Sample records for diffused silicon avalanche

  1. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  2. Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed-Energy Capability

    DTIC Science & Technology

    2017-03-01

    Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed- Energy Capability Damian Urciuoli, Miguel Hinojosa, and Ronald Green US...were pulse tested in an inductive load circuit at peak powers of over 110 kW. Total pulsed- energy dissipation was kept nearly the same among the...voltages about which design provides the highest pulsed- energy capability. Keywords: Avalanche; Breakdown; Diode; Silicon Carbide Introduction

  3. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej

    1999-04-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  4. Silicon avalanche photodiodes developed at the Institute of Electron Technology

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz

    2004-07-01

    Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.

  5. Low-noise AlInAsSb avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Woodson, Madison E.; Ren, Min; Maddox, Scott J.; Chen, Yaojia; Bank, Scott R.; Campbell, Joe C.

    2016-02-01

    We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, Al0.7In0.3As0.3Sb0.7, grown on GaSb. The bandgap energy and thus the cutoff wavelength are similar to silicon; however, since the bandgap of Al0.7In0.3As0.3Sb0.7 is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths. In addition, unlike other III-V avalanche photodiodes that operate in the visible or near infrared, the excess noise factor is comparable to or below that of silicon, with a k-value of approximately 0.015. Furthermore, the wide array of absorber regions compatible with GaSb substrates enable cutoff wavelengths ranging from 1 μm to 12 μm.

  6. Monolithic optical link in silicon-on-insulator CMOS technology.

    PubMed

    Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan

    2017-03-06

    This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.

  7. Avalanche diode having reduced dark current and method for its manufacture

    DOEpatents

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  8. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  9. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  10. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    PubMed

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  11. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  12. Temperature characteristics of silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej; Bar, Jan; Grodecki, Remigiusz

    2001-08-01

    The paper presents the results of studies on temperature dependence of such parameters as a dark current, noise current, gain, noise equivalent power and detectivity of silicon epiplanar avalanche photodiodes at the ITE. The photodiode reach-through structure is of an nPLU-p-(pi) - p+ type with an under-contact ring and a channel stopper. The temperature range was stretching from -40 C to +40 C. Specially developed for this purpose an automatic system for low noise measurements was used. A two- stage micro-cooler with a Peltier's element was applied to control and stabilize the temperature of measured structures.

  13. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  14. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  15. Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    NASA Astrophysics Data System (ADS)

    Moffat, N.; Bates, R.; Bullough, M.; Flores, L.; Maneuski, D.; Simon, L.; Tartoni, N.; Doherty, F.; Ashby, J.

    2018-03-01

    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm‑2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V.

  16. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges

    PubMed Central

    Alayed, Mrwan

    2017-01-01

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system. PMID:28906462

  17. Hole Trapping in Thermal Oxides Grown under Various Oxidation Conditions Using Avalanche Injection in Poly-Silicon Gate Structures

    DTIC Science & Technology

    1985-03-15

    the avalanche field(8). These points are marked Ecrit in the figure and it is seen that they correspond well with the voltage at which Idc begins to...0 *~10-10- Ecrit 10 -11 - I -e --- -- T 20 25 30 35 40 45 50 55 60 vMox (V) Fig. 3-3 I/v characteristics of devices on wafers implanted with...start, the relationship (8) between ND and the field Ecrit was used. Ecrit was the field which will cause avalanching. Clearly, Ecrit also represents the

  18. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  19. A new CMOS SiGeC avalanche photo-diode pixel for IR sensing

    NASA Astrophysics Data System (ADS)

    Augusto, Carlos; Forester, Lynn; Diniz, Pedro C.

    2009-05-01

    Near-infra-red sensing with silicon is limited by the bandgap of silicon, corresponding to a maximum wavelength of absorption of 1.1 μm. A new type of CMOS sensor is presented, which uses a SiGeC epitaxial film in conjunction with novel device architecture to extend absorption into the infra-red. The SiGeC film composition and thickness determine the spectrum of absorption; in particular for SiGeC superlattices, the layer ordering to create pseudo direct bandgaps is the critical parameter. In this new device architecture, the p-type SiGeC film is grown on an active region surrounded by STI, linked to the S/D region of an adjacent NMOS, under the STI by a floating N-Well. On a n-type active, a P-I-N device is formed, and on a p-type active, a P-I-P device is formed, each sensing different regions of the spectrum. The SiGeC films can be biased for avalanche operation, as the required vertical electric field is confined to the region near the heterojunction interface, thereby not affecting the gate oxide of the adjacent NMOS. With suitable heterojunction and doping profiles, the avalanche region can also be bandgap engineered, allowing for avalanche breakdown voltages that are compatible with CMOS devices.

  20. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    PubMed

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  1. Measurement of nuclear resonant scattering on 61Ni with fast scintillation detector using proportional-mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Kobayashi, Yasuhiro; Yoda, Yoshitaka; Koshimizu, Masanori; Nishikido, Fumihiko; Haruki, Rie; Kishimoto, Shunji

    2018-02-01

    We developed a new scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We report on the nuclear forward scattering measurement on 61Ni with a prototype detector using a lead-loaded plastic scintillator (EJ-256, 3 mm in diameter and 2 mm in thickness), mounted on a proportional-mode Si-APD. Using synchrotron X-rays of 67.41 keV, we successfully measured the time spectra of nuclear forward scattering on 61Ni enriched metal foil and 61Ni86V14 alloy. The prototype detector confirmed the expected dynamical beat structure with a time resolution of 0.53 ns (FWHM).

  2. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  3. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

    DOE PAGES

    Martinez, Nicholas J. D.; Derose, Christopher T.; Brock, Reinhard W.; ...

    2016-08-09

    Here, we present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10 –12, in the range from –18.3 dBm to –12 dBm received optical powermore » into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.« less

  4. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    DOE PAGES

    Cartiglia, N.; Staiano, A.; Sola, V.; ...

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low- Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm 2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup includedmore » three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.« less

  5. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  6. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  7. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  8. Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian

    2017-11-01

    Quantum key distribution (QKD) at telecom wavelengths (1260-1625nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, indium gallium arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000nm and 1600nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

  9. Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes.

    PubMed

    Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian

    2017-11-27

    Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

  10. Hot-Carrier Immunity of Polycrystalline Silicon Thin Film Transistors Using Silicon Oxynitride Gate Dielectric Formed with Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kunii, Masafumi

    2009-11-01

    An analysis is presented of the hot-carrier degradation in a polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon oxynitride gate dielectric formed with plasma-enhanced chemical vapor deposition. An introduction of silicon oxynitride into a gate dielectric significantly improves hot-carrier immunity even under the severe stressing mode of drain avalanche hot carriers. To compensate the initial negative shift of threshold voltage for TFTs with a silicon oxynitride gate dielectric, high-pressure water vapor annealing (HWA) is applied. A comparison of TFTs with and without HWA reveals that the improvement in hot-carrier immunity is mainly attributed to the introduction of Si≡N bonds into a gate dielectric.

  11. Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2016-02-01

    Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less

  12. An Avalanche Diode Electron Detector for Observing NEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji

    2004-05-12

    Nuclear excitation by electron transition (NEET) occurs in atomic inner-shell ionization if the nuclear excitation and the electron transition have nearly the same energy and a common multipolarity. We successfully observed the NEET on 197Au and on 193Ir using a silicon avalanche diode electron detector. The detector was used to find internal conversion electrons emitted from excited nuclei in time spectroscopy with a time gate method. Some nuclear resonant levels, including 8.410 keV on 169Tm and 80.577 keV on 166Er, were also observed with the detector.

  13. Semiconductor radiation detector with internal gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  14. Spectral dependence of the main parameters of ITE silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej

    2001-08-01

    New applications for avalanche photodiodes (APDs) as in systems using visible radiation, have prompted the need for the evaluation of detection properties of ITE APDs in the 400 divided by 700 nm spectral range. The paper presents the method and result of studies on the spectral dependence of the gain, dark and noise currents, sensitivity and excess noise factor of ITE APDs. The studies have shown that ITE APDs optimized for the near IR radiation can be effectively applied in the detection of radiation above the 500 nm wavelength.

  15. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    PubMed

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  16. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  17. The Melting of Aqueous Foams

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.

    1996-01-01

    Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.

  18. Particle size segregation in granular avalanches: A brief review of recent progress

    NASA Astrophysics Data System (ADS)

    Gray, J. M. N. T.

    2010-05-01

    Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are very efficient at sorting particles by size, with the smaller ones percolating down towards the base and squeezing the larger grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of recent theoretical advances in describing segregation and remixing with relatively simple hyperbolic and parabolic models. The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage & Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions. In the limit of no diffusion, the theory is hyperbolic and the grains tend to separate out into completely segregated inversely graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking waves and the large and small particles paths can be computed exactly using the model. The theory is able to capture the key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is connected to an inversely graded avalanche in the interior. The theory is simple enough to couple it to the bulk flow field to investigate segregation-mobility feedback effects that spontaneously generate self-channelizing leveed avalanches, which can significantly enhance the total run-out distance of geophysical mass flows.

  19. Wavelength dispersion characteristics of integrated silicon avalanche LEDs: potential applications in futuristic on-chip micro- and nano-biosensors

    NASA Astrophysics Data System (ADS)

    Okhai, Timothy A.; Snyman, Lukas W.; Polleux, Jean-Luc

    2016-02-01

    Si Av LEDs are easily integrated in on-chip integrated circuitry. They have high modulation frequencies into the GHz range and can be fabricated to sub-micron dimensions. Due to subsurface light generation in the silicon device itself, and the high refractive index differences between silicon and the device environment, the exiting light radiation has interesting dispersion characteristics. Three junction micro p+-np+ Silicon Avalanche based Light Emitting Devices (Si Av LEDs) have been analyzed in terms of dispersion characteristics, generally resulting in different wavelengths of light (colors) being emitted at different angles and solid angles from the surfaces of these devices. The emission wavelength is in the 450 - 850 nm range. The devices are of micron dimension and operate at 8 - 10V, 1μA - 2mA. The emission spot sizes are about 1 micron square. Emission intensities are up to 500 nW.μm-2. The observed dispersion characteristics range from 0.05 degrees per nm per degree at emission angle of 5 degrees, to 0.15 degrees per nm at emission angles of 30 degrees. It is believed that the dispersion characteristics can find interesting and futuristic on-chip electro-optic applications involving particularly a ranging from on chip micro optical wavelength dispersers, communication de-multiplexers, and novel bio-sensor applications. All of these could penetrate into the nanoscale dimensions.

  20. Type-II Superlattice Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most critical parameter determining the device performance.

  1. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  2. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  3. X-ray spectroscopy with silicon pin and avalanche photo diodes

    NASA Technical Reports Server (NTRS)

    Desai, U. D.

    1992-01-01

    Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.

  4. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  5. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  6. A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-06-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  7. Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-10-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  8. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  9. Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions

    NASA Astrophysics Data System (ADS)

    Shenai, K.; Lin, H. C.

    1983-03-01

    Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.

  10. Performance of a junction termination extension avalanche photodiode for use with scintillators

    NASA Astrophysics Data System (ADS)

    Gramsch, E.; Pcheliakov, O.; Chistokhin, Igor B.

    2008-11-01

    An avalanche photodiode with a ring structure called junction termination extension (JTE) was built and tested. It has three diffused rings around the main junction to avoid early breakdown at the surface. The ITE rings have less doping than the main junction and can be built by well controlled single ion-implantation through a single mask. Avalanche photodiodes with two mm diameter active area have been have been built by implantation of boron with a dose of 2, 3, 4 and 5 × 1012 cm-2, followed by deep diffusion of the junction up to 14 μm. The dark current is strongly dependent on the implantation dose, decreasing with decreasing charge. For the APDs with implanted dose of 5 × 1012 cm-2 a gain of 8 is obtained at 1120 V. The energy resolution from a 137Cs source was measured to be 24.4% FWHM with a 2 × 2 × 2 mm3 BGO scintillator. We have also performed simulations of the gain and breakdown voltage that correlate well with the results.

  11. Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model

    NASA Astrophysics Data System (ADS)

    Blender, R.; Wouters, J.; Lucarini, V.

    2013-07-01

    For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sandpile model.

  12. Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Ingargiola, Antonino; Assanelli, Mattia; Gallivanoni, Andrea; Rech, Ivan; Ghioni, Massimo; Cova, Sergio

    2009-05-01

    Improving SPAD performances, such as dark count rate and quantum efficiency, without degrading the photontiming jitter is a challenging task that requires a clear understanding of the physical mechanisms involved. In this paper we investigate the contribution of the avalanche buildup statistics and the lateral avalanche propagation to the photon-timing jitter in silicon SPAD devices. Recent works on the buildup statistics focused on the uniform electric field case, however these results can not be applied to Si SPAD devices in which field profile is far from constant. We developed a 1-D Monte Carlo (MC) simulator using the real non-uniform field profiles derived from Secondary Ion Mass Spectroscopy (SIMS) measurements. Local and non-local models for impact ionization phenomena were considered. The obtained results, in particular the mean multiplication rate and jitter of the buildup filament, allowed us to simulate the statistical spread of the avalanche current on the device active area. We included space charge effects and a detailed lumped model for the external electronics and parasitics. We found that, in agreement with some experimental evidences, the avalanche buildup contribution to the total timing jitter is non-negligible in our devices. Moreover the lateral propagation gives an additional contribution that can explain the increasing trend of the photon-timing jitter with the comparator threshold.

  13. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  14. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  15. SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector.

    PubMed

    Youn, Jin-Sung; Lee, Myung-Jae; Park, Kang-Yeob; Rücker, Holger; Choi, Woo-Young

    2014-01-13

    We investigate signal-to-noise ratio (SNR) characteristics of an 850-nm optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.25-µm SiGe bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. The OEIC receiver is composed of a Si avalanche photodetector (APD) and BiCMOS analog circuits including a transimpedance amplifier with DC-balanced buffer, a tunable equalizer, a limiting amplifier, and an output buffer with 50-Ω loads. We measure APD SNR characteristics dependence on the reverse bias voltage as well as BiCMOS circuit noise characteristics. From these, we determine the SNR characteristics of the entire OEIC receiver, and finally, the results are verified with bit-error rate measurement.

  16. Response of CMS avalanche photo-diodes to low energy neutrons

    NASA Astrophysics Data System (ADS)

    Brown, R. M.; Deiters, K.; Ingram, Q.; Renker, D.

    2012-12-01

    The response of the Avalanche Photo-diodes (APDs) installed in the CMS detector at the LHC to neutrons from 241AmBe and 252Cf sources is reported. Signals in size equivalent to those of up to 106 photo-electrons with the nominal APD gain are observed. Measurements with an APD with the protective epoxy coating removed and with the source placed behind the APD show that there is an important response due to recoil protons from neutron interactions with the hydrogen in the epoxy, in addition to signals from neutron interactions with the silicon of the diode. The effective gain of these signals is much smaller than the diode's nominal gain.

  17. Observation of 67 keV x-rays with a scintillation detector using proportional-mode silicon avalanche photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Keisuke; Kishimoto, Shunji, E-mail: syunji.kishimoto@kek.jp; Inst. of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801

    2016-07-27

    We developed a scintillation X-ray detector using a proportional-mode silicon avalanche photodiode (Si-APD). We report a prototype detector using a lead-loaded plastic scintillator mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter), which is operated at a low temperature. Using 67.41 keV X-rays, we could measure pulse-height spectra of scintillation light with a charge-sensitive preamplifier at 20, 0, and −35°C. Time spectra of the X-ray bunch structure were successfully recorded using a wideband and 60-dB-gain amplifier in hybrid-mode operation of the Photon Factory ring. We obtained a better time resolution of 0.51 ns (full width at half-maximum)more » for the single-bunch X-ray peak at −35°C. We were also able to observe a linear response of the scintillation pulses up to 8 Mcps for input photon rates up to 1.4 × 10{sup 8} photons/s.« less

  18. 1300 nm wavelength InAs quantum dot photodetector grown on silicon.

    PubMed

    Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun

    2012-05-07

    The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.

  19. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbingmore » inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.« less

  20. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  1. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    PubMed

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  2. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  3. The wiper model: avalanche dynamics in an exclusion process

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Romano, M. Carmen

    2013-10-01

    The exclusion-process model (Ciandrini et al 2010 Phys. Rev. E 81 051904) describing traffic of particles with internal stepping dynamics reveals the presence of strong correlations in realistic regimes. Here we study such a model in the limit of an infinitely fast translocation time, where the evolution can be interpreted as a ‘wiper’ that moves to dry neighbouring sites. We trace back the existence of long-range correlations to the existence of avalanches, where many sites are dried at once. At variance with self-organized criticality, in the wiper model avalanches have a typical size equal to the logarithm of the lattice size. In the thermodynamic limit, we find that the hydrodynamic behaviour is a mixture of stochastic (diffusive) fluctuations and increasingly coherent periodic oscillations that are reminiscent of a collective dynamics.

  4. The Sensitive Infrared Signal Detection by Sum Frequency Generation

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin

    2013-01-01

    An up-conversion device that converts 2.05-micron light to 700 nm signal by sum frequency generation using a periodically poled lithium niobate crystal is demonstrated. The achieved 92% up-conversion efficiency paves the path to detect extremely weak 2.05-micron signal with well established silicon avalanche photodiode detector for sensitive lidar applications.

  5. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  6. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  7. Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, Xiaoli

    1989-01-01

    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.

  8. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. Wemore » explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.« less

  9. SAPHIRE: A New Flat-Panel Digital Mammography Detector With Avalanche Photoconductor and High-Resolution Field Emitter Readout

    DTIC Science & Technology

    2006-06-01

    work by Marshak et al.,9 who was studying neutron diffusion, and by Hamaker ,10 who had calculated the light emitted from a layer of x-ray fluorescent...diffusion and slowing down of neutrons,” Nucleonics 4, 10–22 1949. 10H. C. Hamaker , “Radiation and heat conduction in light scattering mate- rials

  10. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  11. An all-silicon optical PC-to-PC link utilizing USB

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Alberts, Antonie C.; Venter, Petrus J.; du Plessis, Monuko; Rademeyer, Pieter

    2013-02-01

    An integrated silicon light source still remains the Holy Grail for integrated optical communication systems. Hot carrier luminescent light sources provide a way to create light in a standard CMOS process, potentially enabling cost effective optical communication between CMOS integrated circuits. In this paper we present a 1 Mb/s integrated silicon optical link for information transfer, targeting a real-world integrated solution by connecting two PCs via a USB port while transferring data optically between the devices. This realization represents the first optical communication product prototype utilizing a CMOS light emitter. The silicon light sources which are implemented in a standard 0.35 μm CMOS technology are electrically modulated and detected using a commercial silicon avalanche photodiode. Data rates exceeding 10 Mb/s using silicon light sources have previously been demonstrated using raw bit streams. In this work data is sent in two half duplex streams accompanied with the separate transmission of a clock. Such an optical communication system could find application in high noise environments where data fidelity, range and cost are a determining factor.

  12. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  13. Dynamics and diffusion mechanism of low-density liquid silicon

    DOE PAGES

    Shen, B.; Wang, Z. Y.; Dong, F.; ...

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less

  14. Atomistic simulations of carbon diffusion and segregation in liquid silicon

    NASA Astrophysics Data System (ADS)

    Luo, Jinping; Alateeqi, Abdullah; Liu, Lijun; Sinno, Talid

    2017-12-01

    The diffusivity of carbon atoms in liquid silicon and their equilibrium distribution between the silicon melt and crystal phases are key, but unfortunately not precisely known parameters for the global models of silicon solidification processes. In this study, we apply a suite of molecular simulation tools, driven by multiple empirical potential models, to compute diffusion and segregation coefficients of carbon at the silicon melting temperature. We generally find good consistency across the potential model predictions, although some exceptions are identified and discussed. We also find good agreement with the range of available experimental measurements of segregation coefficients. However, the carbon diffusion coefficients we compute are significantly lower than the values typically assumed in continuum models of impurity distribution. Overall, we show that currently available empirical potential models may be useful, at least semi-quantitatively, for studying carbon (and possibly other impurity) transport in silicon solidification, especially if a multi-model approach is taken.

  15. Development of lithium diffused radiation resistant solar cells, part 2

    NASA Technical Reports Server (NTRS)

    Payne, P. R.; Somberg, H.

    1971-01-01

    The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.

  16. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive area diameter) and output in the 1-5 volt range. If successful, this feasibility study will make possible the development of a scintillating fiber detector with unsurpassed sensitivity, extremely low power usage, a crucial factor of merit for space based sensors and telescopes.

  17. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  18. Atomistic models of vacancy-mediated diffusion in silicon

    NASA Astrophysics Data System (ADS)

    Dunham, Scott T.; Wu, Can Dong

    1995-08-01

    Vacancy-mediated diffusion of dopants in silicon is investigated using Monte Carlo simulations of hopping diffusion, as well as analytic approximations based on atomistic considerations. Dopant/vacancy interaction potentials are assumed to extend out to third-nearest neighbor distances, as required for pair diffusion theories. Analysis focusing on the third-nearest neighbor sites as bridging configurations for uncorrelated hops leads to an improved analytic model for vacancy-mediated dopant diffusion. The Monte Carlo simulations of vacancy motion on a doped silicon lattice verify the analytic results for moderate doping levels. For very high doping (≳2×1020 cm-3) the simulations show a very rapid increase in pair diffusivity due to interactions of vacancies with more than one dopant atom. This behavior has previously been observed experimentally for group IV and V atoms in silicon [Nylandsted Larsen et al., J. Appl. Phys. 73, 691 (1993)], and the simulations predict both the point of onset and doping dependence of the experimentally observed diffusivity enhancement.

  19. Process for forming a chromium diffusion portion and articles made therefrom

    DOEpatents

    Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang; Bucci, David Vincent

    2012-09-11

    In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portion has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.

  20. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturingmore » of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.« less

  2. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  3. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  4. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  5. Nanomechanics of slip avalanches in amorphous plasticity

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  7. Process for forming a chromium diffusion portion and articles made therefrom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang

    In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portionmore » has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.« less

  8. Timing resolution and time walk in super low K factor single-photon avalanche diode-measurement and optimization

    NASA Astrophysics Data System (ADS)

    Fong, Bernicy S.; Davies, Murray; Deschamps, Pierre

    2018-01-01

    Timing resolution (or timing jitter) and time walk are separate parameters associated with a detector's response time. Studies have been done mostly on the time resolution of various single-photon detectors. As the designer and manufacturer of the ultra-low noise (ƙ-factor) silicon avalanche photodiode the super low K factor (SLiK) single-photon avalanche diode (SPAD), which is used in many single-photon counting applications, we often get inquiries from customers to better understand how this detector behaves under different operating conditions. Hence, here, we will be focusing on the study of these time-related parameters specifically for the SLiK SPAD, as a way to provide the most direct information for users of this detector to help with its use more efficiently and effectively. We will be providing the study data on how these parameters can be affected by temperature (both intrinsic to the detector chip and environmental input based on operating conditions), operating voltage, photon wavelength, as well as light spot size. How these parameters can be optimized and the trade-offs from optimization from the desired performance will be presented?

  9. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization Through Dark Current Measurement

    NASA Astrophysics Data System (ADS)

    Amaudruz, Pierre-Andre; Bishop, Daryl; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retiere, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D.; Thompson, Christopher J.

    2014-06-01

    PIXELATED geiger-mode avalanche photodiodes (PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that at room temperature, the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.

  10. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detailmore » by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3 diffusion« less

  11. Diffusion lengths of silicon solar cells from luminescence images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuerfel, P.; Trupke, T.; Puzzer, T.

    A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed heremore » gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.« less

  12. Temperature dependence of the response of ultra fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Mulargia, R.; Arcidiacono, R.; Bellora, A.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Cirio, R.; Dalla Betta, G. F.; Durando, S.; Fadavi, A.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Kramberger, G.; Mandic, I.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F. W.; Seiden, A.; Sola, V.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2016-12-01

    The Ultra Fast Silicon Detectors (UFSD) are a novel concept of silicon detectors based on the Low Gain Avalanche Diode (LGAD) technology, which are able to obtain time resolution of the order of few tens of picoseconds. First prototypes with different geometries (pads/pixels/strips), thickness (300 and 50 μm) and gain (between 5 and 20) have been recently designed and manufactured by CNM (Centro Nacional de Microelectrónica, Barcelona) and FBK (Fondazione Bruno Kessler, Trento). Several measurements on these devices have been performed in laboratory and in beam test and a dependence of the gain on the temperature has been observed. Some of the first measurements will be shown (leakage current, breakdown voltage, gain and time resolution on the 300 μm from FBK and gain on the 50 μm-thick sensor from CNM) and a comparison with the theoretically predicted trend will be discussed.

  13. A new detector concept for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Ahmadov, F.; Ahmadov, G.; Ariffin, A.; Khorev, S.; Sadygov, Z.; Suleymanov, S.; Zerrouk, F.; Madatov, R.

    2016-07-01

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  14. Trapping effects in irradiated and avalanche-injected MOS capacitors

    NASA Technical Reports Server (NTRS)

    Bakowski, M.; Cockrum, R. H.; Zamani, N.; Maserjian, J.; Viswanathan, C. R.

    1978-01-01

    The trapping parameters for holes, and for electrons in the presence of trapped holes, have been measured from a set of wafers with different oxide thickness processed under controlled conditions. The trap cross-sections and densities indicate at least three trap species, including an interfacial species, a dominant bulk species which is determined to tail off from the silicon interface, and a third, lower density bulk species that is distributed throughout the oxide.

  15. An integrated 12.5-Gb/s optoelectronic receiver with a silicon avalanche photodetector in standard SiGe BiCMOS technology.

    PubMed

    Youn, Jin-Sung; Lee, Myung-Jae; Park, Kang-Yeob; Rücker, Holger; Choi, Woo-Young

    2012-12-17

    An optoelectronic integrated circuit (OEIC) receiver is realized with standard 0.25-μm SiGe BiCMOS technology for 850-nm optical interconnect applications. The OEIC receiver consists of a Si avalanche photodetector, a transimpedance amplifier with a DC-balanced buffer, a tunable equalizer, and a limiting amplifier. The fabricated OEIC receiver successfully detects 12.5-Gb/s 2(31)-1 pseudorandom bit sequence optical data with the bit-error rate less than 10(-12) at incident optical power of -7 dBm. The OEIC core has 1000 μm x 280 μm chip area, and consumes 59 mW from 2.5-V supply. To the best of our knowledge, this OEIC receiver achieves the highest data rate with the smallest sensitivity as well as the best power efficiency among integrated OEIC receivers fabricated with standard Si technology.

  16. High-sensitivity silicon ultraviolet p+-i-n avalanche photodiode using ultra-shallow boron gradient doping

    DOE PAGES

    Xia, Zhenyang; Zang, Kai; Liu, Dong; ...

    2017-08-21

    Photo detection of ultraviolet (UV) light remains a challenge since the penetration depth of UV light is limited to the nanometer scale. Therefore, the doping profile and electric field in the top nanometer range of the photo detection devices become critical. Traditional UV photodetectors usually use a constant doping profile near the semiconductor surface, resulting in a negligible electric field, which limits the photo-generated carrier collection efficiency of the photodetector. Here, we demonstrate, via the use of an optimized gradient boron doping technique, that the carrier collection efficiency and photo responsivity under the UV wavelength region have been enhanced. Moreover,more » the ultrathin p+-i-n junction shows an avalanche gain of 2800 and an ultra-low junction capacitance (sub pico-farad), indicating potential applications in the low timing jitter single photon detection area.« less

  17. High-sensitivity silicon ultraviolet p+-i-n avalanche photodiode using ultra-shallow boron gradient doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Zhenyang; Zang, Kai; Liu, Dong

    Photo detection of ultraviolet (UV) light remains a challenge since the penetration depth of UV light is limited to the nanometer scale. Therefore, the doping profile and electric field in the top nanometer range of the photo detection devices become critical. Traditional UV photodetectors usually use a constant doping profile near the semiconductor surface, resulting in a negligible electric field, which limits the photo-generated carrier collection efficiency of the photodetector. Here, we demonstrate, via the use of an optimized gradient boron doping technique, that the carrier collection efficiency and photo responsivity under the UV wavelength region have been enhanced. Moreover,more » the ultrathin p+-i-n junction shows an avalanche gain of 2800 and an ultra-low junction capacitance (sub pico-farad), indicating potential applications in the low timing jitter single photon detection area.« less

  18. On the passive probing of fiber optic quantum communication channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol'kov, A. V., E-mail: sergei.kulik@gmail.co; Katamadze, K. G.; Kulik, S. P.

    2010-04-15

    Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 {mu}m in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 {mu}m operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission ofmore » photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.« less

  19. Investigation of field induced trapping on floating gates

    NASA Technical Reports Server (NTRS)

    Gosney, W. M.

    1975-01-01

    The development of a technology for building electrically alterable read only memories (EAROMs) or reprogrammable read only memories (RPROMs) using a single level metal gate p channel MOS process with all conventional processing steps is outlined. Nonvolatile storage of data is achieved by the use of charged floating gate electrodes. The floating gates are charged by avalanche injection of hot electrodes through gate oxide, and discharged by avalanche injection of hot holes through gate oxide. Three extra diffusion and patterning steps are all that is required to convert a standard p channel MOS process into a nonvolatile memory process. For identification, this nonvolatile memory technology was given the descriptive acronym DIFMOS which stands for Dual Injector, Floating gate MOS.

  20. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    NASA Astrophysics Data System (ADS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  1. Phosphorus out-diffusion in laser molten silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köhler, J. R.; Eisele, S. J.

    2015-04-14

    Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less

  2. Effect of short wavelength illumination on the characteristic bulk diffusion length in ribbon silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ho, C. T.; Mathias, J. D.

    1981-01-01

    The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.

  3. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  4. Simultaneous junction formation

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    High-risk, high-payoff improvements to a baseline process sequence of simultaneous junction formation of silicon solar cells are discussed. The feasibility of simultaneously forming front and back junctions of solar cells using liquid dopants on dendritic web silicon was studied. Simultaneous diffusion was compared to sequential diffusion. A belt furnace for the diffusion process was tested.

  5. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrof, Julian, E-mail: julian.schrof@ise.fraunhofer.de; Müller, Ralph; Benick, Jan

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in moremore » detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr{sub 3} diffusion.« less

  6. Characterization of silicon photomultipliers and validation of the electrical model

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent

    2018-04-01

    This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.

  7. A study of timing properties of Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.

    2012-12-01

    Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.

  8. 3-D Observation of dopant distribution at NAND flash memory floating gate using Atom probe tomography

    NASA Astrophysics Data System (ADS)

    Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung

    2015-01-01

    Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.

  9. Dopants Diffusion in Silicon during Molecular Oxygen/nitrogen Trifluoride Oxidation and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Kim, U. S.

    1990-01-01

    To date, chlorine has been used as useful additives in silicon oxidation. However, rapid scaling of device dimensions motivates the development of a new dielectric layer or modification of the silicon dioxide itself. More recently, chemically enhanced thermal oxidation by the use of fluorine containing species has been introduced to verify the potential of fluorine in the silicon oxidation process. In this study, gaseous nitrogen trifluoride (NF _3) was selected as the fluorine oxidizing source based on ease of use and was compared with the dichlorofluoroethane (C_2H _3Cl_2F) source. Two different kinds of boron marker samples were prepared and oxidized in O_2/NF_3 ambient for the comparison of surface vs bulk oxidation enhanced/retarded diffusion (OED/ORD). The phosphorus, arsenic and antimony diffusion in silicon during fluorine oxidation has been studied using the various covering layers such as SiO_2, Si_3 N_4, and SiO_2 + Si_3N_4 layers. The oxidation related phenomena, i.e. enhanced silicon and silicon nitride oxidation in fluorine ambient were studied and correlated with the point defect balance at the oxidizing interface. The results of this investigation were discussed with special emphasis on the effect of fluorine on enhanced oxidation and dopant diffusion.

  10. Dexamethasone diffusion across contact lenses is inhibited by Staphylococcus epidermidis biofilms in vitro.

    PubMed

    Brothers, Kimberly M; Nau, Amy C; Romanowski, Eric G; Shanks, Robert M Q

    2014-10-01

    This study was designed to measure the impact of bacterial biofilms on diffusion of an ocular therapeutic through silicone hydrogel bandage lenses in vitro. An assay was designed to study the passage of a commonly used steroid, dexamethasone, through silicone hydrogel soft contact lenses. Diffused dexamethasone was measured using a spectrophotometer over a period of 18 hours and quantified using a standard curve. This assay was performed with control and Staphylococcus epidermidis biofilm-coated contact lenses comprised of lotrafilcon A and methafilcon. Biofilms were formed in brain heart infusion broth supplemented with D-glucose. The presented data validate a simple in vitro model that can be used to measure the penetration of a topical therapeutic through silicone hydrogel soft contact lenses. Using this model, we measured a reduction in dexamethasone diffusion up to 88% through S. epidermidis biofilm-coated silicone hydrogel lenses compared with control lenses. The results of this in vitro study demonstrate that bacterial biofilms impede dexamethasone diffusion through silicone hydrogel contact lenses and warrant future studies regarding the clinical benefit of using ocular therapeutics in the setting of bandage contact lens use for corneal epithelial defects.

  11. Dexamethasone diffusion across contact lenses is inhibited by Staphylococcus epidermidis biofilms in vitro

    PubMed Central

    Brothers, Kimberly M.; Nau, Amy C.; Romanowski, Eric G.; Shanks, Robert M. Q.

    2014-01-01

    Purpose This study was designed to measure the impact of bacterial biofilms on diffusion of an ocular therapeutic through silicone hydrogel bandage lenses in vitro. Methods An assay was designed to study the passage of a commonly used steroid dexamethasone through the silicone hydrogel soft contact lenses. Diffused dexamethasone was measured using a spectrophotometer over a period of 18 hours and quantified using a standard curve. This assay was performed with control and Staphylococcus epidermidis biofilm-coated contact lenses composed of lotrafilcon A and methafilcon. Biofilms were formed in brain heart infusion broth supplemented with D-glucose. Results The presented data validate a simple in vitro model that can be used to measure penetration of a topical therapeutic through silicone hydrogel soft contact lenses. Using this model we measured a reduction of dexamethasone diffusion by up to 88% through S. epidermidis biofilm-coated silicon hydrogel lenses compared to control lenses. Conclusions The results of this in vitro study demonstrate that bacterial biofilms impede dexamethasone diffusion through silicon hydrogel contact lenses, and warrant future studies regarding the clinical benefit of using ocular therapeutics in the setting of bandage contact lens use for corneal epithelial defects. PMID:25090165

  12. X-Ray Diffuse Scattering Study of the Kinetics of Stacking Fault Growth and Annihilation in Boron-Implanted Silicon.

    NASA Astrophysics Data System (ADS)

    Patel, J. R.

    2002-06-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.

  13. Feasibility of Dual Optical/Ultrasound Imaging and Contrast Media for the Detection and Characterization of Prostate Cancer

    DTIC Science & Technology

    2011-04-01

    NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 19b. TELEPHONE NUMBER (include...a) (b) ( c ) Figure 2a) Experimental set-up for detection of ultrasound-modulated coherent light with a silicon photodetector 2b...also explored using their novel photon detector technology, known as a single photon avalanche diode ( SPAD ) detector [13], to detect ultrasound

  14. Current-voltage characteristics and increase in the quantum efficiency of three-terminal gate and avalanche-based silicon LEDs.

    PubMed

    Xu, Kaikai

    2013-09-20

    In this paper, the emission of visible light by a monolithically integrated silicon p-n junction under reverse-bias is discussed. The modulation of light intensity is achieved using an insulated-gate terminal on the surface of the p-n junction. By varying the gate voltage, the breakdown voltage of the p-n junction will be adjustable so that the reverse current I(sub) flowing through the p-n junction at a fixed reverse-bias voltage is changed. It is observed that the light, which is emitted from the defects located at the p-n junction, depends closely on the reverse current I(sub). In regard to the phenomenon of electroluminescence, the relationship between the optical emission power and the reverse current I(sub) is linear. On the other hand, it is observed that both the quantum efficiency and the power conversion efficiency are able to have obvious enhancement, although the reverse-bias of the p-n junction is reduced and the corresponding reverse-current is much lower. Moreover, the successful fabrication on monolithic silicon light source on the bulk silicon by means of standard silicon complementary metal-oxide-semiconductor process technology is presented.

  15. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.

  16. Interaction between antimony atoms and micropores in silicon

    NASA Astrophysics Data System (ADS)

    Odzhaev, V. B.; Petlitskii, A. N.; Plebanovich, V. I.; Sadovskii, P. K.; Tarasik, M. I.; Chelyadinskii, A. R.

    2018-01-01

    The interaction between Sb atoms and micropores of a getter layer in silicon is studied. The getter layer was obtained via implantation of Sb+ ions into silicon and subsequent heat treatment processes. The antimony atoms located in the vicinity of micropores are captured by micropores during gettering annealing and lose its electrical activity. The activation energy of capture process to the pores for antimony is lower than that of antimony diffusion in silicon deformation fields around microvoids on the diffusion process.

  17. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    PubMed Central

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  18. Lifetime and diffusion length measurements on silicon material and solar cells

    NASA Technical Reports Server (NTRS)

    Othmer, S.; Chen, S. C.

    1978-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  19. Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: Role of excess silicon interstitials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.

    2015-07-13

    Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction betweenmore » the spin-on diffusant film and the silicon wafer.« less

  20. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    NASA Technical Reports Server (NTRS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  1. Influence of ion transport on discharge propagation of nanosecond dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Hua, Weizhuo; Koji, Fukagata

    2017-11-01

    A numerical study has been conducted to understand the streamer formation and propagation of nanosecond pulsed surface dielectric barrier discharge of positive polarity. First we compared the result of different grid configuration to investigate the influence of x and y direction grid spacing on the streamer propagation. The streamer propagation is sensitive to y grid spacing especially at the dielectric surface. The streamer propagation velocity can reach 0.2 cm/ns when the voltage magnitude is 12 kV. A narrow gap was found between the streamer and dielectric barrier, where the plasma density is several orders of magnitude smaller than the streamer region. Analyses on the ion transport in the gap and streamer regions show the different ion transport mechanisms in the two different region. In the gap region, the diffusion of electron toward the dielectric layer decreases the seed electron in the beginning of voltage pulse, resulting that ionization avalanche does not occur. The streamer region is not significantly affected by the diffusion flux toward the dielectric layer, so that ionization avalanche takes place and leads to dramatic increase of plasma density.

  2. The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Wilmsen, C. W.; Jones, K. A.

    1981-02-01

    Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.

  3. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  4. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  5. Surface photovoltage method extended to silicon solar cell junction

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.

  6. The Large Hadron Collider (LHC): The Energy Frontier

    NASA Astrophysics Data System (ADS)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  7. Stress studies in edge-defined film-fed growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    Kalejs, J.

    1985-01-01

    Stress and efficiency studies on sheet silicon are reported. It was found that the bulk diffusion length of stressed float zone and Czochralski silicon is limited by point defect recombination to about 20 micrometers in dislocation free regions after high temperature heat treatment and stress application. If in-diffusion by iron occurs, dislocations, carbon and oxygen, do not produce significant gettering with annealing. Further work ideas are suggested.

  8. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    PubMed

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  9. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  10. Small area silicon diffused junction X-ray detectors

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  11. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  12. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  13. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.

    2016-07-15

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with themore » suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).« less

  14. Evaluation of the electro-optic direction sensor

    NASA Technical Reports Server (NTRS)

    Johnson, A. R.; Salomon, P. M.

    1973-01-01

    Evaluation of a no-moving-parts single-axis star tracker called an electro-optic direction sensor (EODS) concept is described and the results are given in detail. The work involved experimental evaluation of a breadboard sensor yielding results which would permit design of a prototype sensor for a specific application. The laboratory work included evaluation of the noise equivalent input angle of the sensor, demonstration of a technique for producing an acquisition signal, constraints on the useful field-of-view, and a qualitative evaluation of the effects of stray light. In addition, the potential of the silicon avalanche-type photodiode for this application was investigated. No benefit in noise figure was found, but the easily adjustable gain of the avalanche device was useful. The use of mechanical tuning of the modulating element to reduce voltage requirements was also explored. The predicted performance of EODS in both photomultiplier and solid state detector configurations was compared to an existing state-of-the-art star tracker.

  15. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †

    PubMed Central

    Mattioli Della Rocca, Francescopaolo

    2018-01-01

    This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479

  16. Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors

    NASA Astrophysics Data System (ADS)

    Gallrapp, C.; Fernández García, M.; Hidalgo, S.; Mateu, I.; Moll, M.; Otero Ugobono, S.; Pellegrini, G.

    2017-12-01

    Silicon detectors with intrinsic charge amplification implementing a n++-p+-p structure are considered as a sensor technology for future tracking and timing applications in high energy physics experiments. The performance of the intrinsic gain in Low Gain Avalanche Detectors (LGAD) after irradiation is crucial for the characterization of radiation hardness and timing properties in this technology. LGAD devices irradiated with reactor neutrons or 800 MeV protons reaching fluences of 2.3 × 1016 neq/cm2 were characterized using Transient Current Technique (TCT) measurements with red and infra-red laser pulses. Leakage current variations observed in different production lots and within wafers were investigated using Thermally Stimulated Current (TSC). Results showed that the intrinsic charge amplification is reduced with increasing fluence up to 1015 neq/cm2 which is related to an effective acceptor removal. Further relevant issues were charge collection homogeneity across the detector surface and leakage current performance before and after irradiation.

  17. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  18. Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.

  19. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the primary photocurrent and related to the phonon absorption time, predicts the same trend of the gain increasing with temperature and decreasing with increasing primary photocurrent.

  20. An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process

    NASA Astrophysics Data System (ADS)

    Yan, Lujiang; Yu, Yugang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Raihan Miah, Mohammad Abu; Liu, Yu-Hsin; Lo, Yu-Hwa

    2017-09-01

    Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.

  1. Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Del Alamo, Jesus A.; Swanson, Richard M.

    1987-01-01

    The relevant hole transport and recombination parameters in heavily doped n-type silicon under steady state are the hole diffusion length and the product of the hole diffusion coefficient times the hole equilibrium concentration. These parameters have measured in phosphorus-doped silicon grown by epitaxy throughout nearly two orders of magnitude of doping level. Both parameters are found to be strong functions of donor concentration. The equilibrium hole concentration can be deduced from the measurement. A rigid shrinkage of the forbidden gap appears as the dominant heavy doping mechanism in phosphorus-doped silicon.

  2. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  3. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  4. The importance of Soret transport in the production of high purity silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Srivastava, R.

    1985-01-01

    Temperature-gradient-driven diffusion, or Soret transport, of silicon vapor and liquid droplets is analyzed under conditions typical of current production reactors for obtaining high purity silicon for solar cells. Contrary to the common belief that Soret transport is negligible, it is concluded that some 15-20 percent of the silicon vapor mass flux to the reactor walls is caused by the high temperature gradients that prevail inside such reactors. Moreover, since collection of silicon is also achieved via deposition of silicon droplets onto the walls, the Soret transport mechanism becomes even more crucial due to size differences between diffusing species. It is shown that for droplets in the 0.01 to 1 micron diameter range, collection by Soret transport dominates both Brownian and turbulent mechanisms.

  5. Improved process for epitaxial deposition of silicon on prediffused substrates

    NASA Technical Reports Server (NTRS)

    Clarke, M. G.; Halsor, J. L.; Word, J. C.

    1968-01-01

    Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.

  6. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less

  7. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  8. Process research of non-Czochralski silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1986-01-01

    Simultaneous diffusion of liquid precursors containing phosphorus and boron into dendritic web silicon to form solar cell structures was investigated. A simultaneous junction formation techniques was developed. It was determined that to produce high quality cells, an annealing cycle (nominal 800 C for 30 min) should follow the diffusion process to anneal quenched-in defects. Two ohm-cm n-base cells were fabricated with efficiencies greater than 15%. A cost analysis indicated that the simultansous diffusion process costs can be as low as 65% of the costs of the sequential diffusion process.

  9. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  10. Mechanisms of Current Flow in the Diode Structure with an n + - p-Junction Formed by Thermal Diffusion of Phosphorus From Porous Silicon Film

    NASA Astrophysics Data System (ADS)

    Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.

    2018-01-01

    Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.

  11. Application of the MOS-C-V technique to determine impurity concentrations and surface parameters on the diffused face of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.

    1975-01-01

    The feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta2O5 coatings is studied. Results indicate that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n+ surface of silicon solar cells.

  12. Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses

    PubMed Central

    Zambelli, Alison M.; Brothers, Kimberly M.; Hunt, Kristin M.; Romanowski, Eric G.; Nau, Amy C.; Dhaliwal, Deepinder K.; Shanks, Robert M. Q.

    2014-01-01

    Objectives To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses in vitro. Methods Using an in vitro model, the diffusion of three antimicrobials through SH contact lenses was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of four hours. The amount of each diffused antimicrobial was determined by comparing the experimental value to a standard curve. A biological assay was performed to validate the contact lens diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least 4 independent replicates. Results Our data show detectable moxifloxacin and PHMB diffusion through SH contact lenses at 30 minutes, while amphotericin B diffusion remained below the limit of detection within the 4 hour experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 minutes on bacterial lawns, whereas PHMB and amphotericin B failed to demonstrate killing on microbial lawns over the course of the 60 minute experiment. Conclusions In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through silicone hydrogel contact lenses. Further studies regarding the clinical benefit of using these agents along with bandage contact lens use for corneal pathology are warranted. PMID:25806673

  13. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  14. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less

  15. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  16. Recent progress in high-output-voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.

    1980-01-01

    The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.

  17. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  18. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide Semiconductor Devices

    DTIC Science & Technology

    1981-07-01

    and Berglund (13,5). Pulsed electron flow is induced through the SiO 2 film by rf avalanche in the p-silicon surface depletion layer, and the rf voltage...were then evaporated through a shadow mask from an rf heated crucible in a vacuum chamber under 10 - 6 Torr pressure. Finally, a post-metallization...12.) P. Williams and J.E. Baker, Appl. Phys. Lett. 36, 842 (1980). 13.) H.H. Anderson, Appl. Phys. 18, 131 (1979). 14.) D.R. Young, D.J. DiMaria, W.R

  19. Progress in low light-level InAs detectors- towards Geiger-mode detection

    NASA Astrophysics Data System (ADS)

    Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey

    2017-05-01

    InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.

  20. III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghosh, Sid

    2015-08-01

    Laser detection and ranging (LADAR)-based systems operating in the Near Infrared (NIR) and Short Wave Infrared (SWIR) have become popular optical sensors for remote sensing, medical, and environmental applications. Sophisticated laser-based radar and weapon systems used for long-range military and astronomical applications need to detect, recognize, and track a variety of targets under a wide spectrum of atmospheric conditions. Infrared APDs play an important role in LADAR systems by integrating the detection and gain stages in a single device. Robust silicon-APDs are limited to visible and very near infrared region (< 1 um), while InGaAs works well up to wavelengths of about 1.5um. Si APDs have low multiplication or excess noise but are limited to below 1um due very poor quantum efficiency above 0.8um. InGaAs and Ge APDs operate up to wavelengths of 1.5um but have poor multiplication or excess noise due to a low impact ionization coefficient ratio between electrons and holes. For the past several decades HgCdTe has been traditionally used in longer wavelength (> 3um) infrared photon detection applications. Recently, various research groups (including Ghosh et. al.) have reported SWIR and MWIR HgCdTe APDs on CdZnTe and Si substrates. However, HgCdTe APDs suffer from low breakdown fields due to material defects, and excess noise increases significantly at high electric fields. During the past decade, InAs/GaSb Strain Layer Superlattice (SLS) material system has emerged as a potential material for the entire infrared spectrum because of relatively easier growth, comparable absorption coefficients, lower tunneling currents and longer Auger lifetimes resulting in enhanced detectivities (D*). Band engineering in type II SLS allows us to engineer avalanche properties of electrons and holes. This is a great advantage over bulk InGaAs and HgCdTe APDs where engineering avalanche properties is not possible. The talk will discuss the evolution of superlattice based avalanche photodiodes and some of the recent results on the work being done at Raytheon on SWIR avalanche photodiodes.

  1. Out-diffusion of deep donors in nitrogen-doped silicon and the diffusivity of vacancies

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.

    2012-07-01

    A strong resistivity increase in annealed nitrogen-doped silicon samples was reported long ago—but has remained not fully understood. It is now shown that the complicated evolution of the resistivity depth profiles observed can be reproduced by a simple model based on the out-diffusion of some relevant species. Two versions of such an approach were analyzed: (A) out-diffusion of deep donors treated as VN (off-centre substitutional nitrogen), (B) out-diffusion of vacancies (V) and interstitial trimers (N3) produced by dissociation of VN3. Version B, although more complicated, is attractive due to a coincidence of the deduced vacancy diffusivity DV at 1000 °C with the value extrapolated from low-temperature data by Watkins.

  2. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  3. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  4. Low cost solar array project cell and module formation research area: Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.

  5. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.

    2012-10-01

    Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.

  6. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  7. Gas Atmospheres Improve Silicon-Ribbon Quality

    NASA Technical Reports Server (NTRS)

    Wald, F. V.; Kalejs, J. P.

    1985-01-01

    Growing crystal surrounded by gas containing carbon or oxygen. Ribbon of solid silicon, edgewise, grows from pool of molten silicon in die. Gases flowing through orifice ensure longer diffusion length and less contaminiation by carbide particles in product.

  8. Logarithmic detrapping response for holes injected into SiO2 and the influence of thermal activation and electric fields

    NASA Astrophysics Data System (ADS)

    Lakshmanna, V.; Vengurlekar, A. S.

    1988-05-01

    Relaxation of trapped holes that are introduced into silicon dioxide from silicon by the avalanche injection method is studied under various conditions of thermal activation and external electric fields. It is found that the flat band voltage recovery in time follows a universal behavior in that the response at high temperatures is a time scaled extension of the response at low temperatures. Similar universality exists in the detrapping response at different external bias fields. The recovery characteristics show a logarithmic time dependence in the time regime studied (up to 6000 s). We find that the recovery is thermally activated with the activation energy varying from 0.5 eV for a field of 2 MV/cm to 1.0 eV for a field of -1 MV/cm. There is little discharge in 3000 s at room temperature for negative fields beyond -4 MV/cm. The results suggest that the recovery is due to tunneling of electrons in the silicon conduction band into the oxide either to compensate or to remove the charge of trapped holes.

  9. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  10. Silicone stent placement for primary tracheal amyloidosis accompanied by cartilage destruction.

    PubMed

    Ryu, Duck Hyun; Eom, Jung Seop; Jeong, Ho Jung; Kim, Jung Hoon; Lee, Ji Eun; Jun, Ji Eun; Song, Dae Hyun; Han, Joungho; Kim, Hojoong

    2014-06-01

    Primary tracheal amyloidosis (PTA) can lead to airway obstructions, and patients with severe PTA should undergo bronchoscopic interventions in order to maintain airway patency. Focal airway involvements with amyloidosis can only be treated with mechanical dilatation. However, the PTA with diffused airway involvements and concomitant cartilage destructions requires stent placement. Limited information regarding the usefulness of silicone stents in patients with PTA has been released. Therefore, we report a case of diffused PTA with tracheomalacia causing severe cartilage destruction, which is being successfully managed with bronchoscopic interventions and silicone stent placements.

  11. Crystalline silicon photovoltaics via low-temperature TiO 2/Si and PEDOT/Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Ken Alfred

    The most important goals in developing solar cell technology are to achieve high power conversion efficiencies and lower costs of manufacturing. Solar cells based on crystalline silicon currently dominate the market because they can achieve high efficiency. However, conventional p-n junction solar cells require high-temperature diffusions of dopants, and conventional heterojunction cells based on amorphous silicon require plasma-enhanced deposition, both of which can add manufacturing costs. This dissertation investigates an alternative approach, which is to form crystalline-silicon-based solar cells using heterojunctions with materials that are easily deposited at low temperatures and without plasma enhancement, such as organic semiconductors and metal oxides. We demonstrate a heterojunction between the organic polymer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT), and crystalline silicon, which acts as a hole-selective contact and an alternative to a diffused p-n junction. We also present the use of a heterojunction between titanium dioxide and crystalline silicon as a passivating electron-selective contact. The Si/TiO2 heterojunction is demonstrated for the first time as a back-surface field in a crystalline silicon solar cell, and is incorporated into a PEDOT/Si device. The resulting PEDOT/Si/TiO2 solar cell represents an alternative to conventional silicon solar cells that rely on thermally-diffused junctions or plasma-deposited heterojunctions. Finally, we investigate the merits of using conductive networks of silver nanowires to enhance the photovoltaic performance of PEDOT/Si solar cells. The investigation of these materials and devices contributes to the growing body of work regarding crystalline silicon solar cells made with selective contacts.

  12. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A modelmore » of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.« less

  13. Method for making defect-free zone by laser-annealing of doped silicon

    DOEpatents

    Narayan, Jagdish; White, Clark W.; Young, Rosa T.

    1980-01-01

    This invention is a method for improving the electrical properties of silicon semiconductor material. The method comprises irradiating a selected surface layer of the semiconductor material with high-power laser pulses characterized by a special combination of wavelength, energy level, and duration. The combination effects melting of the layer without degrading electrical properties, such as minority-carrier diffusion length. The method is applicable to improving the electrical properties of n- and p-type silicon which is to be doped to form an electrical junction therein. Another important application of the method is the virtually complete removal of doping-induced defects from ion-implanted or diffusion-doped silicon substrates.

  14. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    NASA Astrophysics Data System (ADS)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  15. Flat-plate solar array project process development area: Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1986-01-01

    Several different techniques to simultaneously diffuse the front and back junctions in dendritic web silicon were investigated. A successful simultaneous diffusion reduces the cost of the solar cell by reducing the number of processing steps, the amount of capital equipment, and the labor cost. The three techniques studied were: (1) simultaneous diffusion at standard temperatures and times using a tube type diffusion furnace or a belt furnace; (2) diffusion using excimer laser drive-in; and (3) simultaneous diffusion at high temperature and short times using a pulse of high intensity light as the heat source. The use of an excimer laser and high temperature short time diffusion experiment were both more successful than the diffusion at standard temperature and times. The three techniques are described in detail and a cost analysis of the more successful techniques is provided.

  16. Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector

    NASA Astrophysics Data System (ADS)

    Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun

    2013-10-01

    The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.

  17. A 780 × 800 μm2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization

    NASA Astrophysics Data System (ADS)

    Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo

    2014-02-01

    This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.

  18. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  19. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576

    2014-11-14

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less

  20. Investigation of a combined platinum and electron lifetime control treatment for silicon

    NASA Astrophysics Data System (ADS)

    Jia, Yunpeng; Cui, Zhihang; Yang, Fei; Zhao, Bao; Zou, Shikai; Liang, Yongsheng

    2017-02-01

    In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (Irr) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, Irr of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec -0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec -0.476 eV), which is caused by electron irradiation directly and results in Irr's increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device's characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.

  1. Gettering in multicrystalline silicon: A design-of-experiments approach

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.

    1994-12-01

    Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.

  2. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  3. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  4. Calculation of the fractional interstitial component of boron diffusion and segregation coefficient of boron in Si0.8Ge0.2

    NASA Astrophysics Data System (ADS)

    Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.

    1996-02-01

    Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.

  5. A bioanalytical microsystem for protein and DNA sensing based on a monolithic silicon optoelectronic transducer

    NASA Astrophysics Data System (ADS)

    Misiakos, K.; Petrou, P. S.; Kakabakos, S. E.; Ruf, H. H.; Ehrentreich-Förster, E.; Bier, F. F.

    2005-01-01

    A bioanalytical microsystem that is based on a monolithic silicon optical transducer and a microfluidic module and it is appropriate for real-time sensing of either DNA or protein analytes is presented. The optical transducer monolithically integrates silicon avalanche diodes as light sources, silicon nitride optical fibers and detectors and efficiently intercouples these optical elements through a self-alignment technique. After hydrophilization and silanization of the transducer surface, the biomolecular probes are immobilized through physical adsorption. Detection is performed through reaction of the immobilized biomolecules with gold nanoparticle labeled counterpart molecules. The binding of these molecules within the evanescent field at the surface of the optical fiber cause attenuated total reflection of the waveguided modes and reduction of the detector photocurrent. Using the developed microsystem, determination of single nucleotide polymorphism (SNP) in the gene of the human phenol sulfotransferase SULT1A1 was achieved. Full-matching hybrid resulted in 4-5 times higher signals compared to the mismatched hybrid after hybridization and dissociation processes. The protein sensing abilities of the developed microsystem were also investigated through a non-competitive assay for the determination of the MB isoform of creatine kinase enzyme (CK-MB) that is a widely used cardiac marker.

  6. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  7. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  8. Impulse response measurement in the HgCdTe avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2018-04-01

    HgCdTe based mid-wave infrared focal plane arrays (MWIR FPAs) are being developed for high resolution imaging and range determination of distant camouflaged targets. Effect of bandgap grading on the response time in the n+/ν/p+ HgCdTe electron avalanche photodiode (e-APD) is evaluated using impulse response measurement. Gain normalized dark current density of 2 × 10-9 A/cm2 at low reverse bias for passive mode and 2 × 10-4 A/cm2 at -8 V for active mode is measured in the fabricated APD device, yielding high gain bandwidth product of 2.4 THZ at the maximum gain. Diffusion of carriers is minimized to achieve transit time limited impulse response by introducing composition grading in the HgCdTe epilayer. The noise equivalent photon performance less than one is achievable in the FPA that is suitable for active cum passive imaging applications.

  9. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  10. Silicone Stent Placement for Primary Tracheal Amyloidosis Accompanied by Cartilage Destruction

    PubMed Central

    Ryu, Duck Hyun; Eom, Jung Seop; Jeong, Ho Jung; Kim, Jung Hoon; Lee, Ji Eun; Jun, Ji Eun; Song, Dae Hyun; Han, Joungho

    2014-01-01

    Primary tracheal amyloidosis (PTA) can lead to airway obstructions, and patients with severe PTA should undergo bronchoscopic interventions in order to maintain airway patency. Focal airway involvements with amyloidosis can only be treated with mechanical dilatation. However, the PTA with diffused airway involvements and concomitant cartilage destructions requires stent placement. Limited information regarding the usefulness of silicone stents in patients with PTA has been released. Therefore, we report a case of diffused PTA with tracheomalacia causing severe cartilage destruction, which is being successfully managed with bronchoscopic interventions and silicone stent placements. PMID:25024724

  11. Lithium - An impurity of interest in radiation effects of silicon.

    NASA Technical Reports Server (NTRS)

    Naber, J. A.; Horiye, H.; Passenheim, B. C.

    1971-01-01

    Study of the introduction and annealing of defects produced in lithium-diffused float-zone n-type silicon by 30-MeV electrons and fission neutrons. The introduction rate of recombination centers produced by electron irradiation is dependent on lithium concentration and for neutron irradiation is independent of lithium concentration. The introduction rate of Si-B1 centers also depends on the lithium concentration. The annealing of electron- and neutron-produced recombination centers, Si-B1 centers, and Si-G7 centers in lithium-diffused silicon occurs at much lower temperatures than in nondiffused material.

  12. Progress research of non-Cz silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1983-01-01

    The simultaneous diffusion of liquid boron and liquid phosphorus dopants into N-type dendritic silicon web for solar cells was investigated. It is planned that the diffusion parameters required to achieve the desired P(+)NN(+) cell structure be determined and the resultant cell properties be compared to cells produced in a sequential differential process. A cost analysis of the simultaneous junction formation process is proposed.

  13. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, Joanna C.; Groza, Michael; Burger, Arnold

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  14. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE PAGES

    Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...

    2016-11-08

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  15. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  16. A Comprehensive Analysis of the Physical Properties of Advanced GaAs/AlGaAs Junctions

    NASA Technical Reports Server (NTRS)

    Menkara, Hicham M.

    1996-01-01

    Extensive studies have been performed on MQW junctions and structures because of their potential applications as avalanche photodetectors in optical communications and imaging systems. The role of the avalanche photodiode is to provide for the conversion of an optical signal into charge. Knowledge of junction physics, and the various carrier generation/recombination mechanisms, is crucial for effectively optimizing the conversion process and increasing the structure's quantum efficiency. In addition, the recent interest in the use of APDs in imaging systems has necessitated the development of semiconductor junctions with low dark currents and high gains for low light applications. Because of the high frame rate and high pixel density requirements in new imaging applications, it is necessary to provide some front-end gain in the imager to allow operation under reasonable light conditions. Understanding the electron/hole impact ionization process, as well as diffusion and surface leakage effects, is needed to help maintain low dark currents and high gains for such applications. In addition, the APD must be capable of operating with low power, and low noise. Knowledge of the effects of various doping configurations and electric field profiles, as well as the excess noise resulting from the avalanche process, are needed to help maintain low operating bias and minimize the noise output.

  17. Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere

    2016-07-25

    Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less

  18. An in-vitro evaluation of silicone elastomer latex for topical drug delivery.

    PubMed

    Li, L C; Vu, N T

    1995-06-01

    A silicone elastomer latex was evaluated as a topical drug-delivery system. With the addition of a fumed silica and the removal of water, the latex produced elastomeric solid films. The water vapour permeability of the solid film was found to be a function of the film composition. An increase in silica content and the incorporation of a water-soluble component, PEG 3350, rendered the silicone elastomer-free film even more permeable to water vapour. The release of hydrocortisone from the elastomer film can be described by a matrix-diffusion-controlled mechanism. Drug diffusion is thought to occur through the hydrophobic silicone polymer network and the hydrated hydrophilic silica region in the film matrix. Silicone elastomer film with a higher silica content exhibited a faster drug-release rate. The addition of PEG 3350 to the film further enhanced the drug-release rate.

  19. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  20. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  1. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  2. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    PubMed Central

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602

  3. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    PubMed

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  4. Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon.

    PubMed

    Lill, Patrick C; Dahlinger, Morris; Köhler, Jürgen R

    2017-02-16

    Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient k p above unity with k p = 1 . 25 ± 0 . 05 and thermally-activated diffusivity D B , with a value D B ( 1687 K ) = ( 3 . 53 ± 0 . 44 ) × 10 - 4 cm 2 ·s - 1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.

  5. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study.

    PubMed

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Mora, Alberto Dalla

    2016-11-01

    Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.

  6. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  7. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04688a

  8. Quantification of Sheet Resistance in Boron-Diffused Silicon Using Micro-Photoluminescence Spectroscopy at Room Temperature

    DOE PAGES

    Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu; ...

    2017-09-01

    A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less

  9. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  10. Effects of oxygen-inserted layers on diffusion of boron, phosphorus, and arsenic in silicon for ultra-shallow junction formation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.

    2018-03-01

    The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.

  11. Quantification of Sheet Resistance in Boron-Diffused Silicon Using Micro-Photoluminescence Spectroscopy at Room Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu

    A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less

  12. Iron and its complexes in silicon

    NASA Astrophysics Data System (ADS)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  13. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  14. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  15. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-03-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  16. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-06-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  17. Receiver performance of laser ranging measurements between the Lunar Observer and a subsatellite for lunar gravity studies

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The optimal receiver for a direct detection laser ranging system for slow Doppler frequency shift measurement is shown to consist of a phase tracking loop which can be implemented approximately as a phase lock loop with a 2nd or 3rd order loop filter. The laser transmitter consists of an AlGaAs laser diode at a wavelength of about 800 nm and is intensity modulated by a sinewave. The receiver performance is shown to be limited mainly by the preamplifier thermal noise when a silicon avalanche photodiode is used. A high speed microchannel plate photomultiplier tube is shown to outperform a silicon APD despite its relatively low quantum efficiency at wavelengths near 800 nm. The maximum range between the Lunar Observer and the subsatellite for lunar gravity studies is shown to be about 620 km when using a state-of-the-art silicon APD and about 1000 km when using a microchannel plate photomultiplier tube in order to achieve a relative velocity measurement accuracy of 1 millimeter per second. Other parameters such as the receiver time base jitter and drift also limit performance and have to be considered in the design of an actual system.

  18. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  19. SiPM based readout system for PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  20. In-situ observation of impurity diffusion boundary layer in silicon Czochralski growth

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Eguchi, Minoru; Watanabe, Hisao; Hibiya, Taketoshi

    1990-01-01

    In-situ observation of the impurity diffusion boundary layer during single crystal growth of indium-doped silicon was carried out by X-ray radiography. The difference in the transmitted X-ray image compared with molten silicon just beneath the crystal-melt interface was attributed to the concentration of indium impurities having a larger absorption coefficient. The intensity profile of the transmitted X-ray can be reproduced by a transmittance calculation that considers the meniscus shape and impurity distribution. The impurity distribution profile near the crystal-melt interface was estimated using the Burton-Prim-Slichter (BPS) equation. The observed impurity diffusion boundary layer thickness was about 0.5 mm. It was found that the boundary layer thickness was not constant in the radial direction, which cannot be explained by the BPS theory, since it is based on a one-dimensional calculation.

  1. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  2. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  3. Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method.

    PubMed

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Wu, Fan; Chen, Xin; Gao, Jian; Ding, Yong; Wong, Ching-Ping

    2017-07-12

    Silicon (Si) zigzag nanowires (NWs) have a great potential in many applications because of its high surface/volume ratio. However, fabricating Si zigzag NWs has been challenging. In this work, a diffusion-controlled metal-assisted chemical etching method is developed to fabricate Si zigzag NWs. By tailoring the composition of etchant to change its diffusivity, etching direction, and etching time, various zigzag NWs can be easily fabricated. In addition, it is also found that a critical length of NW (>1 μm) is needed to form zigzag nanowires. Also, the amplitude of zigzag increases as the location approaches the center of the substrate and the length of zigzag nanowire increases. It is also demonstrated that such zigzag NWs can help the silicon substrate for self-cleaning and antireflection. This method may provide a feasible and economical way to fabricate zigzag NWs and novel structures for broad applications.

  4. Determination of diffusion coefficients of biocides on their passage through organic resin-based renders.

    PubMed

    Styszko, Katarzyna; Kupiec, Krzysztof

    2016-10-01

    In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier

    NASA Astrophysics Data System (ADS)

    Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.

    2018-04-01

    We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.

  6. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    PubMed Central

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120

  7. Effect of Ambient Temperature on Hydrophobic Recovery Behavior of Silicone Rubber Composites

    NASA Astrophysics Data System (ADS)

    Peng, Xiangyang; Li, Zijian; Zheng, Feng; Zhang, Ni; Huang, Zhen; Fang, Pengfei

    A series of silicone rubber samples with different cyclosiloxanes contents have been successfully prepared, and their hydrophobic recovery behaviors and mechanism were investigated in detail. The gas chromatography-mass spectroscopy technique after Soxhlet extraction was utilized to examine the low molecular weight siloxanes in the sample, SEM was used to observe the surface morphology of the silicone rubber influenced by plasma treatment, and contact angle measurement was applied to probe the hydrophobic recovery of the sample surface after plasma treatment at different storage temperatures. The storage time-dependent contact angle of water can be well fitted by the diffusion model calculated from Fick’s second law. The results imply that the hydrophobic recovery of silicone rubber is related to the diffusion of low molecular weight siloxanes, while larger content or higher temperature can induce faster hydrophobic recovery.

  8. Modelling and fabrication of high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Smith, A. W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.

  9. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Rai-Choudhury, P.

    1986-01-01

    Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.

  10. Effect of the granule size in porous silicon on the photosensitization efficiency of molecular oxygen on the surface of silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, V. A.; Konstantinova, E. A., E-mail: liza35@mail.ru; Gongal'skii, M. B.

    2009-03-15

    Photoluminescence is used to study the effect of the granule size in porous silicon on the generation efficiency of the excited state of molecular oxygen ({sup 1}O{sub 2}) on the surface of silicon nanocrystals. The generation efficiency is found to increase as the granule size becomes smaller than 100 nm, which can be explained by a change in the conditions of exciton diffusion along a network of silicon nanocrystals.

  11. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2010-01-01

    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  12. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  13. Recent progress in avalanche photodiodes for sensing in the IR spectrum

    NASA Astrophysics Data System (ADS)

    Maddox, S. J.; Ren, M.; Woodson, M. E.; Bank, S. R.; Campbell, J. C.

    2016-05-01

    Abstract—We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, AlxIn1-xAsySb1-y, grown lattice-matched on GaSb substrates. By varying the aluminum content the direct bandgap can be tuned from 0.25 eV (0% aluminum) to 1.24 eV (75% aluminum), corresponding to photon wavelengths from 5000 nm to 1000 nm, with the transition from direct-gap to indirect-gap occurring at ~1.18 eV (~72% aluminum), or 1050 nm. This has been used to fabricate separate absorption, charge, and multiplication (SACM) APDs using Al0.7In0.3As0.3Sb0.7 for the multiplication region and Al0.4In0.6As0.3Sb0.7 for the absorber. Gain values as high as 100 have been achieved and the excess noise factor is characterized by a k value of 0.01, which is comparable to or below that of Si. In addition, since the bandgap of the absorption region is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths.

  14. Radiation detection measurements with a new ``Buried Junction'' silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Lecomte, R.; Pepin, C.; Rouleau, D.; Dautet, H.; McIntyre, R. J.; McSween, D.; Webb, P.

    1999-02-01

    An improved version of a recently developed "Buried Junction" avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the "Reverse APD", is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of energy and timing resolution of this device with several scintillators (BGO, LSO and GSO) of potential interest in high-energy physics and PET imaging systems are presented.

  15. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    NASA Astrophysics Data System (ADS)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  16. Reversible Strain-Induced Electron-Hole Recombination in Silicon Nanowires Observed with Femtosecond Pump-Probe Microscopy

    DTIC Science & Technology

    2014-01-01

    devices with indirect-bandgap materials such as silicon . KEYWORDS: Ultrafast imaging , strained nanomaterials, spectroscopy Lattice strain produced by...photogenerated charge cloud as a result of carrier diffusion . Normalized carrier profiles, generated by integrating the images along the direction normal to the...To test this idea, Figure 2. Charge carrier diffusion in a Si NW locally strained by a bending deformation (A) SEM image of a bent Si nanowire ∼100

  17. Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Klunder, Gregory L.; Russo, Richard E.

    1995-03-01

    A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.

  18. Performance measurement results for a 220 Mbps QPPM optical communication receiver with an EG/G Slik APD

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit.

  19. In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.

    2014-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.

  20. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  1. Quantum key distribution with 1.25 Gbps clock synchronization.

    PubMed

    Bienfang, J; Gross, A; Mink, A; Hershman, B; Nakassis, A; Tang, X; Lu, R; Su, D; Clark, Charles; Williams, Carl; Hagley, E; Wen, Jesse

    2004-05-03

    We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.

  2. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  3. External self-gettering of nickel in float zone silicon wafers

    NASA Astrophysics Data System (ADS)

    Gay, N.; Martinuzzi, S.

    1997-05-01

    During indiffusion of Ni atoms in silicon crystals at 950 °C from a nickel layer source, Ni-Si alloys can be formed close to the surface. Metal solubility in these alloys is higher than in silicon, which induces a marked segregation gettering of the Ni atoms which have diffused in the bulk of the wafers. Consequently, the regions of the wafers covered with the Ni layer are less contaminated than adjacent regions in which Ni atoms have also penetrated, as shown by the absence of precipitates and the higher diffusion length of minority carriers. The results suggest the existence of external self-gettering of Ni atoms by the nickel source.

  4. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Several of the key parameters describing the heavily doped regions of silicon solar cells are examined. The experimentally determined energy gap narrowing and minority carrier diffusivity and mobility are key factors in the investigation.

  5. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.

    PubMed

    Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad

    2013-01-01

    The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration.

  6. Transport Properties of ZnSe- ITO Hetero Junction

    NASA Astrophysics Data System (ADS)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  7. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

    PubMed

    Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J

    2018-04-01

    Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

  8. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  9. p-type doping by platinum diffusion in low phosphorus doped silicon

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  10. Characterization of iron in silicon by low-temperature photoluminescence and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko

    2018-03-01

    We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.

  11. Scale-dependent diffusion anisotropy in nanoporous silicon

    PubMed Central

    Kondrashova, Daria; Lauerer, Alexander; Mehlhorn, Dirk; Jobic, Hervé; Feldhoff, Armin; Thommes, Matthias; Chakraborty, Dipanjan; Gommes, Cedric; Zecevic, Jovana; de Jongh, Petra; Bunde, Armin; Kärger, Jörg; Valiullin, Rustem

    2017-01-01

    Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography. PMID:28106047

  12. Radiation tolerance of low resistivity, high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Weinberg, I.; Swartz, C. K.

    1984-01-01

    The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.

  13. Characterizing the nature and variability of avalanche hazard in western Canada

    NASA Astrophysics Data System (ADS)

    Shandro, Bret; Haegeli, Pascal

    2018-04-01

    The snow and avalanche climate types maritime, continental and transitional are well established and have been used extensively to characterize the general nature of avalanche hazard at a location, study inter-seasonal and large-scale spatial variabilities and provide context for the design of avalanche safety operations. While researchers and practitioners have an experience-based understanding of the avalanche hazard associated with the three climate types, no studies have described the hazard character of an avalanche climate in detail. Since the 2009/2010 winter, the consistent use of Statham et al. (2017) conceptual model of avalanche hazard in public avalanche bulletins in Canada has created a new quantitative record of avalanche hazard that offers novel opportunities for addressing this knowledge gap. We identified typical daily avalanche hazard situations using self-organizing maps (SOMs) and then calculated seasonal prevalence values of these situations. This approach produces a concise characterization that is conducive to statistical analyses, but still provides a comprehensive picture that is informative for avalanche risk management due to its link to avalanche problem types. Hazard situation prevalence values for individual seasons, elevations bands and forecast regions provide unprecedented insight into the inter-seasonal and spatial variability of avalanche hazard in western Canada.

  14. Water has no effect on oxygen self-diffusion rate in forsterite

    NASA Astrophysics Data System (ADS)

    Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.

    2014-12-01

    Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.

  15. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  16. Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses.

    PubMed

    Zambelli, Alison M; Brothers, Kimberly M; Hunt, Kristin M; Romanowski, Eric G; Nau, Amy C; Dhaliwal, Deepinder K; Shanks, Robert M Q

    2015-09-01

    To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses (CLs) in vitro. Using an in vitro model, the diffusion of three antimicrobials through SH CLs was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of 4 hr. The amount of each diffused antimicrobial was determined by comparing the experimental value with a standard curve. A biological assay was performed to validate the CL diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least four independent replicates. Our data show detectable moxifloxacin and PHMB diffusion through SH CLs at 30 min, whereas AmB diffusion remained below the limit of detection within the 4-hr experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 min on bacterial lawns, whereas PHMB and AmB failed to demonstrate killing on microbial lawns over the course of the 60-min experiment. In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through SH CLs. Further studies regarding the clinical benefit of using these agents along with bandage CL for corneal pathologic condition are warranted.

  17. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  18. 2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment

    NASA Astrophysics Data System (ADS)

    Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-02-01

    PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.

  19. Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics

    NASA Astrophysics Data System (ADS)

    Clotet, Xavier; Santucci, Stéphane; Ortín, Jordi

    2016-01-01

    We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension, and forced them to slowly invade a model open fracture at very different flow rates v . In this second part of the study we have carried out a scale-dependent statistical analysis of the front dynamics. We have specifically analyzed the influence of μ and v on the statistical properties of the velocity Vℓ, the spatial average of the local front velocities over a window of lateral size ℓ . We have varied ℓ from the local scale defined by our spatial resolution up to the lateral system size L . Even though the imposed flow rate is constant, the signals Vℓ(t ) present very strong fluctuations which evolve systematically with the parameters μ , v , and ℓ . We have verified that the non-Gaussian fluctuations of the global velocity Vℓ(t ) are very well described by a generalized Gumbel statistics. The asymmetric shape and the exponential tail of those distributions are controlled by the number of effective degrees of freedom of the imbibition fronts, given by Neff=ℓ /ℓc (the ratio of the lateral size of the measuring window ℓ to the correlation length ℓc˜1 /√{μ v } ). The large correlated excursions of Vℓ(t ) correspond to global avalanches, which reflect extra displacements of the imbibition fronts. We show that global avalanches are power-law distributed, both in sizes and durations, with robustly defined exponents—independent of μ , v , and ℓ . Nevertheless, the exponential upper cutoffs of the distributions evolve systematically with those parameters. We have found, moreover, that maximum sizes ξS and maximum durations ξT of global avalanches are not controlled by the same mechanism. While ξS are also determined by ℓ /ℓc , like the amplitude fluctuations of Vℓ(t ) , ξT and the temporal correlations of Vℓ(t ) evolve much more strongly with imposed flow rate v than with fluid viscosity μ .

  20. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.

  1. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  2. Assessing the importance of terrain parameters on glide avalanche release

    NASA Astrophysics Data System (ADS)

    Peitzsch, E.; Hendrikx, J.; Fagre, D. B.

    2013-12-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  3. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  4. Using GIS and Google Earth for the creation of the Going-to-the-Sun Road Avalanche Atlas, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark

    2010-01-01

    Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.

  5. Compressed exponential relaxation in liquid silicon: Universal feature of the crossover from ballistic to diffusive behavior in single-particle dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2012-07-01

    We report a first-principles molecular-dynamics study of the relaxation dynamics in liquid silicon (l-Si) over a wide temperature range (1000-2200 K). We find that the intermediate scattering function for l-Si exhibits a compressed exponential decay above 1200 K including the supercooled regime, which is in stark contrast to that for normal "dense" liquids which typically show stretched exponential decay in the supercooled regime. The coexistence of particles having ballistic-like motion and those having diffusive-like motion is demonstrated, which accounts for the compressed exponential decay in l-Si. An attempt to elucidate the crossover from the ballistic to the diffusive regime in the "time-dependent" diffusion coefficient is made and the temperature-independent universal feature of the crossover is disclosed.

  6. Doping of silicon by carbon during laser ablation process

    NASA Astrophysics Data System (ADS)

    Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.

    2007-04-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  7. Continuum modelling of silicon diffusion in indium gallium arsenide

    NASA Astrophysics Data System (ADS)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.

  8. Fully Digital Arrays of Silicon Photomultipliers (dSiPM) - a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)

    NASA Astrophysics Data System (ADS)

    Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas

    Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.

  9. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  10. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  11. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    NASA Astrophysics Data System (ADS)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L-APD equivalent of the Teledyne H1RG and H2RG, able to achieve sub-electron read noise and count 1 - 5 um photons with high quantum efficiency and low dark count rate while preserving their Poisson statistics and noise.

  12. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  13. An experimental study of solid source diffusion by spin on dopants and its application for minimal silicon-on-insulator CMOS fabrication

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro

    2017-06-01

    Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.

  14. Automated identification of potential snow avalanche release areas based on digital elevation models

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani

    2013-05-01

    The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  15. Effect of copper on the recombination activity of extended defects in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feklisova, O. V., E-mail: feklisov@iptm.ru; Yakimov, E. B.

    2015-06-15

    The effect of copper atoms introduced by high-temperature diffusion on the recombination properties of dislocations and dislocation trails in p-type single-crystal silicon is studied by the electron-beam-induced current technique. It is shown that, in contrast to dislocations, dislocation trails exhibit an increase in recombination activity after the introduction of copper. Bright contrast appearance in the vicinity of dislocation trails is detected after the diffusion of copper and quenching of the samples. The contrast depends on the defect density in these trails.

  16. Oxygen concentration dependence of silicon oxide dynamical properties

    NASA Astrophysics Data System (ADS)

    Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki

    2018-06-01

    To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.

  17. Black silicon significantly enhances phosphorus diffusion gettering.

    PubMed

    Pasanen, Toni P; Laine, Hannu S; Vähänissi, Ville; Schön, Jonas; Savin, Hele

    2018-01-31

    Black silicon (b-Si) is currently being adopted by several fields of technology, and its potential has already been demonstrated in various applications. We show here that the increased surface area of b-Si, which has generally been considered as a drawback e.g. in applications that require efficient surface passivation, can be used as an advantage: it enhances gettering of deleterious metal impurities. We demonstrate experimentally that interstitial iron concentration in intentionally contaminated silicon wafers reduces from 1.7 × 10 13  cm -3 to less than 10 10  cm -3 via b-Si gettering coupled with phosphorus diffusion from a POCl 3 source. Simultaneously, the minority carrier lifetime increases from less than 2 μs of a contaminated wafer to more than 1.5 ms. A series of different low temperature anneals suggests segregation into the phosphorus-doped layer to be the main gettering mechanism, a notion which paves the way of adopting these results into predictive process simulators. This conclusion is supported by simulations which show that the b-Si needles are entirely heavily-doped with phosphorus after a typical POCl 3 diffusion process, promoting iron segregation. Potential benefits of enhanced gettering by b-Si include the possibility to use lower quality silicon in high-efficiency photovoltaic devices.

  18. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  19. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Zhang Xiaowei; Yoda, Yoshitaka

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  20. Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide.

    PubMed

    Sederberg, S; Elezzabi, A Y

    2014-10-17

    Ponderomotive electron acceleration is demonstrated in a semiconductor-loaded nanoplasmonic waveguide. Photogenerated free carriers are accelerated by the tightly confined nanoplasmonic fields and reach energies exceeding the threshold for impact ionization. Broadband (375 nm ≤ λ ≤ 650  nm) white light emission is observed from the nanoplasmonic waveguides. Exponential growth of visible light emission confirms the exponential growth of the electron population, demonstrating the presence of an optical-field-driven electron avalanche. Electron sweeping dynamics are visualized using pump-probe measurements, and a sweeping time of 1.98 ± 0.40 ps is measured. These findings offer a means to harness the potential of the emerging field of ultrafast nonlinear nanoplasmonics.

  1. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  2. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  3. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  4. Developments toward an 18% efficient silicon solar cell

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.

    1983-01-01

    Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.

  5. Avalanche Accidents Causing Fatalities: Are They Any Different in the Summer?

    PubMed

    Pasquier, Mathieu; Hugli, Olivier; Kottmann, Alexandre; Techel, Frank

    2017-03-01

    Pasquier, Mathieu, Olivier Hugli, Alexandre Kottmann, and Frank Techel. Avalanche accidents causing fatalities: are they any different in the summer? High Alt Med Biol. 18:67-72, 2017. This retrospective study investigated the epidemiology of summer avalanche accidents that occurred in Switzerland and caused at least one fatality between 1984 and 2014. Summer avalanche accidents were defined as those that occurred between June 1st and October 31st. Summer avalanches caused 21 (4%) of the 482 avalanches with at least one fatality occurring during the study period, and 40 (6%) of the 655 fatalities. The number of completely buried victims per avalanche and the proportion of complete burials among trapped people were lower in summer than in winter. Nevertheless, the mean number of fatalities per avalanche was higher in summer than in winter: 1.9 ± 1.2 (standard deviation; range 1-6) versus 1.3 ± 0.9 (range 1-7; p < 0.001). Trauma was the presumed cause of death in 94% (33 of 35) in summer avalanche accidents. Sixty-five percent of fully buried were found due to visual clues at the snow surface. Fatal summer avalanche accidents caused a higher mean number of fatalities per avalanche than winter avalanches, and those deaths resulted mostly from trauma. Rescue teams should anticipate managing polytrauma for victims in summer avalanche accidents rather than hypothermia or asphyxia; they should be trained in prehospital trauma life support and equipped accordingly to ensure efficient patient care.

  6. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE PAGES

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; ...

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  7. Stress and efficiency studies in EFG

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.

  8. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  9. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied basal layer, and a thicker and stronger overriding layer.

  10. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  11. Doping of silicon with carbon during laser ablation process

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.

    2006-12-01

    The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  12. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  13. Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010

    NASA Astrophysics Data System (ADS)

    Naaim, Mohamed

    2017-04-01

    Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.

  14. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    PubMed

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.

  15. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of themore » plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)« less

  16. Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory

    NASA Astrophysics Data System (ADS)

    Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin

    2017-07-01

    Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.

  17. Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics

    PubMed Central

    Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya

    2017-01-01

    Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330

  18. Fabrication of polycrystalline solar cells on low-cost substrates

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1976-01-01

    A new method of producing p-n junction semiconductors for solar cells was described; the principal objective of this investigation is to reduce production costs significantly by depositing polycrystalline silicon on a relatively cheap substrate such as metallurgical-grade silicon, graphite, or steel. The silicon layer contains appropriate dopants, and the substrates are coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures of these compounds.

  19. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Steiniger, M.; Klingler, Ch.; Rhyner, J.; Ammann, W. J.

    2004-04-01

    After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc.) in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  20. Evaluation and operationalization of a novel forest detrainment modeling approach for computational snow avalanche simulation

    NASA Astrophysics Data System (ADS)

    Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.

    2013-12-01

    Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure-based runout indicator in an avalanche path dependent coordinate system. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown coverage, vertical structure and surface roughness, e.g. values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulation will improve current applications for avalanche simulation tools in mountain forest and natural hazard management considerably. Furthermore, we show that an objective and standardized evaluation of two-dimensional simulation results is essential for a successful evaluation and further calibration of avalanche models in general.

  1. Experimental Avalanches in a Rotating Drum

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  2. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  3. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    DOE PAGES

    Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; ...

    2016-12-05

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less

  4. Temperature Dependence of Diffusion and Reaction at a Pd/SiC Contact

    NASA Technical Reports Server (NTRS)

    Shi, D.T.; Lu, W. J.; Bryant, E.; Elshot, K.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Schottky diodes of Palladium/SiC are good candidates for hydrogen and hydrocarbon gas sensors at elevated temperature. The detection sensibility of the diodes has been found heavily temperature dependent. In this work, emphasis has been put on the understanding of changes of physical and chemical properties of the Schottky diodes with variation of temperature. Schottky diodes were made by depositing ultra-thin palladium films onto silicon carbide substrates. The electrical and chemical properties of Pd/SiC Schottky contacts were studied by XPS and AES at different annealing temperatures. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range of RT-400 C. However, both palladium diffused into SiC and silicon migrated into palladium thin film as well as onto surface were observed at room temperature. The formation of palladium compounds at the Pd/SiC interface was also observed. Both diffusion and reaction at the Pd/SiC interface became significant at 300 C and higher temperature. In addition, silicon oxide was found also at the interface of the Pd/SiC contact at high temperature. In this report, the mechanism of diffusion and reaction at the Pd/SiC interface will be discussed along with experimental approaches.

  5. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  6. The role of initial coherence and path materials in the dynamics of three rock avalanche case histories

    USGS Publications Warehouse

    Aaron, Jordan; McDougall, Scott; Moore, Jeffrey R.; Coe, Jeffrey A.; Hungr, Oldrich

    2017-01-01

    BackgroundRock avalanches are flow-like landslides that can travel at extremely rapid velocities and impact surprisingly large areas. The mechanisms that lead to the unexpected mobility of these flows are unknown and debated. Mechanisms proposed in the literature can be broadly classified into those that rely on intrinsic characteristics of the rock avalanche material, and those that rely on extrinsic factors such as path material. In this work a calibration-based numerical model is used to back-analyze three rock avalanche case histories. The results of these back-analyses are then used to infer factors that govern rock avalanche motionResultsOur study has revealed two key insights that must be considered when analyzing rock avalanches. Results from two of the case histories demonstrate the importance of accounting for the initially coherent phase of rock avalanche motion. Additionally, the back-analyzed basal resistance parameters, as well as the best-fit rheology, are different for each case history. This suggests that the governing mechanisms controlling rock avalanche motion are unlikely to be intrinsic. The back-analyzed strength parameters correspond well to those that would be expected by considering the path material that the rock avalanches overran.ConclusionOur results show that accurate simulation of rock avalanche motion must account for the initially coherent phase of movement, and that the mechanisms governing rock avalanche motion are unlikely to be intrinsic to the failed material. Interaction of rock avalanche debris with path materials is the likely mechanism that governs the motion of many rock avalanches.

  7. A new web-based system to improve the monitoring of snow avalanche hazard in France

    NASA Astrophysics Data System (ADS)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  8. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  9. Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area

    NASA Astrophysics Data System (ADS)

    Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile

    2017-06-01

    Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.

  10. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  11. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  12. Measuring neuronal avalanches in disordered systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  13. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  14. Annual Conference on Nuclear and Space Radiation Effects, 14th, College of William and Mary, Williamsburg, Va., July 12-15, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Stahl, R. H.

    1977-01-01

    Topics related to processing and hardness assurance are considered, taking into account the radiation hardening of CMOS technologies, technological advances in the manufacture of radiation-hardened CMOS integrated circuits, CMOS hardness assurance through process controls and optimized design procedures, the application of operational amplifiers to hardened systems, a hard off-the-shelf SG1524 pulse width modulator, and the gamma-induced voltage breakdown anomaly in a Schottky diode. Basic mechanisms are examined, giving attention to chemical and structural aspects of the irradiation behavior of SiO2 films on silicon, experimental observations of the chemistry of the SiO2/Si interface, leakage current phenomena in irradiated SOS devices, the avalanche injection of holes into SiO2, the low-temperature radiation response of Al2O3 gate insulators, and neutron damage mechanisms in silicon at 10 K. Other subjects discussed are related to radiation effects in devices and circuits, space radiation effects, and aspects of simulation, energy deposition, and dosimetry.

  15. Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response.

  16. Propagation of economic shocks in input-output networks: A cross-country analysis

    NASA Astrophysics Data System (ADS)

    Contreras, Martha G. Alatriste; Fagiolo, Giorgio

    2014-12-01

    This paper investigates how economic shocks propagate and amplify through the input-output network connecting industrial sectors in developed economies. We study alternative models of diffusion on networks and we calibrate them using input-output data on real-world inter-sectoral dependencies for several European countries before the Great Depression. We show that the impact of economic shocks strongly depends on the nature of the shock and country size. Shocks that impact on final demand without changing production and the technological relationships between sectors have on average a large but very homogeneous impact on the economy. Conversely, when shocks change also the magnitudes of input-output across-sector interdependencies (and possibly sector production), the economy is subject to predominantly large but more heterogeneous avalanche sizes. In this case, we also find that (i) the more a sector is globally central in the country network, the larger its impact; (ii) the largest European countries, such as those constituting the core of the European Union's economy, typically experience the largest avalanches, signaling their intrinsic higher vulnerability to economic shocks.

  17. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  18. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  19. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  20. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Cuevas, Andres

    2015-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta2O5) underneath plasma enhanced chemical vapour deposited silicon nitride (SiNx). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta2O5 and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω.cm and n-type 1.0 Ω.cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm2 and 68 fA/cm2 are measured on 150 Ω/sq boron-diffused p+ and 120 Ω/sq phosphorus-diffused n+ c-Si, respectively. Capacitance-voltage measurements reveal a negative fixed insulator charge density of -1.8 × 1012 cm-2 for the Ta2O5 film and -1.0 × 1012 cm-2 for the Ta2O5/SiNx stack. The Ta2O5/SiNx stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  1. Investigation of aluminosilicate as a solid oxide fuel cell refractory

    NASA Astrophysics Data System (ADS)

    Gentile, Paul S.; Sofie, Stephen W.

    2011-05-01

    Aluminosilicate represents a potential low cost alternative to alumina for solid oxide fuel cell (SOFC) refractory applications. The objectives of this investigation are to study: (1) changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) deposition of aluminosilicate vapors on yttria stabilized zirconia (YSZ) and nickel, and (3) effects of aluminosilicate vapors on SOFC electrochemical performance. Thermal treatment of aluminosilicate under high temperature SOFC conditions is shown to result in increased mullite concentrations at the surface due to diffusion of silicon from the bulk. Water vapor accelerates the rate of surface diffusion resulting in a more uniform distribution of silicon. The high temperature condensation of volatile gases released from aluminosilicate preferentially deposit on YSZ rather than nickel. Silicon vapor deposited on YSZ consists primarily of aluminum rich clusters enclosed in an amorphous siliceous layer. Increased concentrations of silicon are observed in enlarged grain boundaries indicating separation of YSZ grains by insulating glassy phase. The presence of aluminosilicate powder in the hot zone of a fuel line supplying humidified hydrogen to an SOFC anode impeded peak performance and accelerated degradation. Energy dispersive X-ray spectroscopy detected concentrations of silicon at the interface between the electrolyte and anode interlayer above impurity levels.

  2. Avalanches and Criticality in Driven Magnetic Skyrmions

    NASA Astrophysics Data System (ADS)

    Díaz, S. A.; Reichhardt, C.; Arovas, D. P.; Saxena, A.; Reichhardt, C. J. O.

    2018-03-01

    We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.

  3. A base-metal conductor system for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.

    1980-01-01

    Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.

  4. Historic avalanches in the northern front range and the central and northern mountains of Colorado

    Treesearch

    M. Martinelli; Charles F. Leaf

    1999-01-01

    Newspaper accounts of avalanche accidents from the 1860s through 1950 have been compiled, summarized, and discussed. Many of the avalanches that caused fatalities came down rather small, innocuous-looking paths. Land use planners can use historical avalanche information as a reminder of the power of snow avalanches and to assure rational development in the future....

  5. Development of low cost contacts to silicon solar cells

    NASA Technical Reports Server (NTRS)

    Tanner, D. P.

    1980-01-01

    The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.

  6. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.

    1983-01-01

    Measurements of minority carrier diffusion lengths were made on the small mesa diodes from HEM Si and SILSO Si. The results were consistent with previous Voc and Isc measurements. Only the medium grain SILSO had a distinct advantage for the non grain boundary diodes. Substantial variations were observed for the HEM ingot 4141C. Also a quantitatively scaled light spot scan was being developed for localized diffusion length measurements in polycrystalline silicon solar cells. A change to a more monochromatic input for the light spot scan results in greater sensitivity and in principle, quantitative measurement of local material qualities is now possible.

  7. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  8. Electromagnetic fields of a relativistic electron avalanche with special attention to the origin of lightning signatures known as narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid

    2014-11-01

    In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.

  9. Process research on non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  10. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  11. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  12. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics.

    PubMed

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C; Korgel, Brian; Nagpal, Prashant

    2014-12-21

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.

  13. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  14. Silicon-fiber blanket solar-cell array concept

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.

    1973-01-01

    Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.

  15. Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Bebi, Peter; Feistl, Thomas; Buser, Othmar; Caviezel, Andrin

    2018-03-01

    We study how short duration powder avalanche blasts can break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees, both in bending and root-plate overturning. Dynamic magnification factors for bending and overturning failures should therefore be considered when back-calculating avalanche impact pressures.

  16. Development and Characterization of the Bonding and Integration Technologies Needed for Fabricating Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig,Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  17. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  18. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  19. Impact of a boron rich layer on minority carrier lifetime degradation in boron spin-on dopant diffused n-type crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-03-01

    In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.

  20. A CMOS microdisplay with integrated controller utilizing improved silicon hot carrier luminescent light sources

    NASA Astrophysics Data System (ADS)

    Venter, Petrus J.; Alberts, Antonie C.; du Plessis, Monuko; Joubert, Trudi-Heleen; Goosen, Marius E.; Janse van Rensburg, Christo; Rademeyer, Pieter; Fauré, Nicolaas M.

    2013-03-01

    Microdisplay technology, the miniaturization and integration of small displays for various applications, is predominantly based on OLED and LCoS technologies. Silicon light emission from hot carrier electroluminescence has been shown to emit light visibly perceptible without the aid of any additional intensification, although the electrical to optical conversion efficiency is not as high as the technologies mentioned above. For some applications, this drawback may be traded off against the major cost advantage and superior integration opportunities offered by CMOS microdisplays using integrated silicon light sources. This work introduces an improved version of our previously published microdisplay by making use of new efficiency enhanced CMOS light emitting structures and an increased display resolution. Silicon hot carrier luminescence is often created when reverse biased pn-junctions enter the breakdown regime where impact ionization results in carrier transport across the junction. Avalanche breakdown is typically unwanted in modern CMOS processes. Design rules and process design are generally tailored to prevent breakdown, while the voltages associated with breakdown are too high to directly interact with the rest of the CMOS standard library. This work shows that it is possible to lower the operating voltage of CMOS light sources without compromising the optical output power. This results in more efficient light sources with improved interaction with other standard library components. This work proves that it is possible to create a reasonably high resolution microdisplay while integrating the active matrix controller and drivers on the same integrated circuit die without additional modifications, in a standard CMOS process.

  1. Real time avalanche detection for high risk areas.

    DOT National Transportation Integrated Search

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  2. Projective geometry for the NICA/MPD Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basylev, S.; Dabrowska, B.; Egorov, D.; Filippov, I.; Golovatyuk, V.; Krechetov, Yu.; Shutov, A.; Shutov, V.; Terletskiy, A.; Tyapkin, I.

    2018-02-01

    A Multi Purpose Detector (MPD) is being constructed for the Heavy-Ion Collider at Dubna (NICA). One of the important components of MPD setup is an Electromagnetic Calorimeter, which will operate in the magnetic field of MPD solenoid 0.5 T and provide good energy and space resolution to detect particles in the energy range from ~20 MeV to few GeV . For this purpose the, so-called, "shashlyk" sampling structure with the fiber readout to the silicon Multi Pixel Avalanche Photodetector is used. Serious modifications in comparison to conventional "shaslyk" calorimeter are proposed to improve the properties of device. These modifications are presented in the report along with the beam test results obtained with the MPD/NICA module prototypes.

  3. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

  4. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  5. Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests

    USGS Publications Warehouse

    Denlinger, R.P.; Iverson, R.M.

    2001-01-01

    Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.

  6. Multi-field plasma sandpile model in tokamaks and applications

    NASA Astrophysics Data System (ADS)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  7. Release of low molecular weight silicones and platinum from silicone breast implants.

    PubMed

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was also observed to leak through intact implants into lipid-containing media at rates of approximately 20-25 micrograms/day/250 g of implant at 37 degrees C. The rates at which both LM-silicones and platinum have been observed to leak from intact implants could lead to significant accumulation within lipid-rich tissues and should be investigated more fully in vivo.

  8. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  9. Dynamics of avalanche-generated impulse waves: three-dimensional hydrodynamic simulations and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; McKinney, Daene C.

    2018-05-01

    This paper studies the lake dynamics for avalanche-triggered glacial lake outburst floods (GLOFs) in the Cordillera Blanca mountain range in Ancash, Peru. As new glacial lakes emerge and existing lakes continue to grow, they pose an increasing threat of GLOFs that can be catastrophic to the communities living downstream. In this work, the dynamics of displacement waves produced from avalanches are studied through three-dimensional hydrodynamic simulations of Lake Palcacocha, Peru, with an emphasis on the sensitivity of the lake model to input parameters and boundary conditions. This type of avalanche-generated wave is an important link in the GLOF process chain because there is a high potential for overtopping and erosion of the lake-damming moraine. The lake model was evaluated for sensitivity to turbulence model and grid resolution, and the uncertainty due to these model parameters is significantly less than that due to avalanche boundary condition characteristics. Wave generation from avalanche impact was simulated using two different boundary condition methods. Representation of an avalanche as water flowing into the lake generally resulted in higher peak flows and overtopping volumes than simulating the avalanche impact as mass-momentum inflow at the lake boundary. Three different scenarios of avalanche size were simulated for the current lake conditions, and all resulted in significant overtopping of the lake-damming moraine. Although the lake model introduces significant uncertainty, the avalanche portion of the GLOF process chain is likely to be the greatest source of uncertainty. To aid in evaluation of hazard mitigation alternatives, two scenarios of lake lowering were investigated. While large avalanches produced significant overtopping waves for all lake-lowering scenarios, simulations suggest that it may be possible to contain waves generated from smaller avalanches if the surface of the lake is lowered.

  10. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    PubMed Central

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  11. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1985-01-01

    The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described.

  12. Gate protective device for SOS array

    NASA Technical Reports Server (NTRS)

    Meyer, J. E., Jr.; Scott, J. H.

    1972-01-01

    Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.

  13. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE PAGES

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; ...

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  14. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  15. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  16. Study of the Effects of Impurities on the Properties of Silicon Materials and Performance of Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1979-01-01

    Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.

  17. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less

  18. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  19. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less

  20. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  1. Direct evidence of the recombination of silicon interstitial atoms at the silicon surface

    NASA Astrophysics Data System (ADS)

    Lamrani, Y.; Cristiano, F.; Colombeau, B.; Scheid, E.; Calvo, P.; Schäfer, H.; Claverie, Alain

    2004-02-01

    In this experiment, a Si wafer containing four lightly doped B marker layers epitaxially grown by CVD has been implanted with 100 keV Si + ions to a dose of 2 × 10 14 ions/cm 2 and annealed at 850 °C for several times in an RTA system in flowing N 2. TEM and SIMS analysis, in conjunction with a transient enhanced diffusion (TED) evaluation method based on the kick-out diffusion mechanism, have allowed us to accurately study the boron TED evolution in presence of extended defects. We show that the silicon surface plays a key role in the recombination of Si interstitial atoms by providing the first experimental evidence of the resulting Si ints supersaturation gradient between the defect region and the surface. Our results indicate an upper limit of about 200 nm for the surface recombination length of Si interstitials at 850 °C in a N 2 ambient.

  2. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  3. Timing of wet snow avalanche activity: An analysis from Glacier National Park, Montana, USA.

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2012-01-01

    Wet snow avalanches pose a problem for annual spring road opening operations along the Going-to-the-Sun Road (GTSR) in Glacier National Park, Montana, USA. A suite of meteorological metrics and snow observations has been used to forecast for wet slab and glide avalanche activity. However, the timing of spring wet slab and glide avalanches is a difficult process to forecast and requires new capabilities. For the 2011 and 2012 spring seasons we tested a previously developed classification tree model which had been trained on data from 2003-2010. For 2011, this model yielded a 91% predictive rate for avalanche days. For 2012, the model failed to capture any of the avalanche days observed. We then investigated these misclassified avalanche days in the 2012 season by comparing them to the misclassified days from the original dataset from which the model was trained. Results showed no significant difference in air temperature variables between this year and the original training data set for these misclassified days. This indicates that 2012 was characterized by avalanche days most similar to those that the model struggled with in the original training data. The original classification tree model showed air temperature to be a significant variable in wet avalanche activity which implies that subsequent movement of meltwater through the snowpack is also important. To further understand the timing of water flow we installed two lysimeters in fall 2011 before snow accumulation. Water flow showed a moderate correlation with air temperature later in the season and no synchronous pattern associated with wet slab and glide avalanche activity. We also characterized snowpack structure as the snowpack transitioned from a dry to a wet snowpack throughout the spring. This helped to assess potential failure layers of wet snow avalanches and the timing of avalanches compared to water moving through the snowpack. These tools (classification tree model and lysimeter data), combined with standard meteorological and avalanche observations, proved useful to forecasters regarding the timing of wet snow avalanche activity along the GTSR.

  4. Infrasound and seismic array analysis of snow avalanches: results from the 2015-2017 experiment in Dischma valley above Davos, Switzerland

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio

    2017-04-01

    While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.

  5. Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved

    NASA Astrophysics Data System (ADS)

    Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.

    2017-07-01

    The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.

  6. Crackling to periodic transition in a granular stick-slip experiment

    NASA Astrophysics Data System (ADS)

    Abed Zadeh, Aghil; BaréS, Jonathan; Behringer, Robert

    We perform a stick-slip experiment to characterize avalanches in time and space for granular materials. In our experiment, a constant speed stage pulls a slider which rests on a vertical bed of circular photo-elastic particles in a 2D system. The stage is connected to the slider by a spring. We measure the force on the spring by a force sensor attached to the spring. We study the avalanche size statistics, and other seismicity laws of slip avalanches. Using the power spectrum of the force signal and avalanche statistics, we analyze the effect of the loading speed and of the spring stiffness and we capture a transition from crackling to periodic regime by changing these parameters. From a more local point of view and by using a high speed camera and the photo-elastic properties of our particles, we characterize the local stress change and flow of particles during slip avalanches. By image processing, we detect the local avalanches as connected components in space and time, and we study the avalanche size probability density functions (PDF). The PDF of avalanches obey power laws both at global and local scales, but with different exponents. We try to understand the correlation of local avalanches in space and the way they coarse grain to the global avalanches. NSF Grant DMR-1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  7. Thin n-i-p silicon solar cell

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.; Allison, J. F.; Arndt, R. A.

    1980-01-01

    A space solar cell concept which combines high cell output with low diffusion length damage coefficients is presented for the purpose of reducing solar cell susceptibility to degradation from the radiation environment. High resistivity n-i-p silicon solar cells ranging from upward of 83 micron-cm were exposed to AM0 ultraviolet illumination. It is shown that high resistivity cells act as extrinsic devices under dark conditions and as intrinsic devices under AM0 illumination. Resistive losses in thin n-i-p cells are found to be comparable to those in low resistivity cells. Present voltage limitations appear to be due to generation and recombination in the diffused regions.

  8. Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kale, Abhijit; Beese, Emily; Saenz, Theresa

    NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.

  9. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  10. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  11. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  12. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  13. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.

  14. Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies

    DTIC Science & Technology

    1999-01-01

    effect . It is expressed as the sum of these two components j i jC i jT i where jC i and jT i denote the concentration driven and thermally driven...improve manufacturing effectiveness for epitaxial growth of silicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growth takes place in the...non-uniformity to compensate for the effects of other phenomena such as reactant depletion, gas heating and gas phase reactions, thermal diffusion of

  15. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  16. Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping

    PubMed Central

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only. Introduction Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested. Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition (Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10. The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only. PMID:22805108

  17. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiba, M., E-mail: akiba@nict.go.jp; Tsujino, K.

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and itsmore » temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.« less

  18. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.

    PubMed

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-10-05

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.

  19. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  20. Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.

  1. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  2. Snow supporting structures for avalanche hazard reduction, 151 Avalanche, US 89/191, Jackson, Wyoming.

    DOT National Transportation Integrated Search

    2009-04-01

    The 151 Avalanche, near Jackson, Wyoming has, historically, avalanched to the road below 1.5 to 2 times a year. The road, US 89/191 is four lanes and carries an estimated 8,000 vehicles per day in the winter months. The starting zone of the 151 Avala...

  3. Rapid and efficient detection of single chromophore molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Li-Qiang; Davis, Lloyd M.

    1995-06-01

    The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.

  4. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

    DTIC Science & Technology

    2013-10-22

    0.0, pulse #10 Front view: T0=500 K, ϕ=0.3 Front view: T0=300 K, ϕ=0.0 200 Torr DBD Discharges : 20 kV, 10kHz ICCD gate 50 ns. P = 20 Torr #5...0.60 19,050 49 ppm 0.47 10,820 Non-diffusive hybrid scheme for simulation of filamentary discharges AVALANCHE TO STREAMER TRANSITION IN...Specific Deposited Discharge Energy and Energy Deposited in First Pulse С2Н2:О2:Ar = 17:83:900 (φ = 0.5) Ignition delay time in С2Н2:О2:Ar

  5. Forecasting for natural avalanches during spring opening of Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, Blase; Lundy, Chris

    2004-01-01

    The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.

  6. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  7. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver

    2017-10-01

    Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  8. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Raichoudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600 C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after growth, preferentially segregates to grain and becomes electrically deactivated. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty year device lifetime.

  9. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  10. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.

  11. Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland

    NASA Astrophysics Data System (ADS)

    Techel, F.; Zweifel, B.; Winkler, K.

    2015-09-01

    Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - bergportal.ch and camptocamp.org. Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the other hand, require the expertise to adjust the planning of a tour and their backcountry travel behavior depending on the avalanche danger and the avalanche problem.

  12. Risk analysis for dry snow slab avalanche release by skier triggering

    NASA Astrophysics Data System (ADS)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles, the risk analysis showed there are two ranges: ˜ 320; × 460for which risk is lowest. In this case, both the range of and the consequences vary by about a factor of two so the probability of release dominates the risk analysis to yield low risk at the tails of the distribution of with highest risk in the middle (330 - 450) of the expected range (250 - 550).

  13. Modeling of snow avalanches for protection measures designing

    NASA Astrophysics Data System (ADS)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton

    2017-04-01

    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in Khibini Mountains by different avalanche scenarios and discuss the technical procedure and obtained results. RAMMS results were compared with field observations data and values received with Russian well-known one dimensional avalanche models. In the Caucasus, Russia, new ski resorts are being under the development which is impossible without avalanche protection. The choice of the avalanche mitigation type has to be done by experts depending on many factors. Within the ski resort Arkhyz, Caucasus we implemented RAMMS into the procedure of the structural measures type decision making. RAMMS as well as Russian well-known one-dimensional models were used to calculate the key input parameters for structures designing. The calculation results were coupled with field observations data and historical records. Finally we suggested the avalanche protection plan for the area of interest. The interpretation of RAMMS simulations including mitigation structures has been made in order to assess the reliability of the proposed protection.

  14. Monolithically interconnected silicon-film™ module technology

    NASA Astrophysics Data System (ADS)

    DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.

    1999-03-01

    AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.

  15. Laser-zone growth in a Ribbon-To-Ribbon, RTR, process silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1977-01-01

    A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.

  16. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  17. Mechanism of the growth of amorphous and microcrystalline silicon from silicon tetrafluoride and hydrogen

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Chen, J.; Campbell, I. H.; Fauchet, P. M.; Wagner, S.

    1990-02-01

    We study the growth of amorphous (a-Si:H,F) and of microcrystalline (μc-Si) silicon over trench patterns in crystalline silicon substrates. We vary the conditions of the SiF4-H2 glow discharge from deposition to etching. All deposited films form lips at the trench mouth and are uniformly thick on the trench walls. Therefore, surface diffusion is not important. The results of a Monte Carlo simulation suggest that film growth is governed by a single growth species with a low (˜0.2) sticking coefficient, in combination with a highly reactive etching species.

  18. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  19. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  20. Boron diffusion in silicon devices

    DOEpatents

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  1. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  2. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.

    PubMed

    Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P

    2012-12-12

    Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.

  3. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} formore » 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.« less

  4. Avalanche mode of motion - Implications from lunar examples.

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as 'efficient' as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  5. Avalanche mode of motion: Implications from lunar examples

    USGS Publications Warehouse

    Howard, K.A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as "efficient" as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  6. Avalanches and scaling collapse in the large-N Kuramoto model

    NASA Astrophysics Data System (ADS)

    Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.

    2018-04-01

    We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.

  7. Measurement of insulation integrity of IUE camera tube facsimiles by partial discharges method and diffusion of gases through various silicone rubbers

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1977-01-01

    Several dummy tubes imitating the IUE Camera System design were encapsulated with Solithane 2, Conathane EN-11, Green and Black Hysols and SMRD 432. Various flaws were purposefully placed in some of these. Partial discharge testing in vacuum under direct voltage conditions was carried once a week for 12 weeks, 15 kv dc being applied during normal working hours for 40 hours duration per week. None of the units showed much damage during this time judging by the P.D. energy histograms. A more complete mathematical presentation is given on diffusion and permeation than previously. Measurements of diffusion constants for various silicone rubbers are carried out by the Time-Lag method and compared to other determinations in the literature. Calculations of the time required for diffusion through a thick wall are demonstrated in the long time approximation and for dimensions pertaining to void and wall sizes of a delamination problem in the LANDSAT-C vidicon tubes. An actual delaminated LANDSAT-C tube and some facsimiles are immersed in vacuum for long periods and tested for catastrophic breakdown due to diffusion of gas, by application of high voltage.

  8. Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry.

    PubMed

    Muramoto, Shin; Sisco, Edward

    2015-08-18

    Age dating of fingerprints could have a significant impact in forensic science, as it has the potential to facilitate the judicial process by assessing the relevance of a fingerprint found at a crime scene. However, no method currently exists that can reliably predict the age of a latent fingerprint. In this manuscript, time-of-flight secondary ion imaging mass spectrometry (TOF-SIMS) was used to measure the diffusivity of saturated fatty acid molecules from a fingerprint on a silicon wafer. It was found that their diffusion from relatively fresh fingerprints (t ≤ 96 h) could be modeled using an error function, with diffusivities (mm(2)/h) that followed a power function when plotted against molecular weight. The equation x = 0.02t(0.5) was obtained for palmitic acid that could be used to find its position in millimeters (where the concentration is 50% of its initial value or c0/2) as a function of time in hours. The results show that on a clean silicon substrate, the age of a fingerprint (t ≤ 96 h) could reliably be obtained through the extent of diffusion of palmitic acid.

  9. Development of a novel combined fluorescence and reflectance spectroscopy system for guiding high-grade glioma resections: confirmation of capability in lab experiments

    NASA Astrophysics Data System (ADS)

    Mousavi, Monirehalsadat; Xie, Haiyan; Xie, Zhiyuan; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2013-11-01

    Total resection of glioblastoma multiform (GBM), the most common and aggressive malignant brain tumor, is challenging among other things due to difficulty in intraoperative discrimination between normal and residual tumor cells. This project demonstrates the potential of a system based on a combination of autofluorescence and diffuse reflectance spectroscopy to be useful as an intraoperative guiding tool. In this context, a system based on 5 LEDs coupled to optical fibers was employed to deliver UV/visible light to the sample sequentially. Remitted light from the tissue; including diffuse reflected and fluorescence of endogenous and exogenous fluorophores, as well as its photobleaching product, is transmitted to one photodiode and four avalanche photodiodes. This instrument has been evaluated with very promising results by performing various tissue-equivalent phantom laboratory and clinical studies on skin lesions.

  10. Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu

    2016-08-15

    We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less

  11. Ultra-Shallow Depth Profiling of Arsenic Implants in Silicon by Hydride Generation-Inductively Coupled Plasma Atomic Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi

    1995-08-01

    High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.

  12. Predictions of Microstreamer Properties in Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Xu, Xudong; Kushner, Mark J.

    1997-10-01

    Dielectric Barrier Discharges (DBD) are being investigated for plasma remediation of toxic gases. The microstreamers in DBD's (10s - 100s μm's diameter) are terminated by dielectric charging which removes voltage from the gap. The microstreamers grow by radial diffusion into regions of high electric field and subsequent avalanche. 1-d and 2-d plasma hydrodynamics models have been developed to investigate these processes in DBDs sustained in air, nonattaching gases (Ar, N_2) and highly attaching gas mixtures (10s to 100s ppm of CCl_4). We found that microstreamers continue to radially expand as long as there is sufficient applied voltage in the absence of dielectric charging in advance of the core of the microstreamer. This observation implies that there is a finite surface conductivity which allows radial flow of current and subsequent charging of the dielectric. Predictions for microstreamer radii using this process agree well with experiments.(J. Coogan, Trans. Plasma Sci. 24, 91 (1996)) We also found that in electronegative gases, voltage collapes in the core of the streamer results in cooling and rapid attachment of electrons, creating a core which is largely converted to a negative ion-positive ion plasma, surrounded by an avalanching shell of hot electrons.

  13. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  14. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  15. Long-distance entanglement-based quantum key distribution experiment using practical detectors.

    PubMed

    Takesue, Hiroki; Harada, Ken-Ichi; Tamaki, Kiyoshi; Fukuda, Hiroshi; Tsuchizawa, Tai; Watanabe, Toshifumi; Yamada, Koji; Itabashi, Sei-Ichi

    2010-08-02

    We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.

  16. Annual Conference on Nuclear and Space Radiation Effects, 15th, University of New Mexico, Albuquerque, N. Mex., July 18-21, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    Simons, M.

    1978-01-01

    Radiation effects in MOS devices and circuits are considered along with radiation effects in materials, space radiation effects and spacecraft charging, SGEMP, IEMP, EMP, fabrication of radiation-hardened devices, radiation effects in bipolar devices and circuits, simulation, energy deposition, and dosimetry. Attention is given to the rapid anneal of radiation-induced silicon-sapphire interface charge trapping, cosmic ray induced errors in MOS memory cells, a simple model for predicting radiation effects in MOS devices, the response of MNOS capacitors to ionizing radiation at 80 K, trapping effects in irradiated and avalanche-injected MOS capacitors, inelastic interactions of electrons with polystyrene, the photoelectron spectral yields generated by monochromatic soft X radiation, and electron transport in reactor materials.

  17. On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs

    NASA Astrophysics Data System (ADS)

    Schroeder, Edward; Mauskopf, Philip; Pilyavsky, Genady; Sinclair, Adrian; Smith, Nathan; Bryan, Sean; Mani, Hamdi; Morozov, Dmitry; Berggren, Karl; Zhu, Di; Smirnov, Konstantin; Vakhtomin, Yuriy

    2016-08-01

    We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.

  18. Simulation of Silicon Photomultiplier Signals

    NASA Astrophysics Data System (ADS)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Lohner, Herbert; Schaart, Dennis R.

    2009-12-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.

  19. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  20. Risk assessment in the North Caucasus ski resorts

    NASA Astrophysics Data System (ADS)

    Komarov, Anton Y.; Seliverstov, Yury G.; Glazovskaya, Tatyana G.; Turchaninova, Alla S.

    2016-10-01

    Avalanches pose a significant problem in most mountain regions of Russia. The constant growth of economic activity, and therefore the increased avalanche hazard, in the North Caucasus region lead to demand for the development of large-scale avalanche risk assessment methods. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments.The requirement of natural hazard risk assessments is determined by the Federal Law of the Russian Federation (Federal Law 21.12.1994 N 68-FZ, 2016). However, Russian guidelines (SNIP 11-02-96, 2013; SNIP 22-02-2003, 2012) are not clearly presented concerning avalanche risk assessment calculations. Thus, we discuss these problems by presenting a new avalanche risk assessment approach, with the example of developing but poorly researched ski resort areas. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (appropriate, acceptable and inappropriate) and to suggest methods to decrease the individual risk to an acceptable level or better. The analysis makes it possible to compare risk quantitative data obtained from different regions, analyze them and evaluate the economic feasibility of protection measures.

  1. Disordered artificial spin ices: Avalanches and criticality (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less

  2. Preservative loss from silicone tubing during filling processes.

    PubMed

    Saller, Verena; Matilainen, Julia; Rothkopf, Christian; Serafin, Daniel; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2017-03-01

    Significant loss of preservative was observed during filling of drug products during filling line stops. This study evaluated the losses of three commonly used preservatives in protein drugs, i.e. benzyl alcohol, phenol, and m-cresol. Concentration losses during static incubation were quantified and interpreted with regard to the potential driving forces for the underlying sorption, diffusion, and desorption steps. Partitioning from the solution into the silicone polymer was identified as the most decisive parameter for the extent of preservative loss. Additionally, the influence of tubing inner diameter, starting concentration as well as silicone tubing type was evaluated. Theoretical calculations assuming equilibrium between solution and tubing inner surface and one-directional diffusion following Fick's first law were used to approximate experimental data. Since significant losses were found already after few minutes, adequate measures must be taken to avoid deviations during filling of preservative-containing protein solutions that may impact product quality or antimicrobial efficacy. As a possible alternative to the highly permeable silicone tubing, a specific make of fluoropolymer tubing was identified being suitable for peristaltic pumps and not showing any preservative losses. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Wet and full-depth glide snow avalanche onset monitoring and detection with ground based Ku-band radar

    NASA Astrophysics Data System (ADS)

    Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena

    2017-04-01

    Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones prone to wet and full-depth glide snow avalanches in the near future. Therefore in the current winter season, we attempt to automatically detect snowpack displacement and avalanche releases at Dorfberg. Automatic warnings issued by the radar about the presence and amount of displacement and information about location and altitude of creeping regions as well as released avalanches will be combined with simulated LWC (Liquid Water Content) for the observed area. This slope-specific knowledge will be evaluated for inclusion into the more regional avalanche bulletin issued by SLF. Two cameras capture photographs at 1 and 10 minute intervals respectively to reference the opening of optically visible tensile cracks and triggering of avalanches. [1] C. Lucas, Y. Buehler, A. Marino, I. Hajnsek: Investigation of Snow Avalanches wit Ground Based Ku-band Radar, EUSAR 2016; 11th European Conference on Synthetic Aperture Radar; Proceedings of, 2016 [2] R. Bamler, P. Hartl: Synthetic aperture radar interferometry, Inverse Problems, Vol. 14 R1-R54, 1988 [3] Y. Buehler, C. Pielmeier, R. Frauenfelder, C. Jaedicke, G. Bippus, A. Wiesmann and R. Caduff: Improved Alpine Avalanche Forecast Service AAF, Final Report, European Space Agency ESA, 2014 [4] R. Caduff, A. Wiesmann, Y. Buehler, and C. Pielmeier: Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry, Geophysical Research Letters, vol. 42, no. 3, 2015. [5] R. Caduff, A. Wiesmann, Y. Bühler, C. Bieler, and P. Limpach, "Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow," in Interpraevent, 2016, pp. 239-248.

  4. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-08-01

    ×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).

  5. Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2015-01-01

    Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).

  6. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  7. Information processing occurs via critical avalanches in a model of the primary visual cortex

    NASA Astrophysics Data System (ADS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  8. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  9. Damage coefficients in low resistivity silicon. [solar cells

    NASA Technical Reports Server (NTRS)

    Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.

    1975-01-01

    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.

  10. Particle-size segregation and diffusive remixing in shallow granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  11. Assessment and prevention of the avalanche risk on medium-high mountain from a geo-historical point of view. The Vosges range (France) as a case study.

    NASA Astrophysics Data System (ADS)

    Giacona, Florie; Martin, Brice; David, Pierre-Marie

    2010-05-01

    To mention avalanche risks in the Vosges generally causes certain disbelief because of its modest height. Moreover, as far as natural risks are concerned, and especially the avalanche risk, medium-high mountains are not usually studied. The attention is more focused on the spectacular and destructive phenomena that occur in highest mountains such as the Alps or the Pyrenees. However, in January and February 2000, fifteen people were victims of avalanches and three of them died. These accidents have suddenly drawn attention to the fact that avalanche risk is underestimated. In opposition to the Alps and Pyrenees there is no study or systematic inventory of avalanches in the medium-high mountain ranges. Moreover, the many research and methodological articles dedicated to studies on avalanches in the high mountain ranges do not, unfortunately, raise any concerns about medium-high mountain ranges. So, we had to develop a new research method based on handwritten, printed, and oral sources as well as on observations. The results of this historical research exceeded all expectations. About 300 avalanche events have been reported since the end of the 18th century; they happened in about 90 avalanche paths. Spatial and temporal distributions of the avalanche events can be explained by climate, vulnerability and land use evolutions. The vulnerability has evolved since the 18th century: material vulnerability decreased whereas human vulnerability increased due to the expansion of winter sports. Finally we focus our study on the perception of the avalanche risk by the winter sports adepts in the Vosges mountains. Indeed, at the beginning of this research, we were directly confronted to a lack of knowledge, or even to an ignorance, of the avalanche risk. Several factors contribute to this situation among which the topography. Even though some places in the Vosges mountains look like the alpine topography, most of the summits are rounded. Furthermore, this mountain presents an annual and seasonal variability of snowfall and snow height. And the summits and slopes which present an avalanche risk can be easily reached in wintertime thanks to car parks close to the summits and the clearing of snow from the roads. A study is therefore being carried out in order to understand the mechanisms of perception and awareness of the avalanche risk. This is the first step towards the development of a new prevention method adapted to the recreational public in medium-high mountains.

  12. Explosive-residue compounds resulting from snow avalanche control in the Wasatch Mountains of Utah

    USGS Publications Warehouse

    Naftz, David L.; Kanagy, Leslie K.; Susong, David D.; Wydoski, Duane S.; Kanagy, Christopher J.

    2003-01-01

    A snow avalanche is a powerful force of nature that can play a significant role in developing mountain landscapes (Perla and Martinelli, 1975). More importantly, loss of life can occur when people are caught in the path of snow avalanches (Grossman, 1999). Increasing winter recreation, including skiing, snowboarding, snowmobiling, snowshoeing, and climbing in mountainous areas, has increased the likelihood of people encountering snow avalanches (fig. 1). Explosives are used by most ski areas and State highway departments throughout the Western United States to control the release of snow avalanches, thus minimizing the loss of human life during winter recreation and highway travel (fig. 2).Common explosives used for snow avalanche control include trinitrotoluene (TNT), pentaerythritoltetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), tetrytol, ammonium nitrate, and nitroglycerin (Perla and Martinelli, 1975). During and after snowfall or wind loading of potential avalanche slopes, ski patrollers and Utah Department of Transportation personnel deliver explosive charges onto predetermined targets to artificially release snow avalanches, thereby rendering the slope safer for winter activities. Explosives can be thrown by hand onto target zones or shot from cannons for more remote delivery of explosive charges. Hand-delivered charges typically contain about 2 pounds of TNT or its equivalent (Perla and Martinelli, 1975).Depending on the size of the ski area, acreage of potential avalanche terrain, and weather conditions, the annual quantity of explosives used during a season of snow avalanche control can be substantial. For example, the three ski areas of Alta, Snowbird, and Brighton, plus the Utah Department of Transportation, may use as many as 11,200 hand charges per year (Wasatch Powderbird Guides, unpub. data, 1999) for snow avalanche control in Big and Little Cottonwood Canyons (fig. 3). If each charge is assumed to weigh 2 pounds, this equates to about 22,400 pounds of explosive hand charges per year. In addition, 2,240 to 3,160 Avalauncher rounds and 626 to 958 military artillery rounds (explosive mass not specified) are used each year by the three ski areas and the Utah Department of Transportation for snow avalanche control in Big and Little Cottonwood Canyons (Wasatch Powderbird Guides, unpub. data, 1999). The other ski area in Big Cottonwood Canyon, Brighton, uses about 2,000 pounds of explosives per year for snow avalanche control (Michele Weidner, Cirrus Ecological Solutions consultant, written commun., 2001).

  13. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of intrinsic avalanche noise.

    PubMed

    Hunt, D C; Tanioka, Kenkichi; Rowlands, J A

    2007-12-01

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers-veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.

  14. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years. Simple avalanche flow modeling was able to reasonably replicate Iliamna avalanches and can thus be applied for hazard assessments. Hazards at Iliamna Volcano are low due to its remote location; however, we emphasize the transfer potential of the methods presented here to other ice-capped volcanoes with much higher hazards such as those in the Cascades or the Andes. ?? 2007 Elsevier B.V. All rights reserved.

  15. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comesmore » with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.« less

  16. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  17. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  18. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    PubMed

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  19. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Crmore » in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.« less

  20. Fluorination of silicone rubber by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Fielding, Jennifer Chase

    Plasma polymerized fluorocarbon (PPFC) films were deposited onto various silicone rubber substrates, including O-rings, to decrease oil uptake. Depositions were performed using a radio frequency (rf)-powered plasma reactor and various fluorocarbon monomers, such as C2F6, C2F 5H, C3F6, and 1H,1H,2H-perfluoro-1-dodecene. PPFC films which were most promising for inhibiting oil uptake were deposited with 1H,1H,2H-perfluoro-1-dodecene, and were composed predominantly of perfluoromethylene (CF2) species. These films displayed low critical surface energies (as low as 2.7 mJ/m2), and high contact angles with oil (84°), which were correlated with the amount of CF2 species present in the film. For the films with the highest degree of CF2 (up to 67%), CF2 chains may have been oriented slightly perpendicular to the substrate and terminated by CF3 species. Adhesion of the PPFC films directly to silicone rubber was found to be poor. However, when a plasma polymerized hydrocarbon interlayer was deposited on the silicone rubber prior to the fluorocarbon films, adhesion was excellent. O-rings coated with multilayer fluorocarbon films showed 2.6% oil uptake after soaking in oil for 100 hrs at 100°C. Due to variability in data, and the low quality of the industrial grade silicone rubber, the oil uptake mechanism was determined to be from oil flowing through flaws in the film due to defects within the substrate, not from generalized diffusion through the film. This mechanism was confirmed using higher quality silicone rubber, which showed little or no oil diffusion. Therefore, this film may perform well as an oil-repelling barrier when deposited on a high quality silicone rubber.

  1. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  2. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  3. Formation of copper precipitates in silicon

    NASA Astrophysics Data System (ADS)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  4. IFKIS a basis for organizational measures in avalanche risk management

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  5. Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.

    2004-01-01

    In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.

  6. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  7. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  8. Strong Surface Diffusion Mediated Glancing-Angle Deposition: Growth, Recrystallization and Reorientation of Tin Nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Hua; Shi, Yi-Jian; William, Chu; Yigal, Blum

    2008-01-01

    Different from usual glancing-angle deposition where low surface diffusion is necessary to form nanorods, strong surface diffusion mediated glancing-angle deposition is exemplified by growing tin nanorod films on both silicon and glass substrates simultaneously via thermal evaporation. During growth, the nanorods were simultaneously baked by the high-temperature evaporator, and therefore re-crystallized into single crystals in consequence of strong surface diffusion. The monocrystalline tin nanorods have a preferred orientation perpendicular to the substrate surface, which is quite different from the usual uniformly oblique nanorods without recrystallization.

  9. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  10. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  11. A practitioner's tool for assessing glide crack activity

    USGS Publications Warehouse

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2010-01-01

    Glide cracks can result in full-depth glide avalanche release. Avalanches from glide cracks are notoriously difficult to forecast, but are a reoccurring problem in a number of different avalanche forecasting programs across a range of snow climates. Despite this, there is no consensus for how to best manage, mitigate, or even observe glide cracks and the potential resultant avalanche activity. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity, so frequent measuring of glide crack movement provides an index of instability. Therefore, a comprehensive avalanche program with glide crack avalanche activity, should at the least, undertake some form of direct monitoring of glide crack movement. In this paper we present a simple, cheap and repeatable method to track glide crack activity using a series of stakes, reflectors and a laser rangefinder (LaserTech TruPulse360B) linked to a GPS (Trimble Geo XH). We tested the methodology in April 2010, on a glide crack above the Going to the Sun Road in Glacier National Park, Montana, USA. This study suggests a new method to better track the development and movement of glide cracks. It is hoped that by introducing a workable method to easily record glide crack movement, avalanche forecasters will improve their understanding of when, or if, avalanche activity will ensue. Our initial results suggest that these new observations, when combined with local micrometeorological data will result in improved process understanding and forecasting of these phenomena.

  12. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  13. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.

    PubMed

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-09

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  14. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  15. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  16. Ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2001-01-01

    An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  17. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  18. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  19. Advanced detectors and signal processing for bubble memories

    NASA Technical Reports Server (NTRS)

    Kryder, M. H.; Rasky, P. H. L.; Greve, D. W.

    1985-01-01

    The feasibility of combining silicon and magnetic bubble technologies is demonstrated. Results of bubble film annealing indicate that a low temperature silicon on garnet technology is the most likely one to succeed commercially. Annealing ambients are also shown to have a major effect on the magnetic properties of bubble films. Functional MOSFETs were fabricated on bubble films coated with thick (approximately 1 micron) SiO2 layers. The two main problems with these silicon on garnet MOSFETs are low electron mobilities and large gate leakage currents. Results indicate that the laser recrystallized silicon and gate oxide (SiO2) layers are contaminated. The data suggest that part of the contaminating ions originate in the sputtered oxide spacer layer and part originates in the bubble film itself. A diffusion barrier, such as silicon nitride, placed between the bubble film and the silicon layer should eliminate the contamination induced problem.

  20. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement.

    PubMed

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-10-15

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.

  1. Avalanche risk in backcountry terrain based on usage frequency and accident data

    NASA Astrophysics Data System (ADS)

    Techel, F.; Zweifel, B.; Winkler, K.

    2014-08-01

    In Switzerland, the vast majority of avalanche accidents occurs during recreational activities. Risk analysis studies mostly rely on accident statistics without considering exposure (or the elements at risk), i.e. how many and where people are recreating. We compared the accident data (backcountry touring) with reports from two social media mountaineering networks - bergportal.ch and camptocamp.org. On these websites, users reported more than 15 000 backcountry tours during the five winters 2009/2010 to 2013/2014. We noted similar patterns in avalanche accident data and user data like demographics of recreationists, distribution of the day of the week (weekday vs. weekend) or weather conditions (fine vs. poor weather). However, we also found differences such as the avalanche danger conditions on days with activities and accidents, but also the geographic distribution. While backcountry activities are concentrated in proximity to the main population centres in the West and North of the Swiss Alps, a large proportion of the severe avalanche accidents occurred in the inner-alpine, more continental regions with frequently unfavorably snowpack structure. This suggests that even greater emphasis should be put on the type of avalanche problem in avalanche education and avalanche forecasting to increase the safety of backcountry recreationists.

  2. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    NASA Astrophysics Data System (ADS)

    Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry

    2018-03-01

    Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  3. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

  4. The effect of Low Earth Orbit exposure on some experimental fluorine and silicon-containing polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Young, Philip R.; Kalil, Carol G.; Chang, Alice C.; Siochi, Emilie J.

    1994-01-01

    Several experimental fluorine and silicon-containing polymers in film form were exposed to low Earth orbit (LEO) on a Space Shuttle flight experiment (STS-46, Evaluation of Oxygen Interaction with Materials, EOIM-3). The environmental parameters of primary concern were atomic oxygen (AO) and ultraviolet (UV) radiation. The materials were exposed to 2.3 plus or minus 0.1 x 10(exp 20) oxygen atoms/sq cm and 30.6 UV sun hours during the flight. In some cases, the samples were exposed at ambient, 120 C and 200 C. The effects of exposure on these materials were assessed utilizing a variety of characterization techniques including optical, scanning electron (SEM) and scanning tunneling (STM) microscopy, UV-visible (UV-VIS) transmission, diffuse reflectance infrared (DR-FTIR), x-ray photoelectron (XPS) spectroscopy, and in a few cases, gel permeation chromatography (GPC). In addition, weight losses of the films, presumably due to AO erosion, were measured. The fluorine-containing polymers exhibited significant AO erosion and exposed films were diffuse or 'frosted' in appearance and consequently displayed dramatic reductions in optical transmission. The silicon-containing films exhibited minimum AO erosion and the optical transmission of exposed films was essentially unchanged. The silicon near the exposed surface in the films was converted to silicate/silicon oxide upon AO exposure which subsequently provided protection for the underlying material. The silicon-containing epoxies are potentially useful as AO resistant coatings and matrix resins as they are readily processed into carbon fiber reinforced composites and cured via electron radiation.

  5. The Avalanche Catastrophe of El Teniente-chile: August 8 of 1944.

    NASA Astrophysics Data System (ADS)

    Vergara, J.; Baros, M.

    The avalanche of El Teniente-Chile (~34S) August 8 of 1944, was the most serious avalanche accident in Chile of the last 100 years. On the night of August 8, 1944, a major avalanche impacted a The Sewell, a worked village of the Copper Mine of El Teniente, there were 102 fatalities, 8 building, one school and one bridged de- stroyed. Due to a storm over the central part of Chile where intense precipitation fall over the Andes mountains during nine days. Historical precipitation records near to Sewell shows that total rainfall during the storms was 299mm (La Rufina) and 349mm (Bullileo), and the day before of avalanche the 24 hours rain intensity was 93mm. The Weilbull statistical analysis of monthly snowfall (water equivalent) record in Sewell from 1912-2001 show that the total August 1944 snowfall (621mm) was the larger of the all historical records and the return period is close one events in 180 years, and the annual snowfall during 1944 was 1140mm and return periods was 3.8 years. KEYWRODS: Chile, Avalanches, Andes Mountains, Avalanche Disaster, Historical Snow Records.

  6. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  7. A solid-state amorphous selenium avalanche technology for low photon flux imaging applications

    PubMed Central

    Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2010-01-01

    Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217

  8. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C. Y.

    1977-01-01

    A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance.

  9. First approximations in avalanche model validations using seismic information

    NASA Astrophysics Data System (ADS)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position of the flow in the slope, and make observations of the internal flow dynamics, especially flow regimes transitions, which depend on the slope-perpendicular energy fluxes induced by collisions at the basal boundary. The recorded data over several experimental seasons provide a catalogue of seismic data from different types and sizes of avalanches triggered at the VDLS experimental site. These avalanches are recorded also by the SLF instrumentation (FMCW radars, photography, photogrammetry, video, videogrammetry, pressure sensors). We select the best-quality avalanche data to model and establish comparisons. All this information allows us to calibrate parameters governing the internal energy fluxes, especially parameters governing the interaction of the avalanche with the incumbent snow cover. For the comparison between the seismic signal and the RAMMS models, we are focusing at the temporal evolution of the flow, trying to find the same arrival times of the front at the seismic sensor location in the avalanche path. We make direct quantitative comparisons between measurements and model outputs, using modelled flow height, normal stress, velocity, and pressure values, compared with the seismic signal, its envelope and its running spectrogram. In all cases, the first comparisons between the seismic signal and RAMMS outputs are very promising.

  10. Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane

    ERIC Educational Resources Information Center

    Wilkins, Andrew; Parmenter, Emily

    2012-01-01

    A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

  11. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    DOT National Transportation Integrated Search

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  12. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  13. Avalanche risk assessment in Russia

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended. The case studies of specific territories are performed using large-scale risk assessment methods. Thus, we discuss these problems by presenting an avalanche risk assessment approach on example of the developing but poorly researched ski resort areas in the North Caucasus. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (acceptable, admissible and unacceptable) and to suggest methods to decrease the individual risk to acceptable level or better. It makes possible to compare risk quantitative data obtained from different mountain regions, analyze it and evaluate the economic feasibility of protection measures. At present, we are developing methods of avalanche risk assessment in economic performance. It conceder costs of objects located in avalanche prone area, traffic density values and probability of financial loss.

  14. Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.

    In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4x10-6 Ω-cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of +/-0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13°C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.

  15. Alternate methods of applying diffusants to silicon solar cells. [screen printing of thick-film paste materials and vapor phase transport from solid sources

    NASA Technical Reports Server (NTRS)

    Brock, T. W.; Field, M. B.

    1979-01-01

    Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.

  16. Advanced Avalanche Safety Equipment of Backcountry Users: Current Trends and Perceptions.

    PubMed

    Ng, Pearlly; Smith, William R; Wheeler, Albert; McIntosh, Scott E

    2015-09-01

    Backcountry travelers should carry a standard set of safety gear (transceiver, shovel, and probe) to improve rescue chances and reduce mortality risk. Many backcountry enthusiasts are using other advanced equipment such as an artificial air pocket (eg, the AvaLung) or an avalanche air bag. Our goal was to determine the numbers of backcountry users carrying advanced equipment and their perceptions of mortality and morbidity benefit while carrying this gear. A convenience sample of backcountry skiers, snowboarders, snowshoers, and snowmobilers was surveyed between February and April 2014. Participants of this study were backcountry mountain users recruited at trailheads in the Wasatch and Teton mountain ranges of Utah and Wyoming, respectively. Questions included prior avalanche education, equipment carried, and perceived safety benefit derived from advanced equipment. In all, 193 surveys were collected. Skiers and snowboarders were likely to have taken an avalanche safety course, whereas snowshoers and snowmobilers were less likely to have taken a course. Most backcountry users (149, 77.2%), predominantly skiers and snowboarders, carried standard safety equipment. The AvaLung was carried more often (47 users) than an avalanche air bag (10 users). The avalanche air bag had a more favorable perceived safety benefit. A majority of participants reported cost as the barrier to obtaining advanced equipment. Standard avalanche safety practices, including taking an avalanche safety course and carrying standard equipment, remain the most common safety practices among backcountry users in the Wasatch and Tetons. Snowshoers remain an ideal target for outreach to increase avalanche awareness and safety. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge

    USGS Publications Warehouse

    Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris

    2006-01-01

    In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.

  18. Seismic spectrograms analysis applying the Hough transform to estimate the front speed of mass movements: Application to snow avalanches

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, L.; Suriñach-Cornet, E., Sr.

    2017-12-01

    Seismic signals generated by snow avalanches and other mass movements are analyzed in their spectrogram representation. Spectrogram displays the evolution in time of the frequency content of the signals. The spectrogram of a seismic signal of a station to which a sliding mass, such as a snow avalanche, approaches, exhibits a triangular time / frequency signature. This increase in its higher frequency content over time is a consequence of the attenuation of the waves propagating in a media. Recognition of characteristic footprints in a spectrogram could help to identify and characterize diverse mass movement events such as landslides or snow avalanches. In order to recognize spectrogram features of seismic signals of Alpine snow avalanches, we propose an algorithm based on the Hough transform. The proposed algorithm is applied on an edge representation image of the seismic spectrogram obtained after fixing a threshold filter to the spectrogram, which enhances the most interesting frequencies of the seismogram that appear over time. This enables us to identify parameters (slopes) that correspond to the speeds associated with the type of snow avalanches, such as, powder, dense or transitional snow avalanches. The data analyzed in this work correspond to twenty different seismic signals generated by snow avalanches artificially released in the experimental site of Vallée de la Sionne (VDLS, SLF, Switzerland). The shape of the signal spectrograms are linked to the flow regimes previously identified. Our findings show that some ranges of speeds are inherent to the type of avalanche.

  19. Current understanding of point defects and diffusion processes in silicon

    NASA Technical Reports Server (NTRS)

    Tan, T. Y.; Goesele, U.

    1985-01-01

    The effects of oxidation of Si which established that vacancies (V) and Si self interstitials (I) coexist in Si at high temperatures under thermal equilibrium and oxidizing conditions are discussed. Some essential points associated with Au diffusion in Si are then discussed. Analysis of Au diffusion results allowed a determination of the I component and an estimate of the V component of the Si self diffusion coefficient. A discussion of theories on high concentration P diffusion into Si is then presented. Although presently there still is no theory that is completely satisfactory, significant progresses are recently made in treating some essential aspects of this subject.

  20. Robust snow avalanche detection using machine learning on infrasonic array data

    NASA Astrophysics Data System (ADS)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially trained by using characteristic data features from known avalanche and non-avalanche events. Data features are obtained from output signals of the source localization algorithm or from Fourier or time domain processing and support the learning phase of the system. A significantly improved detection rate as well as a reduction of the false alarm rate was achieved compared to previous approaches.

  1. Transient events in bright debris discs: Collisional avalanches revisited

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.

    2018-01-01

    Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an avalanche would be a two-belt structure, with an inner belt (at 1 or 10 au for the "warm" and "cold" disc cases, respectively) of fractional luminosity f ≳ 10-4 where breakups of massive planetesimals occur, and a more massive outer belt, with τ of a few 10-3, into which the avalanche chain reaction develops and propagates.

  2. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M.; Zhao, W.; Tanioka, K.

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less

  3. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  4. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites

    PubMed Central

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, K. N.; Galkin, N. G.; Gutakovskii, A. K.

    2015-01-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p+-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3–4 and 15–20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 109 cm × Hz1/2/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2. PMID:26434582

  5. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  6. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range

    NASA Astrophysics Data System (ADS)

    Hahn, L.; Fuchs, F.; Kirste, L.; Driad, R.; Rutz, F.; Passow, T.; Köhler, K.; Rehm, R.; Ambacher, O.

    2018-04-01

    AlxGa1-xN based avalanche photodiodes grown on sapphire substrate with Al-contents of x = 0.65 and x = 0.60 have been examined under back- and frontside illumination with respect to their avalanche gain properties. The photodetectors suitable for the solar-blind ultraviolet spectral regime show avalanche gain for voltages in excess of 30 V reverse bias in the linear gain mode. Devices with a mesa diameter of 100 μm exhibit stable avalanche gain below the break through threshold voltage, exceeding a multiplication gain of 5500 at 84 V reverse bias. A dark current below 1 pA can be found for reverse voltages up to 60 V.

  7. 78 FR 43216 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... tissue for grafting. Potential Commercial Applications: Tissue engineering. Simulation of physiological... oxygen diffusivity silicone hydrogel support structures that mimic tissue vasculature (e.g., capillary...

  8. Studies of implanted iron in silicon by channeling and Rutherford backscattering

    NASA Technical Reports Server (NTRS)

    Wang, P. W.; Cheng, H. S.; Gibson, W. M.; Corbett, J. W.

    1986-01-01

    Different amounts of 100-keV iron ions have been implanted into high-resistivity p-type FZ-silicon samples. The implantation damage, recovery of damage during various annealing periods and temperatures, movement of iron atoms under annealing and oxidation, and the kinds of defects created after implantation, annealing, or oxidation are all investigated by channeling and backscattering measurements. It is found that the critical fluence of 100-keV iron implanted into silicon at room temperature is about 2.5 x 10 to the 14th Fe/sq cm, and that iron atoms are gettered by silicon oxidation. In this supersaturated region, iron atoms diffuse slightly towards bulk silicon during high-temperature annealing (greater than or equal to 1100 C) but not at all during low-temperature annealing (less than or equal to 1000 C) in dry nitrogen ambient.

  9. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement

    PubMed Central

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-01-01

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447

  10. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  11. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    PubMed

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.

  12. Development and fabrication of a high current, fast recovery power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.

    1983-01-01

    A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.

  13. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  14. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  15. Avalanche risk assessment - a multi-temporal approach, results from Galtür, Austria

    NASA Astrophysics Data System (ADS)

    Keiler, M.; Sailer, R.; Jörg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S.

    2006-07-01

    Snow avalanches pose a threat to settlements and infrastructure in alpine environments. Due to the catastrophic events in recent years, the public is more aware of this phenomenon. Alpine settlements have always been confronted with natural hazards, but changes in land use and in dealing with avalanche hazards lead to an altering perception of this threat. In this study, a multi-temporal risk assessment is presented for three avalanche tracks in the municipality of Galtür, Austria. Changes in avalanche risk as well as changes in the risk-influencing factors (process behaviour, values at risk (buildings) and vulnerability) between 1950 and 2000 are quantified. An additional focus is put on the interconnection between these factors and their influence on the resulting risk. The avalanche processes were calculated using different simulation models (SAMOS as well as ELBA+). For each avalanche track, different scenarios were calculated according to the development of mitigation measures. The focus of the study was on a multi-temporal risk assessment; consequently the used models could be replaced with other snow avalanche models providing the same functionalities. The monetary values of buildings were estimated using the volume of the buildings and average prices per cubic meter. The changing size of the buildings over time was inferred from construction plans. The vulnerability of the buildings is understood as a degree of loss to a given element within the area affected by natural hazards. A vulnerability function for different construction types of buildings that depends on avalanche pressure was used to assess the degree of loss. No general risk trend could be determined for the studied avalanche tracks. Due to the high complexity of the variations in risk, small changes of one of several influencing factors can cause considerable differences in the resulting risk. This multi-temporal approach leads to better understanding of the today's risk by identifying the main changes and the underlying processes. Furthermore, this knowledge can be implemented in strategies for sustainable development in Alpine settlements.

  16. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    USGS Publications Warehouse

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  17. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    2012-05-01

    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in relation to different drives, neuronal states and microscopic mechanisms of charge storage and release in neuronal networks.

  18. Extracting functionally feedforward networks from a population of spiking neurons

    PubMed Central

    Vincent, Kathleen; Tauskela, Joseph S.; Thivierge, Jean-Philippe

    2012-01-01

    Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits. PMID:23091458

  19. Extracting functionally feedforward networks from a population of spiking neurons.

    PubMed

    Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe

    2012-01-01

    Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits.

  20. Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon

    DTIC Science & Technology

    2011-02-12

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...material a potential candidate for a variety of optoelectronic devices. In this report, we demonstrate the capability of chalcogen (S, Se, Te...the diffusion behavior of dopants in silicon matrix. Our findings contribute to a better understanding of the mechanism of infrared absorption in

Top