong, Steven H; Shore, Joel D

    2007-03-01

    We study the propagation of light through a medium containing isotropic scattering and absorption centers. With a Monte Carlo simulation serving as the benchmark solution to the radiative transfer problem of light propagating through a turbid slab, we compare the transmission and reflection density computed from the telegrapher's equation, the diffusion equation, and multiple-flux theories such as the Kubelka-Munk and four-flux theories. Results are presented for both normally incident light and diffusely incident light. We find that we can always obtain very good results from the telegrapher's equation provided that two parameters that appear in the solution are set appropriately. We also find an interesting connection between certain solutions of the telegrapher's equation and solutions of the Kubelka-Munk and four-flux theories with a small modification to how the phenomenological parameters in those theories are traditionally related to the optical scattering and absorption coefficients of the slab. Finally, we briefly explore how well the theories can be extended to the case of anisotropic scattering by multiplying the scattering coefficient by a simple correction factor.

  15. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    NASA Astrophysics Data System (ADS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.

    2013-07-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.

  16. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  17. Coherent X-ray Scattering from Liquid-Air Interfaces

    NASA Astrophysics Data System (ADS)

    Shpyrko, Oleg

    Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.

  18. Structural Investigations of Fibers and Films of Poly(p-phenylene benzobisthiazole). Volume 1

    DTIC Science & Technology

    1982-05-01

    differential scanning calorimetry, is unrelated to the diffuse scattered intensity [45]. Cellulose acetate which is known to be noncrystalline exhibits a high...Weidinger [45] found the diffuse scattered intensity increased with decreasing density and therefore, increasing void fraction, in air swollen cellulose ... Cellulose , and Poly(y-Benzyl-L-Glutamate)." J. Polym. Sci., Polym. Phys. Ed., 18, 663-682 (1980). 39. C.H. Kao and J.M. Ottino, personal communication

  19. Invariance property of wave scattering through disordered media

    PubMed Central

    Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan

    2014-01-01

    A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671

  20. RAPID COMMUNICATION: Diffusion thermopower in graphene

    NASA Astrophysics Data System (ADS)

    Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.

    2010-09-01

    The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.

  1. Cloaks for suppression or enhancement of scattering of diffuse photon density waves

    NASA Astrophysics Data System (ADS)

    Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2018-07-01

    Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.

  2. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  3. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  4. Modelling the diffuse dust emission around Orion

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti

    2018-06-01

    We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.

  5. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  6. Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.

    Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.

  7. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  8. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  9. Determining biological tissue optical properties via integrating sphere spatial measurements

    DOEpatents

    Baba, Justin S [Knoxville, TN; Letzen, Brian S [Coral Springs, FL

    2011-01-11

    An optical sample is mounted on a spatial-acquisition apparatus that is placed in or on an enclosure. An incident beam is irradiated on a surface of the sample and the specular reflection is allowed to escape from the enclosure through an opening. The spatial-acquisition apparatus is provided with a light-occluding slider that moves in front of the sample to block portions of diffuse scattering from the sample. As the light-occluding slider moves across the front of the sample, diffuse light scattered into the area of the backside of the light-occluding slider is absorbed by back side surface of the light-occluding slider. By measuring a baseline diffuse reflectance without a light-occluding slider and subtracting measured diffuse reflectance with a light-occluding slider therefrom, diffuse reflectance for the area blocked by the light-occluding slider can be calculated.

  10. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    PubMed

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.

  11. Unsupervised classification of scattering behavior using radar polarimetry data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.

    1989-01-01

    The use of an imaging radar polarimeter data for unsupervised classification of scattering behavior is described by comparing the polarization properties of each pixel in a image to that of simple classes of scattering such as even number of reflections, odd number of reflections, and diffuse scattering. For example, when this algorithm is applied to data acquired over the San Francisco Bay area in California, it classifies scattering by the ocean as being similar to that predicted by the class of odd number of reflections, scattering by the urban area as being similar to that predicted by the class of even number of reflections, and scattering by the Golden Gate Park as being similar to that predicted by the diffuse scattering class. It also classifies the scattering by a lighthouse in the ocean and boats on the ocean surface as being similar to that predicted by the even number of reflections class, making it easy to identify these objects against the background of the surrounding ocean. The algorithm is also applied to forested areas and shows that scattering from clear-cut areas and agricultural fields is mostly similar to that predicted by the odd number of reflections class, while the scattering from tree-covered areas generally is classified as being a mixture of pixels exhibiting the characteristics of all three classes, although each pixel is identified with only a single class.

  12. Diffusion of Small Sticky Nanoparticles in a Polymer Melt: A Dynamic Light Scattering Study

    NASA Astrophysics Data System (ADS)

    Carroll, Bobby; Bocharova, Vera; Cheng, Shiwang; Yamamoto, Umi; Kisliuk, Alex; Schweizer, Ken; Sokolov, Alexei

    The study of dynamics in complex fluids such as polymers has gained a broad interest in advanced materials and biomedical applications. Of particular interest is the motion of nanoparticles in these systems, which influences the mechanical and structural properties of composite materials, properties of colloidal systems, and biochemical processes in biological systems. Theoretical work predicts a violation of Stokes-Einstein (SE) relationship for diffusion of small nanoparticles in strongly-entangled polymer melt systems, with diffusion of nanoparticles much faster than expected DSE. It is attributed to differences between local and macroscopic viscosity. In this study, the diffusion of nanoparticles in polymer melts below and above entanglement molecular weight is measured using dynamic light scattering. The measured results are compared with simulations that provide quantitative predictions for SE violations. Our results are two-fold: (1) diffusion at lower molecular weights is slower than expected DSE due to chain absorption; and (2) diffusion becomes much (20 times) faster than DSE, at higher entanglements due to a reduced local viscosity.

  13. Surface diffusion of cyclic hydrocarbons on nickel

    NASA Astrophysics Data System (ADS)

    Silverwood, I. P.; Armstrong, J.

    2018-08-01

    Surface diffusion of adsorbates is difficult to measure on realistic systems, yet it is of fundamental interest in catalysis and coating reactions. quasielastic neutron scattering (QENS) was used to investigate the diffusion of cyclohexane and benzene adsorbed on a nickel metal sponge catalyst. Molecular dynamics simulations of benzene on a model (111) nickel surface showed localised motion with diffusion by intermittent jumps. The experimental data was therefore fitted to the Singwi-Sjölander model and activation energies for diffusion of 4.0 kJ mol-1 for benzene and 4.3 kJ mol-1 for cyclohexane were calculated for the two dimensional model. Limited motion out-of plane was seen in the dynamics simulations and is discussed, although the resolution of the scattering experiment is insufficient to quantify this. Good agreement is seen between the use of a perfect crystal as a model for a disordered system over short time scales, suggesting that simple models are adequate to describe diffusion over polycrystalline metal surfaces on the timescale of QENS measurement.

  14. Light scattering properties of new materials for glazing applications

    NASA Astrophysics Data System (ADS)

    Bergkvist, Mikael; Roos, Arne

    1991-12-01

    Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.

  15. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  16. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  17. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  18. Computation of the intensities of parametric holographic scattering patterns in photorefractive crystals.

    PubMed

    Schwalenberg, Simon

    2005-06-01

    The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.

  19. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    DOE PAGES

    Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; ...

    2016-12-05

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less

  20. Fresnel zone considerations for reflection and scatter from refractive index irregularities

    NASA Technical Reports Server (NTRS)

    Doviak, R. J.; Zrnic, D. S.

    1983-01-01

    Several different echoing mechanisms are proposed to explain VHF/UHF scatter from clear air; (1) anisotropic scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account for the spatial (angle and range) and temporal dependence of the echoes. The term diffuse reflection describes the echoing mechanism when both scatter and reflection coexist. A unifying formulation is presented incorporating a statistical approach that embraces all mechanisms the above mechanisms and gives conditions under which reflection or scatter dominates. A distinction between Fraunhofer and Fresnel scatter and a criterion is presented under which Fresnel scatter is important.

  1. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  2. Survey of upper band chorus and ECH waves: Implications for the diffuse aurora

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel; Horne, Richard; Thorne, Richard; Anderson, Roger

    2010-05-01

    The origin of the diffuse aurora has been a source of controversy for many years. More recently the question has taken a new significance in view of the associated changes in atmospheric chemistry which may affect the middle atmosphere. Here we use CRRES data to assess the importance of upper band chorus and electron cyclotron harmonic (ECH) waves in the production of the diffuse aurora. Both wave modes increase with increasing geomagnetic activity, suggesting they are related to periods of enhanced convection and/or substorm activity. They are confined to the near-equatorial region which excludes the pre-noon sector from the wave survey. During active conditions intense ECH waves and upper band chorus, with amplitudes exceeding 1 mVm-1, are observed in the region 4 < L < 7 from 2100 to 0600 MLT approximately 20% and 6% of the time respectively. This suggests that both wave modes can put electrons on strong diffusion, but only during active conditions and not at all local times. Scattering rates fall below the strong diffusion limit at other times when the wave amplitudes are weaker. Fluxes of low energy electrons (100 eV < E < 30 keV) also increase with increasing geomagnetic activity in approximately the same region of geospace as the waves, suggesting that these electrons are responsible for the generation of the waves. The patterns of the upper band chorus, ECH waves and low energy electrons are similar to the global morphology of the diffuse aurora, suggesting that both wave modes play significant roles in the production of the diffuse aurora.

  3. Generalized Landauer equation: Absorption-controlled diffusion processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-05-01

    The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes.

  4. Self-Consistent Drift-Diffusion Transport in Thermoelectrics and Implications for Measuring the Scattering Parameter

    NASA Astrophysics Data System (ADS)

    Santhanam, Parthiban; Ram, Rajeev J.

    2010-09-01

    We present a microscopic model of the Seebeck effect based on a generalized drift-diffusion equation and use it to predict a simple relationship between the electric field within an operating thermoelectric and the scattering parameter. Our model replicates existing theoretical results and permits an intuitive spatial picture of the Seebeck effect. A similar formalism was independently developed by Cai and Mahan, but this work includes numerical results for high dopant concentrations where the thermoelectric power factor is maximized. Based on these results, we propose that measurement of the bulk electric field should constitute a measurement of the scattering parameter, the improvement of which could lead to greater thermoelectric efficiency.

  5. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    NASA Astrophysics Data System (ADS)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  6. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  7. Characterization of target camouflage structures by means of different microwave imaging procedures

    NASA Astrophysics Data System (ADS)

    Inaebnit, Christian; John, Marc-Andre; Aulenbacher, Uwe; Akyol, Zeynrep; Hueppi, Rudolf; Wellig, Peter

    2009-05-01

    This paper presents two different test methods for camouflage layers (CL) like nets or foam based structures. The effectiveness of CL in preventing radar detection and recognition of targets depends on the interaction of CL properties as absorption and diffuse scattering with target specific scattering properties. This fact is taken into account by representing target backscattering as interference of different types of GTD contributions and evaluating the impact of CL onto these individual contributions separately. The first method investigates how a CL under test alters these individual scattering contributions and which "new" contributions are produced by "self-scattering" at the CL. This information is gained by applying ISAR imaging technique to a test structure with different types of scattering contributions. The second test method aims for separating the effects of absorption and "diffuse scattering" in case of a planar metallic plate covered by CL. For this, the equivalent source distribution in the plane of the CL is reconstructed from bistatic scattering data. Both test methods were verified by experimental results obtained from X-band measurements at different CL and proved to be well suited for an application specific evaluation of camouflage structures from different manufacturers.

  8. Interior radiances in optically deep absorbing media. 3: Scattering from Haze L

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1974-01-01

    The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium. The heating rate is calculated and found to have a maximum value at an optical depth of two within a Haze L layer when the sun is at the zenith.

  9. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  10. Ion Beam Analysis of Diffusion in Diamondlike Carbon Films

    NASA Astrophysics Data System (ADS)

    Chaffee, Kevin Paul

    The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.

  11. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles

    NASA Astrophysics Data System (ADS)

    Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-01

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.

  12. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes

    NASA Astrophysics Data System (ADS)

    Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri

    2010-03-01

    An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.

  13. Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.

    Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less

  14. Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering

    DOE PAGES

    Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...

    2017-04-27

    Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less

  15. Coupling of light into the fundamental diffusion mode of a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.

    2016-03-01

    Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.

  16. Diffusive charge transport in graphene on SiO 2

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  17. Multiple Scattering in Random Mechanical Systems and Diffusion Approximation

    NASA Astrophysics Data System (ADS)

    Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun

    2013-10-01

    This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.

  18. Diffusive-light invisibility cloak for transient illumination

    NASA Astrophysics Data System (ADS)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  19. Laser light scattering from wood samples soaked in water or in benzyl benzoate

    NASA Astrophysics Data System (ADS)

    Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.

    Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.

  20. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.

  1. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    PubMed

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  2. Dynamics of lipid saccharide nanoparticles by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Di Bari, M. T.; Gerelli, Y.; Sonvico, F.; Deriu, A.; Cavatorta, F.; Albanese, G.; Colombo, P.; Fernandez-Alonso, F.

    2008-04-01

    Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H 2O hydrated nanoparticles ( h = 0.47 w H 2O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.

  3. Surface phononic graphene

    NASA Astrophysics Data System (ADS)

    Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng

    2016-12-01

    Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.

  4. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  5. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  6. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  7. Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations.

    PubMed

    Ahmad, Shaista; Das, Subir K; Puri, Sanjay

    2012-03-01

    Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.

  8. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-05-03

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  9. Effect of Al doping on thermoelectric power of Mg1-xAlxB2 phonon drag and carrier diffusion contribution

    NASA Astrophysics Data System (ADS)

    Singh, Namita; Sharma, Roopam; Khenata, R.; Varshney, Dinesh

    2018-05-01

    The carrier diffusion contribution to the thermoelectric power (Scdiff) is calculated for MgB2, Mg0.9A10.1B2 and drag Mg0.8Al0.2B2 within two energy gap method. The phonon drag thermoelectric power (Sphdrag) in normal state dominate and is an artifact of strong phonon-impurity and phonon scattering mechanism. The conductivity within the relaxation time approximation for π and σ band carriers has been taken into account ignoring a possible energy dependence of the scattering rates. Both these channels for heat transfer are clubbed to get total thermoelectric power (Stotal) which starts departing from linear temperature dependence at about 150 K, before increasing at higher temperatures weakly. The anomalies reported are well accounted in terms of the scattering mechanism by phonon drag and carrier scattering with impurities, shows similar results as those revealed from experiments.

  10. Self-consistent approach to the solution of the light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering.

    PubMed

    Haltrin, V I

    1998-06-20

    A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.

  11. The Western Hemisphere of Venus: 3.5 CM Dual Circular-Polarization Radar Images

    NASA Astrophysics Data System (ADS)

    Haldemann, Albert F. C.; Muhleman, Duane O.; Butler, Bryan J.; Slade, Martin A.

    1997-08-01

    We present new dual circular-polarization radar maps of the western hemisphere of Venus. The results are from a 1993 experiment imaging Venus with 3.5 cm radar. Continuous-wave right circularly polarized flux was transmitted toward Venus from the 70 m Deep Space Network antenna in Goldstone, California. The echo was received in both the same sense (SS) and the opposite sense (OS) of circular polarization at the Very Large Array in New Mexico. By spatially reconstructing the echo with the interferometer, maps of Venusian radar albedo were made for each of two days of observation in both OS (echo principally due to specular reflection) and SS (diffuse echo) channels. On both days, the sub-earth longitude was near 300 E. The SS maps are dominated by a significant component of diffuse backscatter from the 285 E longitude highlands: Beta, Phoebe, and Themis Regiones. Beta Regio includes radar-anomalous regions with high reflectivity and low emissivity. The nature of these altitude-related electrical properties on Venus is one of the outstanding surface process questions that remain after Magellan. Our experiment adds the first full-disk polarization ratio (μc) maps to the discussion. The data show that different geology determines different radar scattering properties within Beta. Diffuse scattering is very important in Beta, and may be due to either surface or volume scattering. We find a strong correlation of the SS albedo σSSwith altitudeRp(km) in Beta, σSS∝ 0.3Rp. Also, σOS∝ 0.7Rp. The onset of this relationship is at theRp∼ 6054 km planetary radius contour. The nature and morphology of the highland radar anomalies in Beta is consistent with a diffuse scattering mechanism. In Beta Regio we find μc> 0.5 in general, with μcas high as 0.8 between Rhea and Theia Montes, to the west of Devana Chasma. These values are compatible with measurements of blocky terrestrial lava flows if surface scattering dominates. If volume scattering is important, the high RCP cross-sections may indicate an important decrease in embedded scatterer size with altitude, which could be related to enhanced weathering.

  12. On the design of experiments for determining ternary mixture free energies from static light scattering data using a nonlinear partial differential equation

    PubMed Central

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2012-01-01

    We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)10.1063/1.2937902], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two minutes of measurement time is, in principle, sufficient to determine the dimensionless mixing free energy of a non-associating ternary mixture to within an integrated error norm of 0.003. These findings establish a quantitative framework for designing light scattering experiments to determine the Gibbs free energy of ternary liquid mixtures. PMID:22830693

  13. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.

  14. Non-Local Diffusion of Energetic Electrons during Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  15. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  16. Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

    NASA Astrophysics Data System (ADS)

    Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán

    2018-05-01

    Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.

  17. An optically transparent metasurface for broadband microwave antireflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhang, Cheng; Cheng, Qiang; Yang, Jin; Cui, Tie Jun

    2018-02-01

    Metamaterial absorbers and diffusers provide powerful routes to decrease the backward reflection significantly with advantages of ultrathin profile and customized bandwidth. Simultaneous control of the absorption and scattering behaviors of the metamaterials which helps to improve the suppression capabilities of backward reflection, however, still remains a challenge. Aiming at this goal, we propose a metasurface constituted by two kinds of elements in a pseudorandom arrangement. By the use of indium tin oxide with moderate sheet resistance in the meta-atoms, enhanced absorption of energy can be achieved in a broad spectrum when interacted with illuminated waves. In the meanwhile, electromagnetic diffusion will be invoked from the destructive interference among the elements, giving rise to significant reduction of specular reflection as a result. Excellent agreements are observed between simulation and experiment with pronounced reflection suppression from 6.8 GHz to 19.4 GHz. In addition, the optical transparence of the patterns and substrates makes the proposed metasurface a promising candidate for future applications like photovoltaic solar cells and electromagnetic shielding glasses.

  18. Thirty years since diffuse sound reflection by maximum length

    NASA Astrophysics Data System (ADS)

    Cox, Trevor J.; D'Antonio, Peter

    2005-09-01

    This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.

  19. Electronic Holography with a Broad Spectrum Laser for Time Gated Imaging Through Highly Scattering Media.

    NASA Astrophysics Data System (ADS)

    Shih, Marian Pei-Ling

    The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.

  20. Dynamics in the Plastic Crystalline Phases of Cyclohexanol and Cyclooctanol Studied by Quasielastic Neutron Scattering.

    PubMed

    Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M

    2018-06-01

    Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.

  1. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  2. UHV-TEM-REM Studies of Si(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.

    Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.

  3. Separating non-diffuse component from ambient seismic noise cross-correlation in southern California­­

    NASA Astrophysics Data System (ADS)

    Liu, X.; Beroza, G. C.; Nakata, N.

    2017-12-01

    Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.

  4. LASER BIOLOGY AND MEDICINE: Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    NASA Astrophysics Data System (ADS)

    Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.

    2002-11-01

    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.

  5. Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation

    NASA Astrophysics Data System (ADS)

    Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko

    1995-07-01

    The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.

  6. From average to local structure: a Rietveld and an atomic pair distribution function (PDF) study of selenium clusters in zeolite-NdY.

    PubMed

    Abeykoon, A M Milinda; Donner, Wolfgang; Brunelli, Michela; Castro-Colin, Miguel; Jacobson, Allan J; Moss, Simon C

    2009-09-23

    The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.

  7. An algorithm for localization of optical disturbances in turbid media using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.

  8. Limits to Maximum Absorption Length in Waveguide Photodiodes

    DTIC Science & Technology

    2011-04-13

    InGaAsP to InGaAs graded layer (35 nm), a very thin undoped InGaAs absorber layer (20 nm), a p- InP cla~din~ layer (1 J.Lm, Zn = 1x1018 em·\\ a p- InP ...expected excess opticall_oss results from non-ideal coupling, excess waveguide scattering, Zn diffusion from the p-doped InP , larger than...waveguide scattering, Zn diffusion from the p-doped InP , n-doped region absorption, or a combination of the above. The SCOWPD has demonst:r:ated an

  9. Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Magazù, S.; Migliardo, P.

    2001-07-01

    Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.

  10. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    PubMed

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  11. Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System

    ERIC Educational Resources Information Center

    Honnicke, M. G.; Gavinho, L.; Cusatis, C.

    2008-01-01

    Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…

  12. Coding metasurface for broadband microwave scattering reduction with optical transparency.

    PubMed

    Chen, Ke; Cui, Li; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-03-06

    Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.

  13. Time of flight imaging through scattering environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  14. Simple scattering analysis and simulation of optical components created by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Rank, M.; Horsak, A.; Heinrich, A.

    2017-10-01

    Additive manufacturing of optical elements is known but still new to the field of optical fabrication. In 3D printers, the parts are deposited layer-by-layer approximating the shape defined in optics design enabling new shapes, which cannot be manufactured using conventional methods. However, the layered structure also causes surface roughness and subsurface scattering, which decrease the quality of optical elements. Illuminating a flat sample with a laser beam, different light distributions are generated on a screen depending on the printing orientation of the sample. Whereas the laser beam is mainly diffused by the samples, a line shaped light distribution can be achieved for a special case in which the laser light goes parallel to the layer structure. These optical effects of 3D printed parts are analyzed using a goniometric setup and fed back into the optics simulation with the goal to improve the design considering the characteristics of the real sample. For a detailed look on the effect, the total scattering is split up into surface contributions and subsurface scattering using index matching techniques to isolate the effects from each other. For an index matched sample with negligible surface effects the line shaped distribution turns into a diffraction pattern which corresponds to the layer thickness of the printer. Finally, an optic simulation with the scattering data is set up for a simple curved sample. The light distribution measured with a robot-based goniophotometer differs from the simulation, because the curvature is approximated by the layer structure. This makes additional analysis necessary.

  15. Space, energy and anisotropy effects on effective cross sections and diffusion coefficients in the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meftah, B.

    1982-01-01

    Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less

  16. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2002-09-30

    attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading

  17. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2001-09-30

    user can obtain values computed from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error ...from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for...properties, including diffuse attenuation, beam attenuation, and scattering. The database shall be easy to use, Internet accessible, and frequently updated

  18. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Treesearch

    S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer

    2016-01-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...

  19. Crystal defect studies using x-ray diffuse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less

  20. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    PubMed

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  1. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  2. New techniques for diffusing-wave spectroscopy

    NASA Technical Reports Server (NTRS)

    Mason, T. G.; Gang, HU; Krall, A. H.; Weitz, David A.

    1994-01-01

    We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension.

  3. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    NASA Astrophysics Data System (ADS)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  4. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  5. Microscopic diffusion processes measured in living planarians

    DOE PAGES

    Mamontov, Eugene

    2018-03-08

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  6. Microscopic diffusion processes measured in living planarians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  7. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.

    PubMed

    Banchio, Adolfo J; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-07

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, f c (q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of f c (q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with f c (q, t), there is indication of long-time exponential decay of f c (q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of f c (q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for f c (q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, f s (q, t), and its non-Gaussian parameter α 2 (t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from f c (q, t) is theoretically validated.

  8. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  9. A new Monte Carlo code for light transport in biological tissue.

    PubMed

    Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia

    2018-04-01

    The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

  10. Neoclassical diffusion at low L-shel

    NASA Astrophysics Data System (ADS)

    Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.

    2017-12-01

    At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.

  11. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less

  12. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  13. Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.

    1979-01-01

    The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.

  14. Selective enhancement of Selényi rings induced by the cross-correlation between the interfaces of a two-dimensional randomly rough dielectric film

    NASA Astrophysics Data System (ADS)

    Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.

    2018-02-01

    By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.

  15. Scatterer density sensitive tomography utilizing light and ultrasound

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Holt, R. Glynn; DiMarzio, Charles A.

    2018-02-01

    Hybrid imaging modalities are becoming more popular since they utilize the benefit of both optical and ultrasound (US) imaging modalities. They use the contrast based on optical properties and negligible scattering of US waves to extend the depth of imaging. Ultrasound modulated optical tomography (UOT) and acoustic radiation force (ARF) with speckle pattern analysis, both use the idea of utilizing a focused US wave to spatially encode in information in the diffused light. We have previously shown that compared to UOT, ARF regime can result in a stronger signal and the mean irradiance change (MIC) signal can reflect the mechanical and thermal properties of the tissue non-invasively. In addition to the mechanical and thermal properties of the medium, the MIC signal is able to reveal information about the morphology of the medium. A tumor is formed by a group of cancer cells that are result of rounds of successive mutation. Cancer cell grow without control in abnormal shapes. In this study, we have modeled cells with their nuclei, assuming that the scattering events occur at the location of the nuclei of the cells. We have shown that, although the MIC signal is not sensitive to the size of the particle, it can detect the presence of the tumor base on the higher concentration of cells in a tumor.

  16. Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging

    PubMed Central

    Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.

    2018-01-01

    In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790

  17. A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2001-01-01

    We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.

  18. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze thismore » approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.« less

  19. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  20. Scattering of laser light - more than just smoke and mirrors

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Love, Stephen; Cahalan, Robert

    2004-01-01

    A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.

  1. Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Asrar, Ghassem; Myneni, Ranga; Martin, Robert, Jr.; Burnett, R. Bruce

    1987-01-01

    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie.

  2. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    PubMed

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.

  3. Visualization of hemodynamics and light scattering in exposed brain of rat using multispectral image reconstruction based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-07-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.

  4. Primary Data Treatment Software for Position-Sensitive Detector of Small-Angle Neutron Scattering Spectrometer in the Isotropic Pattern Scattering Case

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexei; Kutuzov, Sergei; Ivankov, Olexander; Kuklin, Alexander

    2018-02-01

    A new data converter has been created for the new position-sensitive detector (PSD) of small-angle neutron scattering (SANS) spectrometer YuMO. In the isotropic pattern scattering case, it provides the possibility for processing PSD data with the SAS data processing program that has already been in use.

  5. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE PAGES

    Perret, Edith; Xu, Dongwei; Highland, M. J.; ...

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  6. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  7. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  8. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growthmore » rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  9. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  10. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for charged particles in interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1976-01-01

    The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.

  11. Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.

    1998-05-01

    Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.

  12. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  13. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  14. Indium diffusion through high-k dielectrics in high-k/InP stacks

    NASA Astrophysics Data System (ADS)

    Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.

    2013-08-01

    Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.

  15. A New Technique for Measuring Concentration Dependence of Self and Collective Diffusivity by using a Single Sample

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Shen, Chong; Ou-Yang, Daniel

    Diffusivity governs the dynamics of interacting particles suspended in a solvent. At high particle concentration, the interactions between particles become non-negligible, making the values of self and collective diffusivity diverge and concentration-dependent. Conventional methods for measuring this dependency, such as forced Rayleigh scattering, fluorescence correlation spectroscopy (FCS), and dynamic light scattering (DLS) require preparation of multiple samples. We present a new technique to measure this dependency by using only a single sample. Dielectrophoresis (DEP) is used to create concentration gradient in the solution. Across this concentration distribution, we use FCS to measure the concentration-dependent self diffusivity. Then, we switch off DEP to allow the particles to diffuse back to equilibrium. We obtain the time series of concentration distribution from fluorescence microscopy and use them to determine the concentration-dependent collective diffusivity. We compare the experimental results with computer simulations to verify the validity of this technique. Time and spatial resolution limits of FCS and imaging are also analyzed to estimate the limitation of the proposed technique. NSF DMR-0923299, Lehigh College of Arts and Sciences Undergraduate Research Grant, Lehigh Department of Physics, Emulsion Polymers Institute.

  16. Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.

    1999-01-01

    Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.

  17. Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO 1- x F x BiS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athauda, Anushika; Hoffmann, Christina; Aswartham, Saicharan

    2017-05-15

    Competing ferroelectric and charge density wave states have been proposed to exist in the electron–phonon coupled LaO1-xFxBiS2 superconductor. The lattice instability is proposed to arise from unstable phonon modes that can break the crystal symmetry. Using single crystal diffraction, a superlattice pattern is observed, that arises from coherent in-plane displacements of the sulfur atoms in the BiS2 superconducting planes. The distortions morph into coordinated ferrodistortive patterns with displacements in the x- and y-directions, that alternate along the c-axis. Diffuse scattering is observed along the (H0L) plane due to stacking faults but not along the (HH0) plane. The ferro-distortive pattern remainsmore » in the superconducting state upon fluorine doping, but the displacements are diminished in magnitude. Moreover, we find that the in-plane distortions give rise to disorder where the (00L) reflections become quite broad. It is possible that charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing.« less

  18. Design optimization of large-size format edge-lit light guide units

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original method of dot pattern generation dedicated to large-size format light guide plate (LGP) design optimization, such as photo-bioreactors, the number of dots greatly exceeds the maximum allowable number of optical objects supported by most common ray-tracing software. In the proposed method, in order to simplify the computational problem, the original optical system is replaced by an equivalent one. Accordingly, an original dot pattern is splitted into multiple small sections, inside which the dot size variation is less than the ink dots printing typical resolution. Then, these sections are replaced by equivalent cells with continuous diffusing film. After that, we adjust the TIS (Total Integrated Scatter) two-dimensional distribution over the grid of equivalent cells, using an iterative optimization procedure. Finally, the obtained optimal TIS distribution is converted into the dot size distribution by applying an appropriate conversion rule. An original semi-empirical equation dedicated to rectangular large-size LGPs is proposed for the initial guess of TIS distribution. It allows significantly reduce the total time needed to dot pattern optimization.

  19. An equipment for Rayleigh scattering of Mössbauer radiation

    NASA Astrophysics Data System (ADS)

    Enescu, S. E.; Bibicu, I.; Zoran, V.; Kluger, A.; Stoica, A. D.; Tripadus, V.

    1998-07-01

    A personal computer driven equipment designed for Rayleigh scattering of Mössbauer radiation experiments at room temperature is described. The performances of the system were tested using like scatterers crystals with different mosaic divergences: lithium fluoride (LiF) and pyrolytic graphite (C). The equipment, suitable for any kind of Mössbauer scattering experiments, permits low and adjustable horizontal divergences of the incident beam. On décrit un équipement dédié aux mesures de diffusion Rayleigh de la radiation Mössbauer controlée par ordinateur. Les performances du système ont été testées sur des cristaux ayant des divergences de mosaïque différentes: le fluorure de lithium (LiF) et le graphite pyrolytique (C). L'équipement, qui peut être utilisé dans des différents types d'expérimentations basées sur la diffusion de la radiation Mössbauer, admet des divergences horizontales du faisceau incident faibles et réglables.

  20. Matrix operator theory of radiative transfer. 2: scattering from maritime haze.

    PubMed

    Kattawar, G W; Plass, G N; Catchings, F E

    1973-05-01

    Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.

  1. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  2. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  3. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.

  4. Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joonkyu; Mangeri, John; Zhang, Qingteng

    The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less

  5. Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures

    DOE PAGES

    Park, Joonkyu; Mangeri, John; Zhang, Qingteng; ...

    2018-01-22

    The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less

  6. Investigation of the Iterative Phase Retrieval Algorithm for Interferometric Applications

    NASA Astrophysics Data System (ADS)

    Gombkötő, Balázs; Kornis, János

    2010-04-01

    Sequentially recorded intensity patterns reflected from a coherently illuminated diffuse object can be used to reconstruct the complex amplitude of the scattered beam. Several iterative phase retrieval algorithms are known in the literature to obtain the initially unknown phase from these longitudinally displaced intensity patterns. When two sequences are recorded in two different states of a centimeter sized object in optical setups that are similar to digital holographic interferometry-but omitting the reference wave-, displacement, deformation, or shape measurement is theoretically possible. To do this, the retrieved phase pattern should contain information not only about the intensities and locations of the point sources of the object surface, but their relative phase as well. Not only experiments require strict mechanical precision to record useful data, but even in simulations several parameters influence the capabilities of iterative phase retrieval, such as object to camera distance range, uniform or varying camera step sequence, speckle field characteristics, and sampling. Experiments were done to demonstrate this principle with an as large as 5×5 cm sized deformable object as well. Good initial results were obtained in an imaging setup, where the intensity pattern sequences were recorded near the image plane.

  7. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  8. Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Carlen, Eric Anders

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.

  9. Approaching conversion limit with all-dielectric solar cell reflectors.

    PubMed

    Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert

    2015-02-09

    Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

  10. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  11. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE PAGES

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...

    2017-04-07

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  12. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  13. Label-free detection and identification of waterborne parasites using a microfluidic multi-angle laser scattering system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Limei; Lei, Lei; Li, Feng

    2017-10-01

    A microfluidic-based multi-angle laser scattering (MALS) system capable of acquiring scattering patterns of a single particle is designed and demonstrated. The system includes a sheathless nozzle microfluidic glass chip, and an on-chip MALS unit being in alignment with the nozzle exit in the chip. The size and relative refractive indices (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.002 by comparing the experimental scattering patterns with theoretical ones. We measured scattering patterns of waterborne parasites i.e., Cryptosporidium parvum (C.parvum) and Giardia lamblia (G. lamblia), and some other representative species suspended in deionized water at a maximum flow rate of 12 μL/min, and a maximum of 3000 waterborne parasites can be identified within one minute with a mean accuracy higher than 96% by classification of distinctive scattering patterns using a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free detection of waterborne parasites and other biological contaminants.

  14. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  15. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves

    NASA Astrophysics Data System (ADS)

    Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua

    2016-10-01

    Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated discrete ELF/VLF waves.

  16. Study of microdefects and their distribution in dislocation-free Si-doped HB GaAs by X-ray diffuse scattering on triple-crystal diffractometer

    NASA Astrophysics Data System (ADS)

    Charniy, L. A.; Morozov, A. N.; Bublik, V. T.; Scherbachev, K. D.; Stepantsova, I. V.; Kaganer, V. M.

    1992-03-01

    Microdefects in dislocation-free Si-doped (n = (1-3) × 10 18cm-3) HB GaAs crystals were studied by X-ray diffuse scattering measured with the help of a triple-crystal diffractometer. The intensity of the diffuse scattering as well as the isointensity contours around different reciprocal lattice points were analysed. A comparison of the measured isointensity contours with the theoretically calculated ones showed that the microdefects detected are interstitial dislocation loops with the Burgers vectors b = {1}/{2}<110 #3862;; lying in the planes #38;{110} and {111}. The mean radius of the dislocation loops R0 was determined using the wave vector q0 alpha; R-10 corresponding to the transmition point where the Huang diffuse scattering I( q) alpha q-2 ( q < q0) changed to the asymptotic scattering I( q) alpha q-4 ( q #62 q0). The analysis of a D-shaped cross-sectional (111) wafer cut from the end part of the HB ingot showed that R0 changed smoothly along the [ overline211] symmetry axis of the wafer. The highly inhomogeneous "new-moon"-like distribution of the non-dislocational etch-pits was also obtained. The maximal loop radius obtained at the edges of the wafer, R 0 = 1 μm, corresponds to the wafer area enriched with etch-pits and the minimal one, R 0 = 0.3 μm, corresponds to the bound of the new-moon-like area denuded from etch-pits. Microdefects of a new type were detected in the denuded area. These microdefects consist of nuclei, 0.1 μm in radius, and an extended atmosphere of interstitials. The minimal microdefect radius in the centre of the wafer corresponds to the maximum local value of the lattice parameter a = 5.655380 Å, and the minimum local value a = 5.65372 Å was obtained at the wafer edges enriched with microdefect-related etch-pits. Absolute X-ray diffuse intensity measurements were used for microdefect concentration determination. Normalization of I( q) was based on the comparison of the Huang intensity with the thermal diffuse scattering intensity which is predominant for the wave vector q å R-10. The microdefect concentration determined in this way appeared to be 4 × 10 9 cm -3 at the edges of the wafer and 4 × 10 11 cm -3 at the centre of the new-moon-like etch-pit denuded zone. The number of interstitial atoms forming dislocation loops is shown to be the same across the area of the wafer and equal to 10 16 cm -3.

  17. Monte Carlo based investigation of berry phase for depth resolved characterization of biomedical scattering samples

    NASA Astrophysics Data System (ADS)

    Baba, J. S.; Koju, V.; John, D.

    2015-03-01

    The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>107) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case for many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al., to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.

  18. Monte Carlo based investigation of Berry phase for depth resolved characterization of biomedical scattering samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; John, Dwayne O; Koju, Vijay

    The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>10million) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case formore » many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al.,1 to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.« less

  19. Physically-Based Models for the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis

    NASA Astrophysics Data System (ADS)

    He, Xiao Dong

    This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.

  20. Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith

    NASA Astrophysics Data System (ADS)

    Gillet, K.; Margerin, L.; Calvet, M.; Monnereau, M.

    2017-01-01

    We report measurements of the attenuation of short period seismic waves in the Moon based on the quantitative analysis of envelope records of lunar quakes. Our dataset consists of waveforms corresponding to 62 events, including artificial and natural impacts, shallow moonquakes and deep moonquakes, recorded by the four seismometers deployed during Apollo missions 12, 14, 15 and 16. To quantify attenuation and distinguish between elastic (scattering) and inelastic (absorption) mechanisms we measure the time of arrival of the maximum of energy tmax and the coda quality factor Qc . The former is controlled by both scattering and absorption, while the latter is an excellent proxy for absorption. Consistent with the strong broadening of seismogram envelopes in the Moon, we employ diffusion theory in spherical geometry to model the propagation of seismic energy in depth-dependent scattering and absorbing media. To minimize the misfit between predicted and observed tmax for deep moonquakes and impacts, we employ a genetic algorithm and explore a large number of depth-dependent attenuation models quantified by the scattering quality factor Qsc or equivalently the wave diffusivity D, and the absorption quality factor Qi . The scattering and absorption profiles that best fit the data display very strong scattering attenuation (Qsc ≤ 10) or equivalently very low wave diffusivity (D ≈ 2 km2/s) in the first 10 km of the Moon. These values correspond to the most heterogeneous regions on Earth, namely volcanic areas. Below this surficial layer, the diffusivity rises very slowly up to a depth of approximately 80 km where Qsc and D exhibit an abrupt increase of about one order of magnitude. Below 100 km depth, Qsc increases rapidly up to approximately 2000 at a depth of about 150 km, a value similar to the one found in the Earth's mantle. By contrast, the absorption quality factor on the Moon Qi ≈ 2400 is about one order or magnitude larger than on Earth. Our results suggest the existence of an approximately 100 km thick megaregolith, which is much larger than what was previously thought. The rapid decrease of scattering attenuation below this depth is compatible with crack healing through viscoelastic mechanisms. Using our best attenuation model, we invert for the depth of shallow moonquakes based on the observed variation of tmax with epicentral distance. On average, they are found to originate from a depth of about 50 km ± 20 km, which suggests that these earthquakes are caused by the failure of deep faults in the brittle part of the Moon.

  1. A unified model for reverberation and submerged object scattering in a stratified ocean waveguide.

    PubMed

    Makris, N C; Ratilal, P

    2001-03-01

    A unified model for reverberation and submerged target scattering in a stratified medium is developed from wave theory. The advantage of the unified approach is that it enables quantitative predictions to be made of the target-echo-to-reverberation ratio in an ocean waveguide. Analytic expressions are derived for both deterministic and stochastic scattering from the seafloor and subseafloor. Asymptotic techniques are used to derive expressions for the scattering of broadband waveforms from distant objects or surfaces. Expressions are then obtained for the scattered field after beamforming with a horizontal line array. The model is applied to problems of active detection in shallow water. Sample calculations for narrow-band signals indicate that the detection of submerged target echoes above diffuse seafloor reverberation is highly dependent upon water column and sediment stratification as well as array aperture, source, receiver, and target locations, in addition to the scattering properties of the target and seafloor. The model is also applied to determine the conditions necessary for echo returns from discrete geomorphologic features of the seafloor and subseafloor to stand prominently above diffuse seafloor reverberation. This has great relevance to the geologic clutter problem encountered by active sonar systems operating in shallow water, as well as to the remote sensing of underwater geomorphology.

  2. The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters

    NASA Astrophysics Data System (ADS)

    Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen

    2017-12-01

    Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.

  3. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  4. Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering

    DOE PAGES

    Zhu, Diling; Robert, Aymeric; Henighan, Tom; ...

    2015-08-10

    We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm -1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detectormore » position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less

  5. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    NASA Astrophysics Data System (ADS)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  6. Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Kreda, Silvia M.; Sears, Patrick R.; Ostrowski, Lawrence E.; Hill, David B.; Chapman, Brian S.; Tracy, Joseph B.; Oldenburg, Amy L.

    2016-03-01

    Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of >=3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

  7. Electron confinement at diffuse ZnMgO/ZnO interfaces

    NASA Astrophysics Data System (ADS)

    Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.

    2017-01-01

    Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.

  8. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  9. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  10. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  11. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.

    PubMed

    Applegate, Matthew B; Roblyer, Darren

    2018-02-15

    Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.

  12. The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

    PubMed Central

    Fringes, Stefan; Holzner, Felix

    2018-01-01

    The behavior of nanoparticles under nanofluidic confinement depends strongly on their distance to the confining walls; however, a measurement in which the gap distance is varied is challenging. Here, we present a versatile setup for investigating the behavior of nanoparticles as a function of the gap distance, which is controlled to the nanometer. The setup is designed as an open system that operates with a small amount of dispersion of ≈20 μL, permits the use of coated and patterned samples and allows high-numerical-aperture microscopy access. Using the tool, we measure the vertical position (termed height) and the lateral diffusion of 60 nm, charged, Au nanospheres as a function of confinement between a glass surface and a polymer surface. Interferometric scattering detection provides an effective particle illumination time of less than 30 μs, which results in lateral and vertical position detection accuracy ≈10 nm for diffusing particles. We found the height of the particles to be consistently above that of the gap center, corresponding to a higher charge on the polymer substrate. In terms of diffusion, we found a strong monotonic decay of the diffusion constant with decreasing gap distance. This result cannot be explained by hydrodynamic effects, including the asymmetric vertical position of the particles in the gap. Instead we attribute it to an electroviscous effect. For strong confinement of less than 120 nm gap distance, we detect the onset of subdiffusion, which can be correlated to the motion of the particles along high-gap-distance paths. PMID:29441273

  13. Random-phase metasurfaces at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  14. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  15. Diffuse X-ray scattering near a two-dimensional solid–liquid phase transition at the n-hexane–water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, A. M.

    According to experimental data on X-ray scattering and reflectometry with synchrotron radiation, a twodimensional crystallization phase transition in a monolayer of melissic acid at the n-hexane–water interface with a decrease in the temperature occurs after a wetting transition.

  16. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  17. Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine.

    PubMed

    Chan, E J; Welberry, T R; Goossens, D J; Heerdegen, A P; Beasley, A G; Chupas, P J

    2009-06-01

    The drug benzocaine (ethyl 4-aminobenzoate), commonly used as a local anaesthetic, is a bimorphic solid at room temperature. Form (I) is monoclinic P2(1)/c, while the metastable form (II) is orthorhombic P2(1)2(1)2(1). Three-dimensional diffuse X-ray scattering data have been collected for the two forms on the 11-ID-B beamline at the Advanced Photon Source (APS). Both forms show strong and highly structured diffuse scattering. The data have been interpreted and analysed using Monte Carlo (MC) modelling on the basis that the scattering is purely thermal in origin and indicates the presence of highly correlated molecular motions. In both forms (I) and (II) broad diffuse streaks are observed in the 0kl section which indicate strong longitudinal displacement correlations between molecules in the 031 directions, extending over distances of up to 50 A. Streaks extending between Bragg peaks in the hk0 section normal to [100] correspond to correlated motions of chains of molecules extending along a that are linked by N-H...O=C hydrogen bonds and which occur together as coplanar ribbon pairs. The main difference between the two forms is in the dynamical behaviour of the ribbon pairs and in particular how they are able to slide relative to each other. While for form (I) a model involving harmonic springs is able to describe the motion satisfactorily, as simple excursions away from the average structure, there is evidence in form (II) of anharmonic effects that are precursors of a phase transition to a new low-temperature phase, form (III), that was subsequently found.

  18. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  19. Heterodyne x-ray diffuse scattering from coherent phonons

    DOE PAGES

    Kozina, M.; Trigo, M.; Chollet, M.; ...

    2017-08-10

    Here in this paper, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons frommore » the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.« less

  20. Ballistic and Diffusive Thermal Conductivity of Graphene

    NASA Astrophysics Data System (ADS)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  1. Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Custo, Anna; Wells, William M., III; Barnett, Alex H.; Hillman, Elizabeth M. C.; Boas, David A.

    2006-07-01

    An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm-1, without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.

  2. Propagation of diffuse light in a turbid medium with multiple spherical inhomogeneities.

    PubMed

    Pustovit, Vitaliy N; Markel, Vadim A

    2004-01-01

    We develop a fast and accurate solver for the forward problem of diffusion tomography in the case of several spherical inhomogeneities. The approach allows one to take into account multiple scattering of diffuse waves between different inhomogeneities. Theoretical results are illustrated with numerical examples; excellent numerical convergence and efficiency are demonstrated. The method is generalized for the case of additional planar diffuse-nondiffuse interfaces and is therefore applicable to the half-space and slab imaging geometries.

  3. Spatiotemporal Patterns in a Predator-Prey Model with Cross-Diffusion Effect

    NASA Astrophysics Data System (ADS)

    Sambath, M.; Balachandran, K.; Guin, L. N.

    The present research deals with the emergence of spatiotemporal patterns of a two-dimensional (2D) continuous predator-prey system with cross-diffusion effect. First, we work out the critical lines of Hopf and Turing bifurcations of the current model system in a 2D spatial domain by means of bifurcation theory. More specifically, the exact Turing region is specified in a two-parameter space. In effect, by choosing the cross-diffusion coefficient as one of the momentous parameter, we demonstrate that the model system undergoes a sequence of spatiotemporal patterns in a homogeneous environment through diffusion-driven instability. Our results via numerical simulation authenticate that cross-diffusion be able to create stationary patterns which enrich the findings of pattern formation in an ecosystem.

  4. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  5. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams.

    PubMed

    Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang

    2016-10-01

    The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.

  6. Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I

    DTIC Science & Technology

    1982-08-01

    measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II

  7. Development of bacterial colony phenotyping instrument using reflected scatter light

    NASA Astrophysics Data System (ADS)

    Doh, Iyll-Joon

    Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.

  8. Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Moriya, Shigeru

    2000-07-01

    At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.

  9. Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1983-01-01

    The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.

  10. Mechanisms and behavioural functions of structural coloration in cephalopods

    PubMed Central

    Mäthger, Lydia M.; Denton, Eric J.; Marshall, N. Justin; Hanlon, Roger T.

    2008-01-01

    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage. PMID:19091688

  11. Primary submucosal nodular plasmacytoma of the stomach: a poorly recognized variant of gastric lymphoma.

    PubMed

    Kanzawa, Maki; Hirai, Chihoko; Morinaga, Yukiko; Kawakami, Fumi; Hara, Shigeo; Matsuoka, Hiroshi; Itoh, Tomoo

    2013-02-20

    Gastric plasmacytoma (GP) is a rare variant of gastric lymphomas. In the exceptional event that a patient presents with GP, the lesion occupies the mucosal layer in the vast majority of cases. Here we report a case of nodular plasmacytoma confined to the submucosa with no evidence of Helicobacter pylori (Hp) infection. The patient was a 59-year old female presenting with no particular symptoms. The tumor was well-demarcated and consisted of a diffuse monomorphic proliferation of plasma cells with numerous lymphoid follicles scattered throughout the tumor. The mucosal surface was intact and not associated with any tumor nodules. The cells were diffusely positive for CD79a, Bob1, EMA and IgA and consistently negative for CD3, CD19, CD20, PAX5, CD56, IgM and IgG. Additionally, in situ hybridization demonstrated clonality in the form of λ light-chain restriction. This submucosal nodular proliferation pattern of plasmacytoma is poorly recognized and considered to be a novel variant of lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3489998708673079.

  12. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  13. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  14. Development and experimental verification of an intraocular scattering model

    NASA Astrophysics Data System (ADS)

    Jiang, Chong-Jhih; Jhong, Tian-Siang; Chen, Yi-Chun; Sun, Ching-Cherng

    2011-10-01

    An intraocular scattering model was constructed in human eye model and experimentally verified. According to the biometric data, the volumetric scattering in crystalline lens and diffusion at retina fundus were developed. The scattering parameters of cornea, including particle size and obscuration ratio, were varied to make the veiling luminance of the eye model matching the CIE disability glare general formula. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated and compared with that of transparent lenses. The MTF of the intraocular scattering model showed nice correspondence with the data measured by a double-pass experiment.

  15. Brownian motion of solitons in a Bose-Einstein condensate.

    PubMed

    Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B

    2017-03-07

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  16. Brownian motion of solitons in a Bose–Einstein condensate

    PubMed Central

    Aycock, Lauren M.; Hurst, Hilary M.; Efimkin, Dmitry K.; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M.; Spielman, I. B.

    2017-01-01

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated Rb87 Bose–Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton’s diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment. PMID:28196896

  17. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-03-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  18. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  19. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-05-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  20. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.

    PubMed

    Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E

    2016-04-13

    Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

  1. Modeling of Diffusion Based Correlations Between Heart Rate Modulations and Respiration Pattern

    DTIC Science & Technology

    2001-10-25

    1 of 4 MODELING OF DIFFUSION BASED CORRELATIONS BETWEEN HEART RATE MODULATIONS AND RESPIRATION PATTERN R.Langer,(1) Y.Smorzik,(2) S.Akselrod,(1...generations of the bronchial tree. The second stage describes the oxygen diffusion process from the pulmonary gas in the alveoli into the pulmonary...patterns (FRC, TV, rate). Keywords – Modeling, Diffusion , Heart Rate fluctuations I. INTRODUCTION Under a whole-body management perception, the

  2. Scattering images from autocorrelation functions of P-wave seismic velocity images: the case of Tenerife Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.

    2018-03-01

    We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.

  3. Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering.

    PubMed

    Neale, Chris; Huang, Kun; García, Angel E; Tristram-Nagle, Stephanie

    2015-09-22

    The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bilayer form factors derivedfrom X-ray diffuse scattering data as a guide, our simulations indicate that Tat peptides localize close to the carbonyl-glycerol group in the headgroup region of bilayers composed of either DOPC or DOPC:DOPE (1:1) lipid. Our results also suggest that Tat peptides may more frequently insert into the hydrophobic core of bilayers composed of PC:PE (1:1) lipids than into bilayers composed entirely of PC lipids. PE lipids may facilitate peptide translocation across a lipid bilayer by stabilizing intermediate states in which hydrated peptides span the bilayer.

  4. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hao; Hsu, Chao-Kai; Yu-Yun Lee, Julia; Tzeng, Shih-Yu; Chen, Wan-Rung; Liaw, Yu-Kai

    2012-07-01

    Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.

  5. Reflectance of topologically disordered photonic-crystal films

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt

    2005-04-01

    Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.

  6. Wideband Scattering Diffusion by using Diffraction of Periodic Surfaces and Optimized Unit Cell Geometries

    PubMed Central

    Costa, Filippo; Monorchio, Agostino; Manara, Giuliano

    2016-01-01

    A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process. PMID:27181841

  7. Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Vincent, Roger; Cherns, David; Dan, Nguyen Huy; Yu, Seong-Cho

    2008-08-01

    We have studied Raman scattering in Co-doped ZnO nanorods prepared by thermal diffusion. Experimental results show that the features of their non-resonant spectra are similar to Raman spectra from Co-doped ZnO materials investigated previously. Under resonant conditions, however, there is a strong enhancement of multiple-phonon Raman scattering processes. Longitudinal optical (LO)-phonon overtones up to eleventh order are observed. The modes become more obvious when the Co concentration diffused into ZnO nanorods goes to an appropriate value. This phenomenon is explained due to the shift of the band-gap energy and also due to the decrease in the intensity of near-band-edge luminescence. Our observation is in agreement with the prediction [J. F. Scott, Phys. Rev. B 2, 1209 (1970)] that the number of LO-phonon lines in ZnO is higher than that observed for CdS.

  8. Synchrotron x-ray thermal diffuse scattering probes for phonons in Si/SiGe/Si trilayer nanomembranes

    DOE PAGES

    McElhinny, Kyle M.; Gopalakrishnan, Gokul; Savage, Donald E.; ...

    2016-05-17

    Nanostructures offer the opportunity to control the vibrational properties of via the scattering of phonons due to boundaries and mass disorder as well as through changes in the phonon dispersion due to spatial confinement. Advances in understanding these effects have the potential to lead to thermoelectrics with an improved figure of merit by lowering the thermal conductivity and to provide insight into electron-phonon scattering rates in nanoelectronics. However, characterizing the phonon population in nanomaterials has been challenging because of their small volume and because optical techniques probe only a small fraction of reciprocal space. Recent developments in x-ray scattering nowmore » allow the phonon population to be evaluated across all of reciprocal space in samples with volumes as small as several cubic micrometers. We apply this approach, synchrotron x-ray thermal diffuse scattering (TDS), to probe the population of phonons within a Si/SiGe/Si trilayer nanomembrane. The distributions of scattered intensity from Si/SiGe/Si trilayer nanomembranes and Si nanomembranes with uniform composition are qualitatively similar, with features arising from the elastic anisotropy of the diamond structure. The TDS signal for the Si/SiGe/Si nanomembrane, however, has higher intensity than the Si membrane of the same total thickness by approximately 3.75%. Possible origins of the enhancement in scattering from SiGe in comparison with Si include the larger atomic scattering factor of Ge atoms within the SiGe layer or reduced phonon frequencies due to alloying.« less

  9. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  10. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    PubMed

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  11. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  12. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    NASA Astrophysics Data System (ADS)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  13. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; And Others

    1970-01-01

    Presents an advanced laboratory experiment and lecture demonstration by which the intensity spectrum of light scattered by a suspension of particles in a fluid can be studied. From this spectrum, it is possible to obtain quantitative information about the motion of the particles, including an accurate determination of their diffusion constant.…

  14. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  15. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  16. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  17. Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.

    2000-01-01

    Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  18. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  19. Non-Gaussian Correlations between Reflected and Transmitted Intensity Patterns Emerging from Opaque Disordered Media

    NASA Astrophysics Data System (ADS)

    Starshynov, I.; Paniagua-Diaz, A. M.; Fayard, N.; Goetschy, A.; Pierrat, R.; Carminati, R.; Bertolotti, J.

    2018-04-01

    The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with thickness much larger than the scattering mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of correlations between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.

  20. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  1. Holographic diffuser by use of a silver halide sensitized gelatin process

    NASA Astrophysics Data System (ADS)

    Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man

    2003-05-01

    Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.

  2. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  3. Dynamical spike solutions in a nonlocal model of pattern formation

    NASA Astrophysics Data System (ADS)

    Marciniak-Czochra, Anna; Härting, Steffen; Karch, Grzegorz; Suzuki, Kanako

    2018-05-01

    Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.

  4. Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Markey, Mia K.; Tunnell, James W.

    2017-02-01

    Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.

  5. Geometrically complex 3D-printed phantoms for diffuse optical imaging.

    PubMed

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C

    2017-03-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  6. Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.

  7. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  8. Geometrically complex 3D-printed phantoms for diffuse optical imaging

    PubMed Central

    Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.

    2017-01-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863

  9. Instability of turing patterns in reaction-diffusion-ODE systems.

    PubMed

    Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako

    2017-02-01

    The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

  10. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    PubMed

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  11. The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths.

    PubMed

    Hurwitz, M; Bowyer, S; Martin, C

    1991-05-01

    We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.

  12. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  13. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  14. Interface or bulk scattering in the semiclassical theory for spin valves

    NASA Astrophysics Data System (ADS)

    Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.

    2004-06-01

    By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.

  15. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  16. Filamentation of ultrashort light pulses in a liquid scattering medium

    NASA Astrophysics Data System (ADS)

    Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.

    2009-01-01

    We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.

  17. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  18. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    PubMed

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  19. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  20. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    NASA Astrophysics Data System (ADS)

    Musset, S.; Kontar, E. P.; Vilmer, N.

    2018-02-01

    Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

Top