Science.gov

Sample records for diffuse solar radiation

  1. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  2. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values

  3. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  4. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  5. Diffuse solar UV radiation and implications for preventing human eye damage.

    PubMed

    Parisi, A V; Green, A; Kimlin, M G

    2001-02-01

    Ocular UV exposure is a function of both the direct and diffuse components of solar radiation. Broadband global and diffuse UV measurements were made in the morning, noon and afternoon. Thirty sets of measurements were made in summer and 50 in each of the other seasons at each of the periods in full sun. Corresponding sets were made in the shade of Australian evergreen trees: 42 trees in summer and 50 in each of the other seasons. The percentage diffuse UV was higher for the shorter 320-400 nm range (UVB) than for 280-320 nm (UVA). The percentage diffuse UVB ranged from 23 to 59%, whereas the percentage diffuse UVA ranged from 17 to 31%. The percentage diffuse UV was lower at noon than in the morning and afternoon with the difference more pronounced for the UVB. The average percentage diffuse UVB over all the measurements in the tree shade for the morning, noon and afternoon was 62, 58 and 71%, respectively, and the average percentage diffuse UVA was 52, 51 and 59%, respectively.

  6. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P

    1997-02-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in

  7. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  8. Solar UV-B in tropical forest gaps: Analysis using direct and diffuse radiation

    SciTech Connect

    Flint, S.D.; Caldwell, M.M.

    1995-06-01

    Experiments with natural levels of solar ultraviolet-B radiation (UV-B) have recently shown inhibition of the growth of some tropical forest tree seedlings. A knowledge of forest radiation environments is needed to help assess UV-B effects in natural situations. Although forest canopies strongly attenuate solar radiation, treefall gaps provide a very different radiation environment. We simultaneously measured both UV-B and photosynthetically active radiation (PAR) in forest gaps on Barro Colorado Island, Panama. Outside the forest, UV-B is predominately diffuse even under clear sky conditions. In sunflecks of small forest gaps, most of the UV-B was in the direct beam component. Compared to conditions outside the forest, the UV-B in these sunflecks was low relative to PAR. Shaded portions of the gap, in contrast, had proportionately high levels of UV-B relative to PAR. There are indications in the literature that relatively low UV-B levels may be effective under low PFD. Seasonal trends of PAR and UV-B in different locations in gaps can be inferred from hemispherical canopy photographs.

  9. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    NASA Astrophysics Data System (ADS)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  10. Solar radiation resource assessment

    SciTech Connect

    Not Available

    1990-11-01

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  11. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  12. [Solar cosmic radiation and the radiation hazard of space flight].

    PubMed

    Miroshnichenko, L I

    1983-01-01

    Present-day data on the spectrum of solar radiation in the source and near the Earth are discussed as applied to the radiation safety of crewmembers and electronics onboard manned and unmanned spacecraft. It is shown that the slope of the solar radiation spectrum changes (flattens) in the low energy range. Quantitative information about absolute solar radiation fluxes near the Earth is summarized in relation to the most significant flares of 1956--1978. The time-related evolution of the solar radiation spectrum in the interplanetary space is described in quantitative terms (as illustrated by the solar flare of 28 September 1961). It is indicated that the nonmonotonic energy dependence of the transport path of solar radiation in the interplanetary space should be taken into consideration. It is demonstrated that the diffusion model of propagation can be verified using solar radiation measurements in space flights.

  13. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  14. Solar radiation measurement project

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1981-01-01

    The Xavier solar radiation measurement project and station are described. Measurements of the total solar radiation on a horizontal surface from an Eppley pyranometer were collected into computer data files. Total radiation in watt hours was converted from ten minute intervals to hourly intervals. Graphs of this total radiation data are included. A computer program in Fortran was written to calculate the total extraterrestrial radiation on a horizontal surface for each day of the month. Educational and social benefits of the project are cited.

  15. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  16. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  17. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  18. Solar radiation on Mars: Update 1991

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  19. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  20. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  1. Automatic actinometric system for diffuse radiation measurement

    NASA Astrophysics Data System (ADS)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  2. The diffuse component of erythemal ultraviolet radiation.

    PubMed

    Silva, Abel A

    2015-11-01

    The diffuse (Dif) component of ultraviolet radiation (UVR) plays an important role in the daily exposure of humans to solar radiation. This study proposes a semi-empirical method to obtain the Dif component of the erythemal dose rate, or the erythemally weighted irradiance, (EDRDif) calculated from synchronized measurements of the Dif component of UVR (UVDif) and the global (G) irradiances of both UVR (UVG) and the erythemal dose rate (EDRG). Since the study was conducted in the tropics, results involve a wide range of solar zenith angles to which EDRDif is seasonally dependent. Clouds are the main atmospheric agent affecting Dif radiation. The ratio between Dif and G (Dif/G) showed a quadratic dependence on cloud cover with a coefficient of determination r(2) = 0.79. The maxima of EDRDif were mainly above the moderate range (>137.5 mW m(-2)) of the UV-Index and reached the extreme range (>262.5 mW m(-2)) for the spring-summer period. The fraction of the global daily erythemal dose (daily EDG) corresponding to Dif radiation (daily EDDif) ranged from 936 J m(-2) to 5053 J m(-2) and averaged 2673 J m(-2). Daily EDDif corresponded to at least 48% of daily EDG for a practically cloudless sky. Therefore, Dif radiation is a real threat. Lighter skin people (types I and II) can get sunburnt in a couple of minutes under such an incidence of radiation. Moreover, accumulative harm can affect all skin types.

  3. Characterizations of the mirror attenuator mosaic - Solar diffuser plate

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Avis, Lee M.; Gibson, M. A.; Kopia, Leonard P.

    1992-01-01

    The mirror attenuator mosaic (MAM), a solar diffuser plate, was used for the flight calibration of the broadband shortwave (0.2-5-microns) and total (0.2 to greater than 200-microns) Earth Radiation Budget Experiment scanning thermistor bolometer radiometers. The MAM solar-reflecting surface consisted of a tightly packed array of vacuum-deposited aluminum, concave spherical mirrors, while its solar-absorbing surface consisted of black chrome. The effective reflectance of the MAM was constant to within +/- 2 percent after almost 2 years in orbit, a marked improvement over earlier solar diffusers.

  4. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  5. Review of solar radiation utilizability

    NASA Astrophysics Data System (ADS)

    Klein, S. A.; Beckman, W. A.

    1984-11-01

    A development history is presented for the concept and methodology of solar radiation 'utilizability', which is defined as the fraction of solar radiation that is incident on a surface exceeding a specified threshold or critical level. The concept, which was initially applied to flat plate solar collector thermal performance calculations, has more recently been applied to systems with concentrating collectors as well as to passive and photovoltaic systems. The utilizability function also contains information about operating times through its derivative with respect to critical level. Existing utilizability correlations provide a simple and elegant means of estimating the long term effect of solar radiation on any solar process.

  6. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  7. Radiative cooling for solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Raman, Aaswath; Wang, Ken X.; Anoma, Marc A.; Fan, Shanhui

    2015-03-01

    Standard solar cells heat up under sunlight, and the resulting increased temperature of the solar cell has adverse consequences on both its efficiency and its reliability. We introduce a general approach to radiatively lower the operating temperature of a solar cell through sky access, while maintaining its sunlight absorption. We present first an ideal scheme for the radiative cooling of solar cells. For an example case of a bare crystalline silicon solar cell, we show that the ideal scheme can passively lower the operating temperature by 18.3 K. We then show a microphotonic design based on realistic material properties, that approaches the performance of the ideal scheme. We also show that the radiative cooling effect is substantial, even in the presence of significant non-radiative heat change, and parasitic solar absorption in the cooling layer, provided that we design the cooling layer to be sufficiently thin.

  8. Observations of the diffuse UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  9. Solar radiation assembly

    SciTech Connect

    Boozer, S.D.

    1987-04-21

    A Solar transmission system is described comprising at least one radiation permeable assembly. A light aperture is adapted to be mounted in the envelope of a building. The light aperture has at least one layer of first glazing forming part of the building envelope. A generally rectangular frame is supported on the building and around an outer side of the aperture. A layer of second glazing comprises an outer facing of the frame. Ventilation means at the top and bottom of the frame, includes means for enabling air flow through the frame, and includes means for inhibiting rain from entering the frame. Support means connectible between the frame and the building, enable the frame to be moved away from the building, whereby the glazing of the light aperture may be made accessible.

  10. Local effects of partly cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1981-01-01

    Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.

  11. MODIS Solar Diffuser Attenuation Screen Modeling Results

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xuong, Xiaoxiong; Guenther, Bruce; Barnes, William

    2004-01-01

    On-orbit calibration of the reflected solar bands on the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) is accomplished by have the instrument view a high reflectance diffuse surface illuminated by the sun. For some of the spectral bands this proves to be much too bright a signal that results in the saturation of detectors designed for measuring low reflectance (ocean) surfaces signals. A mechanical attenuation device in the form of a pin hole screen is used to reduce the signals to calibrate these bands. The sensor response to solar illumination of the SD with and without the attenuation screen in place will be presented. The MODIS detector response to the solar diffuser is smooth when the attenuation screen is absent, but has structures up to a few percent when the attenuation screen is present. This structure corresponds to non-uniform illumination from the solar diffuser. Each pin hole produces a pin-hole image of the sun on the solar diffuser, and there are very many pin hole images of the sun on the solar diffuser for each MODIS detector. Even though there are very many pin-hole images of the sun on the solar diffuser, it is no longer perfectly uniformly illuminated. This non-uniformly illuminated solar diffuser produces intensity variation on the focal planes. The results of a very detailed simulation will be discussed which show how the illumination of the focal plane changes as a result of the attenuation, and the impacts on the calibration will be discussed.

  12. Spectral solar radiation: new data

    SciTech Connect

    Hulstrom, R

    1983-06-01

    Several areas of solar research require an accurate knowledge (data) of the spectral content of solar radiation at the earth's surface for various atmospheric conditions, times during the day (air masses), geographic locations, and for the various seasons (monthly). Areas of solar research include photovoltaics, biomass, materials studies, and solar simulation. As one of its major research thrusts, the Renewable Resource Assessment and Instrumentation Branch of the Solar Energy Research Institute, has been developing improved analytical models, instrumentation, and data sets to meet the various needs for such by the previously mentioned areas of solar energy conversion research. A brief summary of selected results of such research is presented. References are given for detailed descriptions of the various individual areas of effort/research and new spectral solar radiation data sets.

  13. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  14. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  15. Analytic expressions for ULF wave radiation belt radial diffusion coefficients.

    PubMed

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-03-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.

  16. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  17. Solar Radiation Alert System

    DTIC Science & Technology

    2005-07-01

    the earth’s atmosphere at high geomagnetic latitudes were calculated for the solar proton event of 20 January 2005. The event started at 06:50...excluding them does not significantly affect the calculated dose rates. The data are available in near real-time from the file transfer protocol (ftp...form a com- plete spectrum used to calculate effective doses in Step 9. A piecewise-continuous spectrum is needed because during solar proton events

  18. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  19. Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols

    SciTech Connect

    Qian, Yun; Wang, Weiguo; Leung, Lai R.; Kaiser, Dale P.

    2007-06-21

    Analysis of long-term surface solar radiation and relative humidity data reveals that much of China experienced significant decreases in global solar radiation and increases in diffuse solar radiation under cloud-free skies from 1961 to 1992. Also, 1992 marked a point of transition in the trends observed for both global solar radiation (from significant decreasing to slight increasing) and diffuse radiation (from significant increasing to slight decreasing). We suggest that continuously increasing aerosol loading from emission of pollutants is responsible for the reduced global solar radiation and increased diffuse radiation in cloud-free skies from 1961 to 1992. We speculate that a decrease in relative humidity observed since 1992 may have reduced the absorption of solar radiation by atmospheric water vapor, and decreased the scattering and extinction efficiency of particles by weakening the hygroscopic growth of aerosols, despite the concurrent increasing trend in the emission of pollutants.

  20. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  1. Solar Radiation Alert System

    DTIC Science & Technology

    2009-03-01

    th an effectve cutoff rgdty of ~0 MV (2)), the FAA’s Cvl Aerospace Medcal Insttute (CAMI) ssues a Solar Radaton Alert (SRA) to the Nat...fluences of other partcles are too small to be of sgnficance n dose calculatons (4, 11). Earth was modeled as a sphere of lqud water of rad

  2. Kingdom of Saudi Arabia Solar Radiation Atlas

    SciTech Connect

    NREL

    1998-12-16

    This atlas provides a record of monthly mean solar radiation generated by a Climatological Solar Radiation model, using quasi-climatological inputs of cloud cover, aerosol optical depth, precipitable water vapor, ozone, surface albedo, and atmospheric pressure.

  3. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  4. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  5. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  6. SORCE: Solar Radiation and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  7. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Riley, William J.; Kueppers, Lara M.; Biraud, Sebastien C.; Torn, Margaret S.

    2016-07-01

    Gross primary productivity (GPP) has been reported to increase with the fraction of diffuse solar radiation, for a given total irradiance. The correlation between GPP and diffuse radiation suggests effects of diffuse radiation on canopy light-use efficiency, but potentially confounding effects of vegetation phenology have not been fully explored. We applied several approaches to control for phenology, using 8 years of eddy-covariance measurements of winter wheat in the U.S. Southern Great Plains. The apparent enhancement of daily GPP due to diffuse radiation was reduced from 260% to 75%, after subsampling over the peak growing season or by subtracting a 15 day moving average of GPP, suggesting a role of phenology. The diffuse radiation effect was further reduced to 22% after normalizing GPP by a spectral reflectance index to account for phenological variations in leaf area index LAI and canopy photosynthetic capacity. Canopy photosynthetic capacity covaries with diffuse fraction at a given solar irradiance at this site because both factors are dependent on day of year or solar zenith angle. Using a two-leaf Sun-shaded canopy radiative transfer model, we confirmed that the effects of phenological variations in photosynthetic capacity can appear qualitatively similar to the effects of diffuse radiation on GPP and therefore can be difficult to distinguish using observations. The importance of controlling for phenology when inferring diffuse radiation effects on GPP raises new challenges and opportunities for using radiation measurements to improve carbon cycle models.

  8. Solar Radiation: An Anomalous Decrease of Direct Solar Radiation.

    PubMed

    Flowers, E C; Viebrock, H J

    1965-04-23

    Beginning in November 1963, measurements made at the South Pole of solar radiation at normal incidence indicate a decrease of from 5 to 78 percent of the normal intensity. Similar measurements made at Mauna Loa, Hawaii, show a similar though smaller reduction. The causal factor is believed to be a layer of atmospheric dust resulting from the eruption of Mt. Agung, Bali, in March 1963.

  9. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  10. Radiating properties of solar plasmas

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Mcwhirter, R. W. P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma.

  11. NREL Solar Radiation Resource Assessment Project: Status and outlook

    SciTech Connect

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory. 17 refs.

  12. MODIS Solar Diffuser On-orbit Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, H.; Choi, T.; Sun, J.; Angal, A.

    2008-01-01

    MODIS is a key instrument for the NASA Earth Observing System (EOS), currently operated on both the Terra and Aqua missions. Each MODIS instrument has 20 reflective solar bands (RSBs) and 16 thermal emissive bands (TEBs). MODIS RSB on-orbit calibration is reflectance based using an on-board solar diffuser (SD). The SD bi-directional reflectance factors (BRFs) were characterized pre-launch using reference diffuser samples, which are traceable to NIST reflectance standards. The SD BRF on-orbit degradation (or change) is tracked by another onboard device, called the solar diffuser stability monitor (SDSM). The SDSM is operated during each scheduled SD calibration event, making alternate observations of direct sunlight and the diffusely reflected sunlight from the SD. The time series of the ratios of SDSM's SD view to its Sun view provide SD degradation information. This paper presents and compares the Terra and Aqua MODIS SD on-orbit performance. Results show that the SD on-orbit degradation depends on the amount of solar exposure of the SD plate. In addition, it is strongly wavelengthdependent, with a larger degradation rate at shorter wavelengths. For Terra MODIS, an SD door anomaly occurred in May 2003 that led to a decision to fix the door permanently at an "open" position. Since then, the SD degradation rate has significantly increased due to more frequent solar exposure. As expected, the SD on-orbit performance directly impacts the RSB calibration performance. The lessons learned from MODIS on-orbit calibration will provide useful insights into the development and operation of future SD calibration systems.

  13. NREL's Concentrated Solar Radiation User Facility

    SciTech Connect

    Lewandowski, A.

    1999-09-01

    Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

  14. 1961-1990 Solar Radiation Data Base

    SciTech Connect

    Not Available

    1990-01-01

    A new 1961-1990 Solar Radiation Data Base for the United States is being compiled at the Solar Energy Research Institute. Using solar radiation and climate data collected by the National Weather Service (NWS) from 1977 to 1990 and improved computer models to fill in missing data, this update will significantly upgrade the current national SOLMET/ERSATZ data base.

  15. Early solar mass loss, element diffusion, and solar oscillation frequencies

    SciTech Connect

    Guzik, J.A.; Cox, A.N.

    1994-07-01

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depiction. This depletion requires a total mass loss of {approximately}0.1 M{circle_dot}, nearly independent of the mass loss timescale. We have calculated the evolution and oscillation frequencies of solar models including helium and element diffusion, and such early solar mass loss. We show that extreme mass loss of 1 M{circle_dot} is easily ruled out by the low-degree p-modes that probe the solar center and sense the steeper molecular weight gradient produced by the early phase of more rapid hydrogen burning. The effects on central structure are much smaller for models with an initial mass of 1.1 M{circle_dot} and exponentially-decreasing mass loss irate with e-folding timescale 0.45 Gyr. While such mass loss slightly worsens the agreement between observed and calculated low-degree modes, the observational uncertainties of several tenths of a microhertz weaken this conclusion. Surprisingly, the intermediate-degree modes with much smaller observational uncertainties that probe the convection zone bottom prove to be the key to discriminating between models: The early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for these modes. Thus it appears that oscillations can also rule out this smaller amount of gradual early main-sequence mass loss in the young Sun. The mass loss phase must be confined to substantially under a billion years, probably 0.5 Gyr or less, to simultaneously solve the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  16. Surface solar radiation from geostationary satellites for renewable energy

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  17. Comparative performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.; Parat, K. K.

    1987-01-01

    A comparison is made between indium phosphide solar cells whose p-n junctions were processed by open tube capped diffusion, and closed tube uncapped diffusion, of sulfur into Czochralski grown p-type substrates. Air mass zero, total area, efficiencies ranged from 10 to 14.2 percent, the latter value attributed to cells processed by capped diffusion. The radiation resistance of these latter cells was slightly better, under 1 MeV electron irradiation. However, rather than being process dependent, the difference in radiation resistance could be attributed to the effects of increased base dopant concentration. In agreement with previous results, both cells exhibited radiation resistance superior to that of gallium arsenide. The lowest temperature dependency of maximum power was exhibited by the cells prepared by open tube capped diffusion. Contrary to previous results, no correlation was found between open circuit voltage and the temperature dependency of Pmax. It was concluded that additional process optimization was necessary before concluding that one process was better than another.

  18. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  19. Solar Radiation Data from the World Radiation Data Centre (WRDC) Online Archive

    DOE Data Explorer

    The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, serves as a central depository for solar radiation data collected at over 1000 measurement sites throughout the world. The WRDC was established in accordance with Resolution 31 of WMO Executive Committee XVIII in 1964. The WRDC centrally collects, archives and published radiometric data from the world to ensure the availability of these data for research by the international scientific community. The WRDC archive contains the following measurements (not all observations are made at all sites): • Global solar radiationDiffuse solar radiation • Downward atmospheric radiation • Sunshine duration • Direct solar radiation (hourly and instantaneous) • Net total radiation • Net terrestrial surface radiation (upward) • Terrestrial surface radiation • Reflected solar radiation • Spectral radiation components (instantaneous fluxes) At present, this online archive contains a subset of the data stored at the WRDC. As new measurements are received and processed, they are added to the archive. The archive currently contains all available data from 1964-1993.[From ôBackground on the WRDCö at http://wrdc-mgo.nrel.gov/html/about.html

  20. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  1. Fires increase Amazon forest productivity through increases in diffuse radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Spracklen, D. V.; Mercado, L.; Reddington, C. L.; Haywood, J. M.; Ellis, R. J.; Phillips, O. L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; Butt, N.

    2015-06-01

    Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156 Tg C a-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60 Tg C a-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests.

  2. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  3. Interim Solar Radiation Data Manual: 30-Year Statistics from the National Solar Radiation Data Base

    SciTech Connect

    Not Available

    1992-11-01

    The 30-year (1961-1990) statistics contained in this document have been derived from the National Solar Radiation Data Base (NSRDB) produced by the National Renewable Energy Laboratory (NREL). They outline solar radiation sources, as well as 30-year monthly and annual means of 5 solar radiation elements (three surface and two extraterrestrial) and 12 meteorological elements for 239 locations.

  4. Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.

    2007-01-01

    In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.

  5. Solar radiation and human health

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  6. Gallium arsenide solar cell radiation damage study

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  7. Spectral solar radiation data base documentation

    NASA Astrophysics Data System (ADS)

    Riordan, Carol J.; Myers, Daryl R.; Hulstrom, Roland L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the neutral variability in the spectral (color) content to outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 documents the history, approach, content, and format of the data base; Volume 2 contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI.

  8. Workshop Report on Managing Solar Radiation

    NASA Technical Reports Server (NTRS)

    Lane, Lee (Compiler); Caldeira, Ken (Compiler); Chatfield, Robert (Compiler); Langhoff, Stephanie (Compiler)

    2007-01-01

    The basic concept of managing Earth's radiation budget is to reduce the amount of incoming solar radiation absorbed by the Earth so as to counterbalance the heating of the Earth that would otherwise result from the accumulation of greenhouse gases. The workshop did not seek to decide whether or under what circumstances solar radiation management should be deployed or which strategies or technologies might be best, if it were deployed. Rather, the workshop focused on defining what kinds of information might be most valuable in allowing policy makers more knowledgeably to address the various options for solar radiation management.

  9. Characterization of supersonic radiation diffusion waves

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-07-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.

  10. Solar radiation data manual for buildings

    SciTech Connect

    Marion, W.; Wilcox, S.

    1995-09-01

    Architects and engineers use solar resource information to help design passive solar and daylighting features for buildings. Solar resource information includes data on how much solar radiation and illuminance are available for different window orientations, and how they vary. This manual provides solar radiation and illuminance values for a horizontal window and four vertical windows (facing north, east, south, and west) for 239 stations in the United States and its territories. The solar radiation values are monthly and yearly averages for the period of 1961--1990. Included are values showing the solar radiation incident on the window and the amount transmitted into the living space, with and without exterior shading of the window. Illuminance values are presented r average dismal profiles for 4 months of the year. In addition to the solar radiation and illuminance data, this manual contains tables listing climatic condition such as average temperature, average daily minimum and maximum temperature, record minimum and maxi mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, an average clearness index. The solar radiation, illuminance, and climatic data a presented in tables. Data for each station are presented on a single page, and the pages are arranged alphabetically by the state or territory two-letter abbreviation. Within a state or territory, the pages are arranged alp betically by city or island.

  11. Modeling of Solar Radiation Management: A comparison of simulations using reduced solar constant and stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Bala, Govindasamy; Modak, Angshuman; Caldeira, Ken

    2014-05-01

    The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to test if the climate response to SRM by stratospheric aerosols and uniform solar constant reduction are equivalent. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are equivalent when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by about 15-20% and direct radiation decreases by about 8% in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~ -1.5%) when solar constant is reduced. Though the contribution from shaded leaves to gross primary productivity (GPP) increases by 6% in aerosol SRM because of increased diffuse light this increase is almost offset by a 7% decline in sunlit contribution due to reduced direct light. Hence, in the aerosol SRM there is a slight net reduction (~ 1%) in total GPP which is close to the decrease due to solar constant reduction. Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost equivalent except for two important aspects: stratospheric temperature change and the partitioning of direct versus diffuse radiation reaching the surface.

  12. Coordinated weather balloon solar radiation measurements during a solar eclipse

    PubMed Central

    2016-01-01

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757

  13. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    PubMed

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  14. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  15. Solar Radiation Research Laboratory (Poster)

    SciTech Connect

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  16. A method for optimizing the cosine response of solar UV diffusers

    NASA Astrophysics Data System (ADS)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  17. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  18. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  19. Estimating worldwide solar radiation resources on a 40km grid

    SciTech Connect

    Maxwell, E.L.; George, R.L.; Brady, E.H.

    1996-11-01

    During 1995, the National Renewable Energy Laboratory (NREL), initiated the Data Grid Task under the auspices of DOE`s Resource Assessment Program. A data grid is a framework of uniformly spaced locations (grid points) for which data are available. Estimates of monthly averages of direct normal, diffuse horizontal, and global horizontal daily-total solar radiation energy (kWh/m{sup 2}) are being made for each point on a grid covering the US, Mexico, the Caribbean, and southern Canada. The grid points are separated by approximately 40 km. Using interpolation methods, the digital data grid can be used to estimate solar resources at any location. The most encouraging result to date has been the location of sources providing worldwide data for most of the input parameters required for modeling daily total solar radiation. This is a multiyear task expected to continue through the rest of this century.

  20. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System.

    PubMed

    Balan, Mugur C; Damian, Mihai; Jäntschi, Lorentz

    2008-02-19

    The paper presents a solar radiation monitoring system, using two scientificpyranometers and an on-line computer home-made data acquisition system. The firstpyranometer measures the global solar radiation and the other one, which is shaded,measure the diffuse radiation. The values of total and diffuse solar radiation arecontinuously stored into a database on a server. Original software was created for dataacquisition and interrogation of the created system. The server application acquires the datafrom pyranometers and stores it into a database with a baud rate of one record at 50seconds. The client-server application queries the database and provides descriptivestatistics. A web interface allow to any user to define the including criteria and to obtainthe results. In terms of results, the system is able to provide direct, diffuse and totalradiation intensities as time series. Our client-server application computes also derivateheats. The ability of the system to evaluate the local solar energy potential is highlighted.

  1. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2016-05-18

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  2. Standard solar models, with and without helium diffusion, and the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-10-01

    We first show that, with the same input parameters, the standard solar models of Bahcall and Ulrich; of Sienkiewicz, Bahcall, and Paczyński of Turck-Chièze, Cahen, Cassé, and Doom; and of the current Yale code all predict event rates for the chlorine experiment that are the same within +/-0.1 SNU (solar neutrino units), i.e., approximately 1% of the total calculated rate. We then construct new standard solar models using the Yale stellar evolution computer code supplemented with a more accurate (exportable) nuclear energy generation routine, an improved equation of state, recent determinations of element abundances, and the new Livermore (OPAL) opacity calculations. We evaluate the individual effects of different improvements by calculating a series of precise models, changing only one aspect of the solar model at a time. We next add a new subroutine that calculates the diffusion of helium with respect to hydrogen with the aid of the Bahcall-Loeb formalism. Finally, we compare the neutrino fluxes computed from our best solar models constructed with and without helium diffusion. We find that helium diffusion increases the predicted event rates by about 0.8 SNU, or 11% of the total rate, in the chlorine experiment; by about 3.5 SNU, or 3%, in the gallium experiments; and by about 12% in the Kamiokande and SNO experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, radiative opacity, and equation of state predicts a value of 8.0+/-3.0 SNU for the 37Cl experiment and 132+21-17 SNU for the 71Ga experiment. The quoted errors represent the total theoretical range and include the effects on the model predictions of 3σ errors in measured input parameters. All 15 calculations since 1968 of the predicted rate in the chlorine experiment given in this series of papers are consistent with both the range estimated in the present work and the 1968 best-estimate value of 7.5+/-2.3 SNU. Including the

  3. Diffusion length measurements in solar cells: An analysis and comparison of techniques

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Khan, A. A.; Soukup, R. J.; Hermann, A. M.

    1982-01-01

    A brief review of the major techniques for measuring minority carrier diffusion lengths in solar cells is given. Emphasis is placed on comparing limits of applicability for each method, especially as applied to silicon cells or to gallium arsenide cells, including the effects of radiation damage.

  4. Solar Radiation and Climate Experiment (SORCE) Satellite

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  5. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  6. Cloud recognition from ground-based solar radiation measurements: preliminary results

    NASA Astrophysics Data System (ADS)

    Calbo, Josep; Gonzalez, Josep-Abel

    1998-12-01

    Despite cloud recognition techniques that can routinely identify cloud classes form satellite images, observation of clouds from the ground is still needed to acquire a complete description of cloud climatology. Solar radiation in a given site is one of the meteorological magnitudes that are most affected by cloud cover. Presently, the number of stations where both global and diffuse total solar radiation is measured is growing, due basically to energetic applications of solar radiation. Global and diffuse hourly irradiation, along with some measure of the temporal variability of solar radiation, are used in this paper to describe the sky condition, and to classify it into several cloud types. A classical maximum likelihood method is applied for clustering data. One year of solar radiation data and cloud observations at a site in Catalonia, Spain is used to illustrate the ability of solar radiation measurements to describe cloud types. Preliminary results of the above methodology show that three clusters appear using global and diffuse hourly irradiation only. Fog, stratus, and stratocumulus from the first group. A second group includes altocumulus alone or mixed with other clouds, as well as scattered cumulus congestus. In a third group, we find clear skies, cirrus and scattered cumulus. Especially in this third group, variability of solar radiation within an hour helps to separate different situations.

  7. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  8. Solar Neutrons and the Earth's Radiation Belts.

    PubMed

    Lingenfelter, R E; Flamm, E J

    1964-04-17

    The intensity and spectrum of solar neutrons in the vicinity of the earth are calculated on the assumption that the low-energy protons recently detected in balloon and satellite flights are products of solar neutron decay. The solar-neutron flux thus obtained exceeds the global average cosmic-ray neutron leakage above 10 Mev, indicating that it may be an important source of both the inner and outer radiation belts. Neutron measurements in the atmosphere are reviewed and several features of the data are found to be consistent with the estimated solar neutron spectrum.

  9. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  10. Resistance of Marine Bacterioneuston to Solar Radiation

    PubMed Central

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-01-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria. PMID:16151115

  11. Resistance of marine bacterioneuston to solar radiation.

    PubMed

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-09-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for gamma-proteobacteria and 14% and 8% for alpha-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the gamma-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria.

  12. Radiation-stimulated diffusion in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kiv, A.; Fuks, D.; Munitz, A.; Zenou, V.; Moiseenko, N.

    A di-vacancy low-temperature diffusion is proposed to explain diffusion-controlled processes in Al-Si alloys responsible for neutron-induced silicon precipitation. Ab initio calculations of potential barriers for Si atom hopping in aluminium lattice showed that in the case of di-vacancy diffusion, they are small compared with that of mono-vacancy diffusion. The low temperature diffusivity of mono-vacancies is too small to account for the measured Si diffusivities in aluminium. The dependencies of radiation-stimulated diffusion on the neutron flux and on the temperature are obtained and can be used for the experimental verification of the developed model.

  13. Solar Position Algorithm for Solar Radiation Applications (Revised)

    SciTech Connect

    Reda, I.; Andreas, A.

    2008-01-01

    This report is a step-by-step procedure for implementing an algorithm to calculate the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of ?0.0003/. It is written in a step-by-step format to simplify otherwise complicated steps, with a focus on the sun instead of the planets and stars in general. The algorithm is written in such a way to accommodate solar radiation applications.

  14. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1982-01-01

    A test was conducted to determine the solar reflections from the Orbiter radiator panels. A one-tenth scale model of the forward and mid-forward radiator panels in the deployed position was utilized in the test. Test data was obtained to define the reflected one-sun envelope for the embossed silver/Teflon radiator coating. The effects of the double contour on the forward radiator panels were included in the test. Solar concentrations of 2 suns were measured and the one-sun envelope was found to extend approximately 86 inches above the radiator panel. A limited amount of test data was also obtained for the radiator panels with the smooth silver/Teflon coating to support the planned EVA on the Orbiter STS-5 flight. Reflected solar flux concentrations as high as 8 suns were observed with the smooth coating and the one-sun envelope was determined to extend 195 inches above the panel. It is recommended that additional testing be conducted to define the reflected solar environment beyond the one-sun boundary.

  15. Particulate and solar radiation stable coating for spacecraft

    NASA Technical Reports Server (NTRS)

    Slemp, W. S. (Inventor)

    1977-01-01

    A laminate thermal control coating for spacecraft comprising a layer of solar radiation stable film, a layer of particulate radiation stable film applied to the upper surface of the solar radiation stable film, and a layer of reflecting material applied to the lower surface of the solar radiation stable film was described. The coating experiences no increase in solar radiation absorptance (the proportion of radiant energy absorbed) upon exposure to particulate or solar radiation as the particulate radiation is substantially absorbed in the particulate radiation stable layer and the solar radiation partially absorbed by the particulate radiation stable layer is transmitted by the solar radiation stable film to the reflecting material which reflects it back through the laminate and into space.

  16. On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-01-10

    We analyze bidirectional reflectance factors (BRF) of the solar diffuser (SD) and vignetting function (VF) of the SD screen (SDS) for on-board calibration of the visible infrared imaging radiometer suite (VIIRS). Specific focus is placed on the products of the BRF and VF, which are the main inputs for calibration of the SD and its accompanying solar diffuser stability monitor (SDSM), which tracks SD degradation. A set of 14 spacecraft yaw maneuvers for the Suomi National Polar-Orbiting Partnership satellite, which houses the VIIRS instrument, was carefully planned and carried out over many orbits to provide the necessary information on the dependence of VIIRS instrument response on solar angles. Along with the prelaunch measurements for the SDS VF and SD BRF, the absolute form of the BRF-VF product is determined for each of the reflective solar bands (RSB) and the SDSM detectors. Consequently, the absolute form of the SDS VF also is obtained from the RSB and SDSM detectors using the yaw maneuver data. The results show that the BRF-VF product for an RSB is independent of the detector, gain status, and half-angle mirror side. The derived VFs from the RSB and the SDSM detectors also show reasonable agreement with each other, as well as with the prelaunch VF measurements, and further demonstrate only geometrical dependence, which, in this work, is characterized by solar angles. The derived calibration coefficients, called the F-factors, from the application of the derived functions in this study show a significantly improved pattern. A small band-dependent residual seasonal fluctuation on the level of ∼0.2%-0.4% remains in the F-factors for each RSB and is further improved by a corrective function with linear dependence on the solar azimuth angle in the nominal attitude instrument coordinate system to the VF. For satellite ocean color remote sensing, on-orbit instrument calibration and characterization are particularly important for producing accurate and consistent

  17. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  18. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    NASA Astrophysics Data System (ADS)

    Vasar, C.; Prostean, O.; Prostean, G.

    2016-02-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models.

  19. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  20. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  1. Exospheric cleaning of the Earth Radiation Budget solar radiometer during solar maximum

    NASA Technical Reports Server (NTRS)

    Predmore, R. E.; Jacobowitz, H.; Hickey, J. R.

    1983-01-01

    Anomalous behavior of the Earth Sensor Assemblies (ESA) had been observed on the Defense Meteorological Satellite Program (DMSP) 5D/1 satellites and the Tiros-N satellite. The present investigation is concerned with the reasons for the observed phenomena. Degradation of the Earth Radiation Budget (ERB) solar channels and the Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) diffuser plate is attributed to transmission or reflection loss originating from the growth of an organic film by photolytic polymerization. Simultaneous degradation of the ESA interference filter coated lenses facing the flight direction and the recovery of the ERB solar channels on Nimbus 6 and 7 is caused by a reaction with the increase in the exospheric atmospheric density caused by solar maximum.

  2. Measurement of solar radiation at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  3. Radiative transport models for solar thermal receiver/reactors

    SciTech Connect

    Bohn, M S; Mehos, M S

    1989-12-01

    Modeling the behavior of solar-driven chemical reactors requires detailed knowledge of the absorbed solar flux throughout the calculation domain. Radiative transport models, which determine the radiative intensity field and absorbed solar flux, are discussed in this paper with special attention given to particular needs for the application of solar thermal receiver/reactors. The geometry of interest is an axisymmetric cylinder with a specified intensity field at one end, diffuse reflection at boundaries, and containing a participating medium. Participating media are of interest because receiver/reactors are expected to have one or more zones containing small particles or monoliths acting as absorbers or catalyst supports, either of which will absorb, emit, and scatter radiation. A general discussion of modeling techniques is given, followed by a more complete discussion of three models -- the two-flux, discrete ordinate, and the Monte Carlo methods. The methods are compared with published benchmark solutions for simplified geometries -- the infinite cylinder and plane slab -- and for geometries more closely related to receiver/reactors. Conclusions are drawn regarding the applicability of the techniques to general receiver/reactor models considering accuracy, ease of implementation, ease of interfacing with solution techniques for the other conservation equations, and numerical efficiency. 23 refs., 6 figs., 2 tabs.

  4. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  5. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  6. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer

    The Solar Energy Research Institute (SERI)*, Electric Power Research Institute (EPRI), Florida Solar Energy Center (FSEC), and Pacific Gas and Electric Company (PG&E) cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions (or climates) that is applicable to several different types of solar collectors. Data that are included in the data base were collected at FSEC from October 1986 to April 1988, and at PG&E from April 1987 to April 1988. FSEC operated one EPRI and one SERI spectroradiometer almost daily at Cape Canaveral, which contributed nearly 2800 spectra to the data base. PG&E operated one EPRI spectroradiometer at San Ramon, Calif., as resources permitted, contributing nearly 300 spectra to the data base. SERI collected about 200 spectra in the Denver/Golden, Colo., area form November 1987 to February 1988 as part of a research project to study urban spectral solar radiation, and added these data to the data base. *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

  7. Application of semiconductor diffusants to solar cells by screen printing

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr.; Mazaris, G. A.; Scudder, L. R. (Inventor)

    1978-01-01

    Diffusants were applied onto semiconductor solar cell substrates, using screen printing techniques. The method was applicable to square and rectangular cells and can be used to apply dopants of opposite types to the front and back of the substrate. Then, simultaneous diffusion of both dopants can be performed with a single furnace pass.

  8. Diffusion lengths in amphoteric GaAs heteroface solar cells

    NASA Technical Reports Server (NTRS)

    Ashley, K. L.; Beal, S. W.

    1978-01-01

    Minority-carrier diffusion lengths in amphoteric GaAs:Si were investigated. Electron and hole diffusion lengths in p- and n-type, respectively, were determined to be 13 microns and 7 microns. Preliminary efficiency measurements on heteroface structures based on amphoteric GaAs:Si p-n junctions indicated that these devices should make excellent solar cells.

  9. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    EPA Science Inventory

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  10. SOLAR UV RADIATION AND AQUATIC BIOGEOCHEMISTRY

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of solar UV radiation on biogeochemical cycles in surface waters of lakes and the sea. A major portion of this research has focused on photoreactions of the colored component of dissolved organic matter, ...

  11. Radiation balances and the solar constant

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  12. Ultraviolet Radiation in the Solar System

    NASA Astrophysics Data System (ADS)

    Vázquez, M., Hanslmeier, A.

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequences are described, together with the possible contribution of UV radiation to recent climate changes. Finally, we will discuss the the potential role of ultraviolet light in the development of life on bodies such as Mars, Europa and Titan. The Solar System is not isolated; other external sources can contribute to the enhancement of the UV radiation in our environment. The influence of such events as nearby supernovae and gamma-ray bursts are described, together with the consequences to terrestrial life from such events.

  13. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  14. Solar cell radiation handbook. Addendum 1: 1982-1988

    NASA Technical Reports Server (NTRS)

    Anspaugh, Bruce E.

    1989-01-01

    The Solar Cell Radiation Handbook (JPL Publication 82-69) is updated. In order to maintain currency of solar cell radiation data, recent solar cell designs have been acquired, irradiated with 1 MeV electrons, and measured. The results of these radiation experiments are reported.

  15. Observable Characteristics of Solar Radiation (revised Tables)

    NASA Astrophysics Data System (ADS)

    Makarova, E. A.; Kharitonov, A. V.; Kaznachevskaja, T. V.; Roshchina, E. M.; Sarychev, A. P.

    The following characteristics of solar radiation in the spectral range from X-rays at 0.1 nm to the millimeter radio waves are given: spectral flux distributions in energy units at the 1 AU distance from the Sun, spectral radiance of the center of the solar disk, mean spectral radiance of the solar disk, limb darkening and blanketing coefficients. The most recent data have been taken into account. In comparison with our monograph (Makarova et al. 1991), the data are given with smaller wavelength steps and averaging bins. Since the fluxes in the far ultraviolet and X-ray ranges depend on the activity level, in the wavelengths <120 nm we present the data for the minimum and maximum of solar activity.

  16. Turning collectors for solar radiation

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  17. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  18. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  19. Radiation Diffusion: An Overview of Physical and Numerical Concepts

    SciTech Connect

    Graziani, F R

    2005-01-14

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  20. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    PubMed

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  1. Radial diffusion models of energetic electrons and Jupiter's synchrotron radiation. 2: Time variability

    NASA Astrophysics Data System (ADS)

    de Pater, I.

    1994-02-01

    We used a radial diffusion code for energetic electrons in Jupiter's magnetosphere to investigate variations in Jupiter's radio emission due to changes in the electron phase space density at L shells between 6 and 50, and due to changes in the radial diffusion parameters. We suggest that the observed variations in Jupiter's radio emission are likely caused by changes in the electron phase space density at some boundary L1 is greater than 6, if the primary mode of transport of energetic electrons is radial diffusion driven by fluctuating electric and/or magnetic fields induced by upper atmospheric turbulence. We noticed an excellent empirical correlation, both in phase and relative amplitude, between changes in the solar wind ram pressure and Jupiter's synchrotron radiation if the electron phase space density at the boundary L1 (L1 is approximately equal to 20-50) varies linearly with the square root of the solar wind ram pressure, f is approximately (Nsnu2s)1/2. The calculations were carried out with a diffusion coefficient DLL = DnLn with n = 3. The diffusion coefficient which best fit the observed variations in Jupiter's synchrotron radiation D3 = 1.3 +/- 0.2 x 10-9/s is approximately 0.041/yr, which corresponds to a lagtime of approximately 2 years. We further show that the observed short term (days-weeks) variations in Jupiter's radio emission cannot be explained adequately when radial diffusion is taken into account.

  2. Absorption of solar radiation in broken clouds

    SciTech Connect

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  3. Diffuser for intravessels radiation based on plastic fiber

    NASA Astrophysics Data System (ADS)

    Pich, Justyna; Grobelny, Andrzej; Beres-Pawlik, Elzbieta

    2006-03-01

    Laser radiation is used in such contemporary medicine as: sport medicine, gynecology etc. Because of many radiations inside the system, there is a need of an element, which allows to supply the place of illness with energy. The dimensions of this element are often small and the one that meets these conditions is diffuser.

  4. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  5. Research on gallium arsenide diffused junction solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandi, S. K.

    1984-01-01

    The feasibility of using bulk GaAs for the fabrication of diffused junction solar cells was determined. The effects of thermal processing of GaAs was studied, and the quality of starting bulk GaAs for this purpose was assessed. These cells are to be made by open tube diffusion techniques, and are to be tested for photovoltaic response under AMO conditions.

  6. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  7. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  8. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  9. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  10. High Mortality of Red Sea Zooplankton under Ambient Solar Radiation

    PubMed Central

    Al-Aidaroos, Ali M.; El-Sherbiny, Mohsen M. O.; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M.

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h−1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½of maximum values averaged (±SEM) 12±5.6 h−1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean. PMID:25309996

  11. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  12. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  13. Shining On: A primer on solar radiation data

    SciTech Connect

    Dunlap, M.A.; Cook, G.; Marion, B.; Riordan, C.; Renne, D.

    1992-05-01

    This document is a primer on solar radiation data. General uses of solar energy are presented. The manner in which solar radiation data is used to aid engineers in optimizing the use of solar thermal conversion and photovoltaic conversion is discussed. Methods for acquiring and assimilating the solar radiation data are illustrated. This would include the design and use of pyranometers and pyrheliometers. Seasonal and geographical variations in solar flux reaching the earth are evaluated. Other uses of compiled data include the determination of meteorological impacts of atmospheric disturbances such as volcano eruptions.

  14. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Bala, Govindasamy; Modak, Angshuman; Caldeira, Ken

    2015-05-01

    The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by ~23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~8 %) and net primary productivity (~3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and

  15. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  16. Radiation Belts Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.

    2008-12-01

    The several preceding decades of deep space missions have demonstrated that the generation of planetary radiation belts is a universal phenomenon. All strongly magnetized planets show well developed radiation regions, specifically Earth, Jupiter, Saturn, Uranus, and Neptune. The similarities occur despite the tremendous differences between the planets in size, levels of magnetization, external environments, and most importantly, in the fundamental processes that power them. Some planets like Jupiter are powered overwhelmingly by planetary rotation, much like astrophysical pulsars, whereas others, like Earth and probably Uranus, are powered externally by the interplanetary environment. Uranus is a particularly interesting case in that despite the peculiarities engendered by its ecliptic equatorial spin axis orientation, its magnetosphere shows dynamical behavior similar to that of Earth as well as radiation belt populations and associated wave emissions that are perhaps more intense than expected based on Earth-derived theories. Here I review the similarities and differences between the radiation regions of radiation belts throughout the solar system. I discuss the value of the comparative approach to radiation belt physics as one that allows critical factors to be evaluated in environments that are divorced from the special complex conditions that prevail in any one environment, such as those at Earth.

  17. Solar Radiation Resource Assessment Project. Program overview of fiscal year 1993

    SciTech Connect

    Not Available

    1994-06-01

    The mission of the Solar Radiation Resource Assessment Project is to provide essential information about the solar radiation resource to users and planners of solar technologies so that they can make informed and timely decisions concerning applications of those technologies. The project team accomplishes this by producing and disseminating relevant and reliable information about solar radiation. Topics include: Variability of solar radiation, measurements of solar radiation, spectral distribution of solar radiation, and assessment of the solar resource. FY 1993 accomplishments are detailed.

  18. Decadal Variability of Surface Incident Solar Radiation over China

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2015-04-01

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. This study provides metadata and reference data to investigate the observed variability of Rs in China. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) was measured separately in China, from which Rs was calculated a sum. However, pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend to Rsdif and Rs measurements. The observed Rsdir did not suffer from such sensitivity drift problem. From 1990 to 1993, the old instruments were replaced and measuring stations were relocated in China, which introduced an abrupt increase in the observed Rs. After 1993, Rs was measured by solid black thermopile pyranometers. Comprehensive comparisons between observation-based and model-based Rs performed in this research have shown that sunshine duration (SunDu)-derived Rs is of high quality and provide accurate estimate of decadal variability of Rs over China. SunDu-derived Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability has been confirmed by the observed Rsdir, independent studies on aerosols and diurnal temperature range, and can be reproduced by certain high-quality earth system models. However, neither satellite retrievals (the Global Energy and Water Exchanges Project Surface Radiation Budget (GEWEX SRB)) nor reanalyses (ERA-Interim and Modern-Era Retrospective analysis for Research and Applications (MERRA)) can accurately reproduce such decadal variability of Rs over China for their exclusion of annual variability of tropospheric

  19. Quantum-radiative cooling for solar cells with textured surface

    NASA Astrophysics Data System (ADS)

    Gilman, Boris; Ivanov, Igor

    2004-11-01

    Efficient technique of Quantum Radiative Cooling (QRC) of textured Solar Cells and Modules is described that is capable of Solar Module (SM) temperature reduction by 5-20C, resulting in 3-10% efficiency increase. Novel methods are based on the quantum assisted IR emission from the surface covered by either multi-layer coatings made of Si-nitride, SiO or Si oxy-nitride films or specifically designed insulating sun-transparent chamber (QRC zone) that contains Selective Emissive (SE) gas or gas mix. QRC zone is mounted on the top of Solar Module replacing existing lamination coatings. To enhance the efficiency of QRC some specific methods and fabrication procedures are proposed to form an electricly charged textured surface that provide a high Electric Field at the surface thus enhancing IR emissivity from the surface. Such procedure can be also used to form the field Induced Surface Barriers in the Si-based Solar Cells that can substitute the existing diffused Emitters resulting in significant reduction of the Cycle Time as well as prospective Fabrication Cost.

  20. Baseline Surface Radiation Network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station

    NASA Astrophysics Data System (ADS)

    Zo, Il-Sung; Jee, Joon-Bum; Kim, Bu-Yo; Lee, Kyu-Tae

    2017-02-01

    Gangneung-Wonju National University (GWNU) radiation station has been collecting data on global, direct, and diffuse solar radiation since 2011. We conducted a quality control (QC) assessment of GWNU data collected between 2012 and 2014, using procedures outlined by the Baseline Surface Radiation Network (BSRN). The QC process involved the comparison of observations, the correction of observational equipment, the examination of physically possible limits, and the comparative testing of observations and model calculations. Furthermore, we performed a shading check of the observational environment around the GWNU solar station. For each solar radiation element (observed every minute), we performed a QC check and investigated any flagged problems. 98.31% of the data were classified as good quality, while the remaining 1.69% were flagged as bad quality based on the shading check and comparison tests. We then compared the good-quality data to the global solar radiation data observed at the Gangwon Regional Office of Meteorology (GROM). After performing this comparison, the determination coefficient (R2; 0.98) and standard deviation (SD; 0.92 MJ m-2) increased compared to those computed before the QC check (0.97 and 1.09 MJ m-2). Even considering the geographical differences and weather effects between the two stations, these results are statistically significant. However, we also confirmed that the quality of the GROM data deteriorated in relation to weather conditions because of poor maintenance. Hence, we conclude that good-quality observational data rely on the maintenance of both observational equipment and the surrounding environment under optimal conditions.

  1. Three-temperature plasma shock solutions with gray radiation diffusion

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Klein, R. I.

    2017-03-01

    The effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron-ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  2. Three-temperature plasma shock solutions with gray radiation diffusion

    SciTech Connect

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  3. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  4. On-orbit characterization of a solar diffuser"s bidirectional reflectance factor using spacecraft maneuvers

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Sun, Junqiang; Esposito, Joe; Liu, Xiaojin; Barnes, William L.; Guenther, B.

    2003-11-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) uses an on-board solar diffuser (SD) panel made of Spectralon for the radiometric calibration of its 20 reflective solar bands (RSB). The spectral wavelengths of the RSB range from 0.41 to 2.1 micrometers. The on-orbit calibration coefficients are determined from the sensor s responses to the diffusely reflected solar illumination from the SD. This method requires an accurate pre-launch characterization of solar diffuser s bi-directional reflectance factors (BRF) that should cover the sensor s spectral range and illumination/viewing angles and accurate on-orbit monitoring of SD degradation over time. The MODIS SD panel s bi-directional reflectance factors were characterized prior to the sensor s final system integration (pre-launch by the instrument vendor using reference samples traceable to the NIST reflectance standards at a number of wavelengths and carefully selected combinations of the illumination/viewing angles. The measured BRF values were fitted into smooth surfaces and then interpolated for each of the MODIS reflective solar bands. In this paper, we describe an approach designed for the MODIS on-orbit characterization and validation of its SD BRF using multiple SD solar observations at several spacecraft yaw angels. This approach has been successfully applied to both the Terra and Aqua MODIS. This paper presents the algorithm used to derive the SD s relative BRF from observations during spacecraft yaws and compares the on-orbit results with corresponding pre-launch values.

  5. Is there a transition of solar radiation from dimming to brightening over India?

    NASA Astrophysics Data System (ADS)

    Soni, V. K.; Pandithurai, G.; Pai, D. S.

    2016-03-01

    Recent observational studies show that solar radiation incident on ground has not been stable over the last several decades but underwent significant multi-decadal variations. From the 1950s, solar radiation has had a general decreasing trend, named dimming. Since the late 1980s, a trend reversal and partial recovery has been observed at many observations sites across the globe; it is the so-called brightening. The present study examined temporal and spatial trends in surface solar radiation (global and diffuse) and sunshine duration in India using a 40-year data set (1971-2010) of the twelve stations of solar radiation network of the India Meteorological Department. The research work examines the global solar radiation trends in all-sky and cloud-free sky conditions. The long-term variability in the diffuse components of solar radiation, bright sunshine duration, and cloud cover has also been studied over India. India is one of the few regions that showed a continuous and steady decline in global solar radiation from the 1970s to 2000. The declining trend of all-sky global irradiance over India as a whole was 0.6 Wm- 2 year- 1 during 1971-2000 and 0.2 Wm- 2 year - 1 during 2001-2010. A third-order polynomial fit to the data indicated a reversal in all-sky global irradiance around 2001 at some sites. Reversal or stabilization of global irradiance is also seen in seasonal mean values at some of the stations. The reversal in clear-sky global irradiance was clearly evident from 2001. Similar trend is also observed in bright sunshine duration. This confirms the well-known phenomenon of global dimming and global brightening over India. The analysis of global irradiance data highlights the fact that in general the dimming/brightening is station dependent because of regional sources and meteorology which contribute to the variation in solar irradiance.

  6. Acute effects of solar particle event radiation

    PubMed Central

    Kennedy, Ann R.; Weissman, Drew; Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Wan, X. Steven; Romero-Weaver, Ana L.; Diffenderfer, Eric S.; Lin, L.; Cengel, K.

    2014-01-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animals exposed to space flight stressors combined with the types of radiation expected during an SPE. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations: gamma rays or electrons). All animal studies described have been approved by the University of PA IACUC. Some conclusions from recent CARR investigations are as follows: (i) the relative biological effectiveness (RBE) values for SPE-like protons compared with standard reference radiations (gammas or electrons) for white blood cells (WBCs) vary greatly between mice, ferrets and pigs, with the RBE values being greater in ferrets than those in mice, and considerably greater in pigs compared with those in ferrets or mice [1, 2]. This trend for the data suggests that the RBE values for WBCs in humans could be considerably greater than those observed in small mammals, and SPE proton radiation may be far more hazardous to humans than previously estimated from small animal studies. (ii) Very low doses of SPE proton radiation (25 cGy) increase blood clotting times in ferrets, and the low SPE-like dose rate has more severe effects than high dose rate radiation [3]. (iii) Results from pig and ferret studies suggest that disseminated intravascular coagulation is a major cause of death at doses near the LD50 level for SPE-like proton and gamma radiation. (iv) Exposure to SPE-like proton or gamma radiation, in combination with

  7. Radiation belt dynamics during solar minimum

    SciTech Connect

    Gussenhoven, M.S.; Mullen, E.G. ); Holeman, E. )

    1989-12-01

    Two types of temporal variation in the radiation belts are studied using low altitude data taken onboard the DMSP F7 satellite: those associated with the solar cycle and those associated with large magnetic storm effects. Over a three-year period from 1984 to 1987 and encompassing solar minimum, the protons in the heart of the inner belt increased at a rate of approximately 6% per year. Over the same period, outer zone electron enhancements declined both in number and peak intensity. During the large magnetic storm of February 1986, following the period of peak ring current intensity, a second proton belt with energies up to 50 MeV was found at magnetic latitudes between 45{degrees} and 55{degrees}. The belt lasted for more than 100 days. The slot region between the inner and outer electron belts collapsed by the merging of the two populations and did not reform for 40 days.

  8. Solar Radiation Management, Cloud Albedo Enhancement

    NASA Astrophysics Data System (ADS)

    Salter, Stephen H.

    Cloud albedo enhancement is one of several possible methods of solar radiation management by which the rate of increase in world temperatures could be reduced or even reversed. It depends on a well-known phenomenon in atmospheric physics known as the Twomey effect. Twomey argued that the reflectivity of clouds is a function of the size distribution of the drops in the cloud top. In clean mid-ocean air masses, there is a shortage of the condensation nuclei necessary for initial drop formation in addition to high relative humidity. This means that the liquid water in a cloud has to be in relatively large drops. If extra nuclei could be artificially introduced, the same amount of liquid water would be shared among a larger number of smaller drops which would have a larger surface area to reflect a larger fraction of the incoming solar energy back out to space.

  9. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    PubMed Central

    Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz

    2008-01-01

    The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746

  10. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.

  11. Modeling of Solar Radiation Management: A Comparison of Simulations Using Reduced Solar Constant and Stratospheric Sulphate Aerosols

    NASA Astrophysics Data System (ADS)

    Bala, G.; Kalidindi, S.; Modak, A.; Caldeira, K.

    2014-12-01

    Several climate modelling studies in the past have used reduction in solar constant to simulate the climatic effects of Solar Radiation Management (SRM) geoengineering. This is most likely valid only for space-based mirrors/reflectors but not for SRM methods that rely on stratospheric aerosols. In this study, we use a climate model to evaluate the differences in climate response to SRM by uniform solar constant reduction and stratospheric aerosols. The experiments are designed such that global mean warming from a doubling of atmospheric CO2 concentration (2xCO2) is nearly cancelled in each case. In such a scenario, the residual climate effects are similar when important surface and tropospheric climate variables such as temperature and precipitation are considered. However, there are significant differences in stratospheric temperature response and diffuse and direct radiation reaching the surface. A difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods, with warming in the aerosol scheme and a slight cooling for sunshades. While the global mean surface diffuse radiation increases by ~23% and direct radiation decreases by about 9% in the case of aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 8%) and NPP (~3%) relative to 2xCO2, indicating the negligible effect of the fractional changes in direct/diffuse radiation on the overall plant productivity. Based on our modelling study, we conclude that the climate states produced by a

  12. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  13. Handbook of Space-Radiation Effects on Solar-Cell Power Systems

    DTIC Science & Technology

    1963-01-01

    prevents accurate prediction of solar cell degradation for earth satellites 0 is our inadequate knowledge of the fluxes and energy spectra of electrons ...protons and electrons in order to 0 predict their performance in space. Therefore, the performance data presented herein may become obsolete. However, it...and Recombination Centers by Radiation 12 0 B. Simplifying Assumptions 13 C. Effect of Radiation on Diffusion Length 14 D. Electron Damage Coefficients

  14. On-Orbit Performance of MODIS Solar Diffuser Stability Monitor

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Choi, Taeyoung; Sun, Jungiang; Johnson, Eric

    2014-01-01

    MODIS reflective solar bands (RSB) calibration is provided by an on-board solar diffuser (SD). On-orbit changes in the SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM). The SDSM consists of a solar integration sphere (SIS) with nine detectors covering wavelengths from 0.41 to 0.94 microns. It functions as a ratioing radiometer, making alternate observations of the sunlight through a fixed attenuation screen and the sunlight diffusely reflected from the SD during each scheduled SD/SDSM calibration event. Since launch, Terra and Aqua MODIS SD/SDSM systems have been operated regularly to support the RSB on-orbit calibration. This paper provides an overview of MODIS SDSM design functions, its operation and calibration strategies, and on-orbit performance. Changes in SDSM detector responses over time and their potential impact on tracking SD on-orbit degradation are examined. Also presented in this paper are lessons learned from MODIS SD/SDSM calibration system and improvements made to the VIIRS SD/SDSM system, including preliminary comparisons of MODIS and VIIRS SDSM on-orbit performance.

  15. Plant response to solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.

    1981-01-01

    Plant reactions and mechanisms of reaction to solar UV radiation are reviewed, along with characteristics of plants which enhance UV tolerance. Wavelength regions to which proteins are particularly sensitive are examined and the possibility of synergistic effects from photoreactions to multiple wavelengths is considered, along with available evidence of nonadditive plant spectral responses to UV radiation. Decreases in atmospheric ozone content are explored in terms of UV wavelengths which would increase with the ozone decreases, particularly for UV-B, which depresses photosynthesis and would increase 1% with a 16% reduction of stratospheric ozone. Higher elevations are projected to display effects of increased UV incident flux first, and global distributions of UV increases due to atmospheric inhomogeneity and water surface clarity are examined. Finally, the response of plant nucleic acids, DNA, chlorophyll to enhanced UV are described, along with repair, avoidance, and optical mechanisms which aid plant survival

  16. Stability of Stationary Solutions of the Multifrequency Radiation Diffusion Equations

    SciTech Connect

    Hald, O H; Shestakov, A I

    2004-01-20

    A nondimensional model of the multifrequency radiation diffusion equation is derived. A single material, ideal gas, equation of state is assumed. Opacities are proportional to the inverse of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the radiation source function. It is shown that the solutions are uniformly bounded in time and that stationary solutions are stable. The spatially independent solutions are asymptotically stable, while the spatially dependent solutions of the linearized equations approach zero.

  17. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  18. Simulation of solar radiative transfer in cumulus clouds

    SciTech Connect

    Zuev, V.E.; Titov, G.A.

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  19. Attenuation coefficient of usable solar radiation of the global oceans

    NASA Astrophysics Data System (ADS)

    Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Kahru, Mati

    2016-05-01

    Usable solar radiation (USR) represents spectrally integrated solar energy in the spectral range of 400-560 nm, a domain where photons penetrate the most in oceanic waters and thus contribute to photosynthesis and heating at deeper depths. Through purely numerical simulations, it was found that the diffuse attenuation coefficient of downwelling USR (Kd(USR), m-1) is nearly a constant vertically in the upper water column for clear waters and most turbid waters. Subsequently an empirical model was developed to estimate Kd(USR) based on the diffuse attenuation coefficient at 490 nm (Kd(490), m-1). We here evaluate this relationship using data collected from a wide range of oceanic and coastal environments and found that the relationship between Kd(490) and Kd(USR) developed via the numerical simulation is quite robust. We further refined this relationship to extend the applicability to "clearest" natural waters. This refined relationship was then used to produce sample distribution of Kd(USR) of global oceans. As expected, extremely low Kd(USR) (˜0.02 m-1) was observed in ocean gyres, while significantly higher Kd(USR) (˜5.2 m-1) was found in very turbid coastal regions. A useful application of Kd(USR) is to easily and accurately propagate surface USR to deeper depths, potentially to significantly improve the estimation of basin scale primary production and heat fluxes in the upper water column.

  20. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  1. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  2. Viewing Radiation Signatures of Solar Energetic Particles in Interplanetary Space

    DTIC Science & Technology

    2009-01-01

    events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged...events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with...vol. CP858. AIP. New York, pp. 241-250, 2006. Morgan. II., Fineschi, S.. Habbal. S.R., Li. B. In situ spectroscopy of the solar corona . Astron

  3. Biological Sensors for Solar Ultraviolet Radiation

    PubMed Central

    Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Menck, Carlos F.M.; Schuch, André P.

    2011-01-01

    Solar ultraviolet (UV) radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products. PMID:22163847

  4. The Homogeneity of the Potsdam Solar Radiation Data

    NASA Astrophysics Data System (ADS)

    Behrens, K.

    2009-04-01

    At Meteorological Station in Potsdam (Germany) the measurement of sunshine duration started already in 1983. Later on, in 1937 the registration of global, diffuse and direct solar radiation was begun with pyranometers and a pyrheliometer. Since 1983 sunshine duration has been measured with the same method, the Campbell-Stokes sunshine recorder, at the same site, while the measurements of solar radiation changed as well as in equipment, measurement methods and location. Furthermore, it was firstly necessary to supplement some missing data within the time series and secondly, it was desirable to extend the series of global radiation by regression with the sunshine duration backward to 1893. Because solar radiation, especially global radiation, is one of the most important quantities for climate research, it is necessary to investigate the homogeneity of these time series. At first the history was studied and as much as possible information about all parameters, which could influence the data, were gathered. In a second step these metadata were reviewed critically followed by a discussion about the potential effects of local factors on the homogeneity of the data. In a first step of data rehabilitation the so-called engineering correction (data levelling to WRR and SI units) were made followed by the supplementation of gaps. Finally, for every month and the year the so generated time series of measured data (1937/2008) and the complete series, prolonged by regression and measurements (1893/2008), were tested on homogeneity with the following distribution-free tests: WILCOXON (U) test, MANN-KENDALL test and progressive analysis were used for the examination of the stability of the mean and the dispersion, while with the Wald-Wolfowitz test the first order autocorrelation was checked. These non-parametric test were used, because frequently radiation data do not fulfil the assumption of a GAUSSian or normal distribution. The investigations showed, that discontinuities

  5. Lasers pumped by solar radiation (Review)

    NASA Astrophysics Data System (ADS)

    Golger, A. L.; Klimovskii, I. I.

    1984-02-01

    Theoretical models and existing experimental data on solar-pumped lasers are surveyed. Necessary conditions for lasing to occur are defined, including the necessity that the chemical used must be stable to solar radiation. Attention is given to photodissociation gas lasers such as RI, IBr and CO2-Br2 lasers, molecular gas lasers such as CO2 devices and four-level solid-state lasers, e.g., YAG:Nd and waveguide lasers. Consideration is devoted to efficiencies optimized by the selection of specific values for the density, absorption cross-section of the active media, the rate of de-excitation, the transverse dimensions of the active medium and necessary levels of solar concentration. The discussion reveals that only the closed cycle gas dynamic laser and a solid-state waveguide laser can currently produce 3-6 percent efficiency operation, the latter requiring only 100 suns concentration for a 100 W output. Configurations of arrays of transversely concentrating parabolic heliostats to produce sufficient power for energy applications are discussed.

  6. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil.

    PubMed

    Silva, Abel A

    2016-06-01

    The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.

  7. Stratospheric Aerosols for Solar Radiation Management

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  8. SUB-THz RADIATION MECHANISMS IN SOLAR FLARES

    SciTech Connect

    Fleishman, Gregory D.; Kontar, Eduard P.

    2010-02-01

    Observations in the sub-THz range of large solar flares have revealed a mysterious spectral component increasing with frequency and hence distinct from the microwave component commonly accepted to be produced by gyrosynchrotron (GS) emission from accelerated electrons. Evidently, having a distinct sub-THz component requires either a distinct emission mechanism (compared to the GS one), or different properties of electrons and location, or both. We find, however, that the list of possible emission mechanisms is incomplete. This Letter proposes a more complete list of emission mechanisms, capable of producing a sub-THz component, both well known and new in this context, and calculates a representative set of their spectra produced by (1) free-free emission, (2) GS emission, (3) synchrotron emission from relativistic positrons/electrons, (4) diffusive radiation, and (5) Cherenkov emission. We discuss the possible role of the mechanisms in forming the sub-THz emission and emphasize their diagnostics potential for flares.

  9. A Simple Solar, Spectral Model for Studying the Effects of Cloud Cover and Surface Albedo on the Incoming Solar Radiation.

    DTIC Science & Technology

    1986-01-01

    designed for particular locations ( Barbaro , 1979), clear sky cases only (Bird, 1984), for slopes of different orientation (Temps and Coulson, 1977...not desirable. In late 1982, a volcano (El Chichon) erupted in Mexico and spewed ash and other constituents into the atmosphere. The volcanic cloud...April 1981, pp. 889-894. Barbaro , S.; Coppolino, S.; Leone, C.; and Sinagra, E. "An Atmospheric Model For computing Direct and Diffuse Solar Radiation

  10. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  11. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    NASA Astrophysics Data System (ADS)

    Dugan, G.; Sagan, D.

    2017-02-01

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall where the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program's use.

  12. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    PubMed

    Cruse, Michael J; Kucharik, Christopher J; Norman, John M

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support

  13. WRF-Solar: Upgrading the WRF representation of the aerosol-cloud-radiation feedbacks in support of solar energy forecasting

    NASA Astrophysics Data System (ADS)

    Jimenez, P. A.; Haupt, S. E.; Hacker, J.; Dudhia, J.

    2015-12-01

    WRF-Solar is an upgraded version of the Weather Research and Forecasting (WRF) model aimed at improving solar power forecasting that provides a better representation of the aerosol-cloud-radiation feedbacks. Model developments include efficient numerical approaches to support operational forecasting and focus on particular feedbacks of the aerosol-cloud-radiation system: Aerosol-radiation feedbacks: A new parameterization of the aerosol direct effect was implemented to improve the representation of the aerosol variability. Cloud-aerosol feedbacks: The microphysics parameterization was upgraded to include water- and ice-nucleation aerosols. Cloud-radiation feedbacks: A shallow cumulus parameterization was implemented to connect sub-grid clouds to the radiation scheme. In addition, the microphysics parameterization provides the cloud droplet radius and ice crystal size to the radiation parameterizations to fully represent the first and second aerosol indirect effect. Initialization of the cloud field from infrared radiances recorded by satellites. The different components have been interconnected to provide a complete representation of the aerosol-cloud-radiation system and its feedbacks. In addition, new developments were introduced to output the diffuse and direct normal irradiance (DNI) at temporal resolutions only limited by the time step of the model. This presentation will provide an overview of the model physics packages upgraded for solar energy applications together with an assessment of different upgraded components. This includes the clear sky assessment wherein improvements of up to 58%, 76%, and 83% are found in global horizontal irradiance, DNI, and diffuse irradiance, respectively, compared to a standard version of the WRF model. The benefits of including a representation of the effects of unresolved clouds in the solar irradiance that largely reduce a positive bias in the model (~50W/m2). Finally, we will discuss an ongoing evaluation of the

  14. Measurement and modelling of spectral solar radiation.

    NASA Astrophysics Data System (ADS)

    Dehne, K.; Czeplak, G.

    1996-03-01

    Small band measurements of spectral solar radiation by means of commercially available spectral radiometers, which are generally designed for laboratory work, require thorough aptitude tests and mostly special fitting measures. For the already available DM 150, first of all an entrance optics to correct cosine errors, a thermostatted weathercasing, as well as a special control lamp device for field use were developped. An international IEA-field intercomparison of 12 spectral radiometers in the Oberpfaffenhofen area of DLR showed deviations between the global radiation spectra of (+/-)15% and (+/-)40% for the best and the worst case, resp. The latter was caused by the operational requirements in the field and the mechanical instabilities of some radiometers (including the DM 150). Generally a remarkable portion of the deviations belongs to calibration uncertainties and imperfect cosine corrections. With regard to the summarized experience only principal recommendations on the use of spectral radiometers are given. Measured data of atmospheric heat radiation A and other meteorological data of 16 IEA stations were compiled in a data base at MOH to facilitate the fast uniform validation of 30 formulae for parametrization of A. For the case of sky clouded in 3 layers a parametrization formula was improved and successfully validated. A special reliable A-formula could be developped from the sufficiently high number of data of station Schleswig for the case of low cloudiness only.

  15. Effects of Aerosol Optical Depth on diffuse UV and visible radiation

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Cho, H.; Kim, Y.

    2007-12-01

    Ultraviolet radiation (UV, 300-367nm) was measured with a UV-multifilter rotating shadowband radiometer (UV- MFRSR) at Yonsei University, Seoul (37.57°N, 126.97°) for 7 months from January to July 2006 and visible irradiance (400-700 nm) also measured with a MFRSR for 12 months of 2006 at the same station. Spectral UV_AOD and vis_AOD were retrieved using the Langley method and Beer-Bouguer-Lambert's law, and compared with AOD obtained from Skyradiometer to validate their values. The diffuse and direct irradiance were analyzed to investigate the dependence on total optical depth (TOD) and aerosol optical depth (AOD). The direct-horizontal solar irradiance decreases exponentially as the optical depth increases according to the Beer- Bouguer-Lambert's Law. As the TOD and AOD increase, the diffuse-horizontal UV radiation gradually increases and shows a maximum value at some critical optical depth for a given SZA. Similar analysis was performed on the relation between the diffuse irradiance and AOD. RAF(radiation amplification factor) was used to correct the ozone effects on UV. These results provide empirical equations for the amount of diffuse irradiance in UV and visible wavelengths.

  16. Systematic Optimization of Boron Diffusion for Solar Cell Emitters

    NASA Astrophysics Data System (ADS)

    Ebrahimi, P.; Kolahdouz, M.; Iraj, M.; Ganjian, M.; Aghababa, H.; Asl-Soleimani, E.; Radamson, Henry H.

    2017-02-01

    To achieve p-n junctions for n-type solar cells, we have studied BBr3 diffusion in an open tube furnace, varying parameters of the BBr3 diffusion process such as temperature, gas flows, and duration of individual process steps, i.e., predeposition and drive-in. Then, output parameters such as carrier lifetime, sheet resistance, and diffusion profile were measured and statistically analyzed to optimize the emitter characteristics. Statistical analysis (factorial design) was finally employed to systematically explore the effects of the set of input variables on the outputs. The effect of the interactions between inputs was also evaluated for each output, quantified using a two-level factorial method. Temperature and BBr3 flow were found to have the most significant effect on different outputs such as carrier lifetime, junction depth, sheet resistance, and final surface concentration.

  17. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  18. Spectral solar radiation data base documentation, volume 1

    NASA Astrophysics Data System (ADS)

    Riordan, Carol J.; Myers, Daryl R.; Hulstrom, Roland L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the natural variability in the spectral (color) content of outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 of this report documents the history, approach, content and format of the data base.

  19. Nonadiabatic nonradial p-mode frequencies of the standard solar model, with and without helium diffusion

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1994-01-01

    The nonadiabatic frequencies of a standard solar model and a solar model that includes helium diffusion are discussed. The nonadiabatic pulsation calculation includes physics that describes the losses and gains due to radiation. Radiative gains and losses are modeled in both the diffusion approximation, which is only valid in optically thick regions, and the Eddington approximation, which is valid in both optically thin and thick regions. The calculated pulsation frequencies for modes with l less than or equal to 1320 are compared to the observed spectrum of the Sun. Compared to a strictly adiabatic calculation, the nonadiabatic calculation of p-mode frequencies improves the agreement between model and observation. When helium diffusion is included in the model the frequencies of the modes that are sensitive to regions near the base of the convection zone are improved (i.e., brought into closer agreement with observation), but the agreement is made worse for other modes. Cyclic variations in the frequency spacings of the Sun as a function of frequency of n are presented as evidence for a discontinuity in the structure of the Sun, possibly located near the base of the convection zone.

  20. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  1. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  2. Protection against solar ultraviolet radiation in childhood.

    PubMed

    Pustisek, Nives; Situm, Mirna

    2011-09-01

    In the last decade, awareness of the harmful effects of solar ultraviolet radiation has increased. Modern lifestyles, outdoor occupations, sports and other activities make total sun avoidance impossible. Children spend more time outdoors than adults and there is compelling evidence that childhood is a particularly vulnerable time for the photocarcinogenic effects of the sun. Sun exposure among infants and pre-school age children is largely depend on the discretion of adult care providers. It is important to learn safe habits about sun-safety behaviours during the childhood. Children deserve to live and play in safe environments, and it is the responsibility of every adult to help children stay safe. Protecting children from excessive sun exposure is protection from sunburn today and other forms of sun damages, especially skin cancers, in the future.

  3. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  4. Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago

    2009-03-01

    The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).

  5. Climate response to abrupt cessation of solar radiation management

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Armour, K.; Bitz, C. M.; Battisti, D. S.

    2012-12-01

    Solar radiation management (SRM) as a means to reduce or cancel the effects of increased greenhouse gases may be regarded as effective to the extent that it broadly reduces warming and other related changes. Studies that have previously modeled SRM have focused on spatial inhomogeneities in the climate response, assuming that SRM is continued indefinitely and global climate is stabilized. In this study, we focus on the possible situation in which SRM is terminated (e.g. due to lack of funding, international governmental disorganization, technical failure, or unanticipated negative consequences) while greenhouse gases have continued rising. We use a global climate model (GCM) with a prescribed stratospheric sulfate burden that counteracts the Representative Concentration Pathway 8.5 (RCP8.5) - wherein the radiative forcing reaches 8.5 W/m2 above the preindustrial by 2100 - to show that upon termination of the sulfate burden, abrupt and sustained warming occurs that is well outside familiar 20th century bounds, especially on land. The GCM utilized has a climate sensitivity of 3.2 degrees Celsius, yet in reality climate sensitivity is unknown, its probability density distribution exhibiting a long tail at the high end of sensitivity. Using SRM to stabilize climate while greenhouse gases continue to rise has the effect of obscuring how the climate would respond to the additional gases given the opportunity - climate sensitivity would be masked. We use a simple upwelling-diffusion energy balance model to span the range of the observationally-constrained climate sensitivities to investigate the range of global mean rate of temperature rise following SRM termination, in addition to its sensitivity to termination year and background emissions scenario. We show that in fact, the distribution of temperature trends following termination could be far broader than those simulated by the GCM. These inherent dangers suggest that solar radiation management should only be

  6. Charged particle diffusion and acceleration in Saturn's radiation belts

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.; Simpson, J. A.

    1980-01-01

    In the present paper, an attempt is made to determine, from the observed intensity profiles for protons and electrons in the region of L smaller than 4, whether population of Saturn's innermost trapped radiation zones from an external source is possible. It is found that if diffusion proceeds in an episodic rather than a steady-state manner (long periods of quiescence interrupted by brief periods of rapid diffusion), the basic features of the observed phase space density profiles are qualitatively reproduced for both the trapped protons and electrons.

  7. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  8. Structure and radiation properties of turbulent diffusion flames

    SciTech Connect

    Kounalakis, M. E.

    1990-01-01

    A theoretical and experimental study of the flame structure and gas band radiation of carbon monoxide/hydrogen/air diffusion flames is described. The results have applications to analysis of the rate of spread of natural fires, design and development of furnaces, determination of radiant heat loads to engine components, development of rocket plume visibility, safe operations of industrial flares, development of material test codes for fire properties and development of fire detectors. The structure of the turbulent flames was studied using the Mie scattering technique to measure single and two-point mixture fraction statistics, and laser Doppler anemometery to measure single-point velocity statistics along the centerline. A stochastic methodology for treating the nonlinear flame radiation fluctuations caused by turbulence/radiation interactions was developed. The methodology was evaluated by comparison with high resolution emission spectroscopy measurements of gas-band radiation.

  9. Effects of both diffuse and collimated incident radiation on phototactic bioconvection

    NASA Astrophysics Data System (ADS)

    Panda, M. K.; Singh, R.; Mishra, Amaresh Chandra; Mohanty, Sraban Kumar

    2016-12-01

    Phototaxis denotes swimming towards (positive) or away (negative) from light. The suspension containing phototactic algae is illuminated by both the diffuse and collimated solar radiation. The algae absorb the incident light and scatter it. We use the phototaxis model of Ghorai et al. ["Bioconvection in a suspension of isotropically scattering phototactic algae," Phys. Fluids 22, 071901 (2010)] and investigate the onset of bioconvection with particular emphasis on the effects of diffuse irradiation. The basic equilibrium state of the bioconvective governing system is defined by assuming that the bulk velocity of the fluid to be zero and the up and down swimming, caused by the positive and negative phototaxis, is balanced with the diffusion. For some values of the parameters, the bimodal steady-state profile transits to a unimodal equilibrium state as the diffuse irradiation is increased. For a small scattering albedo, at the onset of bioconvective instability, this model differs significantly from the up-swimming model of Vincent and Hill ["Bioconvection in a suspension of phototactic algae," J. Fluid Mech. 327, 343 (1996)], even for small wavelengths. Furthermore, the solutions show a transition of the most unstable mode from the stationary to oscillatory state, and then back to the stationary state again, as the governing parameters are varied. A significant stabilizing effect on suspension has also been observed due to the effects of diffuse irradiation. The effect of the diffuse irradiation on a dominant bioconvection pattern wavelength at instability is also qualitatively in good agreement with the bioconvection experiments.

  10. Influence of radiation damage on krypton diffusion in silicon carbide

    NASA Astrophysics Data System (ADS)

    Friedland, E.; Hlatshwayo, T. T.; van der Berg, N. G.; Mabena, M. C.

    2015-07-01

    Diffusion of krypton in poly and single crystalline silicon carbide is investigated and compared with the previously obtained results for xenon, which pointed to a different diffusion mechanism than observed for chemically active elements. For this purpose 360 keV krypton ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 °C and 600 °C. Width broadening of the implantation profiles and krypton retention during isochronal and isothermal annealing up to temperatures of 1400 °C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by α-particle channeling. Little diffusion and no krypton loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 °C. Above that temperature thermal etching of the implanted surface became increasingly important. No diffusion or krypton loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 °C. Radiation damage dependent grain boundary diffusion is observed at 1300 °C in CVD-SiC. The results seem to indicate, that the chemically inert noble gas atoms do not form defect-impurity complexes, which strongly influence the diffusion behavior of other diffusors in silicon carbide.

  11. Glass diffusion source for constraining BSF region of a solar cell

    DOEpatents

    Lesk, I.A.; Pryor, R.A.; Coleman, M.G.

    1982-08-27

    The present invention is directed to a method of fabricating a solar cell comprising simultaneous diffusion of the p and n dopant materials into the solar cell substrate. The simultaneous diffusion process is preceded by deposition of a capping layer impervious to doping by thermal diffusion processes.

  12. VOYAGER OBSERVATIONS OF THE DIFFUSE FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn; Holberg, Jay B.

    2012-03-01

    The two Voyager spacecraft have completed their planetary exploration mission and are now probing the outer realms of the heliosphere. The Voyager ultraviolet spectrometers continued to operate well after the Voyager 2 Neptune encounter in 1989. We present a complete database of diffuse radiation observations made by both Voyagers: a total of 1943 spectra (500-1600 A) scattered throughout the sky. These include observations of dust-scattered starlight, emission lines from the hot interstellar medium, and a number of locations where no diffuse radiation was detected, with the very low upper limit of about 25 photons cm{sup -2} s{sup -1} sr{sup -1} A{sup -1}. Many of these observations were from late in the mission when there was significantly less contribution from interplanetary emission lines and thus less contamination of the interstellar signal.

  13. Enhanced annealing of GaAs solar cell radiation damage

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.

    1981-01-01

    Solar cells are degraded by radiation damage in space. Investigations have been conducted concerning possibilities for annealing this radiation damage in GaAs solar cells, taking into account the conditions favoring such annealing. It has been found that continuous annealing as well as the combination of injection annealing with thermal annealing can lead to recovery from radiation damage under particularly favorable conditions in GaAs solar cells. The damage caused by both electrons and protons in GaAs solar cells can be substantially reduced by annealing at temperatures as low as 150 C, under appropriate conditions. This possibility makes the GaAs solar cells especially attractive for long space missions, or for missions in severe radiation environments. Attention is given to results concerning periodic thermal annealing, continuous annealing, and injection annealing combined with thermal annealing.

  14. Methods to estimate solar radiation dosimetry in coral reefs using remote sensed, modeled, and in situ data.

    PubMed

    Barron, Mace G; Vivian, Deborah N; Yee, Susan H; Santavy, Deborah L

    2009-04-01

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar radiation dosimetry within multiple coral reef areas of South Florida was assessed using remote sensed, modeled, and measured values during a minor bleaching event during August 2005. Coral reefs in the Dry Tortugas and Upper Keys had similar diffuse downwelling attenuation coefficients (Kd, m(-1)), whereas Kd values were significantly greater in the Middle and Lower Keys. Mean 1% attenuation depths varied by reef region for ultraviolet B (UVB; 9.7 to 20 m), ultraviolet A (UVA; 22 to 40 m) and visible (27 to 43 m) solar radiation. Solar irradiances determined from remote sensed data were significantly correlated with measured values, but were generally overestimated at the depth of corals. Solar irradiances modeled using an atmospheric radiative transfer model parameterized with site specific approximations of cloud cover showed close agreement with measured values. Estimated daily doses (W h/m(2)) of UVB (0.01-19), UVA (2-360) and visible (29-1,653) solar radiation varied with coral depth (2 to 24 m) and meteorological conditions. These results indicate large variation in solar radiation dosimetry within coral reefs that may be estimated with reasonable accuracy using regional Kd measurements and radiative transfer modeling.

  15. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles.

  16. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  17. Regional climate response to solar-radiation management

    NASA Astrophysics Data System (ADS)

    Ricke, Katharine L.; Morgan, M. Granger; Allen, Myles R.

    2010-08-01

    Concerns about the slow pace of climate mitigation have led to renewed dialogue about solar-radiation management, which could be achieved by adding reflecting aerosols to the stratosphere. Modelling studies suggest that solar-radiation management could produce stabilized global temperatures and reduced global precipitation. Here we present an analysis of regional differences in a climate modified by solar-radiation management, using a large-ensemble modelling experiment that examines the impacts of 54 scenarios for global temperature stabilization. Our results confirm that solar-radiation management would generally lead to less extreme temperature and precipitation anomalies, compared with unmitigated greenhouse gas emissions. However, they also illustrate that it is physically not feasible to stabilize global precipitation and temperature simultaneously as long as atmospheric greenhouse gas concentrations continue to rise. Over time, simulated temperature and precipitation in large regions such as China and India vary significantly with different trajectories for solar-radiation management, and they diverge from historical baselines in different directions. Hence, it may not be possible to stabilize the climate in all regions simultaneously using solar-radiation management. Regional diversity in the response to different levels of solar-radiation management could make consensus about the optimal level of geoengineering difficult, if not impossible, to achieve.

  18. [Solar radiation and melanomas--is there any doubt about the connection?].

    PubMed

    Moan, J

    1998-06-10

    Arguments for and against there being a connection between exposure to solar radiation and cutaneous, malignant melanoma are reviewed. Recent experiments with animals and epidemiological observations provide relatively strong arguments that solar radiation causes cutaneous, malignant melanoma. Furthermore, epidemiological data from Norway and Australia support the assumption that UVA-radiation plays a significant role in melanoma induction; this is in agreement with data from experiments with Xiphophorus and Monodelphis domestica. A new hypothesis for melanoma induction is presented: Radiation absorbed by melanin in melanocytes generates free radicals that may activate the carcinogenic process. Radicals produced by light absorption in melanin in the upper layers of the epidermis are not able to diffuse as far down as to the melanocytes. Thus, this melanin may be protective, while that in the melanocytes may be a photocarcinogen. Findings that support this hypothesis are discussed.

  19. Comparison of MODIS and VIIRS solar diffuser stability monitor performance

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Sun, Junqiang; Wang, Zhipeng

    2012-11-01

    Launched in December 1999 and May 2002, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. MODIS reflective solar bands (RSB) are calibrated on-orbit by a solar diffuser (SD). Its on-orbit degradation, or the change in its bi-directional reflectance factor (BRF), is tracked by a solar diffuser stability monitor (SDSM). The MODIS SDSM makes alternate observations of direct sunlight through an attenuation screen (Sun view) and of sunlight reflected diffusely off the SD (SD view) during each SDSM calibration event. The MODIS SDSM has 9 detectors, covering wavelengths from 0.41 to 0.94 μm. Due to a design error in MODIS SDSM sub-system (identified post-launch), relatively large ripples were noticed in its Sun view responses. As a result, an alternative approach was developed by the MODIS calibration team to minimize the uncertainty in determining the SD on-orbit degradation. The first VIIRS, on-board the Suomi NPP spacecraft, was successfully launched in October 2011. It carries a MODIS-like SD and SDSM system for its RSB on-orbit calibration. Its design was improved based on lessons learned from MODIS. Operationally, the VIIRS SDSM is used more frequently than MODIS. VIIRS SDSM collects data using 8 individual detectors, covering a similar wavelength range as MODIS. This paper provides an overview of MODIS and VIIRS SDSM design features, their on-orbit operations, and calibration strategies. It illustrates their on-orbit performance in terms of on-orbit changes in SDSM detector on-orbit responses and on-orbit degradations of their SD. Results show that on-orbit changes of both MODIS and VIIRS SD BRF and SDSM response have similar wavelength dependency: the SD degradation is faster at shorter visible wavelengths while the decrease of SDSM detector responses (gains) is greater at longer near-infrared wavelengths.

  20. The Mystery of the Cosmic Diffuse Ultraviolet Background Radiation

    NASA Astrophysics Data System (ADS)

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a "second population" of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such "smaller" grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our "second component" of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  1. THE MYSTERY OF THE COSMIC DIFFUSE ULTRAVIOLET BACKGROUND RADIATION

    SciTech Connect

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua E-mail: jmurthy@yahoo.com E-mail: 97tyler@cardinalmail.cua.edu

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a ''second population'' of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such ''smaller'' grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our ''second component'' of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  2. Silicon diffusion in aluminum for rear passivated solar cells

    SciTech Connect

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-04-11

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50{+-}0.06) {mu}m/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  3. Solar radiation measurements from coordinated radiosonde flights during the 20th March 2015 solar eclipse

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Marlton, Graeme; Williams, Paul; Nicoll, Keri

    2016-04-01

    Solar radiation sensors can be carried on standard weather balloon packages and provide additional information about the atmosphere's vertical structure beyond the traditional thermodynamic measurements [1]. An interesting set of circumstances for such sensors occurs during a solar eclipse, which provides a rapidly changing solar radiation environment within the duration of a typical free balloon flight. Coordinating several launches of solar radiation measuring radiosondes brings a good likelihood of at least one being above any cloud during the maximum eclipse, allowing solar eclipse radiation measurements for comparison with theory. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse. All three balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. These approaches, which are essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. [1] K.A. Nicoll and R.G. Harrison, Balloon-borne disposable radiometer Rev Sci Instrum 83, 025111 (2012) doi: 10.1063/1.3685252

  4. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  5. Solar irradiance computations compared with observations at the Baseline Surface Radiation Network Payerne site

    SciTech Connect

    Nowak, Daniela; Vuilleumier, Laurent; Long, Charles N.; Ohmura, Atsumu

    2008-07-18

    Radiative transfer model calculations of solar fluxes during cloud free periods often show considerable discrepancies with surface radiation observations. Many efforts have been undertaken to explain the differences between modeled and observed shortwave downward radiation (SDR). In this study, MODTRAN4v3r1TM (designed later simply as MODTRANTM) was used for model simulations and compared with high quality radiation observations of the Baseline Surface Radiation Network (BSRN) site at Payerne, Switzerland. Results are presented for cloud free shortwave downward radiation calculations. The median differences of modeled minus observed global SDR are small (< 1%) and within the instrumental error. The differences of modeled and observed direct and diffuse SDR show larger discrepancies of -1.8% and 5.2% respectively. The diffuse SDR is generally overestimated by the model and more important, the model to observation linear regression slope and zero-intercept differs significantly from their ideal values of 1 and 0. Possible reasons for the discrepancies are presented and discussed and some modifications are investigated for decreasing such differences between modeled and observed diffuse SDR. However, we could not resolve all the discrepancies. The best agreement is obtained when comparing model simulations whose 550nm aerosol optical depth input is inferred from observations using nine spectral channels, and using BSRN observations performed with a new and more precise shading disk and sun tracker system. In this case, the median bias between model simulations and observed diffuse SDR is -0.4 Wm-2 (< 1%).

  6. The origin of the diffuse background gamma-radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

  7. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  8. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  9. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-06-02

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic panels. Following numerous studies comparing the performance of transposition models, this work aims to understand the quantitative uncertainty in state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models, with one substantially underestimating the diffuse plane-of-array irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of the empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for the future development of physics-based transposition models and evaluations of system performance.

  10. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.

  11. Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-11-21

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.

  12. A simple solar radiation index for wildlife habitat studies

    USGS Publications Warehouse

    Keating, Kim A.; Gogan, Peter J.; Vore, John N.; Irby, Lynn R.

    2007-01-01

    Solar radiation is a potentially important covariate in many wildlife habitat studies, but it is typically addressed only indirectly, using problematic surrogates like aspect or hillshade. We devised a simple solar radiation index (SRI) that combines readily available information about aspect, slope, and latitude. Our SRI is proportional to the amount of extraterrestrial solar radiation theoretically striking an arbitrarily oriented surface during the hour surrounding solar noon on the equinox. Because it derives from first geometric principles and is linearly distributed, SRI offers clear advantages over aspect-based surrogates. The SRI also is superior to hillshade, which we found to be sometimes imprecise and ill-behaved. To illustrate application of our SRI, we assessed niche separation among 3 ungulate species along a single environmental axis, solar radiation, on the northern Yellowstone winter range. We detected no difference between the niches occupied by bighorn sheep (Ovis canadensis) and elk (Cervus elaphus; P = 0.104), but found that mule deer (Odocoileus hemionus) tended to use areas receiving more solar radiation than either of the other species (P < 0.001). Overall, our SRI provides a useful metric that can reduce noise, improve interpretability, and increase parsimony in wildlife habitat models containing a solar radiation component.

  13. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  14. Retrieving direct and diffuse radiation with the use of sky imager pictures

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke

    2015-04-01

    A machine-learning approach for retrieving direct and diffuse irradiance from pictures taken by a ground-based whole-sky imagery (sky imager) is investigated in the present work. The use of sky imagers for shortest-term local solar irradiance forecasts is a growing field in research and industry. Accurate predictions of surface solar irradiance fluctuations up to 30 minutes ahead are important for a variety of solar energy and power grid applications. Sky imager picture analyses provide very high resolution binary cloud masks, but have limitations in deriving aerosol and cloud optical properties. In a first approach, surface solar irradiance was retrieved from the binary cloud masks with the use of clear sky and overcast irradiance calculations. With this method, forecast performance improvements over persistence could be achieved especially for broken cloud situations. These situations are characterized by inhomogeneous cloud patterns contributing to surface solar irradiance deviating from the clear sky or overcast levels. The accurate estimation of the radiative components will therefore improve the irradiance retrievals. One year of measurements at the University of Oldenburg was used as a robust data basis for this new approach. The data sets consists of direct, diffuse and global horizontal irradiance measured with a sample rate of 1 Hz. In order to account for diurnal and seasonal variations radiation measurements are normalized to the clear-sky conditions. Hemispheric images were taken every 10 s by a sky imager mounted close to the radiometers. The proposed approach uses image features like the average pixel intensity of the whole image and the circumsolar area, analyses of the gray-level co-occurence matrix (GLCM), information of the RGB and HSV color space and the analysed cloud fraction. In order to estimate normalized direct and diffuse radiation, a k-nearest neighbor (k-NN) regression algorithm is applied. The performance of this model is evaluated by

  15. Metal diffusion barriers for GaAs solar cells.

    PubMed

    van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J

    2017-03-15

    In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an Ea of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.

  16. Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Gueymard, Christian A.; Cheval, Sorin; Oprea, Cristian; Baciu, Madalina; Dumitrescu, Alexandru; Iacobescu, Flavius; Milos, Ioan; Rada, Costel

    2013-02-01

    Fifty-four broadband models for computation of solar diffuse irradiation on horizontal surface were tested in Romania (South-Eastern Europe). The input data consist of surface meteorological data, column integrated data, and data derived from satellite measurements. The testing procedure is performed in 21 stages intended to provide information about the sensitivity of the models to various sets of input data. There is no model to be ranked "the best" for all sets of input data. However, some of the models performed better than others, in the sense that they were ranked among the best for most of the testing stages. The best models for solar diffuse radiation computation are, on equal footing, ASHRAE 2005 model (ASHRAE 2005) and King model (King and Buckius, Solar Energy 22:297-301, 1979). The second best model is MAC model (Davies, Bound Layer Meteor 9:33-52, 1975). Details about the performance of each model in the 21 testing stages are found in the Electronic Supplementary Material.

  17. Attitude Control Flight Experience: Coping with Solar Radiation and Ion Engines Leak Thrust in Hayabusa (MUSES-C)

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro; Kominato, Takashi; Shirakawa, Ken'ichi

    2007-01-01

    The paper presents the attitude reorientation taking the advantage of solar radiation pressure without use of any fuel aboard. The strategy had been adopted to make Hayabusa spacecraft keep pointed toward the Sun for several months, while spinning. The paper adds the above mentioned results reported in Sedona this February showing another challenge of combining ion engines propulsion tactically balanced with the solar radiation torque with no spin motion. The operation has been performed since this March for a half year successfully. The flight results are presented with the estimated solar array panel diffusion coefficient and the ion engine's swirl torque.

  18. Prediction of global solar radiation and comparison with satellite data

    NASA Astrophysics Data System (ADS)

    Bakirci, Kadir

    2017-01-01

    Data on solar radiation at a related location is very necessary for many solar applications. In the present study, the models are derived to forecast the daily global solar radiation on horizontal plane for the Eastern Anatolia Region (EAR) of Turkey, covering thirteen provinces. The measured data on horizontal plane for the period of 1991-2005 are analyzed. The comparisons of calculated and measured values have been carried out with various statistical test methods. These statistical test methods are the mean bias error (MBE), the main percentage error (MPE), the root mean square error (RMSE) and t-statistic (t-stat). In addition, the comparisons of the solar radiation values of the National Aeronautics and Space Administration - Surface meteorology and Solar Energy (NASA-SSE) and calculated from the Model 3 with the higher determination coefficient is performed.

  19. Auroral Kilometric Radiation and Type III Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Romantsova, T. V.; Mogilevsky, M. M.; Skalsky, A. A.; Hanasz, J.

    2009-04-01

    Simultaneous wave observations onboard the ISEE-1 and ISEE-3 spacecraft show that onsets of the Auroral Kilometric Radiation frequently coincide with an arrival of type III solar burst (Calvert, 1981). It was supposed that solar burst stimulates maser instability in auroral region and AKR consequently . We present statistical and case studies of events when both type III solar radio bursts and Auroral Kilometric Radiation are recorded simultaneously. AKR was observed onboard the INTERBALL-2 spacecraft orbiting around the Earth by the POLRAD experiment. Wave measurements carried out onboard the Wind, INTEBALL-TAIL and Geotail spacecraft are used to identify unambiguously the type III solar radio bursts. The origin of close relation between onsets of both solar radiation and AKR is discussed and interpreted. Acknowledgements. This work is supported by grant RFBR 06-02-72560.

  20. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  1. An economic evaluation of solar radiation management.

    PubMed

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke

    2015-11-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative.

  2. Denoising solar radiation data using coiflet wavelets

    SciTech Connect

    Karim, Samsul Ariffin Abdul Janier, Josefina B. Muthuvalu, Mohana Sundaram; Hasan, Mohammad Khatim; Sulaiman, Jumat; Ismail, Mohd Tahir

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  3. The growth of solar radiated yeast

    SciTech Connect

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  4. Public understanding of solar radiation management

    NASA Astrophysics Data System (ADS)

    Mercer, A. M.; Keith, D. W.; Sharp, J. D.

    2011-10-01

    We report the results of the first large-scale international survey of public perception of geoengineering and solar radiation management (SRM). Our sample of 3105 individuals in the United States, Canada and the United Kingdom was recruited by survey firms that administer internet surveys to nationally representative population samples. Measured familiarity was higher than expected, with 8% and 45% of the population correctly defining the terms geoengineering and climate engineering respectively. There was strong support for allowing the study of SRM. Support decreased and uncertainty rose as subjects were asked about their support for using SRM immediately, or to stop a climate emergency. Support for SRM is associated with optimism about scientific research, a valuing of SRM's benefits and a stronger belief that SRM is natural, while opposition is associated with an attitude that nature should not be manipulated in this way. The potential risks of SRM are important drivers of public perception with the most salient being damage to the ozone layer and unknown risks. SRM is a new technology and public opinions are just forming; thus all reported results are sensitive to changes in framing, future information on risks and benefits, and changes to context.

  5. National Solar Radiation Database 1991-2005 Update: User's Manual

    SciTech Connect

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  6. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  7. The Gamma-ray galactic diffuse radiation and Cerenkov telescopes

    SciTech Connect

    Chardonnet, P. |; Salati, P. ||; Silk, J.; Grenier, I.; Smoot, G.

    1995-12-01

    By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

  8. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  9. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Smart, D F; Sauer, H H

    1998-01-01

    Galactic cosmic rays interact with the solar wind, the earth's magnetic field and hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.

  10. Diffusive and dynamical radiating stars with realistic equations of state

    NASA Astrophysics Data System (ADS)

    Brassel, Byron P.; Maharaj, Sunil D.; Goswami, Rituparno

    2017-03-01

    We model the dynamics of a spherically symmetric radiating dynamical star with three spacetime regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. A large family of solutions to the field equations are presented for various realistic equations of state. We demonstrate that it is possible to obtain solutions via a direct integration of the second order equations resulting from the assumption of an equation of state. A comparison of our solutions with earlier well known results is undertaken and we show that all these solutions, including those of Husain, are contained in our family. We then generalise our class of solutions to higher dimensions. Finally we consider the effects of diffusive transport and transparently derive the specific equations of state for which this diffusive behaviour is possible.

  11. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  12. Modeling Polarized Solar Radiation for Correction of Satellite Data

    NASA Astrophysics Data System (ADS)

    Sun, W.

    2014-12-01

    Reflected solar radiation from the Earth-atmosphere system is polarized. If a non-polarimetric sensor has some polarization dependence, it can result in errors in the measured radiance. To correct the polarization-caused errors in satellite data, the polarization state of the reflected solar light must be known. In this presentation, recent studies of the polarized solar radiation from the ocean-atmosphere system with the adding-doubling radiative-transfer model (ADRTM) are reported. The modeled polarized solar radiation quantities are compared with PARASOL satellite measurements and DISORT model results. Sensitivities of reflected solar radiation's polarization to various ocean-surface and atmospheric conditions are addressed. A novel super-thin cloud detection method based on polarization measurements is also discussed. This study demonstrates that the modeling can provide a reliable approach for making the spectral Polarization Distribution Models (PDMs) for satellite inter-calibration applications of NASA's future Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Key words: Reflected solar radiation, polarization, correction of satellite data.

  13. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Harries, Tim J.

    2012-02-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.

  14. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  15. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  16. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1996-01-01

    Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).

  17. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor ( SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated ( R 2 = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.

  18. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    PubMed

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R (2) = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  19. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  20. Modeling Topographic Influences on Solar Radiation: A Manual for the SOLARFLUX Model

    NASA Astrophysics Data System (ADS)

    Rich, Paul M.; Hetrick, William A.; Saving, Shawn C.

    1995-11-01

    SOLARFLUX is a geographical information system (GIS) based computer program (running under ARC/INFO and GRID) that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. A convenient user interface allows specification of program parameters, including latitude, time interval for simulation, file name of topographic surface, atmospheric conditions (transmissivity), and file names for output. The user specifies a topographic surface as an array of elevation values (GRID), SOLARFLUX generates five basic types of output: 1 ) total direct radiation, 2) duration of direct sunlight, 3) total diffuse radiation, 4) skyview factor, and 5) hemispherical viewsheds of sky obstruction for specific surface locations. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modeling insolation on complex surfaces, our theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modeling.

  1. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX Model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1995-11-01

    SOLARFLUX is a geographical information system (GIS) based computer program (running under ARC/INFO and GRID) that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. A convenient user interface allows specification of program parameters including latitude, time interval for simulation, file name of a topographic surface, atmospheric conditions (transmittivity), and file names for output. The user specifies a topographic surface as an array of elevation values (GRID). SOLARFLUX generates five basic types of output: 1) total direct radiation, 2) duration of direct sunlight, 3) total diffuse radiation, 4) skyview factor, and 5) hemispherical viewsheds of sky obstruction for specified surface locations. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modeling insolation on complex surfaces, our theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modeling.

  2. Photoacoustic imaging of prostate cancer using cylinder diffuse radiation

    NASA Astrophysics Data System (ADS)

    Xie, Wenming; Li, Li; Li, Zhifang; Li, Hui

    2012-12-01

    Prostate cancer is one of diseases with high mortality in man. Many clinical imaging modalities are utilized for the detection, grading and staging of prostate cancer, such as ultrasound, CT, MRI, etc. But they lacked adequate sensitivity and specificity for finding cancer in transition or central zone of prostate. To overcome these problems, we propose a photoacoustic imaging modality based on cylinder diffuse radiation through urethra for prostate cancer detection. We measure the related parameters about this system like lateral resolution (~2mm) and axial resolution(~333μm). Finally, simulated sample was imaged by our system. The results demonstrate the feasibility for detecting prostate cancer by our system.

  3. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTM runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy

  4. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  5. Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation.

    PubMed

    Coohill, Thomas P; Sagripanti, Jose-Luis

    2009-01-01

    Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.

  6. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; Jing, X.; Kiehl, J. T.; Long, C. N.; Morcrette, J.-J.; Potter, G. L.; Ramanathan, V.; Subasilar, B.; Whitlock, C. H.; Young, D. F.; Zhou, Y.

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  7. Solar radiation pressure effects on the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.

  8. Experimental and computer studies of the radiation effects in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Leadon, R. E.; Naber, J. A.; Passenheim, B. C.

    1971-01-01

    A summary of selected experimental results obtained on lithium-diffused bulk silicon is presented. Particular emphasis is placed on the radiation-induced degradation and thermal annealing of minority carriers in bulk silicon because solar cell output is related to the minority carrier lifetime. The temperature dependence of the minority carrier lifetime indicates the density and energy levels of the recombination centers and provides clues to their identity. Electron spin resonance and infrared absorption techniques are used to investigate the introduction and anneal of three specific radiation induced defects, which are thought to contribute to the recombination process.

  9. New typical meterological years and solar radiation data manual

    SciTech Connect

    Marion, W.

    1995-09-01

    A new solar radiation data manual and new typical meterological years (TMYs) were developed by the National Renewable Energy Laboratory (NREL) Analytic Studies Division under the Solar Radiation Resource Assessment Project. These tasks were funded and monitored by the Photovoltaics Branch of the Department of Energy Office of Energy Efficiency and Renewable Energy. The new manual and the new TMYs were derived from the 1961-1990 National Solar Radiation Data Base (NSRDB). The new manual is entitled Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors. It provides designers and engineers of solar-energy-related systems with average monthly and yearly solar radiation values for various types of collectors for 239 stations in the United States and its territories. The new TMY data sets are referred to as TMY2s. This distinguishes them from earlier TMY data sets derived from the 1952-1975 SOLMET/ERSATZ data base. This paper describes the new data manual and the new TMY2s.

  10. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  11. Diffused P+-N solar cells in bulk GaAs

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandhi, S. K.

    1982-01-01

    Recently melt grown GaAs, made by liquid encapsulation techniques, has become available. This material is of sufficiently good quality to allow the fabrication of solar cells by direct diffusion. Results obtained with p(+)/n junction solar cells made by zinc diffusion are described. The quality of bulk GaAs for this application is evaluated.

  12. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  13. Characteristics of the earth radiation budget experiment solar monitors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Cess, Robert D.

    1987-01-01

    The earth radiation budget experiment solar monitors, active cavity pyrheliometers, have been developed to measure every two weeks the total optical solar irradiance from the earth radiation budget satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 spacecraft platforms. In the unfiltered 0.2-50-micron wavelength broadband region, the monitors were used to obtain 1365 W/sq m as the mean value for the solar irradiance, with measurement precisions and accuracies approaching 0.1 and 0.2 percent, respectively. The design and characteristics of the solar monitors are presented along with the data reduction model. For the October 1984 through July 1985 period, the resulting ERBS and NOAA-9 solar irradiance values are intercompared.

  14. Solar particle events and their radiation threats

    SciTech Connect

    Reedy, R.C.

    1998-03-01

    Energetic particles from the Sun have only been studied in detail during the last three decades. The modern record is good, although the number of the largest solar particle events are very few. The nuclides made by solar energetic particles in lunar rocks have been used to extend the record of these particles {approximately} 10{sup 7} years. The modern and ancient records are similar. By combining both sets of data, it has been inferred that solar particle events much larger than the largest events observed during the last four solar cycles are very rare.

  15. Water diffusion into radiation crosslinked PVA-PVP network hydrogels

    NASA Astrophysics Data System (ADS)

    Hill, David J. T.; Whittaker, Andrew K.; Zainuddin

    2011-02-01

    A series of hydrogels comprised of crosslinked networks of poly(vinyl alcohol), PVA and poly(vinyl pyrrolidone), PVP, have been prepared using gamma radiolysis of aqueous solutions of the polymers to effect crosslinking of the polymer chains. The molecular weight of the PVA was in the range 75-105 kDa and of PVP was 360 kDa. Gel doses were measured for the polymers and found to be 11 kGy for PVA, 3.7 kGy for PVP and 4.6 kGy for a mixture of PVA and PVP with a mole fraction of PVP of 0.19. The initial water content of the gels was 87.2 wt%. Further water uptake studies were undertaken using both gravimetric and NMR imaging analyses. These studies showed that the uptake processes followed Fickian kinetics with diffusion coefficients ranging from 1.8×10 -11 for the PVA hydrogel to 4.4×10 -11 m 2 s -1 for the PVP hydrogel for radiation doses of 25 kGy and a temperature of 310 K. At 298 K the gravimetric study yielded a diffusion coefficient of 1.5×10 -11 m 2 s -1 whereas the NMR analysis yielded a slightly higher value of 2.0×10 -11 m 2 s -1 for the hydrogel with a mole fraction of PVP of 0.19 and a radiation dose of 25 kGy.

  16. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  17. Life under solar UV radiation in aquatic organisms

    NASA Astrophysics Data System (ADS)

    Sinha, R. P.; Häder, D.-P.

    Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280 - 315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.

  18. Diffusion of radiation belt protons by whistler waves

    NASA Astrophysics Data System (ADS)

    Villalon, Elena; Burke, William J.

    1994-11-01

    Whistler waves propagating near the quasi-electrostatic limit can interact with energetic protons (approximately 80 - 500 keV) that are transported into the radiation belts. The waves may be launched from either the ground or generated in the magnetosphere as a result of the resonant interactions with trapped electrons. The wave frequencies are significant fractions of the equatorial electron gyrofrequency, and they propagate obliquely to the geomagnetic field. A finite spectrum of waves compensates for the inhomogeneity of the geomagnetic field allowing the protons to stay in gyroresonance with the waves over long distances along magnetic field lines. The Fokker-Planck equation is intergrated along the flux tube considering the contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients in energy, cross energy/ pitch angle, and pitch angle are obtained for second-order resonant interactions. They are sown to be proportional to the electric fields amplitudes. Numerical calculations for the second-order interactions show that diffusion dominates near the edge of the loss cone. For small pitch angles the largest diffusion coefficient is in energy, although the cross energy/ pitch angle term is also important. This may explain the induced proton precipitation observed in active space experiments.

  19. Analysis of VIIRS TEB noise using solar diffuser measurements

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Cao, Changyong; Weng, Fuzhong

    2015-09-01

    The Soumi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28th, 2011 and its Sensor Data Record (SDR) product reached maturity status in March of 2014. Although the VIIRS SDR products are declared at the validated maturity level, there remain issues such as residual stripings in some thermal bands along with the scan direction. These horizontal striping issues in the Thermal Emissive Bands (TEB) were reflected in the sea surface temperature (SST) products. The observed striping magnitude can reach to 0.2 K, especially at the band M14 and M15. As an independent source of calibration, the Solar Diffuser (SD) is utilized in this study. The SD is originally designed for the Reflective Solar Band (RSB), however, it is assumed to be thermally stable at the time of SD observation. For each detector, a linear slope is developed by Integrated Calibration and Validation System (ICVS), which is applied on converting digital number (DN) to radiance unit. After the conversion, detector based noise analyses in VIIRS band M15 and M16 are performed on in-scan and scan-by-scan SD responses. Since SD radiance varies within an orbit, the noise calculation must be derived from the neighborhood Allan deviation. The noise derived Allan deviation shows that detector 1 and 2 in band M15 and detector 9 in band M16 have higher noise content compared to other detectors.

  20. Impact of Changes in Diffuse Radiation on the Global Land Carbon Sink, 1901-2100

    NASA Astrophysics Data System (ADS)

    Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P. M.

    2009-04-01

    Recent observational and theoretical studies have shown that changes in surface radiation that lead to increasing diffuse surface irradiance, enhance plant photosynthesis (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Solar radiation reaching the land surface has changed over the industrial era due to aerosols emitted from volcanoes and various anthropogenic sources (Kvalevag and Myhre, 2007). Such changes in total surface radiation are accompanied by changes in direct and diffuse surface solar radiation. Current global climate-carbon models do include the effects of changes in total surface radiation on the land biosphere but neglect the positive effects of increasing diffuse fraction on plant photosynthesis. In this study we estimate for the first time, the impact of variations in diffuse fraction on the land carbon sink using a global model (Mercado et al., 2007) modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We use meteorological forcing from the Climate Research Unit Data set. Additionally short wave and photosynthetic active radiation are reconstructed from the Hadley centre climate model, which accounts for the scattering and absorption of light by tropospheric and stratospheric aerosols and change in cloud properties due to indirect aerosol effects. References Gu L.H., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. & Boden T.A. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038. M. M. Kvalevag and G. Myhre, J. Clim. 20, 4874 (2007). Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology, 59, 553-565. Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K

  1. TEMPORAL AND SPATIAL VARIATION IN SOLAR RADIATION AND PHOTO-ENHANCED TOXICITY RISKS OF SPILLED OIL IN PRINCE WILLIAM SOUND, ALASKA

    EPA Science Inventory

    Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...

  2. Solar neutrinos and the influence of radiative opacities on solar models

    NASA Technical Reports Server (NTRS)

    Carson, T. R.; Ezer, D.; Stothers, R.

    1973-01-01

    Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment.

  3. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  4. Optical performance of conical windows for concentrated solar radiation

    SciTech Connect

    Kribus, A. . Dept. of Environmental Science and Energy Research)

    1994-02-01

    Radiative energy transfer through a truncated cone window with a back-plane reflector is considered. This geometry is proposed for a high-pressure direct-radiation (volumetric) central solar receiver for use in combined-cycle electricity generation. The transmission and loss characteristics, computed by ray-tracing, are parameterized by the angle of incident radiation relative to the cone axis. The overall performance of the window is an integral of the angle-dependent transmission data, weighted by the actual distribution of input radiation, over all incidence angles. This parameterization provides insight and assists in tailoring of the window geometry to different solar collection methods. Results are presented for several window geometries. Overall window performance is presented for a dish-type distribution of input radiation.

  5. Saudi Arabian solar radiation network and data for validating satellite remote sensing systems

    NASA Astrophysics Data System (ADS)

    Myers, Daryl R.; Wilcox, Stephen; Anderberg, Mary; Al-Awaji, Saleh H.; Al Abbadi, Naif M.; Mahfoodh, Mohammed Y. b.

    1999-09-01

    The National Aeronautics and Space Administration (NASA) will be launching complex satellite remote-sensing platforms for monitoring the earth's radiation budget, land use, and atmospheric physics for periods exceeding 10 years. These Earth Observing Satellite (EOS) platforms will strive to detect man-made and natural variations in the Earth's climate. Form 1993 to the present (1999), the National Renewable Energy Laboratory and the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, conducted a joint solar radiation resource assessment project to upgrade the solar resources assessment capability of the Kingdom of Saudi Arabia. KACST has deployed a high quality 12-station network in Saudi Arabia for monitoring solar total horizontal, direct beam, and diffuse radiation. One- and five-minute network data is collected and assessed for quality. 80 percent or more of the network data fall within quality limits of +/- 5 percent for correct partitioning between the three radiation components. This network will provide measured data for validating the NASA remote sensing systems. We describe the network, quality assessment procedures, and the result of estimating aerosol optical depth and precipitable water vapor. These are important for validating satellite estimates of radiation fluxes in and at the top of the Earth's atmosphere.

  6. Trends in surface solar radiation in Spain since the 1980s: the role of the changes in the radiative effects of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Mateos, David; Wild, Martin; Calbó, Josep; Antón, Manuel; Enriquez-Alonso, Aaron; Sanchez-Romero, Alex

    2014-05-01

    There is a growing interest in the study of decadal variations in surface solar radiation, although the analyses of long-term time series in some areas with major gaps in observations, such as in Spain, are still pending. In the first part of this work, a previously published surface solar radiation dataset in Spain is described (for more details, see Sanchez-Lorenzo et al., 2013) based on the longest series with ground-based records of global and diffuse solar radiation, most of them starting in the early 1980s and ending in 2012. Particular emphasis is placed upon the homogenization of this dataset in order to ensure the reliability of the trends. The linear trend in the mean annual series of global solar radiation shows a significant increase since 1981 of 4.0 Wm-2 (or 2.4 %) per decade. These results are in line with the increase of global solar radiation (i.e. brightening period) reported at many worldwide observation sites (Wild, 2009). In addition, the annual mean diffuse solar radiation series shows a significant decrease during the last three decades, but it is disturbed by strong increases in 1983 and 1991-1992, which might reflect the effects of the El Chichón and Pinatubo volcanic eruptions as a result of enhanced scattering of the aerosols emitted during these large volcanic eruptions. As clouds and aerosols are the main sources of uncertainty in the determination of the energy balance of the Earth, there is a growing interest in the evaluation of their radiative effects and their impact on the decadal variability of the surface solar radiation. Hence, in the second part of this work, the changes of the combined radiative effects of clouds and aerosols in Spain since the 1980s are investigated (for more details, see Mateos et al., 2013). In particular, the global solar radiation data above mentioned and radiative transfer simulations fed with reanalysis data of ozone, water vapour and surface albedo, are used to evaluate the cloud and aerosol

  7. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  8. The relationship between Saturn kilometric radiation and the solar wind

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Rucker, H. O.

    1983-01-01

    Voyager spacecraft radio, interplanetary plasma, and interplanetary magnetic field data are used to show that large amplitude fluctuations in the power generated by the Saturn kilometric radio emission are best correlated with solar wind ram pressure variation. In all, thirteen solar wind quantities previously found important in driving terrestrial magnetospheric substorms and other auroral processes were examined for evidence of correlations with the Saturn radio emission. The results are consistent with hydromagnetic wave or eddy diffusion processes driven by large scale solar wind pressure changes at Saturn's dayside magnetopause.

  9. Fabrication of high-efficiency n(+)-p junction InP solar cells by using group VIb element diffusion into p-type InP

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Yamaguchi, M.; Uemura, C.

    1985-12-01

    The fabrication of n(+)-p homojunction InP solar cells has been studied using thermal diffusion of S, Se, or Te into p-type InP substrates. Sulphur diffusion using an In2S3 source was found to be effective in forming a shallow and steep n(+)-p function without surface morphology degradation of substrates. A conversion efficiency (active area) of 18 percent, which is the highest efficiency ever reported for InP homojunction solar cells, was obtained by optimizing fabrication conditions for sulphur-diffused cells. An electron irradiation study on fabricated cells has also been made. The InP solar cell was found to have a higher resistance to radiation degradation than Si and GaAs cells. Through these studies, it has been demonstrated that the InP solar cell has excellent potential for space applications.

  10. Mercury's solar wind interaction during the evolution of the solar radiation and particle environment

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Ribas, I.; Biernat, H. K.; Kolb, C.; Penz, T.; Patel, M. R.; Semenov, V. S.; Wurz, P.; Orsini, S.; Massetti, S.

    2003-04-01

    Astrophysical observations suggest that the young main-sequence Sun rotated about 10 times faster than today and had correspondingly stronger magnetic activity, which triggered higher radiation and particle emission. Quantitative estimates of the solar high-energy flux evolution are only indirectly possible by comparison with solar proxies. Multiwavelength observations in the 0.1 nm to 330 nm spectral region have been collected for a sample of solar proxies, containing stars which represent most of the Sun's main sequence lifetime from 130 Myr to 8.5 Gyr. They show an excellent correlation between the emitted flux and the stellar age. We use a power law relation between rotation periods, X-ray fluxes and solar mass loss for the estimation of the solar wind mass flux evolution during the past 4.5 Gyr ago. Mercury's present exosphere indicate a strong radiation-particle-surface interaction related to the solar particle and radiation environment. Since Mercury is the closest planet to the Sun, its surface was most exposed to enhanced particle- and radiation fluxes than those of any of the other Solar System bodies. To evaluate how such effects may have influenced Mercury's surface, we study the solar wind-magnetospheric interaction with emphasis of the influence of the interplanetary magnetic field particle surface sputtering and photon stimulated desorption processes during the planets history by using the observational data from the Sun in Time programme.

  11. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  12. Quality control and estimation of global solar radiation in China

    SciTech Connect

    Tang, Wenjun; He, Jie; Yang, Kun; Qin, Jun

    2010-03-15

    Measurements of surface radiation in China are too sparse to meet demand for scientific research and engineering applications. Moreover, the radiation data often include erroneous and questionable values though preliminary quality-check has been done before the data release. Therefore, quality control of radiation data is often a prerequisite for using these data. In this study, a set of quality-check procedures were implemented to control the quality of the solar radiation measurements at 97 stations in China. A hybrid model for estimating global solar radiation was then evaluated against the controlled data. The results show that the model can estimate the global radiation with accuracy of MBE less than 1.5 MJ m{sup -2} and RMSE less than 2.8 MJ m{sup -2} for daily radiation and RMSE less than 2.0 MJ m{sup -2} for monthly-mean daily radiation at individual stations over most of China except at a few stations where unsatisfactory estimates were possibly caused by severe air pollution or too dense clouds. The MBE averaged over all stations are about 0.7 MJ m{sup -2} and RMSE about 2.0 MJ m{sup -2} for daily radiation and RMSE about 1.3 MJ m{sup -2} for monthly-mean daily radiation. Finally, this model was used to fill data gaps and to expand solar radiation data set using routine meteorological station data in China. This data set would substantially contribute to some radiation-related scientific studies and engineering applications in China. (author)

  13. 'Averaged' Diffusion of Radiation in Spectral Lines intra Interjacent Plasma-Gas Layer

    SciTech Connect

    Demura, A. V.; Demchenko, G. V.

    2008-10-22

    The approximate model of 'averaged diffusion' for resonance radiation transfer is introduced. It allows to reduce computational efforts preserving satisfactory accuracy while modeling divertor plasmas.

  14. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  15. Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2014-12-20

    The reflective solar bands (RSB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite is calibrated by a solar diffuser (SD) whose performance is itself monitored by a solar diffuser stability monitor (SDSM). In this study, we describe the calibration algorithm of the SDSM, analyze the current two and a half years of calibration data, and derive the performance result for the SD, commonly called SD degradation or H-factors. The application of the newly derived vignetting functions for both the SD screen and the SDSM sun-view screen effectively removes the seasonal oscillations in the derived SD degradation and significantly improves the quality of the H-factors. The full illumination region, the so-called "sweet spot," for both SD view and SDSM sun view is carefully examined and selected to ensure a consistent and an optimal number of valid data samples to reduce the sample noise owing to inconsistent or lack of samples. The result shows that SD degrades much faster at short wavelength as expected, about 28.5% at 412 nm but only 1.2% at 935 nm up to date. The performance of the SD degrades exponentially with time until 7 November 2013 but has since become flat. This sudden flattening of the SD degradation is a new phenomenon never previously observed for the degradations of the SD on VIIRS or other satellite sensors. The overall result shows that SDSM is essentially functioning without flaws in catching the on-orbit degradation of the SD. The most significant and direct impact of this work would be on the quality of the ocean color products that depend sensitively on moderate RSB (RSB) (M1-M8, M10, and M11). Two very important and key questions on the performance of the SD are also raised. One pertains to the directional dependence of the SD degradation result, and it is shown that the SD does not degrade uniformly in all directions as has been assumed by all SD calibration analyses. This

  16. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good

  17. Mariner Venus/Mercury 1973 solar radiation force and torques

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1974-01-01

    The need for an improvement of the mathematical model of the solar radiation force and torques for the Mariner Venus/Mercury spacecraft arises from the fact that this spacecraft will be steering toward the inner planets (Venus and Mercury), where, due to the proximity of the Sun, the effect of the solar radiation pressure is much larger than it was on the antecedent Mariner spacecraft, steering in the opposite direction. Therefore, although the model yielded excellent results in the case of the Mariner 9 Mars Orbiter, additional effects of negligible magnitudes for the previous missions of the Mariner spacecraft should now be included in the model. This study examines all such effects and incorporates them into the already existing model, as well as using the improved model for calculation of the solar radiation force and torques acting on the Mariner Venus/Mercury spacecraft.

  18. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  19. Radiative efficiency of lead iodide based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-08-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  20. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  1. Proton radiation damage in vertical junction solar cells

    NASA Astrophysics Data System (ADS)

    Walker, D. H.; Statler, R. L.

    A comparative experimental study of proton radiation damage in silicon vertical junction (VJ) and silicon planar solar cells was performed at three energies, 1-MeV, 2-MeV, and 3.5-MeV, for a normal incidence monoenergetic proton beam. Proton fluence levels up to 3 x 10 to the 12th protons/sq cm were achieved, with solar cell I-V characterization measurements performed at incremental fluences, using a recently calibrated Spectrolab X-25L Solar Simulator. The VJ cells were made from 0.4 ohm-cm silicon, while the planar cells were made from 10 ohm-cm silicon and had a back surface reflector. The VJ cells proved to be more radiation resistant than the baseline planar cells, and the damage data from various proton energies indicate that the vertical junction concept does work effectively for maintaining high collection efficiency despite heavy radiation exposure.

  2. Curve fitting methods for solar radiation data modeling

    SciTech Connect

    Karim, Samsul Ariffin Abdul E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  3. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    SciTech Connect

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-03-10

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton`s method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton`s method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step.

  4. Structure for conversion of solar radiation to electricity and heat

    SciTech Connect

    Boling, N.L.; Rapp, C.F.

    1980-01-29

    Disclosed is a modified flat plate thermal collector, modified to substitute for one of its insulating flat light conducting members a flat luminescent solar collector plate coupled to a photocell and having a thin layer containing a luminescent species responsive to solar radiation, to provide a structure for producing both electrical and thermal energy, wherein said thin layer is protected from the ambient atmosphere and wherein the thin layer is out of contact with said photocell.

  5. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  6. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces: Preprint

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depth can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.

  7. Interpretation of Tadpole Structures in the Solar Radio Radiation

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Melnik, Valentin; Rucker, Helmut; Konovalenko, Alexander

    2016-04-01

    The new spectrometer on the Ukrainian radio telescope UTR-2 allows to observe the solar radio radiation at low frequencies (10-30 MHz) with a high spectral and temporal resolution. Tadpole structures were observed as special fine structures in the solar radio radiation. They show a fast drift (-2.13 MHz/s) in the dynamic radio spectrum. They appear as an ensemble of tadpoles drifting slowly (-8.3 kHz/s) from high to low frequencies. The tadpoles are interpreted as electron beams accelerated at shocks in the high corona.

  8. Measurement of Solar and Cosmic Radiation during Spaceflight

    NASA Astrophysics Data System (ADS)

    Häder, Donat-P.; Dachev, Tsvetan

    2003-05-01

    The external platform of the International Space Station (ISS) will provide a unique opportunity for exobiological studies under space conditions, e.g., space vacuum, solar UV radiation, cosmic radiation, and temperature extremes. In order to facilitate this research, ESA is developing the EXPOSE facility to be attached to the External Pallet of the truss structure of the ISS. The experiment is planned for a duration of 18 months during the ISS early utilization period. Experiments on the ``Responses of Organisms to the Space Environment (ROSE)'' will study the survival of spores from bacteria, fungi, ferns, etc., under space conditions and thus investigate whether life could potentially survive extended travel through space. In parallel to the exposure of the biological material, the charged particle and solar extraterrestrial radiation will be measured with a multichannel dosimeter. This instrument is based on two separate developments. The dosimeter which determines solar radiation in four channels is based on the ground-based ELDONET (European light dosimeter network) instrument which has been developed to measure solar UV and visible radiation in three channels. The other part of the instrument is based on a 256 channel dosimeter of cosmic radiation which was developed and used on the Russian space station Mir. A final miniature prototype has been developed to fit the space available. The instrument incorporates the latest technologies such as Surface Mounted Devices (SMDs), switchable amplifiers, as well as on-board microprocessor control. Several software packages have been developed to record the solar visible and UV, and charged particle, radiations, to display them in graphical form and to store them for future analysis. All recorded data will be made available to the public via the Internet.

  9. Status of diffused junction p+n InP solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Goradia, C.; Faur, Maria; Fatemi, N. S.; Jenkins, P. P.; Flood, D. J.; Brinker, D. J.; Wilt, D. M.; Bailey, S.; Goradia, M.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  10. Solar cell nanotechnology for improved efficiency and radiation hardness

    NASA Astrophysics Data System (ADS)

    Fedoseyev, Alexander I.; Turowski, Marek; Shao, Qinghui; Balandin, Alexander A.

    2006-08-01

    Space electronic equipment, and NASA future exploration missions in particular, require improvements in solar cell efficiency and radiation hardness. Novel nano-engineered materials and quantum-dot array based photovoltaic devices promise to deliver more efficient, lightweight solar cells and arrays which will be of high value to long term space missions. In this paper, we describe issues related to the development of the quantum-dot based solar cells and comprehensive software tools for simulation of the nanostructure-based photovoltaic cells. Some experimental results used for the model validation are also reviewed. The novel modeling and simulation tools for the quantum-dot-based nanostructures help to better understand and predict behavior of the nano-devices and novel materials in space environment, assess technologies, devices, and materials for new electronic systems as well as to better evaluate the performance and radiation response of the devices at an early design stage. The overall objective is to investigate and design new photovoltaic structures based on quantum dots (QDs) with improved efficiency and radiation hardness. The inherently radiation tolerant quantum dots of variable sizes maximize absorption of different light wavelengths, i.e., create a "multicolor" cell, which improves photovoltaic efficiency and diminishes the radiation-induced degradation. The QD models described here are being integrated into the advanced photonic-electronic device simulator NanoTCAD, which can be useful for the optimization of QD superlattices as well as for the development and exploring of new solar cell designs.

  11. Simulation of solar radiation absorption in vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.

    1980-01-01

    A solar radiation canopy absorption model, including multiple scattering effects, was developed and tested for a lodgepole pine (Pinus contorta) canopy. Reflectance above the canopy, spectral transmittance to the ground layer, and geometric and spectral measurements of canopy elements were made. Relatively large differentials occurred in spectral absorption by canopy layers, especially in the photosynthetically active region, as a function of solar zenith angle. In addition, the proportion of total global irradiance absorbed by individual layers varied greatly as a function of solar zenith angle. However, absorption by the entire canopy system remained relatively constant.

  12. Solar wind, radiation belt electrons and atmospheric vorticity

    NASA Astrophysics Data System (ADS)

    Mironova, Irina; Tinsley, Brian; Zhou, Limin

    The association of atmospheric vorticity changes with solar wind sector structure explored by John Wilcox and Walter Orr Roberts in the 1970s is examined in terms of the sector related minima in solar wind speed, and associated minima in relativistic electron precipitation from the outer radiation belt. Stronger correlations of atmospheric vorticity with the relativistic electron flux are found than with either solar wind speed or the passage of magnetic sector boundaries over the Earth. This is consistent with changes in the ionosphere-earth current density affecting cloud microphysics, with the ionization from the Bremsstrahlung X-rays from the relativistic electron precipitation increasing the conductivity of the stratosphere.

  13. Effects of solar electromagnetic radiation on the terrestrial environment.

    NASA Astrophysics Data System (ADS)

    Dickinson, R. E.

    Contents: Atmospheric structure and composition (thermosphere, stratosphere and mesosphere structure and chemistry, tropospheric chemistry). The climate system (current questions, introduction to simple climate models, trapping of thermal radiation by atmospheric constituents, thermal feedback by clouds and water vapor, anthropogenic modulation of trace gases important for climate, atmospheric and oceanic circulation and the seasons, primitive climate, the carbon cycle and the faint-early-Sun). Solar radiation drives the biosphere (origins of photosynthesis, photosynthesis in action, harvesting the sunlight, net primary productivity).

  14. Measurement and analysis of near ultraviolet solar radiation

    NASA Astrophysics Data System (ADS)

    Mehos, M. S.; Pacheco, K. A.; Link, H. F.

    1991-12-01

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global horizontal ultraviolet (280 to 385 nm) and full spectrum (280 to 4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global horizontal ultraviolet to full spectrum radiation of 4 to 6 pct. that is weakly dependent on air mass. Conversely, data for direct normal ultraviolet radiation indicate a much larger dependence on air mass, with a ratio of approx. 5 pct. at low air mass to 1 pct. at higher masses. Results show excellent agreement between the measured data and clear sky predictions for both the ultraviolet and the full spectrum global horizontal radiation. For the direct normal components, however, the tendency is for the clear sky model to underpredict the measured data. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global horizontal component of the radiation exceeds the direct normal component throughout the year.

  15. Distribution of ultraviolet solar radiation at Riyadh region, Saudi Arabia.

    PubMed

    Elani, U A

    2007-01-01

    The ultraviolet UV solar radiation flux is monitored over a fixed time interval to study the daily, monthly and annual variations for a nearly one decade in Riyadh. Mathematical expressions will be presented based on a comparison between theoretical and experimental values. It is believed that the present analysis of UV radiation suggest that the environmental effects led to a better understanding of UV scattering, UV reflection, ozone and clouds layers in Riyadh and other selected areas in the mid-east region.

  16. Solar ultraviolet radiation in a changing climate

    NASA Astrophysics Data System (ADS)

    Williamson, Craig E.; Zepp, Richard G.; Lucas, Robyn M.; Madronich, Sasha; Austin, Amy T.; Ballaré, Carlos L.; Norval, Mary; Sulzberger, Barbara; Bais, Alkiviadis F.; McKenzie, Richard L.; Robinson, Sharon A.; Häder, Donat-P.; Paul, Nigel D.; Bornman, Janet F.

    2014-06-01

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.

  17. The Solar Dynamic radiator with a historical perspective

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R.

    1988-01-01

    A historical perspective on pumped loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kWe each, are planned for growth Station power requirements. The Brayton (cycle) SD module configuration incorporates a pumped loop radiator that must reject up to 99 kW. The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped loop radiator systems. Nevertheless, past program successes have demonstrated a technology base which can be applied to the SD radiator development program to ensure a low risk, low cost system.

  18. The solar dynamic radiator with a historical perspective

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R. L.

    1988-01-01

    A historical perspective on pumped-fluid loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kW (electrical) each, are planned for growth in Station power requirements. The Brayton cycle SD module configuration incorporates a pumped-fluid loop radiator that must reject up to 99 kW (thermal). The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped-fluid loop radiator systems. Nevertheless, past program successes have demonstrated a technology base that can be applied to the SD radiator development program to ensure a low risk, low cost system.

  19. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    NASA Technical Reports Server (NTRS)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  20. Retrieving daily global solar radiation from routine climate variables

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Mueller, Richard; Perez, Richard

    2014-05-01

    Solar radiation is an important variable for studies related to solar energy applications, meteorology, climatology, hydrology, and agricultural meteorology. However, solar radiation is not routinely measured at meteorological stations; therefore, it is often required to estimate it using other techniques such as retrieving from satellite data or estimating using other geophysical variables. Over the years, many models have been developed to estimate solar radiation from other geophysical variables such as temperature, rainfall, and sunshine duration. The aim of this study was to evaluate six of these models using data measured at four independent worldwide networks. The dataset included 13 stations from Australia, 25 stations from Germany, 12 stations from Saudi Arabia, and 48 stations from the USA. The models require either sunshine duration hours (Ångstrom) or daily range of air temperature (Bristow and Campbell, Donatelli and Bellocchi, Donatelli and Campbell, Hargreaves, and Hargreaves and Samani) as input. According to the statistical parameters, Ångstrom and Bristow and Campbell indicated a better performance than the other models. The bias and root mean square error for the Ångstrom model were less than 0.25 MJ m2 day-1 and 2.25 MJ m2 day-1, respectively, and the correlation coefficient was always greater than 95 %. Statistical analysis using Student's t test indicated that the residuals for Ångstrom, Bristow and Campbell, Hargreaves, and Hargreaves and Samani are not statistically significant at the 5 % level. In other words, the estimated values by these models are statistically consistent with the measured data. Overall, given the simplicity and performance, the Ångstrom model is the best choice for estimating solar radiation when sunshine duration measurements are available; otherwise, Bristow and Campbell can be used to estimate solar radiation using daily range of air temperature.

  1. Theoretical Variation of Solar Radiation in a Tropical Mountain Valley

    NASA Astrophysics Data System (ADS)

    Flórez Botero, L. Z.; Ochoa, A.; Jiménez, J. F.

    2015-12-01

    Solar radiation over the earth's surface varies in response to global factors such as the atmosphere and the relative movement of Earth around the sun, and local factors related to the earth's surface features and topography. The aim of this study is to know the effect of local factors in spatial and temporal variability of solar radiation in a tropical mountain valley in Colombia. We estimated the potential solar radiation on simplified schemes of valleys by the means of theoretical exercises with different slopes and aspects for further analysis. Despite the closeness of the studied area to the line of Ecuador where the annual variation of radiation is almost zero we detected some differences. Changes were found in solar radiation on different valley schemes in terms of hours of sunshine and total energy that reaches the surface depending on the slope, the orientation of the slopes and the diurnal variation of the solar altitude angle. Results suggest that different aspects lead changes in the annual insolation up to 4 MJ / m2 on June and a lag of about two hours in the diurnal cycle of insolation in the southeast (135°) and northwest (315°) facing peaks with the highest radiation around 8 hours after sunrise. The annual variation cycle, related to the slope, does not show major changes, but the diurnal cycle of the cells with the major slope has the lower insolation with a maximum of about one hour before the other cells. Finally, a better understanding of the real dynamics of sunshine in the Valley of Aburrá - Colombia is possible knowing the variation of the annual cycle and the diurnal cycle of insolation in a synthetic valley reliant on the different aspects and slopes allows. This represents an opportunity to improve urban planning and rural productive activities that depends directly on the availability of energy.

  2. Predicting solar radiation based on available weather indicators

    NASA Astrophysics Data System (ADS)

    Sauer, Frank Joseph

    Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.

  3. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  4. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  5. Lighting system with optical fibers based on enery of solar radiation

    NASA Astrophysics Data System (ADS)

    Zajkowski, Maciej

    2003-04-01

    This paper presents concepts of lighting systems using artifial light and natural solar radiation in illuminating rooms; it shortly exhibits systems for obtaining energy of solar radiation with the use of concentrators and heliostats following the Sun in its movement.

  6. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  7. Global and diffuse solar irradiance modelling over north-western Europe using MAR regional climate model : validation and construction of a 30-year climatology

    NASA Astrophysics Data System (ADS)

    Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel

    2015-04-01

    Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.

  8. Improved Solar-Radiation-Pressure Models for GPS Satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  9. Glacial Influences on Solar Radiation in a Subarctic Sea.

    EPA Science Inventory

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  10. Parameterization of cloud effects on the absorption of solar radiation

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1983-01-01

    A radiation parameterization for the NASA Goddard climate model was developed, tested, and implemented. Interactive and off-hire experiments with the climate model to determine the limitations of the present parameterization scheme are summarized. The parameterization of Cloud absorption in terms of solar zeith angle, column water vapors about the cloud top, and cloud liquid water content is discussed.

  11. Daily total global solar radiation modeling from several meteorological data

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  12. Curve Fitting Solar Cell Degradation Due to Hard Particle Radiation

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.; Cikoski, Rebecca; Mekadenaumporn, Danchai

    2003-01-01

    This paper investigates the suitability of the equation for accurately defining solar cell parameter degradation as a function of hard particle radiation. The paper also provides methods for determining the constants in the equation and compares results from this equation to those obtained by the more traditionally used.

  13. Evaluation of the effects of solar radiation on glasses

    NASA Technical Reports Server (NTRS)

    Harada, Y.

    1981-01-01

    Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance while optical crown glass and ultra low expansion glass darkened appreciably. A complete analysis of the 500 hour simulated space exposure test was conducted. Additionally, studies were performed to aid in sample selection for a 100 hour simulated exposure test.

  14. NASA's high efficiency and radiation damage solar cell program

    NASA Technical Reports Server (NTRS)

    Randolph, L. P.

    1980-01-01

    The conversion efficiency and the life expectancy of solar cells and arrays were evaluated for space applications. Efforts were made to improve the understanding of the conversion of electromagnetic radiation to useful forms of energy. A broad range of advanced concepts were evaluated.

  15. RISK ASSESSMENT FOR THE EFFECTS OF SOLAR RADIATION ON AMPHIBIANS

    EPA Science Inventory

    Recent studies have demonstrated that exposure to solar ultraviolet radiation (UVR) can cause mortality and increase the occurrence of eye and limb malformation in some species of amphibians. Based on these reports and various field observations, it has been hypothesized that UV...

  16. Listing of solar radiation measuring equipment and glossary

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  17. Reliability analysis of solar photovoltaic system using hourly mean solar radiation data

    SciTech Connect

    Moharil, Ravindra M.; Kulkarni, Prakash S.

    2010-04-15

    This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

  18. Single and Multiple Scattered Solar Radiation

    DTIC Science & Technology

    1982-08-30

    release; distribution unlimited Prel.paire(d for: AIR FORCE GEOPHYSICS LABORATORY D T IC AIR FORCE SYSSTEMS COMMAND , . UNITED STATES AIR FORCE IUXNSCOM...encountered in modeling engineering atnd atmospheric environments. Therefore, the following scemec is one possibLe approach to dec rease computational times for...1943). 39. Kreith, F. and Kreider, J.1., Principles of Solar Engineering . Mcct-aw-!hill 1ooký Company, New York (1978). 118 APPENDIX A: MIl DATA ACCESS

  19. Assessment and comparison of methods for solar ultraviolet radiation measurements

    NASA Astrophysics Data System (ADS)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented.

  20. Response of radiation belt simulations to different radial diffusion coefficients models

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Baker, Daniel N.; Shprits, Yuri; Kellerman, Adam

    2016-07-01

    Two parameterizations of the resonant wave-particle interactions of electrons with ultra-low frequency waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2014] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion.

  1. Treatment of Solar and Thermal Radiation in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2015-12-01

    It is the interaction of solar and thermal radiation with the climate system constituents that determines the prevailing climate on Earth. The principal radiative constituents of the climate system are clouds, aerosols, greenhouse gases, and the ground surface. Accurate rendering of their interaction with the incident solar radiation and the outgoing thermal radiation is required if a climate model is to be capable of simulating and predicting the complex changes that take place in the terrestrial climate system. In the GISS climate model, these radiative tasks are accomplished with a GCM radiation model that utilizes the correlated k-distribution treatment that closely matches Line-by-Line accuracy (Lacis and Oinas, 1991) for the gaseous absorbers, and an adaptation of the doubling/adding method (Lacis and Hansen, 1974) to compute multiple scattering by clouds and aerosols. The radiative parameters to model the spectral dependence of solar and longwave radiation (UV to microwave) utilizes Mie scattering and T-matrix calculations covering the broad range of particle sizes and compositions encountered in the climate system. Cloud treatment also incorporates an empirical representation of sub-grid inhomogeneity and space-time variability of cloud optical properties (derived from ISCCP data) that utilizes a Monte Carlo-based re-scaling parameterization of the cloud plane-parallel radiative parameters (Cairns et al, 2001). The longwave calculations compute correlated k-distribution radiances at three quadrature points (without scattering), and include the effects of cloud scattering in parameterized form for the outgoing and downwelling LW fluxes. For hygroscopic aerosols (e.g., sulfates, nitrates, sea salt), the effects of changing relative humidity on particle size and refractive index are explicitly taken into account. In this way, the GISS GCM radiation model calculates the SW and LW radiative fluxes, and the corresponding radiative heating and cooling rates in

  2. The atmospheric radiation response to solar-particle-events.

    PubMed

    O'Brien, K; Sauer, H H

    2003-01-01

    High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.

  3. Energy-Specific Solar Radiation Data from Msg: the HELIOSAT-3 Project

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.

    2006-08-01

    Solar energy technologies such as photovoltaics, solar thermal power plants, passive solar heating/cooling systems and day lighting in buildings are expected to continue their very rapid growth. In this context the availability of reliable solar radiation data is of high economic value both for planning and operating these systems. HELIOSAT-3 aims the quantification of surface solar irradiance in cloud free and cloudy situations and additional energy-specific parameters as direct normal and diffuse irradiance over Europe and Africa using the enhanced capabilities of MSG. Emphasis is laid on clouds, water vapor, aerosols and ozone and their influence on surface solar irradiance. Several projects as e.g. the HELIOSAT-3 and PVSAT-2 European Commission FP5 and the ENVISOLAR (ESA Earth Observation Market Development Program) projects made profit from the data access and additional MSG product information obtained through the RAO program. The paper focuses on results obtained during the RAO project based on funding in HELIOSAT-3, PVSAT-2 and ENVISOLAR projects.

  4. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments.

  5. Solar ultraviolet radiation in a changing climate

    EPA Science Inventory

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  6. Usable solar radiation and its attenuation in the upper water column

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Wei, Jianwei; Arnone, Robert

    2014-02-01

    A new radiometric term named as usable solar radiation (USR) is defined to represent the spectrally integrated solar irradiance in the spectral window of 400-560 nm. Through numerical simulations of optically deep waters covering a wide range of optical properties, it is found that the diffuse attenuation coefficient of downwelling USR, Kd(USR), is nearly a constant vertically for almost all oceanic waters (chlorophyll concentration under ˜3 mg m-3). This feature is quite contrary to the diffuse attenuation coefficient of the photosynthetic available radiation, K(PAR), which varies significantly from surface to deeper depths for oceanic waters. It is also found that the ratio of the photosynthetic utilizable radiation (PUR) to the product of USR and phytoplankton absorption coefficient at 440 nm approximates a constant for most oceanic waters. These results support the use of a single Kd(USR) for each water and each sun angle for accurate estimation of USR propagation, and suggest an efficient approach to estimate PUR(z) in the upper water column. These results further indicate that it is necessary and valuable for the generation of USR and Kd(USR) products from satellite ocean color measurements, which can be used to facilitate the studies of heat transfer and photosynthesis in the global oceans.

  7. Satellite-based surface solar radiation data provided by CM SAF - Solar energy applications

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Müller, Richard W.; Posselt, Rebekka; Stöckli, Reto

    2013-04-01

    The planning of solar power plants requires accurate estimates of the solar energy available at the surface. Satellite observations provide useful information on the cloud coverage, which is one of the main factors modulating the solar surface radiation. This information can be used to estimate the solar surface radiation from satellite. Observations from geostationary satellites allow the retrieval of the surface solar radiation with high temporal (up to hourly) and spatial (approx. 5 km) resolution. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. CM SAF has already released one data set based on geostationary Meteosat satellite covering 1983 to 2005 (doi: 10.5676/EUM_SAF_CM/RAD_MVIRI/V001) and one global data set based on measurements of the polar-orbiting AVHRR instruments covering 1982 to 2009 (doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V001). Here, we present details and applications of the CM SAF surface radiation data generated from the observations of the geostationary Meteosat satellites. The climate data set is available at high spatial (0.03 x 0.03 deg) and temporal (hourly, daily, monthly) resolutions. Besides global radiation, also the direct beam component is provided, which is for instance required for the estimation of the energy generated by solar thermal plants. Based on comparisons with surface observations the accuracy of CM SAF surface solar radiation data is better than 10 W/m2 on a monthly basis and 25 W/m2 on a daily basis. The data sets are well documented (incl. validation using surface observations) and available in netcdf-format at no cost without restrictions at www.cmsaf.eu. Solar energy applications of the data include the Photovoltaic Geographical

  8. Effects of solar radiation on hair and photoprotection.

    PubMed

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity.

  9. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  10. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  11. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  12. Development of software for estimating clear sky solar radiation in Indonesia

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-01-01

    Research on solar energy applications in Indonesia has come under scrutiny in recent years. Solar radiation is harvested by solar collector or solar cell and convert the energy into useful energy such as heat and or electricity. In order to provide a better configuration of a solar collector or a solar cell, clear sky radiation should be estimated properly. In this study, an in-house software for estimating clear sky radiation is developed. The governing equations are solved simultaneously. The software is tested in Medan city by performing a solar radiation measurements. For clear sky radiation, the results of the software and measurements ones show a good agreement. However, for the cloudy sky condition it cannot predict the solar radiation. This software can be used to estimate the clear sky radiation in Indonesia.

  13. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  14. Placement and efficiency effects on radiative forcing of solar installations

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  15. Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn

    2016-04-01

    Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.

  16. Placement and efficiency effects on radiative forcing of solar installations

    SciTech Connect

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  17. Hybrid Kinetic and Radiative Hydrodynamic Simulations of Solar Flares and Comparison With Multiwavelength Observations

    NASA Astrophysics Data System (ADS)

    Rubio Da Costa, Fatima; Petrosian, Vahe; Liu, Wei; Carlsson, Mats; Kleint, Lucia

    2014-06-01

    We present a unified simulation which combines two physical processes: how the particles are accelerated and the energy is transported along a coronal loop, and how the atmosphere responds. The “flare” code from Stanford University (Petrosian et al, 2001) models the stochastic acceleration and transport of particles and radiation of solar flares. It includes pitch angle diffusion and energy loss, and computes collisional heating to the background plasma and bremsstrahlung emission along the loop. The radiative hydrodynamic RADYN Code (Carlsson et al, 1992, 1996; Allred et al, 2005) computes the energy transport by the injected non-thermal electrons at the top of a 1D coronal loop. Recently, we have combined the two codes by updating the non-thermal heating in the RADYN code from the "flare" code, allowing us to develop a self-consistent simulation. In addition, we can now model more realistically the multi-wavelength emission of solar flares and compare it with observations, e.g., at optical wavelengths from IBIS at the Dunn Solar Telescope and in X-rays from RHESSI. The high resolution UV observations from the recently launched IRIS imaging spectrograph will be particularly useful in this regard. These will allow us to compare numerically modeled and observed emissions of solar flares in several lines using more robust simulations than possible before.

  18. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  19. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  20. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  1. Radiation Testing of PICA at the Solar Power Tower

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  2. A molecular dynamics study of radiation induced diffusion in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Maillard, S.; Brutzel, L. Van; Garcia, P.; Dorado, B.; Valot, C.

    2009-03-01

    The nuclear oxide fuels are submitted 'in-pile' to strong structural and chemical modifications due to the fissions and temperature. The diffusion of species is notably the result of a thermal activation and of radiation induced diffusion. This study proposes to estimate to what extent the radiation induced diffusion contributes to the diffusion of lattice atoms in UO2. Irradiations are simulated using molecular dynamics simulation by displacement cascades induced by uranium primary knock-on atoms between 1 and 80 keV. As atoms are easier to displace when their vibration amplitude increases, the temperature range which have been investigated is 300-1400 K. Cascade overlaps were also simulated. The material is shown to melt at the end of cascades, yielding a reduced threshold energy displacement. The nuclear contribution to the radiation induced diffusion is compared to thermally activated diffusion under in-reactor and long-term storage conditions.

  3. Biomass Burning Controlled Modulation of the Solar Radiation in Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Martins, F. R.; Abreu, S. L.; Couto, P.; Colle, S.; Stuhlmann, R.

    1999-01-01

    Atmospheric combustion products from forest fires in Brazil can affect routine satellite techniques for the assessment of solar energy resource information. The mean overestimation of solar irradiance by BRASIL-SR clear sky model was up to 2.5 times larger than that found outside the region of biomass burnings. Within the region of biomass burnings the overestimation was over 5 times larger at the peak of the burning season when compared to the rest of the year. A positive correlation between combustion products and the number of fire spots counted by satellite technique suggests a possible method for the parameterization of these effects in radiation transfer models

  4. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    SciTech Connect

    Lumb, Matthew P.; Steiner, Myles A.; Geisz, John F.; Walters, Robert J.

    2014-11-21

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

  5. Topographic Slope, Solar Radiation and Land Surface Processes

    NASA Astrophysics Data System (ADS)

    Mosor, A. L.; Hahmann, A. N.

    2001-12-01

    The Earth's surface is composed of non-uniform terrain, which partially controls the amount of incident radiation available at the surface and in turn controls its regional vegetation cover and its hydrological and ecological processes. A complete treatment of the physical mechanisms that determine a region's climate should include a detailed description of its land surface processes. The processes associated with net solar radiation and surface water movements are sensitive to the degree to which the surface slope and aspect are approximated. Therefore, a careful representation of land surface-atmosphere transfer interactions requires the terrain to be viewed as separate homogenous sub-regions of different slope and aspect, particularly over complex terrain. This study describes a mathematical representation of the surface topography developed to provide an aggregated measure of the radiative effects on inclined terrain. We have obtained a "radiative equivalent" topography (i.e., elevation, slope, and aspect), for use as boundary conditions to a fine-mesh land model coupled to the NCAR Community Climate Model (CCM3). Using the data sets developed at the U.S Geological Survey Data Center (at 1 km resolution), we have derived aggregated slopes and aspects at the 0.5 o x 0.5 o fine-mesh resolution. The aggregated slopes and aspects are used in an off-line test using BATS for the Arizona region. This test indicates considerable differences in the latent and sensible heat fluxes between the "flat" terrain simulation and that where slopes and azimuths are considered in the computation of the incident solar radiation. This poster will present the results of a more complete test of the effects of incorporating the effective incident solar radiation of inclined surfaces on the climate. In particular, the effects on snow hydrology over the Western United States will be explored.

  6. Electron Radiation Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Hollerman, William A.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.

  7. Use of a corrugated surface to enhance radiation tolerance in a GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Leon, Rosa P.; Piszczor, Michael F., Jr.

    1985-01-01

    The use of a corrugated surface on a GaAs solar cell and its effects on radiation resistance were studied. A compute code was developed to determine the performance of the cell for various geometric parameters. The large optical absorption coefficient of GaAs allows grooves to be only 4-5 micrometers deep. Using accepted material parameters for GaAs solar cells the theoretical performances were compared for various corrugated cells before and after minority carrier diffusion length degradation. The total power output was maximized for both n(+)/p and p(+)/n cells. Optimum values of 1.0-1.5 and 5.0 micrometers for groove and ridge widths respectively were determined.

  8. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  9. RADIATING CURRENT SHEETS IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Goodman, Michael L.; Judge, Philip G. E-mail: judge@ucar.edu

    2012-05-20

    An MHD model of a hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a 50 km height range. A subset of these solutions contains current sheets and has properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths {approx}25-150 G. The radiative flux F{sub R} emitted by individual sheets is {approx}4.9 Multiplication-Sign 10{sup 5}-4.5 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1}, to be compared with the observed chromospheric emission rate of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. Essentially all emission is from regions with thicknesses {approx}0.5-13 km containing the neutral sheet. About half of F{sub R} comes from sub-regions with thicknesses 10 times smaller. A resolution {approx}< 5-130 m is needed to resolve the properties of the sheets. The sheets have total H densities {approx}10{sup 13}-10{sup 15} cm{sup -3}. The ionization fraction in the sheets is {approx}2-20 times larger, and the temperature is {approx}2000-3000 K higher than in the surrounding plasma. The Joule heating flux F{sub J} exceeds F{sub R} by {approx}4%-34%, the difference being balanced in the energy equation mainly by a negative compressive heating flux. Proton Pedersen current dissipation generates {approx}62%-77% of the positive contribution to F{sub J} . The remainder of this contribution is due to electron current dissipation near the neutral sheet where the plasma is weakly magnetized.

  10. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV(+) scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV(+) modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  11. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  12. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  13. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  14. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  15. Radiation energy receiver for laser and solar propulsion systems

    NASA Technical Reports Server (NTRS)

    Rault, D. F. G.; Hertzberg, A.

    1983-01-01

    The concept of remotely heating a rocket propellant with a high intensity radiant energy flux is especially attractive due to its high specific impulse and large payload mass capabilities. In this paper, a radiation receiver-thruster which is especially suited to the particular thermodynamic and spectral characteristics of highly concentrated solar energy is proposed. In this receiver, radiant energy is volumetrically absorbed within a hydrogen gas seeded with alkali metal vapors. The alkali atoms and molecules absorb the radiant flux and, subsequently, transfer their internal excitation to hydrogen molecules through collisional quenching. It is shown that such a radiation receiver would outperform a blackbody cavity type receiver in both efficiency and maximum operating temperatures. A solar rocket equipped with such a receiver-thruster would deliver thrusts of several hundred newtons at a specific impulse of 1000 seconds.

  16. Solar keratoses. The association with erythemal ultraviolet radiation in Australia

    SciTech Connect

    Marks, R.; Selwood, T.S.

    1985-11-01

    The prevalence rate of solar keratoses among 2000 residents of Melbourne, Australia, was compared to the rate among 2113 residents of Maryborough, a north central Victorian city. There was a significantly higher prevalence rate among the Australian-born population of Maryborough compared with Melbourne residents of the same age, sex, country of birth, and level of outdoor activity. Calculation of the erythemal ultraviolet radiation level revealed a 14.2% increase in the dose in Maryborough compared with that in Melbourne. These figures demonstrate a significant increase in the rate of solar keratoses, and thus the potential for the development of skin cancer, in all of the age groups studied. The difference was associated with a relatively small increase in ultraviolet radiation between two areas that are separated by a latitude distance of only 110 km.

  17. Mutagenic effects of solar UV-radiation on DNA

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Horneck, G.

    2001-08-01

    A decrease of the stratospheric ozone layer will result in an increase of shorter wavelengths of the solar radiation reaching in earth. To investigate the biological efficiency, especially the mutagenic specificity, of ranges of polychromatic UVA and UBV irradiations with wavelengths between 280 nm and 400 nm, the plasmid DNA pUC19 and its E. coli host strain JM83 were used as a model system. Different ranges of solar UV radiation were simulated with the SOL 2 sun simulator (Dr. Hönle) and a variety of cut-off filters (Schott). Three wavelength bands were investigated: 280 - 400 nm (simulating UV-range under a stratospheric ozone layer depletion), 300-400 nm (simulating the UV-range today) and 315-400 nm to examine the effects induced by UVA alone.

  18. Terrestrial solar spectral distributions derived from broadband hourly solar radiation data

    NASA Astrophysics Data System (ADS)

    Myers, Daryl R.

    2009-08-01

    Multiple junction and thin film photovoltaic (PV) technologies respond differently to varying terrestrial spectral distributions of solar energy. PV device and system designers are concerned with the impact of spectral variation on PV specific technologies. Spectral distribution data is generally very rare, expensive, and difficult to obtain. We modified an existing empirical spectral conversion model to convert hourly broadband global (total hemispherical) horizontal and direct normal solar radiation to representative spectral distributions. Hourly average total hemispherical and direct normal beam solar radiation, such as provided in typical meteorological year (TMY) data are model spectral model input data. Default or prescribed atmospheric aerosols and water vapor are possible inputs. Individual hourly and monthly and annual average spectral distributions are computed for a specified tilted surface. The spectral range is from 300 nm to 1400 nm. The model is a modified version of the Nann and Riordan SEDES2 model. Measured hemispherical spectral distributions for a wide variety of conditions at the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory, Golden, Co. and Florida Solar Energy Center (Cocoa, FL) show that reasonable spectral accuracy of about +/-20% is obtainable, with notable exceptions for weather events such as snow.

  19. Solar radiation: absence of air pollution trends at Mauna Loa.

    PubMed

    Ellis, H T; Pueschel, R F

    1971-05-21

    Measurements of solar radiation made at Mauna Loa, Hawaii, over a period of 13 years give no evidence that human activities affect atmospheric turbidity on a global scale. Short-term fluctuations in insolation appear to be associated with naturally produced tropospheric aerosols. The intrusion of volcanic dust into the stratosphere results in prolonged increases in atmospheric opacity due to the extended residence times of aerosols in the stratosphere.

  20. Transmission of solar ultraviolet radiation through invertebrate exteriors

    SciTech Connect

    Karentz, D.; Gast, T. )

    1993-01-01

    The occurrence of springtime ozone depletion over the Antarctic has created concern about the effects of increases ultraviolet-B on marine organisms, particularly in intertidal and subtidal populations. The first line of defense that an animal has to solar radiation exposure is its outer covering. This paper examines four species of antarctic invertebrates to determine the amount of UV protection provided by their external covering (the sea urchin, the sea star; the limpet; and the tunicate). 5 refs., 3 figs.

  1. The solar radiation between 3300 and 12500 A

    NASA Astrophysics Data System (ADS)

    Neckel, H.; Labs, D.

    1984-02-01

    The results are based on absolute measurements of the disk-center intensities made more than 20 years ago and on Fourier transform spectra. A homogeneous and consistent set of absolute radiation data with high internal accuracy is derived for these FTS spectra. With a standard deviation of less than 0.2 percent, the maximum errors to be expected are of the order of 0.5 percent. This value is also seen as the upper limit for a neutral scale error, which may affect the overall irradiance integral (solar constant), and for systematic deviations occurring in relatively short spectral regions owing to the limited accuracy of the calibration curves. It is pointed out, however, that the overall spectral distribution cannot be seriously affected by systematic errors. This conclusion derives from the fact that the solar irradiance distribution agrees within observational errors with the flux distributions observed by Hardorp (1980) for solar-type stars (Neckel and Labs, 1981).

  2. Characterisation of spectrophotometers used for spectral solar ultraviolet radiation measurements.

    PubMed

    Gröbner, J

    2001-01-01

    Spectrophotometers used for spectral measurements of the solar ultraviolet radiation need to be well characterised to provide accurate and reliable data. Since the characterisation and calibration are usually performed in the laboratory under conditions very different from those encountered during solar measurements, it is essential to address all issues concerned with the representativity of the laboratory characterisation with respect to the solar measurements. These include among others the instrument stability, the instrument linearity, the instrument responsivity, the wavelength accuracy, the spectral resolution, stray light rejection and the instrument dependence on ambient temperature fluctuations. These instrument parameters need to be determined often enough so that the instrument changes only marginally in the period between successive characterisations and therefore provides reliable data for the intervening period.

  3. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  4. Plasmonic nanocrystal solar cells utilizing strongly confined radiation.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Rijal, Upendra; Bastola, Ebin; Uprety, Prakash; Liyanage, Geethika; Razgoniaev, Anton; Ostrowski, Alexis D; Zamkov, Mikhail

    2014-12-23

    The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5 nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices.

  5. Solar radiation and malignant melanoma of the skin

    SciTech Connect

    Houghton, A.N.; Viola, M.V.

    1981-01-01

    Several observations suggest that a majority of cases of malignant melanoma of the skin are linked to sun exposure. Evidence includes higher occurrence of melanoma on anatomic areas heavily exposed during recreation, development of melanoma more frequently in lightly pigmented persons, and correlation of melanoma incidence and mortality with proximity to the equator. The role of the sun exposure in the pathogenesis of melanoma remains unclear, however. Many cases of melanoma may be related to heavy doses of solar radiation received during recreation. Chronic sun exposure is not so clearly linked to the development of melanoma (except in the uncommon lentigo maligna variety). Sunspot cycles have been associated with changes in melanoma incidence; an excess of melanoma cases has been observed every 9 to 12 years after peak sunspot activity. These excess cases may be caused by more intense exposure to solar ultraviolet radiation during sunspot maxima, perhaps related to changes in the stratospheric ozone layer. These epidemiologic and clinical clues suggest that many cases of melanoma are related to sun exposure triggering the appearance of clinically evident melanoma. In this regard, solar radiation behaves as a cocarcinogen or promoter, rather than a dose-dependent carcinogen. These observations also suggest that other factors may be involved in the pathogenesis of melanoma, e.g., nevi, heredity, or exposure to chemical carcinogens.

  6. Effects of solar ultraviolet radiation on tropical algal communities

    SciTech Connect

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity.

  7. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  8. Solar UV radiation reduces the barrier function of human skin.

    PubMed

    Biniek, Krysta; Levi, Kemal; Dauskardt, Reinhold H

    2012-10-16

    The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SC's mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SC's intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skin's natural ability to resist, compromising the critical barrier function of the skin.

  9. Observed decadal variations in surface solar radiation and their causes

    NASA Astrophysics Data System (ADS)

    Ohmura, Atsumu

    2009-05-01

    Long-term variations of global solar irradiance at the Earth's surface from the beginning of the observations to 2005 are analyzed for more than 400 sites. Further, likely causes for the variations, an estimation of the magnitudes of aerosol direct and indirect effects, and the temperature sensitivity of the climate system due to radiation changes are evaluated. The record of observed global radiation begins with an increasing phase from 1920s to late 1940s/early 1960s. This brightening period (first brightening phase) is followed by the decreasing trend lasting to late 1980s, known as the global dimming, which finally translates into the second brightening phase in many regions of the world. These decadal variations are to great extent caused by aerosol and cloud fluctuations. The total aerosol effect as well as its direct and indirect effects were evaluated mainly on the basis of the observations. To meet this goal, simultaneous observations of global solar radiation and zenith transmittance are necessary. Five such regions/sites in Europe and Japan satisfy these conditions. By using the 20-year dimming phase from 1960 to 1980 and the 15-year brightening phase from 1990 to 2005, it was found that the aerosol direct and indirect effects played about an equal weight in changing global solar radiation. The temperature sensitivity due to radiation change is estimated at 0.05 to 0.06 K/(W m-2). The first brightening phase lasting to 1940s/early 1960s does not show a compatibility with the variation of transmittance of the atmosphere and originated probably from a different cause.

  10. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  11. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses

    SciTech Connect

    Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R

    2007-02-10

    The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline

  12. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.

    PubMed

    Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R

    2007-02-10

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced

  13. Modeling boron diffusion gettering of iron in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Haarahiltunen, A.; Talvitie, H.; Savin, H.; Yli-Koski, M.; Asghar, M. I.; Sinkkonen, J.

    2008-01-01

    In this paper, a model is presented for boron diffusion gettering of iron in silicon during thermal processing. In the model, both the segregation of iron due to high boron doping concentration and heterogeneous precipitation of iron to the surface of the wafer are taken into account. It is shown, by comparing simulated results with experimental ones, that this model can be used to estimate boron diffusion gettering efficiency of iron under a variety of processing conditions. Finally, the application of the model to phosphorus diffusion gettering is discussed.

  14. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  15. Diffusion of solar innovations through television news programming

    SciTech Connect

    Shoemaker, F.; Halacy, D.; O'Keefe, G.J.; Sendroy, C.G.

    1981-04-01

    The rationale, methodology, finished product, and evaluation of a series of short, topical films of various solar applications are presented. They were produced for use on prime-television news programming.

  16. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    SciTech Connect

    Shestakov, A I; Harte, J A; Bolstad, J H; Offner, S R

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  17. Data From HANE-Generated Radiation Belts and the Origin of Diffusion Theory

    SciTech Connect

    Winske, Dan

    2012-07-16

    In this presentation we briefly review some of the published data regarding the artificial radiation belts produced by the Starfish and R2 high altitude nuclear explosions in 1962. The data showed slow temporal variations of the belts in altitude (L) and pitch angle ({alpha}) that could be modeled as a diffusion process. That early work formed the basis for more complex radiation belt diffusion models that are in use at present.

  18. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  19. Enhancement of radiation tolerance with the use of a doping superlattice solar cell

    NASA Astrophysics Data System (ADS)

    Slocum, Michael A.; Forbes, David V.; Hubbard, Seth M.

    2014-03-01

    Solar cells utilizing doping superlattices in the active region of the device have been proposed as an alternative design to increase radiation hardness. Multiple diodes are connected together in parallel, where each diode can be as thin or thick as the design requires. Thinning the doped layers reduces the diffusion length requirements ensuring efficient carrier collection and maintenance of short circuit current. Experimental comparisons between nipi and a conventional pin solar cells that were irradiated with 1 MeV electrons at fluences from 4x1014 to 2x1015 e-/cm2 show much more efficient maintenance of efficiency for the nipi design, maintaining nearly 100% efficiency up to a final dose of 2x1015 e-/cm2. Further simulations have indicated that the efficient maintenance of voltage and fill factor are likely due to traps created in the nipi solar cell during the fabrication process. Beginning of life voltage and efficiency values can be improved significantly by limiting the trap density, while this has a minor impact on the efficiency comparison between a nipi and conventional device with respect to radiation.

  20. The measurement and analysis of normal incidence solar UVB radiation and its application to the photoclimatherapy protocol for psoriasis at the Dead Sea, Israel.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-01-01

    The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface.

  1. The effects of solar radiation on plant growth

    SciTech Connect

    Agard, J.

    1995-09-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren No. 855 hybrid sunflower seeds and Park Seeds No. 0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  2. The effects of solar radiation on plant growth

    NASA Technical Reports Server (NTRS)

    Agard, Joslyn

    1995-01-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren #855 hybrid sunflower seeds and Park Seeds #0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  3. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction

    NASA Astrophysics Data System (ADS)

    Zo, Il-Sung; Jee, Joon-Bum; Lee, Kyu-Tae; Kim, Bu-Yo

    2016-08-01

    Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m-2 (3.87 kWh m-2). These results show a difference of approximately ± 70 MJ m-2 (± 0.05 kWh m-2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.

  4. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  5. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    SciTech Connect

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-09-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.

  6. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  7. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  8. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  9. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  10. Regional scale evaluation of a meteosat second generation solar radiation product for evapotranspiration modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar radiation plays a key role in the Earth’s energy balance and is used as an essential input data in radiation-based evapotranspiration (ET) models. Accurate gridded solar radiation data at high spatial and temporal resolution are needed to retrieve ET over large domains. In this work we present...

  11. Measurements of solar radiation at Mauna Loa Observatory, 1978-1985, with emphasis on the effects of the eruption of El Chichon. Data report

    SciTech Connect

    Dutton, E.G.; DeLuisi, J.J.; Austring, A.P.

    1987-07-01

    Results from three different projects that involved either absolute or relative measurement of solar radiation at the NOAA Mauna Loa Observatory are reported. Included are measurements, in summary form, of broadband solar irradiance, spectral aerosol optical depth, and spectral diffuse-sky irradiance. Each data set includes the influence of the stratospheric debris from the eruption of El Chichon. Procedures that were used to acquire and finalize the observational records are documented.

  12. Progress in p(+)n InP solar cells fabricated by thermal diffusion

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Weinberg, I.; Fatemi, N. S.; Vargas-Aburto, Carlos; Goradia, C.; Goradia, Manju

    1992-01-01

    In SPRAT XI, we proposed that p(sup +)n diffused junction InP solar cells should exhibit a higher conversion efficiency than their n(sup +)p counterparts. This was mainly due to the fact that our p(sup +)n (Cd,S) cell structures consistently showed higher V (sub OC) values than our n(sup +)p (S,Cd) structures. The highest V(sub OC) obtained with the p(sup +)n (Cd,S) cell configuration was 860 mV, as compared to the highest V(sub OC) 840 mV obtained with the n(sup +)p (S,Cd) configuration (AMO, 25 C). In this work, we present the performance results of our most recent thermally diffused cells using the p(sup +)n (Cd,S) structure. We have been able to fabricate cells with V(sub OC) values approaching 880 mV. Our best cell with an unoptimized front contact grid design (GS greater than or equal to 10%) showed a conversion efficiency of 13.4% (AMO, 25 C) without an AR coating layer. The emitter surface was passivated by a -50A P rich oxide. Achievement of such high V(sub OC) values was primarily due to the fabrication of emitter surfaces, having EPD densities as low as 2E2 cm(sup -2) and N(sub a)N(sub d) of about 3E18 cm (sup -3). In addition, our preliminary investigation of p(sup +)n structures seem to suggest that Cd-doped emitter cells are more radiation resistant than Zn-doped emitter cells against both high energy electron and proton irradiation.

  13. Electron Radiation Damage of (alga) As-gaas Solar Cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, G. S.; Knechtli, R.

    1979-01-01

    Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described.

  14. BOREAS HYD-3 Subcanopy Incoming Solar Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains solar radiation measurements from several pyranometers (solar radiometers) placed on the snow surface in jack pine (1994) and black spruce and aspen forests (1996) in the BOREAS southern study area (SSA). An array of radiometers was used to collect data for three to four consecutive days in each forest type to study the hypothesis that energy transfer and snow water equivalent would vary spatially as a function of canopy closure. The quality of the data is good, because the days were generally clear and the radiometers were checked daily to remove anything that landed on the radiometers. The data are available in tabular ASCII files. The subcanopy incoming solar radiation measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Characterization and modeling of radiation damages via internal radiative efficiency in multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Yoshita, Masahiro; Nakamura, Tetsuya; Imaizumi, Mitsuru; Kim, Changsu; Mochizuki, Toshimitsu; Chen, Shaoqiang; Kanemitsu, Yoshihiko; Akiyama, Hidefumi

    2016-03-01

    In order to understand the radiation effects in space-used multi-junction solar cells, we characterized degradations of internal radiative efficiency (ηint i ) in respective subcells in InGaP/GaAs double-junction solar cells after 1-MeV electron irradiations with different electrons fluences (Φ) via absolute electroluminescence (EL) measurements, because ηint i purely represents material-quality change due to radiation damage, independently from cell structures. We analyzed the degradation of ηint i under different Φ and found that the data of ηint i versus Φ in moderate and high Φ regions are very similar and almost independent of subcell materials, while the difference in beginning-of-life qualities of InGaP and GaAs materials causes dominant difference in sub-cell sensitivity to the low radiation damages. Finally, a simple model was proposed to explain the mechanism in degradation of ηint i, and also well explained the degradation behavior in open-circuit voltage for these multi-junction solar cells.

  16. Mutual influence of higher diffusion and radiation modes on the contraction of the positive column discharge

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu B.; Siasko, A. V.; Nekuchaev, V. O.

    2017-01-01

    Fourier analysis of various plasma components in contracted discharge is made by an expansion over diffusion and radiation modes. Resonance atoms transport is traditionally described by an approximation of the effective lifetime by Holstein which considers only a fundamental radiation mode. Proposed method makes it possible to estimate the role of resonance radiation transport quantitatively by comparing the mode spectra. Behavior of resonance atoms successively considered on simple three-level energy models in a linear Shottky theory and in a semi-analytical non-linear diffusion-recombination theory, describing a discharge contraction. Suggested Fourier analysis method has been applied to a detailed model of the DC column contraction in Argon glow discharge. An expansion of different plasma components (electron density, metastable and resonance atoms densities) over the corresponding orthonormal set of diffusion or radiation modes is performed. The comparison of spectra obtained using the traditional Holstein approximation and in case of accurate treatment of resonance radiation transport shows an increase of fundamental diffusion and radiation modes and an effect of higher harmonics suppression in the modes spectra when the resonance radiation transport is described precisely. The role of higher radiation modes in formation of radial profiles of the electron density, metastable and resonance atoms densities as well as current-voltage characteristics is demonstrated by specific examples.

  17. Solar cells in bulk InP using an open tube diffusion process

    NASA Technical Reports Server (NTRS)

    Parat, K. K.; Bothra, S.; Borrego, J. M.; Ghandhi, S. K.

    1987-01-01

    A simple open tube diffusion technique for the fabrication of n+p junction solar cells is described. Large area (greater than 0.25 square cm) solar cells have been made by this process with a photovoltaic conversion efficiency of 15.2 percent under simulated AMO illumination. An ideality factor is 1.04 and a saturation current density of 9.6 times 10 to the minus 16th power A/square cm have been observed for these cells. These are the lowest (best) values reported to date for diffused structures in bulk InP.

  18. Diffusion of Innovation: Factors Promoting Interest in Solar Photovoltaic Generation Systems Within Air Force Installations

    DTIC Science & Technology

    2007-03-01

    Q42c. How likely is it that your base will request funding in these systems in the next 10 years? (large scale) Q43a.How beneficial do you think it...DIFFUSION OF INNOVATION: FACTORS PROMOTING INTEREST IN SOLAR PHOTOVOLTAIC GENERATION SYSTEMS WITHIN AIR...SOLAR PHOTOVOLTAIC GENERATION SYSTEMS WITHIN AIR FORCE INSTALLATIONS THESIS Presented to the Faculty Department of Systems and Engineering

  19. Impact of buildings on surface solar radiation over urban Beijing

    SciTech Connect

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; He, Cenlin; Lee, Wee-Liang; Chang, Xing; Li, Qinbin; Wang, Shuxiao; Tseng, Hsien-Liang R.; Leung, Lai-Yung R.; Hao, Jiming

    2016-05-12

    The rugged surface of an urban area due to varying buildings can interact with solar beams and affect both the magnitude and spatiotemporal distribution of surface solar fluxes. Here we systematically examine the impact of buildings on downward surface solar fluxes over urban Beijing by using a 3-D radiation parameterization that accounts for 3-D building structures vs. the conventional plane-parallel scheme. We find that the resulting downward surface solar flux deviations between the 3-D and the plane-parallel schemes are generally ±1–10 W m-2 at 800 m grid resolution and within ±1 W m-2 at 4 km resolution. Pairs of positive–negative flux deviations on different sides of buildings are resolved at 800 m resolution, while they offset each other at 4 km resolution. Flux deviations from the unobstructed horizontal surface at 4 km resolution are positive around noon but negative in the early morning and late afternoon. The corresponding deviations at 800 m resolution, in contrast, show diurnal variations that are strongly dependent on the location of the grids relative to the buildings. Both the magnitude and spatiotemporal variations of flux deviations are largely dominated by the direct flux. Furthermore, we find that flux deviations can potentially be an order of magnitude larger by using a finer grid resolution. Atmospheric aerosols can reduce the magnitude of downward surface solar flux deviations by 10–65 %, while the surface albedo generally has a rather moderate impact on flux deviations. The results imply that the effect of buildings on downward surface solar fluxes may not be critically significant in mesoscale atmospheric models with a grid resolution of 4 km or coarser. However, the effect can play a crucial role in meso-urban atmospheric models as well as microscale urban dispersion models with resolutions of 1 m to 1 km.

  20. Can we predict solar radiation at seasonal time-scale over Europe? A renewable energy perspective.

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea

    2015-04-01

    Surface solar radiation can be an important variable for the activities related to renewable energies (photovoltaic) and agriculture. Having accurate forecast may be of potential use for planning and operational tasks. This study examines the predictability of seasonal surface solar radiation comparing ECMWF System4 Seasonal operational forecasts with reanalyses (ERA-INTERIM, MERRA) and other datasets (NASA/GEWEX SRB, WFDEI). This work is focused on the period 1984-2007 and it tries to answer the following questions: 1) How similar are the chosen datasets looking at average and interannual variability? 2) What is the skill of seasonal forecasts in predicting solar radiation? 3) Is it useful for solar power operations and planning the seasonal prediction of solar radiation? It is important to assess the capability of climate datasets in describing surface solar radiation but at the same time it is critical to understand the needs of solar power industry in order to find the right problems to tackle.

  1. Assessing monthly average solar radiation models: a comparative case study in Turkey.

    PubMed

    Sonmete, Mehmet H; Ertekin, Can; Menges, Hakan O; Hacıseferoğullari, Haydar; Evrendilek, Fatih

    2011-04-01

    Solar radiation data are required by solar engineers, architects, agriculturists, and hydrologists for many applications such as solar heating, cooking, drying, and interior illumination of buildings. In order to achieve this, numerous empirical models have been developed all over the world to predict solar radiation. The main objective of this study is to examine and compare 147 solar radiation models available in the literature for the prediction of monthly solar radiation at Ankara (Turkey) based on selected statistical measures such as percentage error, mean percentage error, root mean square error, mean bias error, and correlation coefficient. Our results showed that Ball et al. (Agron J 96:391-397, 2004) model and Chen et al. (Energy Convers Manag 47:2859-2866, 2006) model performed best in the estimation of solar radiation on a horizontal surface for Ankara.

  2. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  3. Radiation damage in biomimetic dye molecules for solar cells.

    PubMed

    Cook, Peter L; Johnson, Phillip S; Liu, Xiaosong; Chin, An-Li; Himpsel, F J

    2009-12-07

    A significant obstacle to organic photovoltaics is radiation damage, either directly by photochemical reactions or indirectly via hot electrons. Such effects are investigated for biomimetic dye molecules for solar cells (phthalocyanines) and for a biological analog (the charge transfer protein cytochrome c). Both feature a central transition metal atom (or H(2)) surrounded by nitrogen atoms. Soft x-ray absorption spectroscopy and photoelectron spectroscopy are used to identify three types of radiation-induced changes in the electronic structure of these molecules. (1) The peptide bonds along the backbone of the protein are readily broken, while the nitrogen cage remains rather stable in phthalocyanines. This finding suggests minimizing peptide attachments to biologically inspired molecules for photovoltaic applications. (2) The metal atom in the protein changes its 3d electron configuration under irradiation. (3) The Fermi level E(F) shifts relative to the band gap in phthalocyanine films due to radiation-induced gap states. This effect has little influence on the optical absorption, but it changes the lineup between the energy levels of the absorbing dye and the acceptor/donor electrodes that collect the charge carriers in a solar cell.

  4. A Proposal for a Thesaurus for Web Services in Solar Radiation

    NASA Technical Reports Server (NTRS)

    Gschwind, Benoit; Menard, Lionel; Ranchin, Thierry; Wald, Lucien; Stackhouse, Paul W., Jr.

    2007-01-01

    Metadata are necessary to discover, describe and exchange any type of information, resource and service at a large scale. A significant amount of effort has been made in the field of geography and environment to establish standards. Efforts still remain to address more specific domains such as renewable energies. This communication focuses on solar energy and more specifically on aspects in solar radiation that relate to geography and meteorology. A thesaurus in solar radiation is proposed for the keys elements in solar radiation namely time, space and radiation types. The importance of time-series in solar radiation is outlined and attributes of the key elements are discussed. An XML schema for encoding metadata is proposed. The exploitation of such a schema in web services is discussed. This proposal is a first attempt at establishing a thesaurus for describing data and applications in solar radiation.

  5. Radiation belt electron reanalysis over two solar cycles: Comparitive modeling and analysis of several geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Turner, Drew; Kondrashov, Dmitri; Shprits, Yuri; Podladchikova, Tatiana; Drozdov, Alexander

    Earth’s electron radiation belts are a dynamic system, coupled to the solar wind and to the ionosphere. Understanding the observed dynamics requires consideration of the coupling between the three systems. Remote sensing and in situ observations provide information on the current state of the radiation belt system, and together with careful modeling may be used to resolve the physical processes at work. The Versatile Electron Radiation Belt (VERB) model solves the Fokker-Planck diffusion equation in three dimensional invariant coordinates, which allows one to more effectively separate adiabatic and non-adiabatic changes in the radiation belt electron population. The model includes geomagnetic storm intensity dependent parameterizations of the following dominant magnetospheric waves: day- and night-side chorus, plasmaspheric hiss (in the inner magnetosphere and inside the plume region), lightning and anthropogenic generated waves, and electro-magnetic ion cyclotron (EMIC) waves, also inside of plasmaspheric plumes. The model is used to forecast the future state of the radiation belt electron population, while real-time data may be used to update the current state of the belts through assimilation with the model. The Kalman filter provides a computationally inexpensive method to assimilate data with a model, while taking into account the errors associated with each. A split-operator Kalman filter approach is applied in this study, which provides a fast and effective way to assimilate data over very long time periods. Data error estimates are derived through the intercalibration, while model error estimates are adjusted dynamically based on the model forecast performance. In the current study, a set of geomagnetic storms are investigated comparatively using solar wind data, and reanalysis of electron phase space density from several different spacecraft missions. The storms occurred during periods that span over two solar cycles, and include CME and CIR driven

  6. Impacts of wind stilling on solar radiation variability in China.

    PubMed

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-10-14

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling.

  7. Impacts of wind stilling on solar radiation variability in China

    PubMed Central

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  8. The Effects of Shading and Diffuse Radiation in Estimating Carbon and Water Fluxes in Tropical and Midlatitude Sites

    NASA Astrophysics Data System (ADS)

    Xue, Y.; de Sales, F.; Zhan, X.; Collatz, J.

    2003-12-01

    The interactions between radiation, water, and carbon are a crucial component in determining terrestrial carbon and water fluxes. In this paper, we will present evidence to demonstrate the close relationship between these processes in an integrated climate system using the Simplified Simple Biosphere Model (SSiB, Xue et al., 1991). The SSiB implemented Collatz et al' (1991, 1992) parameterizations of plant photosynthesis and stomatal conductance to consider CO2 assimilation of vegetation. Quasi-analytical solutions of these parameterizations were developed (Zhan et al., 2003) to improve the computational efficiency and to produce stable solutions for long-term simulations in GCMs and regional models. We tested this enhanced SSiB using observational data from LBA, Boreal, and AmeriFux sites. The results indicated that the model in general produced a higher than normal rate of photosynthesis which led to an overly large transpiration. We examined model performance and found that this was mainly caused by the scaling methodology. In our earlier approach described above, the sunlit and shaded leaf areas were not considered. Furthermore, only direct radiation effect was included in the scaling equation, which was adapted from SiB2. Diffuse radiation, which arises from atmospheric scattering and from scattering within the canopy, has been shown to have a crucial role in the photosynthetic process (e.g., Norman, 1982; Baldocchi, 1997). Therefore, we developed a new parameterization for shading and scaling to more realistically simulate the land/atmosphere interaction processes. The shading parameterization is based on Norman's approach (mainly relies on solar zenith angle), but we further take vegetation properties and solar radiative transfer property within canopy into consideration. The scaling method considers the effects of both direct and diffuse radiations. We have tested the new method using the observational data from the LBA experiment ( 2000) and the Boreal

  9. A fast all-sky radiative transfer model and its implications for solar energy research

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  10. Modulation of the Southern Hemisphere climate by solar radiation management

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; Lenton, Andrew; Rotstayn, Leon; Gupta, Alex Sen; Ji, Duoying; Moore, John; Niemeier, Ulrike; Schmidt, Hauke; Tilmes, Simone

    2015-04-01

    Geoengineering is increasingly being considered as a means to lessen the climatic impacts of anthropogenic greenhouse gas emissions. However, it is not without significant risks of its own. In this study, we investigate the response of the Southern Hemisphere (SH) climate to solar radiation management (SRM) using Geoengineering Model Intercomparison Project experiments G3 and G3solar. We find that the response to SRM is characterized by a contraction of the Hadley Cell and subtropical dry zones. This is accompanied by a shift towards a less positive state of the Southern Annular Mode and a northward shift of the SH westerly winds, mitigating the trends under projected future anthropogenic forcing. These changes result in an increase in precipitation minus evaporation in the SH subtropics, suggesting that SRM may be effective at counteracting the anthropogenically-driven drying trend in this region. However, any beneficial impacts cease abruptly as soon as geoengineering is terminated.

  11. Study on impact of aerosols on solar radiation and its climate effect in Southwest China

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaobo; Zhao, Tianliang; Zhang, Xiaojuan

    Air temperature in Southwest China has changed out of phase with the Northern Hemispheric temperature change since last century, which could be connected to increasing aerosols in that region. By using the 50-year (1961-2010) data of meteorology observed at 19 ground sites in Southwest China and 10-year MODIS-AOD data, the change in global solar radiation and its correlations to the influencing elements of horizontal visibility, cloud amount, wind and AOD are analysed. The analysis results show 1) over the area with high AOD(AOD>0.3),solar radiation had decreased significantly over the 1960s-1990s, but in this century, the decreased trend in solar radiation has ceased and even slightly levelled up at some sites, but the solar radiation has not recovered to the level in the 1960s. The decreased solar radiation is corresponded with less visibility, more aerosols and weakening wind as well as is also related with change in cloud amounts. 2) over the low AOD area(AOD≦0.3)in Southwest China, solar radiation has varied in the insignificant trends excepting the significant increase in solar radiation at Emei Mountain with altitude of 3047m after the 1990s. 3) Meteorological elements are responded to climate change in solar radiation. The sunshine duration is positively correlated with solar radiation at all sites with passing significance test of 99% level at the most sites in Southwest China. Decreases in solar radiation lead to cooling in temperature and decline in evaporation at high AOD regions. The maximum temperature and solar radiation vary in relatively good phase but with a complex response of evaporation to solar radiation over low AOD sites in Southwest China.

  12. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  13. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  14. National Solar Radiation Data Bases (NSRDB): 1961 to 1990 and 1991 to 2005

    DOE Data Explorer

    The National Solar Radiation Data Base 1961-1990 (NSRDB) contains 30 years of solar radiation and supplementary meteorological data from 237 NWS sites in the U.S., plus sites in Guam and Puerto Rico. The updated 1991-2005 National Solar Radiation Database holds solar and meteorological data for 1,454 locations in the United States and its territories. See also the interactive data maps for the 1961 to 1990 data at http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/redbook/atlas/.

  15. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  16. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  17. A possible radiation-resistant solar cell geometry using superlattices

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  18. Variability of surface solar radiation in unforced CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2016-04-01

    We examine the natural variability of surface solar radiation (SSR) under pre-industrial conditions with time-invariant forcing in control runs in global climate simulations of the latest coupled model intercomparison project, CMIP5. We consider global and regional scales, as well as annual and seasonal data. Special emphasis is given to the likelihood of spurious SSR trends. To address this question, we determine for each model the range of linear SSR trends as function of the number of years over which the trend is taken. We discuss our findings with regard to potential aerosol induced dimming and its detectability in the second half of the 20th century.

  19. Impact of Solar Radiation on Gene Expression in Bacteria

    PubMed Central

    Matallana-Surget, Sabine; Wattiez, Ruddy

    2013-01-01

    Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another. PMID:28250399

  20. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Gaidos, E.; Hubeny, I.; Lanz, T. M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield, and energy source for life. Here, we give a progress report on the first phase of this program: to establish the UV radiation from the early Sun. We are presently obtaining ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun. We are currently making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. once validated, these models will allow us to extrapolate our theoretical spectra to unobserved spectral regions, and to proceed to the next step: to develop photochemical models of the pre-biotic and Archean atmosphere of the Earth.

  1. Solar UV Radiation and the Origin of Life On Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  2. Insolation data manual and direct normal solar radiation data manual

    SciTech Connect

    1990-07-01

    The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

  3. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  4. Moisture diffusivity of rough rice under infrared radiation drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To design efficient infrared (IR) dryers for rough rice, it is important to understand the drying behavior of rough rice under IR heating. The objective of this study was to determine the moisture diffusivity of rough rice under IR heating followed by cooling. The effects of initial moisture content...

  5. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  6. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  7. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  8. Impact of changes in diffuse radiation on the global land carbon sink.

    PubMed

    Mercado, Lina M; Bellouin, Nicolas; Sitch, Stephen; Boucher, Olivier; Huntingford, Chris; Wild, Martin; Cox, Peter M

    2009-04-23

    Plant photosynthesis tends to increase with irradiance. However, recent theoretical and observational studies have demonstrated that photosynthesis is also more efficient under diffuse light conditions. Changes in cloud cover or atmospheric aerosol loadings, arising from either volcanic or anthropogenic emissions, alter both the total photosynthetically active radiation reaching the surface and the fraction of this radiation that is diffuse, with uncertain overall effects on global plant productivity and the land carbon sink. Here we estimate the impact of variations in diffuse fraction on the land carbon sink using a global model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We estimate that variations in diffuse fraction, associated largely with the 'global dimming' period, enhanced the land carbon sink by approximately one-quarter between 1960 and 1999. However, under a climate mitigation scenario for the twenty-first century in which sulphate aerosols decline before atmospheric CO(2) is stabilized, this 'diffuse-radiation' fertilization effect declines rapidly to near zero by the end of the twenty-first century.

  9. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    SciTech Connect

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  10. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  11. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    PubMed Central

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  12. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-12-22

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  13. Investigation of simple daily solar radiation models suitable for use in the design of solar heating systems

    SciTech Connect

    Sillman, S.

    1980-08-01

    Solar heating system simulations typically require hourly weather data and the use of a main-line computer. A simpler alternative is to use daily steps with a model for daily solar collection. This report investigates the accuracy of sinusoidal radiation models for use in solar heating simulation. Accuracy of daily radiation models is assessed in two ways: by a theoretical comparison with hourly weather data, and by analysis of results of daily simulation. Results indicate that a daily radiation model can be designed with errors of less than 2%.

  14. Influence of the order of boron and phosphorus diffusion on the fabrication of thin bifacial silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Conceição Osório, Vanessa; Moehlecke, Adriano; Zanesco, Izete

    2016-10-01

    The aim of this paper is to analyze the fabrication process of thin bifacial silicon solar cells concerning the order of diffusions to form p+ and n+ regions. The n+pp+ structure with the p+ selective region was implemented by using thin solar grade Czochralski silicon wafers. The whole rear face was doped with boron deposited by spin-on and thermally diffused and an Al metal grid was screen-printed and diffused. The phosphorus diffusion after the boron one produced the thinner n+ emitter and thinner dead layer, which allow the manufacturing of more efficient solar cells. Furthermore, the phosphorus diffusion at the end of processing promoted gettering, enhancing the minority charge carrier lifetime. Solar cells with the phosphorus diffusion after the boron one reached front and rear efficiencies of 14.0% and 10.4%, respectively, without any surface passivation.

  15. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    PubMed

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    values extracted from OPTP measurements and their dependence on perovskite composition and morphology. The significance of the reviewed charge-carrier recombination and mobility parameters is subsequently evaluated in terms of the charge-carrier diffusion lengths and radiative efficiencies that may be obtained for such hybrid perovskites. We particularly focus on calculating such quantities in the limit of ultra-low trap-related recombination, which has not yet been demonstrated but could be reached through further advances in material processing. We find that for thin films of hybrid lead iodide perovskites with typical charge-carrier mobilities of ∼30cm(2)/(V s), charge-carrier diffusion lengths at solar (AM1.5) irradiation are unlikely to exceed ∼10 μm even if all trap-related recombination is eliminated. We further examine the radiative efficiency for hybrid lead halide perovskite films and show that if high efficiencies are to be obtained for intermediate charge-carrier densities (n ≈ 10(14) cm(-3)) trap-related recombination lifetimes will have to be enhanced well into the microsecond range.

  16. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    SciTech Connect

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  17. Engineering imaginaries: Anticipatory foresight for solar radiation management governance.

    PubMed

    Low, Sean

    2017-02-15

    Since solar radiation management (SRM) technologies do not yet exist and capacities to model their impacts are limited, proposals for its governance are implicitly designed not around realities, but possibilities - baskets of risk and benefit that are often components of future imaginaries. This paper reports on the project Solar Radiation Management: Foresight for Governance (SRM4G), which aimed to encourage an anticipatory mode of thinking about the future of an engineered climate. Leveraging the participation of 15 scholars and practitioners heavily engaged in early conversations on SRM governance, SRM4G applied scenario construction to generate a set of alternative futures leading to 2030, each exercising different influences on the need for - and challenges associated with - development of SRM technologies. The scenarios then provided the context for the design of systems of governance with the capacity and legitimacy to respond to those challenges, and for the evaluation of the advantages and drawbacks of different options against a wide range of imaginary but plausible futures. SRM4G sought to initiate a conversation within the SRM research community on the capacity of foresight approaches to highlight the centrality of conceptions of the future to discussions of SRM's threats and opportunities, and in doing so, examined and challenged the assumptions embedded in conceptualizing SRM's aims, development and governance, and discussed the capacity of governance options to adapt to a wide range of possibilities.

  18. A solar radiation model for use in climate studies

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1992-01-01

    A solar radiation routine is developed for use in climate studies that includes absorption and scattering due to ozone, water vapor, oxygen, carbon dioxide, clouds, and aerosols. Rayleigh scattering is also included. Broadband parameterization is used to compute the absorption by water vapor in a clear atmosphere, and the k-distribution method is applied to compute fluxes in a scattering atmosphere. The reflectivity and transmissivity of a scattering layer are computed analytically using the delta-four-stream discrete-ordinate approximation. The two-stream adding method is then applied to compute fluxes for a composite of clear and scattering layers. Compared to the results of high spectral resolution and detailed multiple-scattering calculations, fluxes and heating rate are accurately computed to within a few percent. The high accuracy of the flux and heating-rate calculations is achieved with a reasonable amount of computing time. With the UV and visible region grouped into four bands, this solar radiation routine is useful not only for climate studies but also for studies on photolysis in the upper atmosphere and photosynthesis in the biosphere.

  19. GaAs quantum dot solar cell under concentrated radiation

    SciTech Connect

    Sablon, K.; Little, J. W.; Hier, H.; Li, Y.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2015-08-17

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the V{sub OC}-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns.

  20. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  1. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    NASA Astrophysics Data System (ADS)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  2. Rocket observations of solar UV radiation during the eclipse of 7 March 1970.

    NASA Technical Reports Server (NTRS)

    Smith, L. G.

    1972-01-01

    Results of observations of the solar eclipse of Mar. 7, 1970, with photometers sensitive to narrow bands of radiation at Lyman-alpha (1216 A) and at 2600 A included in the payloads of four Nike Apache rockets flown before and during the eclipse. At the center of totality, the flux of Lyman-alpha from the solar corona is 0.15% of the flux from the unobscured sun. The flux at second contact is 0.64%; at third contact, two observations give 0.52 and 0.59%. The brightness of the chromosphere in Lyman-alpha decreases exponentially over the range from 5 to 30 arc-sec from the limb with a scale height of 3835 plus or minus 70 km. In addition to the coronal and chromospheric Lyman-alpha a diffuse source is found. This is restricted to within 20 deg of the earth's horizon and is nearly uniform in azimuth at 170 km, the flux is about 3% of that from the unobscured sun. The flux of Lyman-alpha during the eclipse is considered in relation to the observed variation in electron density. It is concluded that, in totality, the ionosphere near 80 km is not in equilibrium with the ionizing radiation and that the production rate for electrons is not negligible if the loss process is recombination; it is negligible if the loss process is attachment-like.

  3. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  4. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2013-01-01

    There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m2 m−2. Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation. PMID:24347740

  5. Degradation of bulk diffusion length in CZ silicon solar cells

    SciTech Connect

    Reiss, J.H.; King, R.R.; Mitchell, K.W.

    1995-08-01

    Commercially-produced, unencapsulated, CZ silicon solar cells can lose 3 to 4% of their initial efficiency after exposure to light. After this initial, rapid ( < 30 min.) decrease, the cell power output remains stable. The cell performance recovers in a matter of hours in the dark at room temperature, and degrades again under light exposure. The different conditions under which CZ silicon cells degrade, and the reverse process, annealing, are characterized with the methods of spectral response and current-voltage (I-V) measurements. Iron impurities are a possible cause of this effect.

  6. Division II: Commission 12: Solar Radiation and Structure

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander; Cauzzi, Gianna; Pillet, Valentin Martinez; Asplund, Martin; Brandenburg, Axel; Chou, Dean-Yi; Christensen-Dalsgaard, Jorgen; Gan, Weiqun; Kuznetsov, Vladimir D.; Rovira, Marta G.; Shchukina, Nataliya; Venkatakrishnan, P.

    2015-08-01

    The President of C12, Alexander Kosovichev, presented the status of the Commission and its working Group(s). Primary activities included organization of international meetings (IAU Symposia, Special Sessions and Joint Discussion); review and support of proposals for IAU sponsored meetings; organization of working groups on the Commission topics to promote the international cooperation; preparation of triennial report on the organizational and science activities of Commission members. Commission 12 broadly encompasses topics of solar research which include studies of the Sun's internal structure, composition, dynamics and magnetism (through helioseismology and other techniques), studies of the quiet photosphere, chromosphere and corona, and also research of the mechanisms of solar radiation, and its variability on various time scales. Some overlap with topics covered by Commission 10 Solar Activity is unavoidable, and many activities are sponsored jointly by these two commissions. The Commission website can be found at http://sun.stanford.edu/IAU-Com12/, with information about related IAU Symposiums and activities, and links to appropriate web sites.

  7. Venus exospheric structure - The role of solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1989-01-01

    The existence of a 'hot' population of hydrogen atoms in the Venus exosphere is well known. In the outer coronal region where it is dominant, r greater than about 2.0 R(V) (Venus radii), hydrogen atoms are also subject to a relatively strong radiation pressure exerted by resonant scattering of solar Lyman-alpha photons. Collisionless models illustrating the consequent structure are discussed, with the nonthermal population mimicked by a dual Maxwellian exobase kinetic distribution. In these models, a considerable fraction of the 'hot' atoms outside 2.0 R(V) belongs to the quasi-satellite component, this fraction exceeding 1/2 for r values between about 4.0 and 10.0 R(V). Solar ionization of bound atoms occurs mainly outside the ionopause, yielding a partial escape flux greater than about 2,000,000/sq cm per sec over the dayside exobase for assumed solar conditions. The inclusion of a cold exobase prescribed by Pioneer Venus observations has little influence on the outer region (in particular, the quasi-satellite component is unaltered) except that the transition to 'hot' kinetic character occurs closer to the exobase on the nightside due to the colder main exobase temperatures there.

  8. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    SciTech Connect

    Maximenko, S. I. Scheiman, D. A.; Jenkins, P. P.; Walters, R. J.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  9. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Maximenko, S. I.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Scheiman, D. A.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.; Jenkins, P. P.; Walters, R. J.

    2015-12-01

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In0.01Ga0.99As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ˜6.06-9.88 × 109 MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  10. Large solar flare radiation shielding requirements for manned interplanetary missions.

    PubMed

    Townsend, L W; Nealy, J E; Wilson, J W; Atwell, W

    1989-01-01

    As the 21st century approaches, there is an ever-increasing interest in launching manned missions to Mars. A major concern to mission planners is exposure of the flight crews to highly penetrating and damaging space radiations. Beyond the protective covering of the Earth's magnetosphere, the two main sources of these radiations are galactic cosmic rays and solar particle events. Preliminary analyses of potential exposures from galactic cosmic rays (GCR's) were presented elsewhere. In this Note, estimates of shielding thicknesses required to protect astronauts on interplanetary missions from the effects of large solar flare events are presented. The calculations use integral proton fluences for the February 1956, November 1960, and August 1972 solar particle events as inputs into the NASA Langley Research Center nucleon transport code BRYNTRN. This deterministic computer code transports primary protons and secondary protons and neutrons through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus breakup (fragmentation) and recoil are also included. The results for each flare are presented as estimates of dose equivalent [in units of roentgen equivalent man (rem)] to the skin, eye, and bloodforming organs (BFO) behind various thicknesses of aluminum shielding. These results indicate that the February 1956 event was the most penetrating; however, the August 1972 event, the largest ever recorded, could have been mission- or life-threatening for thinly shielded (< or = 5 g/cm2) spacecraft. Also presented are estimates of the thicknesses of water shielding required to reduce the BFO dose equivalent to currently recommended astronaut exposure limits. These latter results suggest that organic polymers, similar to water, appear to be a much more desirable shielding material than aluminum.

  11. Evidence for a Solar Influence on Gamma Radiation from Radon

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J.

    2012-12-01

    We have analyzed 29,000 measurements of gamma radiation associated with the decay of radon confined to an airtight vessel at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of strong periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We consider it significant that these same oscillations have previously been detected in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt. We have suggested that these oscillations are due to some form of solar radiation (possibly neutrinos) that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. Time-frequency analysis also yields quite different results from daytime and nighttime data. These procedures have also been applied to data collected from subsurface geological sites in Israel, Tenerife, and Italy, which have a variety of geological and geophysical scenarios, different elevations, and depths below the surface ranging from several meters to 1000 meters. In view of these results, and in view of the fact that there is at present no clear understanding of the behavior of radon in its natural environment, there would appear to be a need for multi-disciplinary research. Investigations that clarify the nature and mechanisms of solar influences may help clarify the nature and mechanisms of geological influences.

  12. Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in solar radiation management

    NASA Astrophysics Data System (ADS)

    Modak, A.; Bala, G.

    2014-08-01

    Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

  13. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    NASA Astrophysics Data System (ADS)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  14. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  15. Broken-cloud enhancement of solar radiation absorption

    SciTech Connect

    Byrne, R.N.; Somerville, R.C.; Subasilar, B.

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  16. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  17. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2013-12-01

    Climate change may alter the spatial distribution, composition, structure, and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate solar radiation absorbed by individual plants for understanding and predicting their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the analytical solutions of random distributions of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and is suitable for ecological models to simulate long-term transient responses of plant communities to climate change.

  18. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2014-07-01

    Climate change may alter the spatial distribution, composition, structure and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate the solar radiation absorbed by individual plants in order to understand and predict their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming that crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the results of random distribution of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and can be included in vegetation models to simulate long-term transient responses of plant communities to climate change. The code and a user's manual are provided as Supplement of the paper.

  19. Exospheric Cleaning Of The Earth Radiation Budget Solar Radiometer During Solar Maximum

    NASA Astrophysics Data System (ADS)

    Predmore, R. E.; Jacobowitz, H.; Hickey, J. R.

    1983-04-01

    Simultaneous degradation of the infrared Earth Sensor Assemblies (ESA) on TIROS-N and Defense Meteorological Satellites, and cleanup or recovery of the ultraviolet channels in the Earth Radiation Budget (ERB) instruments on Nimbus satellites, have been observed. The simultaneous radiometric variations which occurred in the radiometer channels facing the spacecraft velocity direction started during a period of rapidly increasing solar activity. Mechanisms causing the optical degradation and cleanup of ESA and ERB channels were compared. These included radiation damage caused by charged particles, self contamination, exospheric reactions and micrometeoroids. Results of studies show that the presence of both atomic oxygen and oxygen ions of the 0I-type at satellite altitudes were the principal cause of the radiometric variations. Concentrations of these particles have been observed to increase with solar activity. The flux of this relatively static and reactive gas impinging on the front surfaces of the high speed spacecraft apparently cleaned the organic contaminant film off the ERB solar channels. This is similar to the way that ozone cleans organic contaminant films during optics manufacturing.

  20. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction.

    PubMed

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  1. Convective instability of sludge storage under evaporation and solar radiation

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40

  2. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  3. Changes in the relationship between solar radiation and sunshine hours in large cities of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on the linear relationship between solar radiation and sunshine hours, the Angstrom model is widely used to estimate solar radiation from routinely observed meteorological variables for energy harvest. However, the relationship may have been changed in the rapidly developing regions in the rec...

  4. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  5. Diffuse reflectors for improving light management in solar cells: a review and outlook

    NASA Astrophysics Data System (ADS)

    Barugkin, Chog; Beck, Fiona J.; Catchpole, Kylie R.

    2017-01-01

    Pigment based diffuse reflectors (DRs) have several advantages over metal reflectors such as good stability, high reflectivity, and low parasitic absorption. As such, DRs have the potential to be applied on high efficiency silicon solar cells and further increase the power conversion efficiency. In this paper, we perform a thorough review on the notable achievements to date of DRs’ application for photovoltaics. We outline unique attributes of these technologies and discuss the theoretical and laboratory development working towards overcoming the challenges of transferring to high efficiency silicon solar cells. In order to understand the potential of DRs for high efficiency silicon solar cells, we provide a qualitative analysis of the impact of front reflection, rear absorption and the angular distribution on the useful light absorption in silicon wafers. By including this discussion, we provide an outlook for the application of DR in reaching maximum photo-current for high efficiency silicon solar cells.

  6. Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.

    2009-01-01

    MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.

  7. Low temperature Zn diffusion for GaSb solar cell structures fabrication

    NASA Technical Reports Server (NTRS)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali

    1995-01-01

    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  8. Particle Energization during Solar Maximum: Diffusive Shock Acceleration at Multiple Shocks

    NASA Astrophysics Data System (ADS)

    Neergaard Parker, L.; Zank, G. P.

    2014-08-01

    We present a model for the acceleration of particles at multiple shocks using an approach related to box models. A distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles out of the box by either the method used in Melrose & Pope and Pope & Melrose or by the approach introduced in Zank et al. where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E max) appropriate for quasi-parallel and quasi-perpendicular shocks. We provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum.

  9. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    SciTech Connect

    Aschwanden, Markus J.

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission, amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.

  10. Distributions of Direct, Reflected, and Diffuse Irradiance for Ocular UV Exposure at Different Solar Elevation Angles

    PubMed Central

    Yu, Jiaming; Hua, Hui; Liu, Yan; Liu, Yang

    2016-01-01

    To analyze intensities of ocular exposure to direct (Eo,dir), reflected (Eo,refl), and diffuse (Eo,diff) ultraviolet (UV) irradiance at different solar elevation angles (SEAs), a rotating manikin and dual-detector spectrometer were used to monitor the intensity of ocular exposure to UV irradiation (Eo) and ambient UV radiation (UVR) under clear skies in Sanya, China. Eo,dir was derived as the difference between maximum and minimum measured Eo values. Eo,refl was converted from the value measured at a height of 160 cm. Eo,diff was calculated as the minimum measured Eo value minus Eo,refl. Regression curves were fitted to determine distributions of intensities and growth rates at different wavelengths and SEAs. Eo,dir differed from ambient UVR exposure. Linear, quadratic, and linear Eo,dir distributions were obtained in SEA ranges of 14°–30°, 30°–50°, and 50°–90°, respectively, with maximum Eo,dir at 32°–38° SEA. Growth rates of Eo,dir with increasing wavelength were fitted with quadratic functions in all SEA ranges. Distributions and growth rate of Eo,refl values were fitted with quadratic functions. Maximum Eo,diff was achieved at the same SEA for all fitted quadratic functions. Growth rate of Eo,diff with increasing wavelength was fitted with a linear function. Eo,dir distributions were fitted with linear or quadratic functions in different SEA ranges. All Eo,refl and Eo,diff distributions were fitted with quadratic functions. As SEA increased, the Eo,dir portion of Eo increased and then decreased; the Eo,refl portion increased from an initial minimum; and the Eo,diff portion first decreased and then increased. The findings may provide data supporting on construction of a mathematical model of ocular UV exposure. PMID:27846278

  11. Effects of magnetic drift shell splitting on electron diffusion in the radiation belts

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, A. A.; O'Brien, T. P.; Tu, W.; Cunningham, G. S.; Albert, J. M.; Elkington, S. R.

    2016-12-01

    Drift shell splitting in the presence of pitch angle scattering breaks all three adiabatic invariants of radiation belt electron motion and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. The Radbelt Electron Model (REM) solves such a Fokker-Planck equation and is used to investigate the phase space density sources. Our simulation results and theoretical arguments suggest that drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces outer zone phase space density enhancements, and this reduction has a limit corresponding to two-dimensional local diffusion on a curved surface in the phase space.

  12. Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes

    SciTech Connect

    Anninos, P

    2002-10-03

    A collection of numerical methods are presented for the advection or remapping of material properties on unstructured and staggered polyhedral meshes in arbitrary Lagrange-Eulerian calculations. The methods include several new procedures to track and capture sharp interface boundaries, and to partition radiation energy into multi-material thermal states. The latter is useful for extending and applying consistently single material radiation diffusion solvers to multi-material problems.

  13. Degradation of Akebono solar cell panels and variation of proton radiation belt

    NASA Astrophysics Data System (ADS)

    Ishikawa, H.; Miyake, W.; Matsuoka, A.

    2011-12-01

    We analyze long-term variation of electric current generated by Akebono solar cell panels (SCPI) and investigate how solar cell panels have been affected by space radiation. SCPI decreased slowly to about 7A in 2009 from 13A in 1989. The long-term decrease is probably due to various space radiations (Total Dose Effect). Therefore, we compare the decrease of solar cell output with solar proton flux measured by GOES satellites on GEO and with flux of trapped radiation from NASA's models (AP8 and AE8). We find a fair correlation between the decrease rate of solar cell output and trapped proton flux (above 10MeV) from the radiation model. However, we also find a few intervals of poor correlation, for an example, after a large geomagnetic storm occurred in March 1991, which suggests that stable proton radiation belt can be changed drastically for some special occasions.

  14. Summary information and data sets for NREL's Solar Radiation Research Laboratory, 1981--1991

    SciTech Connect

    Marion, W.

    1993-01-01

    This report summarizes the solar radiation and meteorological data collected at the Solar Radiation Research Laboratory in Golden, Colorado, from 1981 through 1991. The data collection was part of the National Renewable Energy Laboratory's Solar Radiation Resource Assessment Project. The report includes long-term averages and monthly and annual variability for key solar radiation elements and describes the hourly data sets for 1981 through 1991. Described in the report are how the elements were measured and how the data were collected and processed into hourly values. Procedures used for quality assessment of the hourly data values are presented, and the position of the solar radiation and meteorological elements in the data sets are defined; samples of read statements are provided.

  15. Summary information and data sets for NREL`s Solar Radiation Research Laboratory, 1981--1991

    SciTech Connect

    Marion, W.

    1993-01-01

    This report summarizes the solar radiation and meteorological data collected at the Solar Radiation Research Laboratory in Golden, Colorado, from 1981 through 1991. The data collection was part of the National Renewable Energy Laboratory`s Solar Radiation Resource Assessment Project. The report includes long-term averages and monthly and annual variability for key solar radiation elements and describes the hourly data sets for 1981 through 1991. Described in the report are how the elements were measured and how the data were collected and processed into hourly values. Procedures used for quality assessment of the hourly data values are presented, and the position of the solar radiation and meteorological elements in the data sets are defined; samples of read statements are provided.

  16. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleveland, Mathew A.; Gentile, Nick

    2015-06-01

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  17. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    SciTech Connect

    Cleveland, Mathew A. Gentile, Nick

    2015-06-15

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  18. Mathematical model of the solar radiation force and torques acting on the components of a spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1971-01-01

    General expressions for the solar radiation force and torques are derived in the vectorial form for any given reflecting surface, provided that the reflecting characteristics of the surface, as well as the value of the solar constant, are known. An appropriate choice of a spacecraft-fixed frame of reference leads to relatively simple expressions for the solar radiation forces and torques in terms of the functions of the sun-spacecraft-earth angle.

  19. Estimation of minority carrier diffusion lengths in InP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.

    1990-01-01

    Minority carrier diffusion length is one of the most important parameters affecting the solar cell performance. An attempt is made to estimate the minority carrier diffusion lengths is the emitter and base of InP/GaAs heteroepitaxial solar cells. The PC-1D computer model was used to simulate the experimental cell results measured at NASA Lewis under AMO (air mass zero) spectrum at 25 C. A 16 nm hole diffusion length in the emitter and a 0.42 micron electron diffusion length in the base gave very good agreement with the I-V curve. The effect of varying minority carrier diffusion lengths on cell short current, open circuit voltage, and efficiency was studied. It is also observed that the front surface recombination velocity has very little influence on the cell performance. The poor output of heteroepitaxial cells is caused primarily by the large number of dislocations generated at the interfaces that propagate through the bulk indium phosphide layers. Cell efficiency as a function of dislocation density was calculated and the effect of improved emitter bulk properties on cell efficiency is presented. It is found that cells with over 16 percent efficiencies should be possible, provided the dislocation density is below 10(exp 6)/sq cm.

  20. Stimulation of gross dimethylsulfide (DMS) production by solar radiation

    NASA Astrophysics Data System (ADS)

    Galí, Martí; Saló, Violeta; Almeda, Rodrigo; Calbet, Albert; Simó, Rafel

    2011-08-01

    Oceanic gross DMS production (GP) exerts a fundamental control on the concentration and the sea-air flux of this climatically-active trace gas. However, it is a poorly constrained process, owing to the complexity of the microbial food web processes involved and their interplay with physical forcing, particularly with solar radiation. The “inhibitor method”, using dimethyldisulfide (DMDS) or other compounds to inhibit bacterial DMS consumption, has been frequently used to determine GP in dark incubations. In the work presented here, DMDS addition was optimized for its use in light incubations. By comparing simultaneous dark and light measurements of GP in meso- to ultraoligotrophic waters, we found a significant enhancement of GP in natural sunlight in 7 out of 10 experiments. Such stimulation, which was generally between 30 and 80% on a daily basis, occurred throughout contrasting microbial communities and oceanographic settings.

  1. Whales use distinct strategies to counteract solar ultraviolet radiation.

    PubMed

    Martinez-Levasseur, Laura M; Birch-Machin, Mark A; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J; Acevedo-Whitehouse, Karina

    2013-01-01

    A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.

  2. [Solar radiation exposure in agriculture: an underestimated risk].

    PubMed

    Gobba, F

    2012-01-01

    Solar Radiation (SR) is a major occupational risk in agriculture, mainly related to its ultraviolet (UV) component. Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma and squamous cell carcinoma of the skin, and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in agriculture. The role of the Occupational Physician in prevention is fundamental.

  3. Radiation effects in heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Curtis, H. B.; Swartz, C. K.; Brinker, D. J.; Vargas-Aburto, C.

    1993-01-01

    Heteroepitaxial InP solar cells, with GaAs substrates, were irradiated by 0.5 and 3 MeV protons and their performance, temperature dependency, and carrier removal rates determined as a function of fluence. The radiation resistance of the present cells was significantly greater than that of non-heteroepitaxial InP cells at both proton energies. A clear difference in the temperature dependency of V(sub oc), was observed between heteroepitaxial and homoepitaxial InP cells. The analytically predicted dependence of dV(sub oc)/dT on Voc was confirmed by the fluence dependence of these quantities. Carrier removal was observed to increase with decreasing proton energy. The results obtained for performance and temperature dependency were attributed to the high dislocation densities present in the heteroepitaxial cells while the energy dependence of carrier removal was attributed to the energy dependence of proton range.

  4. Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation

    PubMed Central

    Martinez-Levasseur, Laura M.; Birch-Machin, Mark A.; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J.; Acevedo-Whitehouse, Karina

    2013-01-01

    A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies. PMID:23989080

  5. Local effects of partly-cloudy skies on solar and emitted radiation

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1982-01-01

    A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.

  6. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Tsien, Christina I; Cao, Yue

    2016-01-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test–retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability

  7. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    NASA Astrophysics Data System (ADS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2013-06-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and

  8. Effects of solar ultraviolet radiation on coral reef organisms.

    PubMed

    Banaszak, Anastazia T; Lesser, Michael P

    2009-09-01

    Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.

  9. Laplace plane modifications arising from solar radiation pressure

    SciTech Connect

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  10. Solar UV radiation and cancer in young children

    PubMed Central

    Lombardi, Christina; Heck, Julia E.; Cockburn, Myles; Ritz, Beate

    2013-01-01

    Background Studies have shown that higher solar UV radiation exposure (UVR) may be related to lower risk of some cancers in adults. Recently an ecological study reported lower risks of some cancers among children living in higher UVR cities and countries. In a large population-based case-control study in California we tested the hypothesis that childhood cancers may be influenced by UVR. Methods Cancers in children ages 0 to 5 years were identified from California Cancer Registry records for 1986–2007 and linked to birth certificate data. Controls were sampled from the birth certificates at a ratio of 20:1. Based on birth address, we assigned UVR exposure in units of Watt-hours/m2 using a geostatistical exposure model developed with data from the National Solar Radiation Database. Results For cases with UVR exposure of 5111 Watt-hrs/m2 or above we estimated a reduction in odds of developing acute lymphoblastic leukemia (OR: 0.89, 95% CI: 0.81, 0.99), hepatoblastoma (OR: 0.69, 95% CI: 0.48, 1.00), and non-Hodgkin’s lymphoma (OR: 0.71, 95% CI: 0.50, 1.02) adjusting for mother’s age, mother’s race and child’s year of birth. We also observed a small increase in odds for intracranial/intraspinal embryonal tumors (OR: 1.29, 95% CI: 1.01, 1.65). Conclusions Our findings suggest that UVR during pregnancy may decrease the odds of some childhood cancers. Future studies should explore additional factors that may be correlated with UVR exposure and possibly include biomarkers of immune function and vitamin D. Impact This study shows protective associations of UVR with some childhood cancers. PMID:23585515

  11. Enhanced solar radiation pressure modeling for Galileo satellites

    NASA Astrophysics Data System (ADS)

    Montenbruck, O.; Steigenberger, P.; Hugentobler, U.

    2015-03-01

    This paper introduces a new approach for modeling solar radiation pressure (SRP) effects on Global Navigation Satellite Systems (GNSSs). It focuses on the Galileo In-Orbit Validation (IOV) satellites, for which obvious SRP modeling deficits can be identified in presently available precise orbit products. To overcome these problems, the estimation of empirical accelerations in the Sun direction (D), solar panel axis (Y) and the orthogonal (B) axis is complemented by an a priori model accounting for the contribution of the rectangular spacecraft body. Other than the GPS satellites, which comprise an almost cubic body, the Galileo IOV satellites exhibit a notably rectangular shape with a ratio of about 2:1 for the main body axes. Use of the a priori box model allows to properly model the varying cross section exposed to the Sun during yaw-steering attitude mode and helps to remove systematic once-per-revolution orbit errors that have so far affected the Galileo orbit determination. Parameters of a simple a priori cuboid model suitable for the IOV satellites are established from the analysis of a long-term set of GNSS observations collected with the global network of the Multi-GNSS Experiment of the International GNSS Service. The model is finally demonstrated to reduce the peak magnitude of radial orbit errors from presently 20 cm down to 5 cm outside eclipse phases.

  12. Documentation of the solar radiation parameterization in the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1982-01-01

    The parameterization of solar radiation in the Goddard Laboratory for atmospheric sciences (GLAS) general circulation model (GCM) is described. It explicitly considers the directional nature of the direct solar beam in treating radiative transfer within clouds, and in treating the effect of surface reflection. This is accomplished using delta Eddington and delta 2 stream models for the radiative transfer within isolated atmospheric layers, and by coupling the individual layers together by efficiently repeated applications of the interaction principle.

  13. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  14. An Accurate Method to Compute the Parasitic Electromagnetic Radiations of Real Solar Panels

    NASA Astrophysics Data System (ADS)

    Andreiu, G.; Panh, J.; Reineix, A.; Pelissou, P.; Girard, C.; Delannoy, P.; Romeuf, X.; Schmitt, D.

    2012-05-01

    The methodology [1] able to compute the parasitic electromagnetic (EM) radiations of a solar panel is highly improved in this paper to model real solar panels. Thus, honeycomb composite panels, triple junction solar cells and serie or shunt regulation system can now be taken into account. After a brief summary of the methodology, the improvements are detailed. Finally, some encouraging frequency and time-domain results of magnetic field emitted by a real solar panel are presented.

  15. Diffusion length measurements of thin GaAs solar cells by means of energetic electrons

    NASA Technical Reports Server (NTRS)

    Vonross, O.

    1980-01-01

    A calculation of the short circuit current density (j sub sc) of a thin GaAs solar cell induced by fast electrons is presented. It is shown that in spite of the disparity in thickness between the N-type portion of the junction and the P-type portion of the junction, the measurement of the bulk diffusion length L sub p of the N-type part of the junction is seriously hampered due to the presence of a sizable contribution to the j sub sc from the P-type region of the junction. Corrections of up to 50% had to be made in order to interpret the data correctly. Since these corrections were not amenable to direct measurements it is concluded that the electron beam method for the determination of the bulk minority carrier diffusion length, which works so well for Si solar cells, is a poor method when applied to thin GaAs cells.

  16. Diffusion-Reaction Modeling of Cu Migration in CdTe Solar Devices

    SciTech Connect

    Guo, Da; Brinkman, Daniel; Fang, Tian; Akis, Richard; Sankin, Igor; Vasileska, Dragica; Ringhofer, Christian

    2015-09-04

    In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simu-lators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Re-sults of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.

  17. Plant responses to current solar ultraviolet-B radiation and to supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison.

    PubMed

    Rousseaux, M Cecilia; Flint, Stephan D; Searles, Peter S; Caldwell, Martyn M

    2004-01-01

    Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of "solar UV-B" and "supplemental UV-B" effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more "biologically effective" shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B-absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.

  18. Characterization of Flexible CIGS Thin Film Solar Cells or Stainless Steel with Intrinsic ZnO Diffusion Barriers.

    PubMed

    Kim, Chae-Woong; Kim, Hye Jin; Kim, Jin Hyeok; Jeong, Chaehwan

    2016-05-01

    ZnO diffusion barrier layer was deposited by RF magnetron sputtering by using the same method as intrinsic ZnO layer. The CIGS solar cells were fabricated on stainless steel substrate. The 50-200 nm thin ZnO diffusion barriers effectively reduced the diffusion of Fe and Cr, from stainless steel substrates into the CIGS absorbers. The CIGS solar cells with ZnO diffusion barriers increased the J(sc) and FF, which resulted in an increase of cell efficiency from 5.9% up to 9.06%.

  19. The effect of soot modeling on thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Snegirev, A.; Kokovina, E.; Tsoy, A.; Harris, J.; Wu, T.

    2016-09-01

    Radiative impact of buoyant turbulent diffusion flames is the driving force in fire development. Radiation emission and re-absorption is controlled by gaseous combustion products, mainly CO2 and H2O, and by soot. Relative contribution of gas and soot radiation depends on the fuel sooting propensity and on soot distribution in the flame. Soot modeling approaches incorporated in big commercial codes were developed and calibrated for momentum-dominated jet flames, and these approaches must be re-evaluated when applied to the buoyant flames occurring in fires. The purpose of this work is to evaluate the effect of the soot models available in ANSYS FLUENT on the predictions of the radiative fluxes produced by the buoyant turbulent diffusion flames with considerably different soot yields. By means of large eddy simulations, we assess capability of the Moss-Brooks soot formation model combined with two soot oxidation submodels to predict methane- and heptane-fuelled fires, for which radiative flux measurements are available in the literature. We demonstrate that the soot oxidation models could be equally important as soot formation ones to predict the soot yield in the overfire region. Contribution of soot in the radiation emission by the flame is also examined, and predicted radiative fluxes are compared to published experimental data.

  20. Fundamental and harmonic radiation in type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    1994-01-01

    Type III solar radio bursts are investigated by modeling the propagation of the electron beam and the generation and subsequent propagation of waves to the observer. Predictions from this model are compared in detail with particle, Langmuir wave, and radio data from the International Sun Earth Explorer-3 (ISSE-3) spacecraft and with other observations to clarify the roles of fundamental and harmonic emission in type III radio bursts. Langmuir waves are seen only after the arrival of the beam, in accord with the standard theory. These waves persist after a positive beam slope is last resolved, implying that sporadic positive slopes persist for some time, unresolved but in accord with the predictions of stochastic growth theory. Local electromagnetic emission sets in only after Langmuir waves are seen, in accord with the standard theory, which relies on nonlinear processes involving Langmuir waves. In the events investigated here, fundamental radiation appears to dominate early in the event, followed and/or accompanied by harmonic radiation after the peak, with a long-lived tail of multiply scattered fundamental or harmonic emission extending long afterwards. These results are largely independent of, but generally consistent with, the conclusions of earlier works.