Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus
2013-10-01
Signal abnormalities of the substantia nigra and the olfactory tract detected either by diffusion tensor imaging, including measurements of mean diffusivity, a parameter of brain tissue integrity, and fractional anisotropy, a parameter of neuronal fibre integrity, or transcranial sonography, were recently reported in the early stages of Parkinson's disease. In this study, changes in the nigral and olfactory diffusion tensor signal, as well as nigral echogenicity, were correlated with clinical scales of motor disability, odour function and putaminal dopamine storage capacity measured with 6-[(18)F] fluorolevodopa positron emission tomography in early and advanced stages of Parkinson's disease. Diffusion tensor imaging, transcranial sonography and positron emission tomography were performed on 16 patients with Parkinson's disease (mean disease duration 3.7 ± 3.7 years, Hoehn and Yahr stage 1 to 4) and 14 age-matched healthy control subjects. Odour function was measured by the standardized Sniffin' Sticks Test. Mean putaminal 6-[(18)F] fluorolevodopa influx constant, mean nigral echogenicity, mean diffusivity and fractional anisotropy values of the substantia nigra and the olfactory tract were identified by region of interest analysis. When compared with the healthy control group, the Parkinson's disease group showed significant signal changes in the caudate and putamen by 6-[(18)F] fluorolevodopa positron emission tomography, in the substantia nigra by transcranial sonography, mean diffusivity and fractional anisotropy (P < 0.001, P < 0.01, P < 0.05, respectively) and in the olfactory tract by mean diffusivity (P < 0.05). Regional mean diffusivity values of the substantia nigra and the olfactory tract correlated significantly with putaminal 6-[(18)F] fluorolevodopa uptake (r = -0.52, P < 0.05 and r = -0.71, P < 0.01). Significant correlations were also found between nigral mean diffusivity values and the Unified Parkinson's Disease Rating Scale motor score (r = -0.48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.
An unusual case of diffuse large B-cell lymphoma involving the vulva evaluated by 18F-FDG PET/CT.
Treglia, Giorgio; Paone, Gaetano; Perriard, Ulrike; Ceriani, Luca; Giovanella, Luca
2014-10-01
We describe an unusual case of diffuse large B-cell lymphoma involving the vulva detected and staged by F-FDG PET/CT. An 83-year-old female patient with history of endometrial carcinoma underwent F-FDG PET/CT for follow-up. PET/CT detected an area of increased F-FDG uptake corresponding to a vulvar nodule; moderate and diffuse F-FDG uptake in the bone marrow was also evident. Based on these PET/CT findings, the patient underwent biopsy of the vulvar nodule. Histology demonstrated the presence of a diffuse large B-cell lymphoma of the vulva. Bone marrow biopsy was positive for lymphoid infiltration.
A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse Grade II-III gliomas.
Isal, Sibel; Gauchotte, Guillaume; Rech, Fabien; Blonski, Marie; Planel, Sophie; Chawki, Mohammad B; Karcher, Gilles; Marie, Pierre-Yves; Taillandier, Luc; Verger, Antoine
2018-04-01
In diffuse Grade II-III gliomas, a high 3,4-dihydroxy-6-( 18 F)-fluoro-L-phenylalanine ( 18 F-FDOPA) positron emission tomography (PET) uptake, with a standardized uptake value (SUV max )/contralateral brain tissue ratio greater than 1.8, was previously found to be consistently associated with the presence of an isocitrate dehydrogenase (IDH) mutation, whereas this mutation is typically associated with a better prognosis. This pilot study was aimed to ascertain the prognostic value of this high 18 F-FDOPA uptake in diffuse Grade II-III gliomas with regard to the velocity of diameter expansion (VDE), which represents an established landmark of better prognosis when below 4 mm per year. 20 patients (42 ± 10 years, 10 female) with newly-diagnosed diffuse Grade II-III gliomas (17 with IDH mutation) were retrospectively included. All had a 18 F-FDOPA PET, quantified with SUV max ratio, along with a serial MRI enabling VDE determination. SUV max ratio was above 1.8 in 5 patients (25%) all of whom had a VDE <4 mm/year (100%) and IDH mutation (100%). Moreover, a SUV max ratio above 1.8 was associated with higher rates of VDE <4 mm/year in the overall population (45 vs 0%, p = 0.04) and also in the subgroup of patients with IDH mutation (45 vs 0%, p = 0.10). This pilot study shows that in diffuse Grade II-III gliomas, a high 18 F-FDOPA uptake would be predictive of low tumour growth, with a different prognostic significance than IDH mutation. Advances in knowledge: 18 F-FDOPA PET in a single session imaging could have prognostic value in initial diagnosis of diffuse Grade II-III gliomas.
Verger, A; Metellus, Ph; Sala, Q; Colin, C; Bialecki, E; Taieb, D; Chinot, O; Figarella-Branger, D; Guedj, E
2017-08-01
The World Health Organization Classification of Tumors of the Central Nervous System has recently been updated by the integration of diagnostic and prognostic molecular parameters, giving pivotal attention to IDH mutation as a favourable factor. Amino acid PET is increasingly used in the management of gliomas, but its prognostic value is a matter of debate. The aim of this study was to assess the relationship between IDH mutation and 18 F-FDOPA uptake on PET in newly diagnosed gliomas. A total of 43 patients, presenting with diffuse astrocytic and oligodendroglial grade II and III gliomas, reclassified according to the 2016 WHO classification of tumours of the CNS, were retrospectively included. They had all undergone 18 F-FDOPA PET at an initial stage before surgery and histological diagnosis. 18 F-FDOPA uptake values were compared between patients with and without IDH mutation in terms of maximum standardized uptake value (SUVmax) ratios between tumour and normal contralateral brain (T/N), and between tumour and striatum (T/S). Patients with IDH mutation showed higher 18 F-FDOPA T/N SUVmax ratios (1.6 vs. 1.2) and T/S SUVmax ratios (0.9 vs. 0.6) than patients without IDH mutation (p < 0.05). This study showed paradoxically higher 18 F-FDOPA uptake in diffuse grade II and III gliomas with IDH mutation. Despite evident interest in the management of gliomas, and especially in relation to posttherapy evaluation, our findings raise the question of the prognostic value of 18 F-FDOPA uptake on PET uptake in this group of patients. This may be related to differences in amino acid integration, metabolism, or cell differentiation.
Lee, Ji Young; Choi, Joon Young; Choi, Yoon-Ho; Hyun, Seung Hyup; Moon, Seung Hwan; Jang, Su Jin; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae
2013-01-01
We investigated the clinical significance of incidental diffuse thyroid uptake (DTU) on (18)F-FDG PET in subjects without a history of cancer. This study included 2062 studies from adults who underwent (18)F-FDG PET as a cancer screening program. Subjects were divided into the following two groups: with (group I) or without (group II) DTU. The presence of DTU and the thyroid visual grading score were compared with thyroid function tests, serum anti-microsomal antibody (AMA) levels, and the presence of diffuse parenchymal change (DPC) on ultrasonography (USG). DTU was found in 6.6% of the scans (137/2062). Serum thyroid stimulating hormone (TSH) and AMA levels were significantly higher in group I than in group II. Increased AMA level (55.1%) and DPC (48.7%) were more frequently found in group I (p < 0.001). The proportion of subjects with any abnormal results in serum free thyroxine, triiodothyronine, TSH, or AMA levels or DPC on USG was significantly higher in group I than in group II (71.5% vs. 10.6%, p < 0.001), and was significantly and gradually increased according to the visual grading score group (0 vs. 1-2 vs. 3-4 = 10.6% vs. 58.5% vs. 90.9%, p < 0.001). TSH and is AMA levels were significantly increased according to the visual grading score. The presence or degree of incidental DTU on (18)F-FDG PET is closely correlated with increased serum AMA and TSH levels, and the presence of DPC on USG. Therefore, the most plausible pathological cause of DTU may be cell damage by an autoimmune mechanism.
Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829
Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.
Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar
2016-09-01
Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.
Meintjes, Marguerite; Endozo, Raymond; Dickson, John; Erlandsson, Kjel; Hussain, Khalid; Townsend, Caroline; Menezes, Leon; Bomanji, Jamshed
2013-06-01
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had an accumulation of F-DOPA in the pancreas and an SUV ratio greater than 1.5, indicating focal disease with an SUV(max) more than 50% higher than that of the unaffected areas of the pancreas. The remaining 13 patients had diffuse accumulation of (18)F-DOPA in the pancreas (SUV ratio<1.3). Using this ratio, a focal lesion can be distinguished from diffuse uptake and normal pancreatic uptake. The sizes of these regions of interest varied according to the age of the child. All patients diagnosed with focal lesions underwent surgery and were cured eventually. Lesions were accurately localized by PET/CT and confirmed by histological results after surgery. Three of these patients had to undergo second (18)F-DOPA scans and second surgeries after unsuccessful excision during their first surgery. Three patients with diffuse disease underwent a partial pancreatectomy, and histological results confirmed diffuse disease. One patient was cured and two remain on high-dose diazoxide therapy because of persistent hypoglycaemia. (18)F-DOPA PET/CT offers excellent differentiation of focal from diffuse CHI, and the contrast-enhanced CT technique permits precise preoperative localization of the lesion and anatomical landmarks.
Functional imaging in hyperinsulinemic hypoglycemia after gastric bypass surgery for morbid obesity.
de Heide, Loek J M; Glaudemans, Andor W J M; Oomen, Peter H N; Apers, Jan A; Totté, Eric R E; van Beek, André P
2012-06-01
Hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass (RYGB) has been increasingly reported. It is induced by β-cell hyperplasia often referred to as nesidioblastosis. Positron emission tomography (PET) with [11C]-5-hydroxytryptophan ((11)C-HTP) and 6-[18F]fluoro-3,4-dihydroxy-l-phenylalanine ((18)F-DOPA) has been successfully applied to image neuroendocrine tumors. No data are available of the usefulness of these functional imaging techniques in post-RYGB in this new endocrine disorder, neither for diagnostic purposes nor for follow-up. We present a patient with post-RYGB hypoglycemia who underwent (11)C-HTP and (18)F-DOPA PET scintigraphy for diagnostic purposes and to evaluate the effect of additional laparoscopic adjustable banding of the pouch as a surgical therapy for this disorder. We describe a woman with biochemically confirmed post-RYGB hypoglycemia who showed diffuse uptake of the (11)C-HTP and (18)F-DOPA tracers in the entire pancreas. After failure of dietary and medical treatment options, she underwent a laparoscopic adjustable banding for pouch dilatation. Subjective improvement was noted, which coincided with decreased uptake of (18)F-DOPA and (11)C-HTP in the head of the pancreas. Functional imaging by (18)F-DOPA- and (11)C-HTP-PET can accurately visualize diffuse endocrine pancreatic activity in post-gastric bypass hyperinsulinemic hypoglycemia. Both (11)C-HTP- and (18)F-DOPA-PET imaging appear to have a similar diagnostic performance in the presented case, and uptake of both tracers potentially relates to disease activity after surgical intervention.
Wu, Xingchen; Bhattarai, Abhisek; Korkola, Pasi; Pertovaara, Hannu; Eskola, Hannu; Kellokumpu-Lehtinen, Pirkko-Liisa
2017-10-01
The aim of this study was to explore the association between liver, mediastinum and tumor 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) uptake during chemotherapy in diffuse large B cell lymphoma (DLBCL). Nineteen patients with proven DLBCL underwent positron emission tomography (PET)/X-ray computed tomography scan at baseline, 1 week and 2 cycles after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy, and again after chemotherapy completion. The mean and maximal standardized uptake value (SUVmean and SUVmax) of the liver and mediastinum were measured and correlated with the tumor SUVmax, SUVsum, whole-body metabolic tumor volume (MTVwb), and total lesion glycolysis (TLG). At baseline, both the liver and mediastinum SUVmean and SUVmax correlated inversely with the tumor MTVwb or TLG (p < 0.01 or 0.001). The liver SUVmean and SUVmax increased significantly after 1 week of R-CHOP therapy and remained at the high level until chemotherapy completion. The mediastinum SUVmean and SUVmax remained stable during chemotherapy. The tumor SUVmax, SUVsum, MTVwb, and TLG decreased significantly after 1 week of R-CHOP therapy. The change of the liver SUVmean correlated inversely with the change of tumor MTVwb and TLG after 1 week of chemotherapy (p < 0.05, respectively). The intersubject variability of liver and mediastinum [ 18 F]FDG uptake ranged from 11 to 26 %. The liver [ 18 F]FDG uptake increased significantly after R-CHOP therapy. One of the possible reasons is the distribution of a greater fraction of the tracer to healthy tissues rather than tumor after effective chemotherapy. The variability of the liver [ 18 F]FDG uptake during chemotherapy might affect the visual analysis of the interim PET scan and this needs to be confirmed in future studies with a large patient cohort. In addition, the intersubject variability of the liver and mediastinum [ 18 F]FDG uptake should be considered.
Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E
2014-03-01
Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ of 0·93 (0·81-1·00). No adverse events after administration of ferumoxytol were recorded. Ferumoxytol-enhanced whole-body diffusion-weighted MRI could be an alternative to (18)F-FDG PET/CT for staging of children and young adults with cancer that is free of ionising radiation. This new imaging test might help to prevent long-term side-effects from radiographic staging procedures. Thrasher Research Fund and Clinical Health Research Institute at Stanford University. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis
2017-01-01
Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa
2014-05-01
Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant differences in terms of (18)F-DOPA uptake were found between low- and high-grade lesions (P < 0.05). The diagnostic and therapeutic contribution of (18)F-DOPA PET/MR image fusion was relevant in 9 of 13 patients (69%). (18)F-DOPA uptake correlated significantly with progression-free survival (P = 0.004). Our results indicate that (18)F-DOPA PET/MR image fusion may be a reliable imaging biomarker of pediatric IAs. Information gathered by this combined imaging approach can be readily transferred to the everyday practice and may help clinicians to better stratify patients with IAs, especially diffuse astrocytomas and gliomatosis cerebri, for diagnostic, therapeutic, and prognostic purposes.
Vadi, Shelvin Kumar; Parihar, Ashwin Singh; Kumar, Rajender; Singh, Harmandeep; Mittal, Bhagwant Rai; Bal, Amanjit; Sinha, Saroj Kumar
2018-05-14
IgG4-related disease (IgG4-RD) continues to be a diagnostic challenge and a great mimicker of malignancies. We report here a case of young man who presented with subacute intestinal obstruction with initial imaging and clinical features suggestive of carcinoma colon. 18F-FDG PET/CT showed diffuse peritoneal carcinomatosis pattern typically seen with abdominal malignancies. However, the histopathology and the raised IgG4 levels diagnosed it to be IgG4-RD. Although 18F-FDG PET/CT has typical patterns corresponding to the multisystemic involvement of IgG4-RD, the index case did not show any such findings.
Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT
Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed
2017-01-01
Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997
PFC and Triglyme for Li-Air Batteries: A Molecular Dynamics Study.
Kuritz, Natalia; Murat, Michael; Balaish, Moran; Ein-Eli, Yair; Natan, Amir
2016-04-07
In this work, we present an all-atom molecular dynamics (MD) study of triglyme and perfluorinated carbons (PFCs) using classical atomistic force fields. Triglyme is a typical solvent used in nonaqueous Li-air battery cells. PFCs were recently reported to increase oxygen availability in such cells. We show that O2 diffusion in two specific PFC molecules (C6F14 and C8F18) is significantly faster than in triglyme. Furthermore, by starting with two very different initial configurations for our MD simulation, we demonstrate that C8F18 and triglyme do not mix. The mutual solubility of these molecules is evaluated both theoretically and experimentally, and a qualitative agreement is found. Finally, we show that the solubility of O2 in C8F18 is considerably higher than in triglyme. The significance of these results to Li-air batteries is discussed.
An Improved Smoke Obscuration Model ACT II. Part 1. Theory.
1982-01-01
Fitz ) Naval Research Laboratory Washington, DC 20305 ATTN: Code 6009 (Or. John MacCallum, Jr.) Washington, DC 20375 Director Defense Nuclear Agency...Sands Missile Range, NM 18F. Pasquill, 1974, Atmospheric Diffusion, second edition, Halsted Press Div., John Wiley and Sons, Inc., New York 19C. H. B...18F. Pasquill, 1974, Atmospheric Diffusion, second edition, Halsted Press Div., John Wiley and Sons, Inc., New York 19C. H. B. Priestley, 1956, "A
Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A
1999-05-01
Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.
Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo
2013-08-01
γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.
18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma
Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.
2016-01-01
Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0.83) and SUVmean (r = 0.81) but no significant correlation between ADCmin and SUVmax (18F-FDG PET/CT: r = 0.46, P = 0.65; 18F-FDG PET/MR: r = 0.64, P = 0.53) or between ADCmean and SUVmean (respectively, r = −0.14, P = 0.17 for the correlation with PET/CT and r = −0.14, P = 0.14 for the correlation with PET/MR). Conclusions 18F-FDG PET/MR and 18F-FDG PET/CT show a similar diagnostic performance in lymphoma patients. However, if DWI is included in the 18F-FDG PET/MR protocol, results surpass those of 18F-FDG PET/CT because of the higher sensitivity of DWI for mucosa-associated lymphoid tissue lymphomas. PMID:26784400
Patterns of human local cerebral glucose metabolism during epileptic seizures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.
1982-10-01
Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.
Salloum, Darin; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Sadique, Ahmad; Lewis, Jason S.; Weber, Wolfgang A.; Wendel, Hans-Guido; Reiner, Thomas
2017-01-01
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL. PMID:28827325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sako, K.; Diksic, M.; Kato, A.
This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less
Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease
Schonhaut, Daniel R.; Schöll, Michael; Lockhart, Samuel N.; Ayakta, Nagehan; Baker, Suzanne L.; O’Neil, James P.; Janabi, Mustafa; Lazaris, Andreas; Cantwell, Averill; Vogel, Jacob; Santos, Miguel; Miller, Zachary A.; Bettcher, Brianne M.; Vossel, Keith A.; Kramer, Joel H.; Gorno-Tempini, Maria L.; Miller, Bruce L.; Jagust, William J.; Rabinovici, Gil D.
2016-01-01
See Sarazin et al. (doi:10.1093/brain/aww041) for a scientific commentary on this article. The advent of the positron emission tomography tracer 18F-AV1451 provides the unique opportunity to visualize the regional distribution of tau pathology in the living human brain. In this study, we tested the hypothesis that tau pathology is closely linked to symptomatology and patterns of glucose hypometabolism in Alzheimer’s disease, in contrast to the more diffuse distribution of amyloid-β pathology. We included 20 patients meeting criteria for probable Alzheimer’s disease dementia or mild cognitive impairment due to Alzheimer’s disease, presenting with a variety of clinical phenotypes, and 15 amyloid-β-negative cognitively normal individuals, who underwent 18F-AV1451 (tau), 11C-PiB (amyloid-β) and 18F-FDG (glucose metabolism) positron emission tomography, apolipoprotein E (APOE) genotyping and neuropsychological testing. Voxel-wise contrasts against controls (at P < 0.05 family-wise error corrected) showed that 18F-AV1451 and 18F-FDG patterns in patients with posterior cortical atrophy (‘visual variant of Alzheimer’s disease’, n = 7) specifically targeted the clinically affected posterior brain regions, while 11C-PiB bound diffusely throughout the neocortex. Patients with an amnestic-predominant presentation (n = 5) showed highest 18F-AV1451 retention in medial temporal and lateral temporoparietal regions. Patients with logopenic variant primary progressive aphasia (‘language variant of Alzheimer’s disease’, n = 5) demonstrated asymmetric left greater than right hemisphere 18F-AV1451 uptake in three of five patients. Across 30 FreeSurfer-defined regions of interest in 16 Alzheimer’s disease patients with all three positron emission tomography scans available, there was a strong negative association between 18F-AV1451 and 18F-FDG uptake (Pearson’s r = −0.49 ± 0.07, P < 0.001) and less pronounced positive associations between 11C-PiB and 18F-FDG (Pearson’s r = 0.16 ± 0.09, P < 0.001) and 18F-AV1451 and 11C-PiB (Pearson’s r = 0.18 ± 0.09, P < 0.001). Voxel-wise linear regressions thresholded at P < 0.05 (uncorrected) showed that, across all patients, younger age was associated with greater 18F-AV1451 uptake in wide regions of the neocortex, while older age was associated with increased 18F-AV1451 in the medial temporal lobe. APOE ϵ4 carriers showed greater temporal and parietal 18F-AV1451 uptake than non-carriers. Finally, worse performance on domain-specific neuropsychological tests was associated with greater 18F-AV1451 uptake in key regions implicated in memory (medial temporal lobes), visuospatial function (occipital, right temporoparietal cortex) and language (left > right temporoparietal cortex). In conclusion, tau imaging—contrary to amyloid-β imaging—shows a strong regional association with clinical and anatomical heterogeneity in Alzheimer’s disease. Although preliminary, these results are consistent with and expand upon findings from post-mortem, animal and cerebrospinal fluid studies, and suggest that the pathological aggregation of tau is closely linked to patterns of neurodegeneration and clinical manifestations of Alzheimer’s disease. PMID:26962052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Wengler, K; Mazaheri, Y
2014-06-15
Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*,more » the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.« less
2014-10-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmuganathan; Hidayati, Noor; Liu, I.-Ping; Lee, Yuh-Lang
2016-12-01
Propionitrile (PPN) solvent based iodide/triiodide liquid-electrolyte is utilized to prepare highly efficient poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer gel electrolytes (PGEs) of dye-sensitized solar cells, aiming at improving the energy conversion efficiency as well as the stability of gel-state DSSCs. The concentrations effect of the PVdF-HFP on the properties of PGEs and the performance of the corresponding cells are studied. The results show that the in-situ gelation is performed for the PVdF-HFP concentration range of 8-18% at room temperature. However, increasing the concentration of polymer in the PGEs triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the phase transition temperature of the PGEs. A high phase transition temperature is obtained for the PGEs with 18 wt% PVdF-HFP, which increase the long-term stability of the gel-state DSSC. By using the 18 wt% PVdF-HFP in the presence of 5 wt% TiO2 nanofillers (NFs), gel-state cells with an efficiency of 8.38% can be obtained, which is higher than that achieved by liquid-state cells (7.55%). After 1000 h test at room temperature (RT) and 50 °C, the cell can retain 96% and 82%, respectively, of its initial efficiency.
Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease.
Ossenkoppele, Rik; Schonhaut, Daniel R; Schöll, Michael; Lockhart, Samuel N; Ayakta, Nagehan; Baker, Suzanne L; O'Neil, James P; Janabi, Mustafa; Lazaris, Andreas; Cantwell, Averill; Vogel, Jacob; Santos, Miguel; Miller, Zachary A; Bettcher, Brianne M; Vossel, Keith A; Kramer, Joel H; Gorno-Tempini, Maria L; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D
2016-05-01
SEE SARAZIN ET AL DOI101093/BRAIN/AWW041 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The advent of the positron emission tomography tracer (18)F-AV1451 provides the unique opportunity to visualize the regional distribution of tau pathology in the living human brain. In this study, we tested the hypothesis that tau pathology is closely linked to symptomatology and patterns of glucose hypometabolism in Alzheimer's disease, in contrast to the more diffuse distribution of amyloid-β pathology. We included 20 patients meeting criteria for probable Alzheimer's disease dementia or mild cognitive impairment due to Alzheimer's disease, presenting with a variety of clinical phenotypes, and 15 amyloid-β-negative cognitively normal individuals, who underwent (18)F-AV1451 (tau), (11)C-PiB (amyloid-β) and (18)F-FDG (glucose metabolism) positron emission tomography, apolipoprotein E (APOE) genotyping and neuropsychological testing. Voxel-wise contrasts against controls (at P < 0.05 family-wise error corrected) showed that (18)F-AV1451 and (18)F-FDG patterns in patients with posterior cortical atrophy ('visual variant of Alzheimer's disease', n = 7) specifically targeted the clinically affected posterior brain regions, while (11)C-PiB bound diffusely throughout the neocortex. Patients with an amnestic-predominant presentation (n = 5) showed highest (18)F-AV1451 retention in medial temporal and lateral temporoparietal regions. Patients with logopenic variant primary progressive aphasia ('language variant of Alzheimer's disease', n = 5) demonstrated asymmetric left greater than right hemisphere (18)F-AV1451 uptake in three of five patients. Across 30 FreeSurfer-defined regions of interest in 16 Alzheimer's disease patients with all three positron emission tomography scans available, there was a strong negative association between (18)F-AV1451 and (18)F-FDG uptake (Pearson's r = -0.49 ± 0.07, P < 0.001) and less pronounced positive associations between (11)C-PiB and (18)F-FDG (Pearson's r = 0.16 ± 0.09, P < 0.001) and (18)F-AV1451 and (11)C-PiB (Pearson's r = 0.18 ± 0.09, P < 0.001). Voxel-wise linear regressions thresholded at P < 0.05 (uncorrected) showed that, across all patients, younger age was associated with greater (18)F-AV1451 uptake in wide regions of the neocortex, while older age was associated with increased (18)F-AV1451 in the medial temporal lobe. APOE ϵ4 carriers showed greater temporal and parietal (18)F-AV1451 uptake than non-carriers. Finally, worse performance on domain-specific neuropsychological tests was associated with greater (18)F-AV1451 uptake in key regions implicated in memory (medial temporal lobes), visuospatial function (occipital, right temporoparietal cortex) and language (left > right temporoparietal cortex). In conclusion, tau imaging-contrary to amyloid-β imaging-shows a strong regional association with clinical and anatomical heterogeneity in Alzheimer's disease. Although preliminary, these results are consistent with and expand upon findings from post-mortem, animal and cerebrospinal fluid studies, and suggest that the pathological aggregation of tau is closely linked to patterns of neurodegeneration and clinical manifestations of Alzheimer's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kim, Jihyun; Lee, Jeong-Ok; Paik, Jin Ho; Lee, Won Woo; Kim, Sang Eun; Song, Yoo Sung
2017-01-01
Diffuse large B-cell lymphoma (DLBCL) is a pathologically heterogeneous disease with different prognoses according to its molecular profiles. Despite the broad usage of 18 F-fluoro-2-dexoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), previous studies that have investigated the value of interim 18 F-FDG PET/CT in DLBCL have given the controversial results. The purpose of this study was to evaluate the prognostic value of interim 18 F-FDG PET/CT in DLBCL according to germinal center B cell-like (GCB) and non-GCB molecular profiling. We enrolled 118 newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). Interim 18 F-FDG PET/CT scans performed after 2 or 3 cycles of R-CHOP treatment were evaluated based on the Lugano response criteria. Patients were grouped as GCB or non-GCB molecular subtypes according to immunohistochemistry results of CD10, BCL6, and MUM1, based on Hans' algorithm. In total 118 DLBCL patients, 35 % were classified as GCB, and 65 % were classified as non-GCB. Interim PET/CT was negative in 70 %, and positive in 30 %. During the median follow-up period of 23 months, the positive interim 18 F-FDG PET/CT group showed significantly inferior progression free survival (PFS) compared to the negative interim 18 F-FDG PET/CT group (P = 0.0004) in entire patients. A subgroup analysis according to molecular profiling demonstrated significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in GCB subtype of DLBCL (P = 0.0001), but there was no significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in non-GCB subtype of DLBCL. Interim 18 F-FDG PET/CT scanning had a significant predictive value for disease progression in patients with the GCB subtype of DLBCL treated with R-CHOP, but not in those with the non-GCB subtype. Therefore, molecular profiles of DLBCL should be considered for interim 18 F-FDG PET/CT practice.
Jødal, Lars; Jensen, Svend B; Nielsen, Ole L; Afzelius, Pia; Borghammer, Per; Alstrup, Aage K O; Hansen, Søren B
2017-01-01
Positron emission tomography (PET) is increasingly applied for infection imaging using [ 18 F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [ 18 F]FDG and three other PET tracers with relevance for infection imaging. A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [ 18 F]FDG, [ 68 Ga]Ga-citrate, [ 11 C]methionine, and/or [ 11 C]donepezil, along with blood sampling. For infectious lesions, kinetic modelling with one- and two-tissue-compartment models was conducted for each tracer. Irreversible uptake was found for [ 18 F]FDG and [ 68 Ga]Ga-citrate; reversible uptake was found for [ 11 C]methionine (two-tissue model) and [ 11 C]donepezil (one-tissue model). The uptake rate for [ 68 Ga]Ga-citrate was slow and diffusion-limited. For the other tracers, the uptake rate was primarily determined by perfusion (flow-limited uptake). Net uptake rate for [ 18 F]FDG and distribution volume for [ 11 C]methionine were significantly higher for infectious lesions than for correspondingly noninfected tissue. For [ 11 C]donepezil in pigs, labelled metabolite products appeared to be important for the analysis. The kinetics of the four studied tracers in infection was characterized. For clinical applications, [ 18 F]FDG remains the first-choice PET tracer. [ 11 C]methionine may have a potential for detecting soft tissue infections. [ 68 Ga]Ga-citrate and [ 11 C]donepezil were not found useful for imaging of osteomyelitis.
Diffusion processes in tumors: A nuclear medicine approach
NASA Astrophysics Data System (ADS)
Amaya, Helman
2016-07-01
The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D
2014-09-07
Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.
[Rational imaging in locally advanced prostate cancer].
Beissert, M; Lorenz, R; Gerharz, E W
2008-11-01
Prostate cancer is one of the principal medical problems facing the male population in developed countries with an increasing need for sophisticated imaging techniques and risk-adapted treatment options. This article presents an overview of the current imaging procedures in the diagnosis of locally advanced prostate cancer. Apart from conventional gray-scale transrectal ultrasound (TRUS) as the most frequently used primary imaging modality we describe computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). CT and MRI not only allow assessment of prostate anatomy but also a specific evaluation of the pelvic region. Color-coded and contrast-enhanced ultrasound, real-time elastography, dynamic contrast enhancement in MR imaging, diffusion imaging, and MR spectroscopy may lead to a clinically relevant improvement in the diagnosis of prostate cancer. While bone scintigraphy with (99m)Tc-bisphosphonates is still the method of choice in the evaluation of bone metastasis, whole-body MRI and PET using (18)F-NaF, (18)F-FDG, (11)C-choline, (11)C-acetate, and (18)F-choline as tracers achieve higher sensitivities.
Aktas, G E; Soyluoglu Demir, S; Sarikaya, A
2016-01-01
The (18)F-FDG PET/CT scan has been suggested for whole-body imaging to identify ectopic adrenocorticotrophic hormone secreting tumours, but there are some challenges involved. The case of a patient is presented, who was admitted with the pre-diagnosis of ectopic ACTH syndrome. On the CT, a nodular lesion was detected in the medial segment of the right lung. The FDG uptake of the lesion seemed to be increased visually, but was not pathological quantitatively (SUVmax: 1.8) on the PET/CT. There was also diffuse increased uptake (SUVmax: 14.2) in the enlarged adrenal glands. The lesion was reported as a possible malignant lesion with low FDG affinity, such as a low grade neuroendocrine tumour, while the diffuse enlarged adrenal glands with high uptake were interpreted as diffusely hyperplasic, due to Cushing's syndrome. The patient was treated with a surgical wedge resection. The histopathological diagnosis confirmed that the tumour was a grade 1 well-differentiated neuroendocrine carcinoma. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E
2016-01-01
With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Can integrated 18F-FDG PET/MR replace sentinel lymph node resection in malignant melanoma?
Schaarschmidt, Benedikt Michael; Grueneisen, Johannes; Stebner, Vanessa; Klode, Joachim; Stoffels, Ingo; Umutlu, Lale; Schadendorf, Dirk; Heusch, Philipp; Antoch, Gerald; Pöppel, Thorsten Dirk
2018-06-06
To compare the sensitivity and specificity of 18F-fluordesoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), 18F-FDG PET/magnetic resonance (18F-FDG PET/MR) and 18F-FDG PET/MR including diffusion weighted imaging (DWI) in the detection of sentinel lymph node metastases in patients suffering from malignant melanoma. Fifty-two patients with malignant melanoma (female: n = 30, male: n = 22, mean age 50.5 ± 16.0 years, mean tumor thickness 2.28 ± 1.97 mm) who underwent 18F-FDG PET/CT and subsequent PET/MR & DWI for distant metastasis staging were included in this retrospective study. After hybrid imaging, lymphoscintigraphy including single photon emission computed tomography/CT (SPECT/CT) was performed to identify the sentinel lymph node prior to sentinel lymph node biopsy (SLNB). In a total of 87 sentinel lymph nodes in 64 lymph node basins visible on SPECT/CT, 17 lymph node metastases were detected by histopathology. In separate sessions PET/CT, PET/MR, and PET/MR & DWI were assessed for sentinel lymph node metastases by two independent readers. Discrepant results were resolved in a consensus reading. Sensitivities, specificities, positive predictive values and negative predictive values were calculated with histopathology following SPECT/CT guided SLNB as a reference standard. Compared with histopathology, lymph nodes were true positive in three cases, true negative in 65 cases, false positive in three cases and false negative in 14 cases in PET/CT. PET/MR was true positive in four cases, true negative in 63 cases, false positive in two cases and false negative in 13 cases. Hence, we observed a sensitivity, specificity, positive predictive value and negative predictive value of 17.7, 95.6, 50.0 and 82.3% for PET/CT and 23.5, 96.9, 66.7 and 82.3% for PET/MR. In DWI, 56 sentinel lymph node basins could be analyzed. Here, the additional analysis of DWI led to two additional false positive findings, while the number of true positive findings could not be increased. In conclusion, integrated 18F-FDG PET/MR does not reliably differentiate N-positive from N-negative melanoma patients. Additional DWI does not increase the sensitivity of 18F-FDG PET/MR. Hence, sentinel lymph node biopsy cannot be replaced by 18F-FDG-PE/MR or 18F-FDG-PET/CT.
Ohira, Hiroshi; Ardle, Brian Mc; deKemp, Robert A; Nery, Pablo; Juneau, Daniel; Renaud, Jennifer M; Klein, Ran; Clarkin, Owen; MacDonald, Karen; Leung, Eugene; Nair, Girish; Beanlands, Rob; Birnie, David
2017-08-01
Recent studies have reported the usefulness of 18 F-FDG PET in aiding with the diagnosis and management of patients with cardiac sarcoidosis (CS). However, image interpretation of 18 F-FDG PET for CS is sometimes challenging. We sought to investigate the inter- and intraobserver agreement and explore factors that led to important discrepancies between readers. Methods: We studied consecutive patients with no significant coronary artery disease who were referred for assessment of CS. Two experienced readers masked to clinical information, imaging reports, independently reviewed 18 F-FDG PET/CT images. 18 F-FDG PET/CT images were interpreted according to a predefined standard operating procedure, with cardiac 18 F-FDG uptake patterns categorized into 5 patterns: none, focal, focal on diffuse, diffuse, and isolated lateral wall or basal uptake. Overall image assessment was classified as either consistent with active CS or not. Results: One hundred scans were included from 71 patients. Of these, 46 underwent 18 F-FDG PET/CT with a no-restriction diet (no-restriction group), and 54 underwent 18 F-FDG PET/CT with a low-carbohydrate, high-fat and protein-permitted diet (low-carb group). There was agreement of the interpretation category in 74 of 100 scans. The κ-value of agreement among all 5 categories was 0.64, indicating moderate agreement. For overall clinical interpretation, there was agreement in 93 of 100 scans (κ = 0.85). When scans were divided into the preparation groups, there was a trend toward higher agreement in the low-carb group versus the no-restriction group (80% vs. 67%, P = 0.08). Regarding the overall clinical interpretation, there was also a trend toward greater agreement in the low-carb group versus the no-restriction group (96% vs. 89%, P = 0.08). Conclusion : The interobserver agreement of cardiac 18 F-FDG uptake image patterns was moderate. However, agreement was better regarding overall interpretation of CS. Detailed prescan dietary preparation seemed to improve interobserver agreement. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky
2017-06-02
Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18 F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18 F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18 F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status categorisation. The REMAP study will demonstrate the ability of integrated 18 F-FDG PET-MRI to provide a more personalised approach to therapy. We suggest that 18 F-FDG PET/MRI will provide superior sensitivity and specificity in early response/non-response categorisation when compared to standard CT (using RECIST 1.1 and alternative (modified)Choi or MASS criteria) thus facilitating more timely and better informed treatment decisions. The trial is approved by the Southeast London Research Ethics Committee reference 16/LO/1499 and registered on the NIHR clinical research network portfolio ISRCTN12114913 .
Diffusion processes in tumors: A nuclear medicine approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya, Helman, E-mail: haamayae@unal.edu.co
The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and {sup 18}F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer softwaremore » was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical {sup 18}F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.« less
Cistaro, A; Cucinotta, M; Cassalia, L; Priola, A; Priola, S; Pappalardo, M; Coppolino, P; De Simone, M; Quartuccio, N
2016-01-01
Peritoneal carcinomatosis is a common evolution of neoplasms and the terminal stage of disease. A new therapeutic technique, based on the total surgical removal of peritoneal lesions (peritonectomy procedure - PP) combined with the intraperitoneal chemohyperthermia (IPCH), has been developed. Proper patient selection is mandatory for optimizing the results of treatment. The aim of this study was to investigate the role of [(18)F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography ((18)F-FDG PET/CT) in patients with peritoneal carcinosis selected to undergo PP and IPCH. Furthermore, we aimed to identify characteristic patterns of abdominal(18)F-FDG uptake and to correlate these patterns with available anatomic findings after surgery. Patients with either histologically confirmed peritoneal carcinosis or suspected upon clinical follow-up and/or imaging findings were prospectively submitted to pre-surgery (18)F-FDG PET/CT scan. Only those patients without evidence of extra-peritoneal metastases at PET/CT scan were treated with PP and IPCH. 11 patients with peritoneal carcinomatosis (5 colorectal, 4 ovarian, 1 pancreatic) and 1 unknown primitive cancer, were eligible for the study. In all cases PET/CT scan showed multiple peritoneal implants. In 6 out of 11 cases (54%) metastases were evidenced by (18)F-FDG PET/CT: 2 cases with liver metastases; 1 case with bone metastases; 3 patients with lymph-node lesions. Two distinct imaging patterns, with focal or diffuse increased (18)F-FDG uptake, were recognized. PP+IPCH of patients selected by (18)F-FDG PET/CT seems to be safe and feasible. PET/CT scan appears as a reliable tool for the detection, characterization of peritoneal implants with potential impact in the therapeutic management of these patients. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
FDG PET/CT Findings in Primary Diffuse Large B-cell Lymphoma, Leg Type.
Ni, Chiayi; Lewis, Michael; Berenji, Gholam
2016-01-01
A 64-year-old man presented with complaints of worsening left foot pain and swelling. MRI showed a soft tissue mass overlying the dorsolateral aspect of the left foot. Following a 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), the left foot mass was biopsied and pathology indicated a diagnosis of primary diffuse large B-cell lymphoma, leg type (PDLBCL, LT). Review of the PET/CT images demonstrated hypermetabolic activity associated with the left foot mass, multiple subcutaneous nodules/nodes, sclerotic osseous lesions in the lower extremities, and left external iliac/left inguinal lymphadenopathy. At the moment, the patient is undergoing chemotherapy.
Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain.
Wang, Li-Ming; Wu, Qi; Kirk, Ryan A; Horn, Kevin P; Ebada Salem, Ahmed H; Hoffman, John M; Yap, Jeffrey T; Sonnen, Joshua A; Towner, Rheal A; Bozza, Fernando A; Rodrigues, Rosana S; Morton, Kathryn A
2018-01-01
Amyloid beta (Aβ) plaques are not specific to Alzheimer's disease and occur with aging and neurodegenerative disorders. Soluble brain Aβ may be neuroprotective and increases in response to neuroinflammation. Sepsis is associated with neurocognitive compromise. The objective was to determine, in a rat endotoxemia model of sepsis, whether neuroinflammation and soluble Aβ production are associated with Aβ plaque and hyperphosphorylated tau deposition in the brain. Male Sprague Dawley rats received a single intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin (LPS). Brain and blood levels of IL-1β, IL-6, and TNFα and cortical microglial density were measured in LPS-injected and control animals. Soluble brain Aβ and p-tau were compared and Aβ plaques were quantified and characterized. Brain uptake of [ 18 F]flutemetamol was measured by phosphor imaging. LPS endotoxemia resulted in elevations of cytokines in blood and brain. Microglial density was increased in LPS-treated rats relative to controls. LPS resulted in increased soluble Aβ and in p-tau levels in whole brain. Progressive increases in morphologically-diffuse Aβ plaques occurred throughout the interval of observation (to 7-9 days post LPS). LPS endotoxemia resulted in increased [ 18 F]flutemetamol in the cortex and increased cortex: white matter ratios of activity. In conclusion, LPS endotoxemia causes neuroinflammation, increased soluble Aβ and Aβ diffuse plaques in the brain. Aβ PET tracers may inform this neuropathology. Increased p-tau in the brain of LPS treated animals suggests that downstream consequences of Aβ plaque formation may occur. Further mechanistic and neurocognitive studies to understand the causes and consequences of LPS-induced neuropathology are warranted.
Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.
Nakadate, Masashi; Yoshida, Katsuya; Ishii, Akihiro; Koizumi, Masayuki; Tochigi, Naobumi; Suzuki, Yoshio; Ryu, Yoshiharu; Nakagawa, Tassei; Umehara, Isao; Shibuya, Hitoshi
2013-09-01
This study aims to investigate the usefulness of (18)F-FDG PET/CT for distinguishing between primary thyroid lymphoma (PTL) and chronic thyroiditis. We retrospectively reviewed the data of 196 patients with diffuse (18)F-FDG uptake of the thyroid gland and enrolled patients who were diagnosed as having PTL or chronic thyroiditis based on the medical records, pathological findings, and laboratory data. The enrolled patients comprised 10 PTL patients (M/F = 4:6) and 51 chronic thyroiditis patients (M/F = 8:43). Images had been acquired on a PET/CT scanner at 100 minutes after intravenous injection of (18)F-FDG. The PTL group consisted of 7 patients with diffuse large B-cell lymphoma (DLBCL) and 3 with mucosa-associated lymphoid tissue (MALT) lymphoma. The maximum standardized uptake value (SUV(max)) was significantly higher in the PTL group than that in the chronic thyroiditis group (25.3 ± 8.0 and 7.4 ± 3.2, P < 0.001). On the other hand, the CT density (Hounsfield unit: HU) was significantly lower in the PTL group than that in the chronic thyroiditis group (46.1 ± 7.0 HU and 62.1 ± 6.9 HU, P < 0.001). Within the PTL group, the SUV(max) was significantly higher in the cases of DLBCL than in those of MALT lymphoma (29.0 ± 6.4 and 16.7 ± 2.3, P = 0.017). The SUV(max) was significantly higher and the CT density was significantly lower in PTL as compared with those in chronic thyroiditis. Thus, (18)F-FDG PET/CT may be useful for distinguishing between PTL and chronic thyroiditis.
‘Double cortex’ sign on FDG-PET/CT in diffuse band heterotopia
Tripathi, Madhavi; Tripathi, Manjari; Kumar, Ganesh; Malhotra, Arun; Bal, Chandra Sekhar
2013-01-01
F-18 Fluorodeoxyglucose (FDG) Positron emission tomography/Computed Tomography (PET/CT) has come to play an increasingly important role for the pre-surgical evaluation of drug resistant epilepsy and complements Magnetic Resonance Imaging (MRI) in the evaluation of grey matter heterotopias. This case illustrates the characteristic pattern of metabolic abnormality in diffuse band heterotopia (DBH) which is otherwise called double cortex syndrome. The presence of metabolic activity in the heterotopic inner cortical band and in the overlying true cortex gives rise to the ‘double cortex’ sign on FDG-PET, concurrent CT provides a good anato-metabolic coregistration. PMID:24379541
Sulfur diffusion in dacitic melt at various oxidation states: Implications for volcanic degassing
NASA Astrophysics Data System (ADS)
Lierenfeld, Matthias Bernhard; Zajacz, Zoltán; Bachmann, Olivier; Ulmer, Peter
2018-04-01
The diffusivity of S in a hydrous dacitic melt (4.5-6.0 wt.% H2O) has been investigated in the temperature (T) and pressure (P) range of 950 °C to 1100 °C and 200 to 250 MPa, respectively. Three series of experiments were conducted at relatively low oxygen fugacity (fO2) conditions [0.8 log units below fayalite-magnetite-quartz equilibrium (FMQ -0.8); referred to as "low fO2"] and high fO2 conditions (FMQ +2.5; referred to as "high fO2") to determine if the diffusivity of S is affected by its oxidation state and speciation. Sulfur concentration profiles were measured by electron microprobe and the diffusion coefficient (D) was calculated by fitting these profiles. Sulfur diffusion is approximately one order of magnitude faster when S is dominantly present as sulfide species (low fO2) in comparison to the sulfate dominated experiments (high fO2). The following Arrhenian equations were obtained for high and low fO2 conditions at 200 MPa: high fO2: D = 10-5.92±0.86 * exp ({-137.3±21.5 kJ/mol}/{RT}) low fO2: D = 10-5.18±1.39 * exp ({-125.7±34.4 kJ/mol}/{RT}) where D is the average diffusion coefficient in m2 s-1, R is the gas constant in 8.3144 J mol-1 K-1 and T is the temperature in K. Our results demonstrate for the first time in natural melts that S diffusion is strongly sensitive to fO2. Our S diffusivities under low fO2 conditions are only slightly slower of those found for H2O, suggesting that S can be rather efficiently purged from reduced dacitic melts during volcanic eruptions. However, for more oxidized systems (e.g. subduction zones), S diffusion will be much slower and will hinder equilibrium syn-eruptive degassing during rapid decompression. Therefore, we conclude that the "excess" measured during many explosive volcanic eruptions in arcs is dominantly derived from S-rich bubble accumulation in the eruptible portion of the magma reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baig, Mohammad Saad, E-mail: saad110baig@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
NaF-ZrF{sub 4} is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF{sub 4} system were studied along with Onsagercoefficients and Maxwell–Stefan (MS) Diffusivities applying Green–Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity Đ{sub Na-F} shows interesting behavior with the increase in concentration of ZrF{submore » 4}. This is because of network formation in NaF-ZrF{sub 4}. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.« less
Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu
2015-02-07
In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.
Rowe, Steven P; Deville, Curtiland; Paller, Channing; Cho, Steve Y; Fishman, Elliot K; Pomper, Martin G; Ross, Ashley E; Gorin, Michael A
2015-12-01
Prostate-specific membrane antigen (PSMA)-targeted PET imaging is an emerging technique for evaluating patients with prostate cancer (PCa) in a variety of clinical contexts. As with any new imaging modality, there are interpretive pitfalls that are beginning to be recognized. In this image report, we describe the findings in a 63-year-old male with biochemically recurrent PCa after radical prostatectomy who was imaged with 18 F-DCFPyL, a small molecule inhibitor of PSMA. Diffuse radiotracer uptake was noted throughout the sacrum, corresponding to imaging findings on contrast-enhanced CT, bone scan, and pelvic MRI consistent with Paget's disease of bone. The uptake of 18 F-DCFPyL in Paget's disease is most likely due to hyperemia and increased radiotracer delivery. In light of the overlap in patients affected by PCa and Paget's, it is important for nuclear medicine physicians and radiologists interpreting PSMA PET/CT scans to be aware of the potential for this diagnostic pitfall. Correlation to findings on conventional imaging such as diagnostic CT and bone scan can help confirm the diagnosis.
Nieto, Elena; Delgado, Mercedes; Sobrado, Mónica; de Ceballos, María L; Alajarín, Ramón; García-García, Luis; Kelly, James; Lizasoain, Ignacio; Pozo, Miguel A; Álvarez-Builla, Julio
2015-08-28
The synthesis of the new radiotracer precursor 4-Br-NITTP and the radiolabeling of the new tracer 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol (4-Br-[(18)F]FMISO) is reported. The cyclic voltammetry behaviour, neuronal cell toxicity, transport through the brain endothelial cell monolayer, in vivo PET imaging and preliminary calculations of the tracer uptake for a rodent model of stroke were studied for the new compound and the results were compared to those obtained with [(18)F]FMISO, the current gold standard PET hypoxia tracer. The new PET brain hypoxia tracer is more easily reduced, has higher CLogP than [(18)F]FMISO and it diffuses more rapidly through brain endothelial cells. The new compound is non-toxic to neuronal cells and it allows the in vivo mapping of stroke in mice with higher sensitivity. 4-Br-[(18)F]FMISO is a good candidate for further development in ischemic stroke. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young
2017-08-01
The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [ P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion: 18 F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Norikane, Takashi; Yamamoto, Yuka; Maeda, Yukito; Noma, Takahisa; Dobashi, Hiroaki; Nishiyama, Yoshihiro
2017-08-29
18 F-FDG PET has been used in sarcoidosis for diagnosis and determination of the extent of the disease. However, assessing inflammatory lesions in cardiac sarcoidosis using 18 F-FDG can be challenging because it accumulates physiologically in normal myocardium. Another radiotracer, 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT), has been investigated as a promising PET tracer for evaluating tumor proliferative activity. In contrast to 18 F-FDG, 18 F-FLT uptake in the normal myocardium is low. The purpose of this retrospective study was to compare the uptake of 18 F-FLT and 18 F-FDG in the evaluation of cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. Data for 20 patients with newly diagnosed sarcoidosis were examined. 18 F-FLT and 18 F-FDG PET/CT studies had been performed at 1 h after each radiotracer injection. The patients had fasted for at least 18 h before 18 F-FDG PET/CT but were given no special dietary instructions regarding the period before 18 F-FLT PET/CT. Uptake of 18 F-FLT and 18 F-FDG was examined visually and semiquantitatively using maximal standardized uptake value (SUVmax). Two patients had cardiac sarcoidosis, 7 had extra-cardiac thoracic sarcoidosis, and 11 had both cardiac and extra-cardiac thoracic sarcoidosis. On visual analysis for diagnosis of cardiac sarcoidosis, 4/20 18 F-FDG scans were rated as inconclusive because the 18 F-FDG pattern was diffuse, whereas no FLT scans were rated as inconclusive. The sensitivity of 18 F-FDG PET/CT for detection of cardiac sarcoidosis was 85%; specificity, 100%; and accuracy, 90%. The corresponding values for 18 F-FLT PET/CT were 92, 100, and 95%, respectively. Using semiquantitative analysis of cardiac sarcoidosis, the mean 18 F-FDG SUVmax was significantly higher than the mean 18 F-FLT SUVmax (P < 0.005). Both 18 F-FDG and 18 F-FLT PET/CT studies detected all 24 extra-cardiac lesions. Using semiquantitative analysis of extra-cardiac sarcoidosis, the mean 18 F-FDG SUVmax was significantly higher than the mean 18 F-FLT SUVmax (P < 0.001). The results of this preliminary study suggest that 18 F-FLT PET/CT can detect cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis as well as 18 F-FDG PET/CT, although uptake of 18 F-FLT in lesions was significantly lower than that of 18 F-FDG. However, 18 F-FLT PET/CT may be easier to perform since it requires neither prolonged fasting nor a special diet prior to imaging.
Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.
2014-01-01
Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712
Wu, Jiang; Zhu, Hong; Li, Kai; Wang, Xin-Gang; Gui, Yi; Lu, Guang-Ming
2014-10-01
The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18 F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18 F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18 F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18 F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUV max ) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUV max was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUV max of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric lymphoma and gastric cancer patients on 18 F-FDG PET/CT images, which may contribute to the identification of gastric lymphoma.
WU, JIANG; ZHU, HONG; LI, KAI; WANG, XIN-GANG; GUI, YI; LU, GUANG-MING
2014-01-01
The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUVmax) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUVmax was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUVmax of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric lymphoma and gastric cancer patients on 18F-FDG PET/CT images, which may contribute to the identification of gastric lymphoma. PMID:25202405
Cistaro, A; Pazè, F; Durando, S; Cogoni, M; Faletti, R; Vesco, S; Vallero, S; Quartuccio, N; Treglia, G; Ramenghi, U
2014-01-01
A young patient with undefined autoimmune lymphoproliferative syndrome (ALPS-U) and low back pain underwent a CT and MRI study that showed enhancing vertebral lesions, some pulmonary nodules and diffuse latero-cervical lymphadenopathy. A (18)F-FDG-PET/CT scan showed many areas of intense (18)F-FDG uptake in multiple vertebrae, in some ribs, in the sacrum, in the liver, in both lungs, in multiple lymph nodes spread in the cervical, thoracic and abdominal chains. A bone marrow biopsy showed a "lymphomatoid granulomatosis", a rare variant of B-cell non-Hodgkin lymphoma (NHL). After the treatment, the (18)F-FDG-PET/CT scan showed a complete metabolic response. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-09-01
fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of the neural changes...orthopedic injuries. We accomplished this goal by conducting advanced neuroimaging (task-activated fMRI and DTI fiber tracking) and neurobehavioral
Hirose, Yasumitsu; Kaida, Hayato; Ishibashi, Masatoshi; Uozumi, Jun; Arikawa, Shunji; Kurata, Seiji; Hayabuchi, Naofumi; Nakahara, Keita; Ohshima, Koichi
2012-02-01
The aim of this study was to compare endoscopic macroscopic classification with fluorine-18 fluorodeoxyglucose (F-18 FDG) uptake in gastric mucosa-associated lymphoid tissue (MALT) lymphoma and to investigate the usefulness of F-18 FDG positron emission tomography (PET) for diagnosing gastric MALT lymphoma. Sixteen patients with gastric MALT lymphoma who underwent F-18 FDG PET and gastrointestinal imaging modalities were included in this study. Sixteen healthy asymptomatic participants undergoing both F-18 FDG PET and endoscopy for cancer screening were in the control group. We investigated the difference of F-18 FDG uptake between the gastric MALT lymphoma and the control group and compared the uptake pattern in gastric MALT lymphoma with our macroscopic classification. The endoscopic findings of 16 gastric MALT lymphoma patients were classified macroscopically as chronic gastritis-like tumors (n = 6), depressed tumors (n = 5), and protruding tumors (n = 5). Abnormal gastric F-18 FDG uptake was observed in 63% of tumors in the gastric MALT lymphoma group and 50% of cases in the control group. The median maximum standardized uptake values for gastric MALT lymphoma patients and control group were 4.0 and 2.6, respectively, the difference of which was statistically significant (P = 0.003). F-18 FDG uptake results were positive for all protruding tumors but only 50% for chronic gastritis-like tumors and 40% for depressed-type tumors. F-18 FDG PET may be a useful method for evaluating protrusion-type gastric MALT lymphoma. When strong focal or diffuse F-18 FDG uptake is detected in the stomach, endoscopic biopsy should be performed, even if the endoscopic finding is chronic gastritis.
Wanek, Thomas; Kreis, Katharina; Križková, Petra; Schweifer, Anna; Denk, Christoph; Stanek, Johann; Mairinger, Severin; Filip, Thomas; Sauberer, Michael; Edelhofer, Patricia; Traxl, Alexander; Muchitsch, Viktoria E; Mereiter, Kurt; Hammerschmidt, Friedrich; Cass, Carol E; Damaraju, Vijaya L; Langer, Oliver; Kuntner, Claudia
2016-11-01
Positron emission tomography (PET) using fluorine-18 ( 18 F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6'-deoxy-6'-[ 18 F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[ 18 F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [ 18 F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12±8% (n=10, based on [ 18 F]fluoride starting activity) in a total synthesis time of 60min with a specific activity at end of synthesis of 218±58GBq/μmol (n=10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[ 18 F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[ 18 F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13±0.22 (n=4) at 2h after administration of β-[ 18 F]1. In ex vivo autoradiography experiments β-[ 18 F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[ 18 F]1 shows potential as PET hypoxia radiotracer which merits further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zwarthoed, Colette; El-Galaly, Tarec Cristoffer; Canepari, Maria; Ouvrier, Matthieu John; Viotti, Julien; Ettaiche, Marc; Viviani, Simonetta; Rigacci, Luigi; Trentin, Livio; Rusconi, Chiara; Luminari, Stefano; Cantonetti, Maria; Bolis, Silvia; Borra, Anna; Darcourt, Jacques; Salvi, Flavia; Subocz, Edyta; Tajer, Joanna; Kulikowski, Waldemar; Malkowski, Bogdan; Zaucha, Jan Maciej; Gallamini, Andrea
2017-08-01
PET/CT-ascertained bone marrow involvement (BMI) constitutes the single most important reason for upstaging by PET/CT in Hodgkin lymphoma (HL). However, BMI assessment in PET/CT can be challenging. This study analyzed the clinicopathologic correlations and prognostic meaning of different patterns of bone marrow (BM) 18 F-FDG uptake in HL. Methods: One hundred eighty newly diagnosed early unfavorable and advanced-stage HL patients, all scanned at baseline and after 2 adriamycin-bleomycin-vinblastine-dacarbazine (ABVD) courses with 18 F-FDG PET, enrolled in 2 international studies aimed at assessing the role of interim PET scanning in HL, were retrospectively included. Patients were treated with ABVD × 4-6 cycles and involved-field radiation when needed, and no treatment adaptation on interim PET scanning was allowed. Two masked reviewers independently reported the scans. Results: Thirty-eight patients (21.1%) had focal lesions (fPET + ), 10 of them with a single (unifocal) and 28 with multiple (multifocal) BM lesions. Fifty-three patients (29.4%) had pure strong (>liver) diffuse uptake (dPET + ) and 89 (48.4%) showed no or faint (≤liver) BM uptake (nPET + ). BM biopsy was positive in 6 of 38 patients (15.7%) for fPET + , in 1 of 53 (1.9%) for dPET + , and in 5 of 89 (5.6%) for nPET + dPET + was correlated with younger age, higher frequency of bulky disease, lower hemoglobin levels, higher leukocyte counts, and similar diffuse uptake in the spleen. Patients with pure dPET + had a 3-y progression-free survival identical to patients without any 18 F-FDG uptake (82.9% and 82.2%, respectively, P = 0.918). However, patients with fPET+ (either unifocal or multifocal) had a 3-y progression-free survival significantly inferior to patients with dPET+ and nPET+ (66.7% and 82.5%, respectively, P = 0.03). The κ values for interobserver agreement were 0.84 for focal uptake and 0.78 for diffuse uptake. Conclusion: We confirmed that 18 F-FDG PET scanning is a reliable tool for BMI assessment in HL, and BM biopsy is no longer needed for routine staging. Moreover, the interobserver agreement for BMI in this study proved excellent and only focal 18 F-FDG BM uptake should be considered as a harbinger of HL. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Regier, M; Derlin, T; Schwarz, D; Laqmani, A; Henes, F O; Groth, M; Buhk, J-H; Kooijman, H; Adam, G
2012-10-01
To investigate the potential correlation of the apparent diffusion coefficient assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) at 18F-FDG PET/CT in non-small cell lung cancer (NSCLC). 18F-FDG PET/CT and DWI (TR/TE, 2000/66 ms; b-values, 0 and 500 s/mm(2)) were performed in 41 consecutive patients with histologically verified NSCLC. Analysing the PET-CT data calculation of the mean (SUV(mean)) and maximum (SUV(max)) SUV was performed. By placing a region-of-interest (ROI) encovering the entire tumor mean (ADC(mean)) and minimum ADC (ADC(min)) were determined by two independent radiologists. Results of 18F-FDG PET-CT and DWI were compared on a per-patient basis. For statistical analysis Pearson's correlation coefficient, Bland-Altman and regression analysis were assessed. Data analysis revealed a significant inverse correlation of the ADC(min) and SUV(max) (r=-0.46; p=0.032). Testing the correlation of the ADC(min) and SUV(max) for each histological subtype separately revealed that the inverse correlation was good for both adenocarcinomas (r=-0.47; p=0.03) and squamouscell carcinomas (r=-0.71; p=0.002), respectively. No significant correlation was found for the comparison of ADC(min) and SUV(mean) (r=-0.29; p=0.27), ADC(mean) vs. SUV(mean) (r=-0.28; p=0.31) or ADC(mean) vs. SUV(max) (r=-0.33; p=0.23). The κ-value of 0.88 indicated a good agreement between both observers. This preliminary study is the first to verify the relation between the SUV and the ADC in NSCLC. The significant inverse correlation of these two quantitative imaging approaches points out the association of metabolic activity and tumor cellularity. Therefore, DWI with ADC measurement might represent a new prognostic marker in NSCLC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E
2017-09-01
We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P < 0.01 FWE) and widespread microstructural changes were detected across the motor system of the "trained" hemisphere. Specifically, region-of-interest-based analyses of diffusion MRI (n = 22) revealed significantly increased fractional anisotropy (FA) in the right caudate nucleus (4.9%; P < 0.05 FWE), and decreased mean diffusivity in the left nucleus accumbens (-1.3%; P < 0.05 FWE). Diffusion MRI tractography (n = 22), seeded by sensorimotor cortex fMRI activation, also revealed increased FA in the right corticospinal tract (mean 3.28%; P < 0.05 FWE) predominantly reflecting decreased radial diffusivity. These changes were consistent throughout the entire length of the tract. The left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P < 0.05 FWE) and right supplementary motor area (18/22 participants; P < 0.05 FWE). Equivalent changes in FA were not seen in the left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Schneider, Sarah Morar; Sridhar, Vidya; Bettis, Amanda K; Heath-Barnett, Heather; Balog-Alvarez, Cynthia J; Guo, Lee-Jae; Johnson, Rachel; Jaques, Scott; Vitha, Stanislav; Glowcwski, Alan C; Kornegay, Joe N; Nghiem, Peter P
2018-03-05
Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG). MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [ 18 F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[ 18 F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response.
Nunes, Paulo Sérgio Gonçalves; Zhang, Zhengxing; Kuo, Hsiou-Ting; Zhang, Chengcheng; Rousseau, Julie; Rousseau, Etienne; Lau, Joseph; Kwon, Daniel; Carvalho, Ivone; Bénard, François; Lin, Kuo-Shyan
2018-04-01
2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of 2-nitroimidazole, 18 F-AmBF 3 -Bu-2NI, could have the potential to image tumor hypoxia at earlier time points. AmBF 3 -Bu-2NI was prepared in 4 steps. 18 F labeling was conducted via 18 F- 19 F isotope exchange reaction, and 18 F-AmBF 3 -Bu-2NI was obtained in 14.8 ± 0.4% (n = 3) decay-corrected radiochemical yield with 24.5 ± 5.2 GBq/μmol specific activity and >99% radiochemical purity. Imaging and biodistribution studies in HT-29 tumor-bearing mice showed that 18 F-AmBF 3 -Bu-2NI cleared quickly from blood and was excreted via the hepatobiliary and renal pathways. However, the tumor was not visualized in PET images until 3 hours post-injection due to low tumor uptake (0.54 ± 0.13 and 0.19 ± 0.04%ID/g at 1 and 3 hours post-injection, respectively). The low tumor uptake is likely due to the highly hydrophilic motif of ammoniomethyl-trifluoroborate that prevents free diffusion of 18 F-AmBF 3 -Bu-2NI across the cell membrane. Our results suggest that highly hydrophilic 18 F-labeled ammoniomethyl-trifluoroborate derivatives might not be suitable for imaging intracellular targets including nitroreductase, a common tumor hypoxia imaging target. Copyright © 2017 John Wiley & Sons, Ltd.
Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang
2017-09-01
Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.
Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I
2017-02-01
Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated tumors.
Zacho, Helle D; Nielsen, Julie B; Afshar-Oromieh, Ali; Haberkorn, Uwe; deSouza, Nandita; De Paepe, Katja; Dettmann, Katja; Langkilde, Niels C; Haarmark, Christian; Fisker, Rune V; Arp, Dennis T; Carl, Jesper; Jensen, Jørgen B; Petersen, Lars J
2018-06-06
To prospectively compare diagnostic accuracies for detection of bone metastases by 68 Ga-PSMA PET/CT, 18 F-NaF PET/CT and diffusion-weighted MRI (DW 600 -MRI) in prostate cancer (PCa) patients with biochemical recurrence (BCR). Sixty-eight PCa patients with BCR participated in this prospective study. The patients underwent 68 Ga-PSMA PET/CT, a 18 F-NaF PET/CT and a DW 600 -MRI (performed in accordance with European Society of Urogenital Radiology guidelines, with b values of 0 and 600 s/mm 2 ). Bone lesions were categorized using a three-point scale (benign, malignant or equivocal for metastases) and a dichotomous scale (benign or metastatic) for each imaging modality by at least two experienced observers. A best valuable comparator was defined for each patient based on study-specific imaging, at least 12 months of clinical follow-up and any imaging prior to the study and during follow-up. Diagnostic performance was assessed using a sensitivity analysis where equivocal lesions were handled as non-metastatic and then as metastatic. Ten of the 68 patients were diagnosed with bone metastases. On a patient level, sensitivity, specificity and the area under the curve (AUC) by receiver operating characteristic analysis were, respectively, 0.80, 0.98-1.00 and 0.89-0.90 for 68 Ga-PSMA PET/CT (n = 68 patients); 0.90, 0.90-0.98 and 0.90-0.94 for 18 NaF PET/CT (n = 67 patients); and 0.25-0.38, 0.87-0.92 and 0.59-0.62 for DW 600 -MRI (n = 60 patients). The diagnostic performance of DW 600 -MRI was significantly lower than that of 68 Ga-PSMA PET/CT and 18 NaF PET/CT for diagnosing bone metastases (p < 0.01), and no significant difference in the AUC was seen between 68 Ga-PSMA PET/CT and 18 NaF PET/CT (p = 0.65). 68 Ga-PSMA PET/CT and 18 F-NaF PET/CT showed comparable and high diagnostic accuracies for detecting bone metastases in PCa patients with BCR. Both methods performed significantly better than DW 600 -MRI, which was inadequate for diagnosing bone metastases when conducted in accordance with European Society of Urogenital Radiology guidelines.
NASA Astrophysics Data System (ADS)
Fan, Haoyu; Welty, Daniel E.; York, Donald G.; Sonnentrucker, Paule; Dahlstrom, Julie A.; Baskes, Noah; Friedman, Scott D.; Hobbs, Lewis M.; Jiang, Zihao; Rachford, Brian; Snow, Theodore P.; Sherman, Reid; Zhao, Gang
2017-12-01
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form (f H2), with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five “normal” DIBs (λλ5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to E B-V , show a “lambda-shaped” behavior: they increase at low f H2, peak at f H2 ˜ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca+, Ti+, and CH+ also decline for f H2 > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with f H2, and the trends exhibited by the three C2 DIBs (λλ4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with f H2 are accompanied by cosmic scatter, the dispersion at any given f H2 being significantly larger than the individual errors of measurement. The lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes aside from ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest W λ (5780)/W λ (5797) ratios, characterizing the so-called “sigma-zeta effect,” occur only at f H2 < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing f H2. In order of increasing environmental density, we find the λ6283.8 and λ5780.5 DIBs, the λ6196.0 DIB, the λ6613.6 DIB, the λ5797.1 DIB, and the C2 DIBs.
An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Richwine, David M.
1988-01-01
A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.
Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass
2010-06-01
The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.
Morita, Koji; Sakamoto, Takahiko; Ota, Shuji; Masugi, Hideo; Chikuta, Ikumi; Mashimo, Yamato; Edo, Naoki; Tokairin, Takuo; Seki, Nobuhiko; Ishikawa, Toshio
2017-01-01
It has been shown that metastases to the thyroid from extrathyroidal malignancies occur as solitary or multiple nodules, or may involve the whole thyroid gland diffusely. However, diffuse metastasis of gastric cancer to the thyroid is extremely rare. Here, we report a case of a 74-year-old woman with diffuse infiltration of gastric adenocarcinoma (signet-ring-cell carcinoma/poorly differentiated adenocarcinoma) cells in the thyroid. The pathological diagnosis was made based on upper gastrointestinal endoscopy with biopsy and fine-needle aspiration cytology of the thyroid. An 18F-FDG PET/CT revealed multiple lesions with increased uptake, including the bilateral thyroid gland. On thyroid ultrasound examination, diffuse enlargement with internal heterogeneity and hypoechoic reticular lines was observed. On color Doppler imaging, a blood-flow signal was not detected in these hypoechoic lines. These findings were similar to those of diffuse metastases caused by other primary cancers, such as lung cancer, as reported earlier. Therefore, the presence of hypoechoic reticular lines without blood-flow signals is probably common to diffuse thyroid metastasis from any origin and an important diagnostic finding. This is the first report to show detailed ultrasound findings of diffuse gastric cancer metastasis to the thyroid gland using color Doppler.
Gariani, Joanna; Westerland, Olwen; Natas, Sarah; Verma, Hema; Cook, Gary; Goh, Vicky
2018-04-01
To undertake a systematic review to determine the diagnostic performance of whole body MRI (WBMRI) including diffusion weighted sequences (DWI) compared to whole body computed tomography (WBCT) or 18 F-fluorodeoxyglucose positron emission tomography/CT ( 18 F-FDG PET/CT) in patients with myeloma. Two researchers searched the primary literature independently for WBMRI studies of myeloma. Data were extracted focusing on the diagnostic ability of WBMRI versus WBCT and 18 F-FDG PET/CT. Meta-analysis was intended. 6 of 2857 articles were eligible that included 147 patients, published from 2008 to 2016. Studies were heterogeneous including both newly diagnosed & relapsed patients. All were single centre studies. Four of the six studies (66.7%) accrued prospectively and 5/6 (83.3%, 3 prospective) included WBMRI and 18 F-FDG PET/CT. Three of seven (42.9%) included DWI. The lack of an independent reference standard for individual lesions was noted in 5/6 (83.3%) studies. Studies reported that WBMRI detected more lesions than 18 F-FDG PET/CT (sensitivity 68-100% versus 47-100%) but was less specific (specificity 37-83% versus 62-85.7%). No paper assessed impact on management. Studies were heterogeneous, the majority lacking an independent reference standard. Future prospective trials should address these limitations and assess the impact of WBMRI on management. Copyright © 2018. Published by Elsevier B.V.
Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J
2017-01-01
Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid). The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.
NASA Astrophysics Data System (ADS)
Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre
2015-06-01
The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to process fMRI and different radiotracers, thus leading to integration of functional information, and supporting the research for new multimodal biomarkers for AD and other neurodegenerative diseases.
Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.
2017-01-01
Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031
NASA Technical Reports Server (NTRS)
Bjarke, Lisa J.; Delfrate, John H.; Fisher, David F.
1992-01-01
High-angle-of-attack aerodynamic studies have been conducted on both the F18 High Alpha Research Vehicle (HARV) and the X-29A aircraft. Data obtained include on- and off-surface flow visualization and static pressure measurements on the forebody. Comparisons of similar results are made between the two aircraft where possible. The forebody shapes of the two aircraft are different and the X-29A forebody flow is affected by the addition of nose strakes and a flight test noseboom. The forebody flow field of the F-18 HARV is fairly symmetric at zero sideslip and has distinct, well-defined vortices. The X-29A forebody vortices are more diffuse and are sometimes asymmetric at zero sideslip. These asymmetries correlate with observed zero-sideslip aircraft yawing moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi
2014-10-14
The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusionmore » any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.« less
Ichikawa, Shintaro; Motosugi, Utaroh; Morisaka, Hiroyuki; Sano, Katsuhiro; Ichikawa, Tomoaki; Enomoto, Nobuyuki; Matsuda, Masanori; Fujii, Hideki; Onishi, Hiroshi
2015-07-01
To evaluate the use of intravoxel incoherent motion (IVIM) imaging for staging hepatic fibrosis, and compare its staging ability with that of magnetic resonance elastography (MRE). This study included 129 patients with pathologically staged liver fibrosis, and 53 patients with healthy livers. All patients underwent both MRE and IVIM imaging. Four diffusivity indices were calculated with 11 b-values; slow diffusion coefficient related to molecular diffusion (D), fast diffusion coefficient related to perfusion in micro-vessels (D*), perfusion-related diffusion fraction (f), and apparent diffusion coefficient (ADC). Receiver operating characteristic curve analysis was performed to determine the accuracy of IVIM imaging and MRE for staging hepatic fibrosis. D*, f, and ADC values decreased significantly with fibrosis stage (P < 0.0124), and liver stiffness increased (P < 0.0001). The Az value of MRE was significantly higher than that of D* for all fibrosis stages (D* vs. MRE for ≥ F1, 0.851 vs. 0.992 [P < 0.0001]; ≥ F2, 0.898 vs. 0.998 [P = 0.0003]; ≥ F3, 0.904 vs. 0.995 [P = 0.0004]; F4, 0.885 vs. 0.996 [P < 0.0001]). IVIM imaging is a useful technique for evaluating hepatic fibrosis, but MRE is better able to discriminate fibrosis stages than IVIM imaging. © 2014 Wiley Periodicals, Inc.
Ao, Zhimin; Jiang, Quanguo; Li, Shuang; Liu, Hao; Peeters, Francois M; Li, Sean; Wang, Guoxiu
2015-09-09
Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture.more » MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.« less
Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer
Chen, Delphine L.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Mach, Robert H.
2016-01-01
Purpose We tested whether positron emission tomography (PET) with the caspase-3 targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy. Procedures [18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor bearing mice treated with death receptor 5 (DR5) targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t-test assessed for treatment-related changes in tracer uptake. Results [18F]WC-4-116 increased 8 ± 2-fold in etoposide-treated cells. The [18F]WC-4-116 %ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity. Conclusions [18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3 mediated apoptosis treatment responses in cancer. PMID:25344147
Chan, Sheng-Chieh; Lin, Yu-Chun; Yen, Tzu-Chen; Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Ko, Sheung-Fat; Wang, Hung- Ming; Chang, Chee-Jen; Wang, Jiun-Jie
2014-01-01
The clinical usefulness of pretreatment imaging techniques for predicting neck control in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) treated with chemoradiation remains unclear. In this prospective study, we investigated the role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI), diffusion-weighted MR imaging (DWI), and [18F]fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT derived imaging markers for the prediction of neck control in OHSCC patients treated with chemoradiation. Patients with untreated OHSCC scheduled for chemoradiation between August, 2010 and July, 2012 were eligible for the study. Clinical variables and the following imaging parameters of metastatic neck lymph nodes were examined in relation to neck control: transfer constant, volume of blood plasma, and volume of extracellular extravascular space (Ve) on DCE-PWI; apparent diffusion coefficient (ADC) on DWI; maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis on 18F-FDG PET/CT. There were 69 patients (37 with oropharynx SCC and 32 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 31 months, 25 (36.2%) participants had neck failure. Multivariate analysis identified hemoglobin level <14.3 g/dL (P = 0.019), Ve <0.23 (P = 0.040), and ADC >1.14×10−3 mm2/s (P = 0.003) as independent prognostic factors for 3-year neck control. A prognostic scoring system was formulated by summing up the three significant predictors of neck control. Patients with scores of 2–3 had significantly poorer neck control and overall survival rates than patients with scores of 0–1. We conclude that hemoglobin levels, Ve, and ADC are independent pretreatment prognostic factors for neck control in OHSCC treated with chemoradiation. Their combination may identify a subgroup of patients at high risk of developing neck failure. PMID:25531391
NASA Astrophysics Data System (ADS)
Bae, Sang-Chul; Katsuta, Masafumi
Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.
Luo, Mingxu; Song, Hongmei; Liu, Gang; Lin, Yikai; Luo, Lintao; Zhou, Xin; Chen, Bo
2017-10-13
The diagnostic values of diffusion weighted imaging (DWI) and 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for N-staging of gastric cancer (GC) were identified and compared. After a systematic search to identify relevant articles, meta-analysis was used to summarize the sensitivities, specificities, and areas under curves (AUCs) for DWI and PET/CT. To better understand the diagnostic utility of DWI and PET/CT for N-staging, the performance of multi-detector computed tomography (MDCT) was used as a reference. Fifteen studies were analyzed. The pooled sensitivity, specificity, and AUC with 95% confidence intervals of DWI were 0.79 (0.73-0.85), 0.69 (0.61-0.77), and 0.81 (0.77-0.84), respectively. For PET/CT, the corresponding values were 0.52 (0.39-0.64), 0.88 (0.61-0.97), and 0.66 (0.62-0.70), respectively. Comparison of the two techniques revealed DWI had higher sensitivity and AUC, but no difference in specificity. DWI exhibited higher sensitivity but lower specificity than MDCT, and 18 F-FDG PET/CT had lower sensitivity and equivalent specificity. Overall, DWI performed better than 18 F-FDG PET/CT for preoperative N-staging in GC. When the efficacy of MDCT was taken as a reference, DWI represented a complementary imaging technique, while 18 F-FDG PET/CT had limited utility for preoperative N-staging.
Salas, Jessica R; Chen, Bao Ying; Wong, Alicia; Cheng, Donghui; Van Arnam, John S; Witte, Owen N; Clark, Peter M
2018-04-26
Immune cell-mediated attack on the liver is a defining feature of autoimmune hepatitis and hepatic allograft rejection. Despite an assortment of diagnostic tools, invasive biopsies remain the only method for identifying immune cells in the liver. We evaluated whether PET imaging with radiotracers that quantify immune activation ( 18 F-FDG and 18 F-FAC) and hepatocyte biology ( 18 F-DFA) can visualize and quantify hepatic infiltrating immune cells and hepatocyte inflammation, respectively, in a preclinical model of autoimmune hepatitis. Methods: Mice treated with Concanavalin A (ConA) to induce a model of autoimmune hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. Immunohistochemistry, digital autoradiography, and ex vivo accumulation assays were used to localize areas of altered radiotracer accumulation in the liver. For comparison, mice treated with an adenovirus to induce a viral hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. 18 F-FAC PET was performed on mice treated with ConA, and vehicle or dexamethasone. Biopsy samples of patients suffering from autoimmune hepatitis were immunostained for deoxycytidine kinase (dCK). Results: Hepatic accumulation of 18 F-FDG and 18 F-FAC was 173% and 61% higher, respectively, and hepatic accumulation of 18 F-DFA was 41% lower in a mouse model of autoimmune hepatitis compared to control mice. Increased hepatic 18 F-FDG accumulation was localized to infiltrating leukocytes and inflamed sinusoidal endothelial cells, increased hepatic 18 F-FAC accumulation was concentrated in infiltrating CD4 and CD8 cells, and decreased hepatic 18 F-DFA accumulation was apparent in hepatocytes throughout the liver. In contrast, viral hepatitis increased hepatic 18 F-FDG accumulation by 109% and decreased hepatic 18 F-DFA accumulation by 20% but had no effect on hepatic 18 F-FAC accumulation (non-significant 2% decrease). 18 F-FAC PET provided a non-invasive biomarker of the efficacy of dexamethasone for treating the autoimmune hepatitis model. Infiltrating leukocytes in liver biopsy samples from patients suffering from autoimmune hepatitis express high levels of dCK, a rate-limiting enzyme in the accumulation of 18 F-FAC. Conclusion: Our data suggests that PET can be used to non-invasively visualize activated leukocytes and inflamed hepatocytes in a mouse model of autoimmune hepatitis. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Ito, Hiroshi; Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Yanai, Kazuhiko; Okamura, Nobuyuki; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya
2014-04-01
The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The (18)F-labeled amyloid tracer, [(18)F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1,3-benzoxazol-6-yl)oxy]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [(11)C]Pittsburgh compound B (PIB) and [(18)F]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [(11)C]PIB and [(18)F]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [(18)F]FACT studies without partial volume correction, while significant differences were observed in [(11)C]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [(18)F]FACT studies as well as [(11)C]PIB. Relatively lower uptakes of [(11)C]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [(18)F]FACT. Relatively higher uptake of [(11)C]PIB in distribution was observed in the frontal and parietal cortices. Since [(18)F]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [(11)C]PIB and [(18)F]FACT might be due to differences in regional distribution between diffuse and dense-cored amyloid plaque shown in the autoradiographic and histochemical assays of postmortem AD brain sections.
NASA Astrophysics Data System (ADS)
Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.
1988-03-01
High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.
Jain, Sachin; Sharma, Punit; Dhull, Varun Singh; Bal, Chandrasekhar; Kumar, Rakesh
2014-04-01
Neuroendocrine tumors (NETs) are rare tumors which express somatostatin receptors (SSTRs). We here present a case of a 50-year-old female patient with metastatic bronchial carcinoid. She underwent 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT which suggested a diagnosis of poorly differentiated NET. Biopsy of the lesion, however, revealed a second malignancy in the form of diffuse large B-cell lymphoma. Thus, very rarely, other primary tumors can mimic NETs on dual-tracer PET/CT, and biopsy is advised in doubtful cases.
Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang
2011-10-01
Diarrhea in newborn and weaned piglets is mainly induced by enterotoxigenic Escherichia coli (ETEC) with fimbriae F4 (K88) and F18 (F107). In this study, we evaluated F4 and F18 coated with thiolated Eudragit microspheres (TEMS) as a candidate for an oral vaccine. The average particle sizes of TEMS, F4-loaded TEMS, and F18-loaded TEMS were measured as 4.2±0.75 μm, 4.7±0.50 μm, and 4.5±0.37 μm, respectively. F4 is more efficiently encapsulated than F18 in the loading with TEMS. In the release test, F4 and F18 fimbriae were protected in acidic circumstances, whereas most were released at pH 7.4 of intestine circumstances. Production of TNF-α and NO from RAW 264.7 cells was increased in a time-dependent manner after exposure to all groups, whereas only F4- or F18-loaded TEMS-stimulated IL-6 secretion. The levels of IFN-γ from mouse splenocytes after exposure to F4 or F18 were increased while IL-4 was not detectable. These results suggest that F4- and F18-loaded TEMS may effectively induce immune response with the efficient release of antigens to appropriate target sites. Copyright © 2011 Elsevier B.V. All rights reserved.
Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan
2016-01-01
To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. © RSNA, 2015.
Altered structural brain connectome in young adult fragile X premutation carriers.
Leow, Alex; Harvey, Danielle; Goodrich-Hunsaker, Naomi J; Gadelkarim, Johnson; Kumar, Anand; Zhan, Liang; Rivera, Susan M; Simon, Tony J
2014-09-01
Fragile X premutation carriers (fXPC) are characterized by 55-200 CGG trinucleotide repeats in the 5' untranslated region on the Xq27.3 site of the X chromosome. Clinically, they are associated with the fragile X-Associated Tremor/Ataxia Syndrome, a late-onset neurodegenerative disorder with diffuse white matter neuropathology. Here, we conducted first-ever graph theoretical network analyses in fXPCs using 30-direction diffusion-weighted magnetic resonance images acquired from 42 healthy controls aged 18-44 years (HC; 22 male and 20 female) and 46 fXPCs (16 male and 30 female). Globally, we found no differences between the fXPCs and HCs within each gender for all global graph theoretical measures. In male fXPCs, global efficiency was significantly negatively associated with the number of CGG repeats. For nodal measures, significant group differences were found between male fXPCs and male HCs in the right fusiform and the right ventral diencephalon (for nodal efficiency), and in the left hippocampus [for nodal clustering coefficient (CC)]. In female fXPCs, CC in the left superior parietal cortex correlated with counting performance in an enumeration task. Copyright © 2014 Wiley Periodicals, Inc.
(18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).
Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen
2009-09-01
Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to currently used chemoselective one-step (18)F-labelling protocols.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-10-31
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value ( 18 F-FDG SUV max ), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18 F-FDG SUV max , Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18 F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-01-01
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB. PMID:29207673
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.
Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J
2016-03-22
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly
Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.
2016-01-01
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239
Luo, Mingxu; Song, Hongmei; Liu, Gang; Lin, Yikai; Luo, Lintao; Zhou, Xin; Chen, Bo
2017-01-01
The diagnostic values of diffusion weighted imaging (DWI) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for N-staging of gastric cancer (GC) were identified and compared. After a systematic search to identify relevant articles, meta-analysis was used to summarize the sensitivities, specificities, and areas under curves (AUCs) for DWI and PET/CT. To better understand the diagnostic utility of DWI and PET/CT for N-staging, the performance of multi-detector computed tomography (MDCT) was used as a reference. Fifteen studies were analyzed. The pooled sensitivity, specificity, and AUC with 95% confidence intervals of DWI were 0.79 (0.73–0.85), 0.69 (0.61–0.77), and 0.81 (0.77–0.84), respectively. For PET/CT, the corresponding values were 0.52 (0.39–0.64), 0.88 (0.61–0.97), and 0.66 (0.62–0.70), respectively. Comparison of the two techniques revealed DWI had higher sensitivity and AUC, but no difference in specificity. DWI exhibited higher sensitivity but lower specificity than MDCT, and 18F-FDG PET/CT had lower sensitivity and equivalent specificity. Overall, DWI performed better than 18F-FDG PET/CT for preoperative N-staging in GC. When the efficacy of MDCT was taken as a reference, DWI represented a complementary imaging technique, while 18F-FDG PET/CT had limited utility for preoperative N-staging. PMID:29137440
Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang
2015-10-01
To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.
Intravoxel Incoherent Motion MR Imaging for Staging of Hepatic Fibrosis.
Zhang, Bin; Liang, Long; Dong, Yuhao; Lian, Zhouyang; Chen, Wenbo; Liang, Changhong; Zhang, Shuixing
2016-01-01
To determine the potential of intravoxel incoherent motion (IVIM) MR imaging for staging of hepatic fibrosis (HF). We searched PubMed and EMBASE from their inception to 31 July 2015 to select studies reporting IVIM MR imaging and HF staging. We defined F1-2 as non-advanced HF, F3-4 as advanced HF, F0 as normal liver, F1 as very early HF, and F2-4 as significant HF. Then we compared stage F0 with F1, F0-1 with F2-3, and F1-2 with F3-4 using IVIM-derived parameters (pseudo-diffusion coefficient D*, perfusion fraction f, and pure molecular diffusion parameter D). The effect estimate was expressed as a pooled weighted mean difference (WMD) with 95% confidence interval (CI), using the fixed-effects model. Overall, we included six papers (406 patients) in this study. Significant differences in D* were observed between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 2.46, 95% CI 0.83-4.09, P = 0.006; WMD 13.10, 95% CI 9.53-16.67, P < 0.001; WMD 14.34, 95% CI 10.26-18.42, P < 0.001, respectively). Significant differences in f were also found between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 1.62, 95% CI 0.06-3.18, P = 0.027; WMD 5.63, 95% CI 2.74-8.52, P < 0.001; WMD 3.30, 95% CI 2.10-4.50, P < 0.001, respectively). However, D showed no differences between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 0.05, 95% CI -0.01─0.11, P = 0.105; WMD 0.04, 95% CI -0.01─0.10, P = 0.230; WMD 0.02, 95% CI -0.02─0.06, P = 0.378, respectively). IVIM MR imaging provides an effective method of staging HF and can distinguish early HF from normal liver, significant HF from normal liver or very early HF, and advanced HF from non-advanced HF.
Effect of Fluorine Diffusion on Amorphous-InGaZnO-Based Thin-Film Transistors.
Jiang, Jingxin; Furuta, Mamoru
2018-08-01
This study investigated the effect of fluorine (F) diffusion from a fluorinated siliconnitride passivation layer (SiNX:F-Pa) into amorphous-InGaZnO-based thin-film transistors (a-IGZO TFTs). The results of thermal desorption spectroscopy and secondary ion mass spectrometry revealed that F was introduced into the SiOX etch-stopper layer (SiOX-ES) during the deposition of a SiNX:F-Pa, and did not originate from desorption of Si-F bonds; and that long annealing times enhanced F diffusion from the SiOX-ES layer to the a-IGZO channel. Improvements to the performance and threshold-voltage (Vth) negative shift of IGZO TFTs were achieved when annealing time increased from 1 h to 3 h; and capacitance-voltage results indicated that F acted as a shallow donor near the source side in a-IGZO and induced the negative Vth shift. In addition, it was found that when IGZO TFTs with SiNX:F-Pa were annealed 4 h, a low-resistance region was formed at the backchannel of the TFT, leading to a drastic negative Vth shift.
Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R
2015-04-01
OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can detect small functioning corticotroph adenomas and is more sensitive than SE MRI, SPGR MRI is more sensitive than(18)F-FDG hrPET and SE MRI in the detection of CD-associated pituitary adenomas. Response to CRH stimulation can predict(18)F-FDG hrPET-positive adenomas in CD.
Improved thermal stability of TbF3-coated sintered Nd-Fe-B magnets by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Cao, X. J.; Chen, L.; Guo, S.; Di, J. H.; Ding, G. F.; Chen, R. J.; Yan, A. R.; Chen, K. Z.
2018-05-01
Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd-Fe-B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
Formation of redox gradients during magma-magma mixing
NASA Astrophysics Data System (ADS)
Ruprecht, P.; Fiege, A.; Simon, A. C.
2015-12-01
Magma-mixing is a key process that controls mass transfer in magmatic systems. The variations in melt compositions near the magma-magma interface potentially change the Fe oxidation state [1] and, thus, affect the solubility and transport of metals. To test this hypothesis, diffusion-couple experiments were performed at 1000 °C, 150 MPa and QFM+4. Synthesized crystal-bearing cylinders of hydrous dacite and hydrous basaltic andesite were equilibrated for up to 80 h. The run products show that mafic components (Fe, Mg, etc.) were transported from the andesite into the dacite, while Si, Na and K diffused from the dacite into the andesite. A crystal dissolution sequence in the order of cpx, opx, plag, and spl/il was observed for the andesite. We combined μ-XANES spectroscopy at Fe K-edge [2] with two-oxide oxybarometry [3] to measure redox profiles within our experiments. Here, fO2 decreased towards the interface within the dacite and increased towards the interface within the andesite. This discontinuous fO2 evolution, with a sharp redox gradient of ~1.8 log fO2 units at the interface was maintained throughout the time-series despite the externally imposed fO2 of the vessel. We propose a combination of two mechanisms that create and sustain this redox gradient: 1) The dissolution of cpx and opx in the andesite mainly introduced Fe2+ into the melt, which diffused towards the dacite, lowering Fe3+/SFe near the interface. 2) Charge balance calculations in the melt during diffusive exchange suggest net positive charge excess in the andesite near the interface (i.e., oxidation) and net negative charge excess in the dacite near the interface (i.e., reduction). We suggest that this (metastable) redox layer can help to explain the contrasting Au/Cu ratios observed for arc-related porphyry-type ore deposits. [1] Moretti (2005), Ann. Geophys. 48, 583-608. [2] Cottrell et al. (2009), Chem. Geol. 268, 167-179. [3] Ghiorso and Evans (2008), Am. J. Sci. 308, 957-1039.
NASA Astrophysics Data System (ADS)
Truica, Loredana Sorina
In this thesis, water diffusion in human liver and placenta is studied using diffusion weighted magnetic resonance imaging. For short, randomly oriented vascular segments, intravascular water motion is diffusion-like. For tissues with large vascular compartments the diffusion decay is bi-exponential with one component corresponding to diffusing water and the other to water in the microvasculature. This model, known as the intravoxel incoherent motion (IVIM) model, is seldom used with abdominal organs because of motion artifacts. This limitation was overcome for the experiments reported here by introducing: 1) parallel imaging, 2) navigator echo respiratory triggering (NRT), 3) a double echo diffusion sequence that inherently compensates for eddy current effects, 4) SPAIR fat suppression and 5) a superior approach to image analysis. In particular, the use of NRT allowed us to use a free breathing protocol instead of the previously required breath hold protocol. The resulting DWI images were of high quality and motion artifact free. Diffusion decays were measured over a larger portion of the decay than had previously been reported and the results are considerably better than those previously reported. For both studies, reliable measurements of the diffusion coefficient (D), pseudo-diffusion coefficient (D) and perfusion fraction (f), were obtained using a region of interest analysis as well as a pixel-by-pixel approach. To within experimental error, all patients had the same values of D (1.10 mum 2/ms +/- 0.16 mum2/ms), D* (46 mum2/ms +/- 17 mum2/ms) and f (44.0% +/- 6.9%) in liver and D (1.8 mum 2/ms +/- 0.2 mum2/ms), D* (30 mum 2/ms +/- 12 mmu2/ms), and f (40% +/- 6%) in the placenta. No dependence on gestational age was found for the placental study. Parametric maps of f and D* were consistent with blood flow patterns in both systems. The model worked well for both investigated organs even though their anatomical structures are quite different. A method for removing rectified noise bias from low intensity magnitude MR images measured with phased array coils is also presented. This algorithm has significance for diffusion decay measurements since it permits the use of low intensity data points which could, for example, allow the acquisition of high resolution parametric maps.
Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
Benitez, Laura; Seminario, Jorge M.
2017-05-17
Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less
Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, Laura; Seminario, Jorge M.
Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less
Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa; ...
2017-09-06
Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa
Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less
Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-01-01
Objective Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET)/ computed tomography (CT) in mice. Methods A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine) were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18F]FDG PET images. CL 316243 increased the total [18F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT hounsfiled unit (HU) (R2=0.55, p<0.001) and between CT HU levels of IBAT and liver (R2=0.69, p<0.006) was observed. Conclusions The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [18F]FDG PET/CT. PMID:24090673
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
Simoncic, Urban; Perlman, Scott; Liu, Glenn; Jeraj, Robert
2015-01-01
Background The 18F-NaF/18F-FDG cocktail PET/CT imaging has been proposed for patients with osseous metastases. This work aimed to optimize the cocktail composition for patients with metastatic castrate-resistant prostate cancer (mCRPC). Materials and methods Study was done on 6 patients with mCRPC that had analyzed a total of 26 lesions. Patients had 18F-NaF and 18F-FDG injections separated in time. Dynamic PET/CT imaging recorded uptake time course for both tracers into osseous metastases. 18F-NaF and 18F-FDG uptakes were decoupled by kinetic analysis, which enabled calculation of 18F-NaF and 18F-FDG Standardized Uptake Value (SUV) images. Peak, mean and total SUVs were evaluated for both tracers and all visible lesions. The 18F-NaF/18F-FDG cocktail was optimized under the assumption that contribution of both tracers to the image formation should be equal. SUV images for combined 18F-NaF/18F-FDG cocktail PET/CT imaging were generated for cocktail compositions with 18F-NaF:18F-FDG ratio varying from 1:8 to 1:2. Results The 18F-NaF peak and mean SUVs were on average 4-5 times higher than the 18F-FDG peak and mean SUVs, with inter-lesion coefficient-of-variations (COV) of 20%. 18F-NaF total SUV was on average 7 times higher than the 18F-FDG total SUV. When the 18F-NaF:18F-FDG ratio changed from 1:8 to 1:2, typical SUV on generated PET images increased by 50%, while change in uptake visual pattern was hardly noticeable. Conclusion The 18F-NaF/18F-FDG cocktail has equal contributions of both tracers to the image formation when the 18F-NaF:18F-FDG ratio is 1:5. Therefore we propose this ratio as the optimal cocktail composition for mCRPC patients. We also urge to strictly control the 18F-NaF/18F-FDG cocktail composition in any 18F-NaF/18F-FDG cocktail PET/CT exams. PMID:26378490
Sodium 18F-Fluoride PET/CT of Bone, Joint and Other Disorders
Jadvar, Hossein; Desai, Bhushan; Conti, Peter S.
2014-01-01
The use of 18F-sodium fluoride (18F-NaF) with positron emission tomography-computed tomography (PET/CT) is increasing. This resurgence of an old tracer has been fueled by several factors including superior diagnostic performance over standard 99mTc-based bone scintigraphy, growth in the availability of PET/CT imaging systems, increase in the number of regional commercial distribution centers for PET radiotracers, the recent concerns about potential chronic shortages with 99mTc based radiotracers, and the recent decision by the Centers for Medicare and Medicaid Services to reimburse for 18F-NaF PET/CT for evaluation of patients with known or suspected bone metastases through the National Oncologic PET Registry. The major goal of this article is to review the current evidence on the diagnostic utility of 18F-NaF in the imaging assessment of bone and joint in a variety of clinical conditions. PMID:25475379
2017-11-16
Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
Characterizing the reflectivity of handheld display devices.
Liu, Peter; Badano, Aldo
2014-08-01
With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements, both luminance and illuminance increased as the size of the display window decreased. The TG18 method does not account for this variability. The authors conclude that the method requires a definitive description of the back panel used in the light source setup. The methods described in the TG18 document may need to be improved to provide consistent comparisons of desktop monitors, phones, and tablets.
2009-01-01
extractable P and K in a sandy clay loam soil under continuous corn ( Zea mays L .). Can J Soil Sci 75:361-367. Zhang, T. Q., A. F. MacKenzie, B. C...diffusive P flux from deposited sediment stored in river channels may also play a role in soluble P control. Ranges in equilibrium partitioning between...largest plants in the State of Minnesota, discharge (average discharge = 1.8 m3 s-1) at effluent P concentrations of 1.5 mg L -1 or less. A 538-megawatt
Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-01-01
Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose ((18)F-FDG) and of fluorine-18-fluoromisonidazole ((18)F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with (18)F-FDG and (18)F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. (18)F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased (18)F-FDG uptake. Six patients demonstrated also in total 43 (18)F-FDG avid metastases; these patients were excluded from radiotherapy. (18)F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly (18)F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for (18)F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for (18)F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. (18)F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. (18)F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the (18)F-FDG avid NSCLCs. Lack of correlation between the two tracers' kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy.
Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-01-01
Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose (18F-FDG) and of fluorine-18-fluoromisonidazole (18F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with 18F-FDG and 18F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. 18F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased 18F-FDG uptake. Six patients demonstrated also in total 43 18F-FDG avid metastases; these patients were excluded from radiotherapy. 18F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly 18F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for 18F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for 18F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. 18F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. 18F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the 18F-FDG avid NSCLCs. Lack of correlation between the two tracers’ kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy. PMID:25973334
Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo
2009-06-01
Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than that by other cells. Thus, fibroblasts and activated macrophages contribute to a high level of (18)F-FDG accumulation in the pannus, and hypoxia as well as cytokine stimulation significantly increases (18)F-FDG uptake by these cells. (18)F-FDG accumulation in RA reflects proliferating pannus and inflammatory activity enhanced by inflammatory cytokines and hypoxia. (18)F-FDG PET should be effective for quantifying the inflammatory activity of RA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.
2015-06-24
Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture atmore » 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.« less
Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients.
Jansen, Nathalie L; Suchorska, Bogdana; Wenter, Vera; Eigenbrod, Sabina; Schmid-Tannwald, Christine; Zwergal, Andreas; Niyazi, Maximilian; Drexler, Mark; Bartenstein, Peter; Schnell, Oliver; Tonn, Jörg-Christian; Thon, Niklas; Kreth, Friedrich-Wilhelm; la Fougère, Christian
2014-02-01
Because the clinical course of low-grade gliomas in the individual adult patient varies considerably and is unpredictable, we investigated the prognostic value of dynamic (18)F-fluorethyltyrosine ((18)F-FET) PET in the early diagnosis of astrocytic low-grade glioma (World Health Organization grade II). Fifty-nine patients with newly diagnosed low-grade glioma and dynamic (18)F-FET PET before histopathologic assessment were retrospectively investigated. (18)F-FET PET analysis comprised a qualitative visual classification of lesions; assessment of the semiquantitative parameters maximal, mean, and total standardized uptake value as ratio to background and biologic tumor volume; and dynamic analysis of intratumoral (18)F-FET uptake over time (increasing vs. decreasing time-activity curves). The correlation between PET parameters and progression-free survival, overall survival, and time to malignant transformation was investigated. (18)F-FET uptake greater than the background level was found in 34 of 59 tumors. Dynamic (18)F-FET uptake analysis was available for 30 of these 34 patients. Increasing and decreasing time-activity curves were found in 18 and 12 patients, respectively. Neither the qualitative factor presence or absence of (18)F-FET uptake nor any of the semiquantitative uptake parameters significantly influenced clinical outcome. In contrast, decreasing time-activity curves in the kinetic analysis were highly prognostic for shorter progression-free survival and time to malignant transformation (P < 0.001). Absence of (18)F-FET uptake in newly diagnosed astrocytic low-grade glioma does not generally indicate an indolent disease course. Among the (18)F-FET-positive gliomas, decreasing time-activity curves in dynamic (18)F-FET PET constitute an unfavorable prognostic factor in astrocytic low-grade glioma and, by identifying high-risk patients, may ease treatment decisions.
Chakraborty, Brahmananda
2015-08-20
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied for the first time the dynamic correlation, Onsager coefficients, and Maxwell-Stefan (MS) diffusivities of molten salt LiF-BeF2, which is a potential candidate for a coolant in a high temperature reactor. We observe an unusual composition dependence and strikingly a crossover in sign for all the MS diffusivities at a composition of around 7% of LiF where the MS diffusivity between cation-anion pair (Đ(BeF) and Đ(LiF)) jumps from positive to negative value while the MS diffusivity between cation-cation pair (Đ(LiBe)) becomes positive from a negative value. Even though the negative MS diffusivities have been observed for electrolyte solutions between cation-cation pair, here we report negative MS diffusivity between cation-anion pair where Đ(BeF) shows a sharp rise around 66% of BeF2, reaches maximum value at 70% of BeF2, and then decreases almost exponentially with a sign change for BeF2 around 93%. For low mole fraction of LiF, Đ(BeF) follows the Debye-Huckel theory and rises with the square root of LiF mole fraction similar to the MS diffusivity between cation-anion pair in aqueous solution of electrolyte salt. Negative MS diffusivities while unusual are, however, shown to satisfy the non-negative entropy constraints at all thermodynamic states as required by the second law of thermodynamics. We have established a strong correlation between the structure and dynamics and predict that the formation of flouride polyanion network between Be and F ions and coulomb interaction is responsible for sharp variation of the MS diffusivities which controls the multicomponent diffusion phenomenon in LiF-BeF2 which has a strong impact on the performance of the reactor.
Januś, D; Wójcik, M; Drabik, G; Wyrobek, Ł; Starzyk, J B
2018-03-01
The prevalence of autoimmune thyroiditis (AIT) and papillary thyroid carcinoma (PTC) is rising in children and adolescents, and the coincidence of AIT and PTC is as high as 6.3-43%. To investigate the ultrasound manifestation of AIT in relation to PTC development in paediatric patients. 179 paediatric patients (133 females), mean (SD) age: 13.9 (3.03) years diagnosed with AIT and referred for ultrasound evaluation. Eight patients were diagnosed with PTC (6 females). Retrospective analysis of thyroid ultrasound scans of patients diagnosed with AIT. Thyroid and autoimmune status was assessed based on TSH, fT4, fT3 and increased aTPO and/or aTG and/or TRAB levels. In patients with PTC, total thyroidectomy was performed. Analysis of thyroid US scans revealed that the following five ultrasound variants of AIT were observed in 179 patients: the most common in 35.2%-diffuse thyroiditis with hypoechogenic background and normoechogenic parenchyma, in 30.2%-diffuse thyroiditis with irregular background, in 18.9% nodular variant with normoechogenic background, in 11.7%-micronodulations and in 3.9%-diffuse hypoechogenic background. Eight cases of PTC were diagnosed in nodular variant of AIT with normoechogenic irregular background. Patients with AIT and nodular variant with normoechogenic irregular background of the thyroid gland on US scans are in the risk group of developing PTC and should be followed up with regular neck US assessment.
Gallezot, Jean-Dominique; Esterlis, Irina; Bois, Frederic; Zheng, Ming-Qiang; Lin, Shu-Fei; Kloczynski, Tracy; Krystal, John H; Huang, Yiyun; Sabri, Osama; Carson, Richard E; Cosgrove, Kelly P
2014-11-01
18F-(-)-NCFHEB (also known as 18F-(-)-Flubatine) is a new radioligand to image α4β2* nicotinic acetylcholine receptors in vivo with positron emission tomography (PET), with faster kinetics than previous radioligands such as 18F-2-F-A85380. The goal of this study was to assess the sensitivity of 18F-(-)-NCFHEB-PET to increases in synaptic acetylcholine concentration induced by acetylcholinesterase inhibitors. Two rhesus monkeys were scanned four times each on a Focus 220 scanner: first at baseline, then during two bolus plus infusions of physostigmine (0.06-0.28 mg/kg), and finally following a bolus injection of donepezil (0.25 mg/kg). The arterial input function and the plasma free fraction fP were measured. 18F-(-)-NCFHEB volume of distribution VT was estimated using the multilinear analysis MA1 and then normalized by plasma free fraction fP . 18F-(-)-NCFHEB fP was 0.89±0.04. At baseline, 18F-(-)-NCFHEB VT /fP ranged from 7.9±1.3 mL plasma/cm3 tissue in the cerebellum to 34.3±8.4 mL plasma/cm3 tissue in the thalamus. Physostigmine induced a dose-dependent reduction of 18F-(-)-NCFHEB VT /fP of 34±9% in the putamen, 32±8% in the thalamus, 25±8% in the cortex, and 23±10% in the hippocampus. With donepezil, 18F-(-)-NCFHEB VT /fP was reduced by 24±2%, 14+3% and 14±5%, 10±6% in the same regions. 18F-(-)-NCFHEB can be used to detect changes in synaptic acetylcholine concentration and is a promising tracer to study acetylcholine dynamics with shorter scan durations than previous radioligands. © 2014 Wiley Periodicals, Inc.
Choi, Seong H; Gharahmany, Ghazal; Walzem, Rosemary L; Meade, Thomas H; Smith, Stephen B
2018-03-01
We hypothesized that consumption of saturated fatty acids in the form of high-fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground-beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4-week washout period. The 25F and 18F ground-beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground-beef increased only the intake of oleic acid (p < 0.05). The ground-beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground-beef decreased very low-density lipoprotein C concentrations and increased particle diameters and low-density lipoprotein (LDL)-I-C and LDL-II-C concentrations (p < 0.05). The ground-beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein-1, and LDL receptor (LDLR) (p < 0.05). The ground-beef 18F increased mRNA levels for stearoyl-CoA desaturase-1 (p < 0.05). We conclude that the increased LDL particle size and LDL-I-C and LDL-II-C concentrations following the 25F ground-beef intervention may have been caused by decreased hepatic LDLR gene expression. © 2018 AOCS.
Bertleff, Marco; Domsch, Sebastian; Weingärtner, Sebastian; Zapp, Jascha; O'Brien, Kieran; Barth, Markus; Schad, Lothar R
2017-12-01
Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times. Copyright © 2017 John Wiley & Sons, Ltd.
Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji
2018-06-01
Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV, and NPV of whole-body DWIBS for detecting bone metastasis from pediatric neuroblastoma were 94.7, 24.0, 53.0, 46.4 and 86.7%, respectively, whereas those for detecting lymph node metastasis were 94.7, 85.3, 87.2, 62.1, and 98.5%, respectively. The low specificity, overall accuracy, and PPV of whole-body DWIBS for detecting bone metastasis were due to a high incidence of false-positive findings (82/108, 75.9%). The specificity, overall accuracy, and PPV of whole-body DWIBS for detecting lymph node metastasis were also significantly lower than those of 18 F-FDG PET/CT for detecting lymph node metastasis, although the difference between these 2 modalities was less than that for detecting bone metastasis. The specificity, overall accuracy, and PPV of whole-body DWIBS are significantly lower than those of 18 F-FDG PET/CT because of a high incidence of false-positive findings particularly for detecting bone metastasis, whereas whole-body DWIBS shows a similar level of sensitivities for detecting lymph node and bone metastases to those of 18 F-FDG PET/CT. DWIBS should be carefully used for cancer staging in children because of its high incidence of false-positive findings in skeletons.
2014-01-01
Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging. PMID:24942656
Doss, Mohan; Kolb, Hartmuth C; Walsh, Joseph C; Mocharla, Vani; Fan, Hong; Chaudhary, Ashok; Zhu, Zhihong; Alpaugh, R Katherine; Lango, Miriam N; Yu, Jian Q
2013-12-01
(18)F-CP-18, or (18S,21S,24S,27S,30S)-27-(2-carboxyethyl)-21-(carboxymethyl)-30-((2S,3R,4R,5R,6S)-6-((2-(4-(3-F18-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamido)-24-isopropyl-18-methyl-17,20,23,26,29-pentaoxo-4,7,10,13-tetraoxa-16,19,22,25,28-pentaazadotriacontane-1,32-dioic acid, is being evaluated as a tissue apoptosis marker for PET imaging. The purpose of this study was to determine the biodistribution and estimate the normal-organ radiation-absorbed doses and effective dose from (18)F-CP-18. Successive whole-body PET/CT scans were obtained at approximately 7, 45, 90, 130, and 170 min after intravenous injection of (18)F-CP-18 in 7 healthy human volunteers. Blood samples and urine were collected between the PET/CT scans, and the biostability of (18)F-CP-18 was assessed using high-performance liquid chromatography. The PET scans were analyzed to determine the radiotracer uptake in different organs. OLINDA/EXM software was used to calculate human radiation doses based on the biodistribution of the tracer. (18)F-CP-18 was 54% intact in human blood at 135 min after injection. The tracer cleared rapidly from the blood pool with a half-life of approximately 30 min. Relatively high (18)F-CP-18 uptake was observed in the kidneys and bladder, with diffuse uptake in the liver and heart. The mean standardized uptake values (SUVs) in the bladder, kidneys, heart, and liver at around 50 min after injection were approximately 65, 6, 1.5, and 1.5, respectively. The calculated effective dose was 38 ± 4 μSv/MBq, with the urinary bladder wall having the highest absorbed dose at 536 ± 61 μGy/MBq using a 4.8-h bladder-voiding interval for the male phantom. For a 1-h voiding interval, these doses were reduced to 15 ± 2 μSv/MBq and 142 ± 15 μGy/MBq, respectively. For a typical injected activity of 555 MBq, the effective dose would be 21.1 ± 2.2 mSv for the 4.8-h interval, reduced to 8.3 ± 1.1 mSv for the 1-h interval. (18)F-CP-18 cleared rapidly through the renal system. The urinary bladder wall received the highest radiation dose and was deemed the critical organ. Both the effective dose and the bladder dose can be reduced by frequent voiding. From the radiation dosimetry perspective, the apoptosis imaging agent (18)F-CP-18 is suitable for human use.
NASA Astrophysics Data System (ADS)
Yuan, Shoucai; Liu, Yamei
2016-08-01
This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.
NASA Astrophysics Data System (ADS)
Jerome, N. P.; d'Arcy, J. A.; Feiweier, T.; Koh, D.-M.; Leach, M. O.; Collins, D. J.; Orton, M. R.
2016-12-01
The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n = 5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE = 62-102 ms, b = 0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE = 62 ms, with 3 additional b-values 0-50 mm-2s at TE = 80, 100 ms scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4 ± 7% (TE = 62 ms) to 30.7 ± 11% (TE = 102 ms) T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9 ± 6%, T2-IVIM: 18.3 ± 7%), as well as T 2 = 42.1 ± 7 ms, 77.6 ± 30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.
Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses.
Torresi, Elena; Polesel, Fabio; Bester, Kai; Christensson, Magnus; Smets, Barth F; Trapp, Stefan; Andersen, Henrik R; Plósz, Benedek Gy
2017-10-15
Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L -1 , for X-ray contrast media 15 μg L -1 ) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient K d,eq (L g -1 ). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient K d,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). K d,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between K d,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f ≪ 0.1) by the high biomass density (reduced porosity). Copyright © 2017 Elsevier Ltd. All rights reserved.
5-(2-18F-fluoroethoxy)-L-tryptophan as a substrate of system L transport for tumor imaging by PET.
Krämer, Stefanie D; Mu, Linjing; Müller, Adrienne; Keller, Claudia; Kuznetsova, Olga F; Schweinsberg, Christian; Franck, Dominic; Müller, Cristina; Ross, Tobias L; Schibli, Roger; Ametamey, Simon M
2012-03-01
Large neutral l-amino acids are substrates of system L amino acid transporters. The level of one of these, LAT1, is increased in many tumors. Aromatic l-amino acids may also be substrates of aromatic l-amino acid decarboxylase (AADC), the level of which is enhanced in endocrine tumors. Increased amino acid uptake and subsequent decarboxylation result in the intracellular accumulation of the amino acid and its decarboxylation product. (18)F- and (11)C-labeled neutral aromatic amino acids, such as l-3,4-dihydroxy-6-(18)F-fluorophenylalanine ((18)F-FDOPA) and 5-hydroxy-l-[β-(11)C]tryptophan, are thus successfully used in PET to image endocrine tumors. However, 5-hydroxy-l-[β-(11)C]tryptophan has a relatively short physical half-life (20 min). In this work, we evaluated the in vitro and in vivo characteristics of the (18)F-labeled tryptophan analog 5-(2-(18)F-fluoroethoxy)-l-tryptophan ((18)F-l-FEHTP) as a PET probe for tumor imaging. (18)F-l-FEHTP was synthesized by no-carrier-added (18)F fluorination of 5-hydroxy-l-tryptophan. In vitro cell uptake and efflux of (18)F-l-FEHTP and (18)F-FDOPA were studied with NCI-H69 endocrine small cell lung cancer cells, PC-3 pseudoendocrine prostate cancer cells, and MDA-MB-231 exocrine breast cancer cells. Small-animal PET was performed with the respective xenograft-bearing mice. Tissues were analyzed for potential metabolites. (18)F-l-FEHTP specific activity and radiochemical purity were 50-150 GBq/μmol and greater than 95%, respectively. In vitro cell uptake of (18)F-l-FEHTP was between 48% and 113% of added radioactivity per milligram of protein within 60 min at 37°C and was blocked by greater than 95% in all tested cell lines by the LAT1/2 inhibitor 2-amino-2-norboranecarboxylic acid. (18)F-FDOPA uptake ranged from 26% to 53%/mg. PET studies revealed similar xenograft-to-reference tissue ratios for (18)F-l-FEHTP and (18)F-FDOPA at 30-45 min after injection. In contrast to the (18)F-FDOPA PET results, pretreatment with the AADC inhibitor S-carbidopa did not affect the (18)F-l-FEHTP PET results. No decarboxylation products of (18)F-l-FEHTP were detected in the xenograft homogenates. (18)F-l-FEHTP accumulates in endocrine and nonendocrine tumor models via LAT1 transport but is not decarboxylated by AADC. (18)F-l-FEHTP may thus serve as a PET probe for tumor imaging and quantification of tumor LAT1 activity. These findings are of interest in view of the ongoing evaluation of LAT1 substrates and inhibitors for cancer therapy.
Mukherjee, G; Rasmusson, B; Linner, J G; Quinn, M T; Parkos, C A; Magnusson, K E; Jesaitis, A J
1998-09-01
A monoclonal IgM, specifically recognizing both CD11b and CD18 of human neutrophils, was used to examine the organization and mobility of CD11b/CD18 in the plasma membrane of human neutrophils degranulated by dihydrocytochalasin B (dhCB) treatment and fMet-Leu-Phe (fMLF) stimulation. Subcellular fractionation analysis of untreated or dhCB-treated control neutrophils indicated that 20% of CD11b/CD18 cosedimented with plasma membrane and the remainder with specific granules. In contrast, fMLF stimulation of dhCB-treated cells caused a major reorganization of CD11b/CD18, in which 60-70% of CD11b/CD18 sedimented in dense plasma membrane fractions that were also enriched in superoxide-generating NADPH oxidase activity. Similarly pretreated neutrophils were fixed, immunogold labeled, and examined by scanning electron microscopy. Immunogold particles were distributed uniformly over the symmetrically ruffled surface of unstimulated neutrophils. On dhCB-treated cells, immunogold was mostly uniformly distributed on a smooth membrane with a small percentage of particles lining up into linear arrays. After fMLF + dhCB stimulation, CD11b/CD18 gold label was more abundant on the cell surface and formed large aggregates on polarized membrane protrusions. However, when cells were adhered to an albumin-coated quartz surface and stimulated with fMLF in the presence of dhCB, immunogold was excluded on the articulated and rounded cell body but concentrated on the periphery of adherent lamellae. Fluorescence photobleaching recovery indicated that in unstimulated cells 38 +/- 3% of CD11b/CD18 was mobile (R) with a diffusion constant D of 3.1 +/- 0.3 x 10(-10) cm2/s. Treatment with dhCB raised R and D 24 and 74%, respectively. Stimulation using 1 microM fMLF with dhCB lowered D and R to near control levels. Since NADPH oxidase and CD11b/CD18 cosediment in high-density plasma membrane domains after fMLF + dhCB stimulation, we speculate that a stimulus-induced reorganization of CD11b/CD18 and NADPH oxidase to common membrane domains may occur in fMLF + dhCB-degranulated neutrophils. Copyright 1998 Academic Press.
MIRBOLOOKI, M. REZA; CONSTANTINESCU, CRISTIAN C.; PAN, MIN-LIANG; MUKHERJEE, JOGESHWAR
2013-01-01
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous 18F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of 18F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β3-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β3-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F-FDG PET/CT. PMID:23080264
van Dyck, C H; Soares, J C; Tan, P Z; Staley, J K; Baldwin, R M; Amici, L A; Fu, X; Garg, P K; Seibyl, J P; Charney, D S; Innis, R B
2000-11-01
[(18)F]Altanserin has emerged as a promising positron emission tomography (PET) ligand for serotonin-2A (5-HT(2A)) receptors. The deuterium substitution of both of the 2'-hydrogens of altanserin ([(18)F]deuteroaltanserin) yields a metabolically more stable radiotracer with higher ratios of parent tracer to radiometabolites and increased specific brain uptake than [(18)F]altanserin. The slower metabolism of the deuterated analog might preclude the possibility of achieving stable plasma and brain activities with a bolus plus constant infusion within a reasonable time frame for an (18)F-labeled tracer (T(1/2) 110 min). Thus, the purpose of this study was to test the feasibility in human subjects of a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with PET. Seven healthy male subjects were injected with [(18)F]deuteroaltanserin as a bolus plus constant infusion lasting 10 h postinjection. PET acquisitions and venous blood sampling were performed throughout the infusion period. Linear regression analysis revealed that time-activity curves for both specific brain uptake and plasma [(18)F]deuteroaltanserin concentration stabilized after about 5 h. This permitted equilibrium modeling and estimation of V(')(3) (ratio of specific uptake to total plasma parent concentration) and the binding potential V(3) (ratio of specific uptake to free plasma parent concentration). Cortical/cerebellar ratios were increased by 26% relative to those we previously observed with [(18)F]altanserin using similar methodology in a somewhat older subject sample. These results demonstrate feasibility of equilibrium imaging with [(18)F]deuteroaltanserin and suggest that it may be superior to [(18)F]altanserin as a PET radioligand.
Li, Xiang; Heber, Daniel; Cal-Gonzalez, Jacobo; Karanikas, Georgios; Mayerhoefer, Marius E; Rasul, Sazan; Beitzke, Dietrich; Zhang, Xiaoli; Agis, Hermine; Mitterhauser, Markus; Wadsak, Wolfgang; Beyer, Thomas; Loewe, Christian; Hacker, Marcus
2017-06-01
18 F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18 F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18 F-NaF and 18 F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [ P < 0.01]; Pearson r = 0.4 [ P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18 F-NaF uptake and regressive inflammation-derived 18 F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18 F-NaF uptake were observed, whereas mean 18 F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18 F-NaF PET imaging and 18 F-FDG PET imaging promotes an understanding of the mechanism of plaque progression, thereby providing new insights into plaque stabilization. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Postinjection L-phenylalanine increases basal ganglia contrast in PET scans of 6-18F-DOPA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doudet, D.J.; McLellan, C.A.; Aigner, T.G.
The sensitivity of 18F-DOPA positron emission tomography for imaging presynaptic dopamine systems is limited by the amount of specific-to-nonspecific accumulation of radioactivity in brain. In rhesus monkeys, we have been able to increase this ratio by taking advantage of the lag time between 18F-DOPA injection and the formation of its main metabolite, the amino acid 18F-fluoromethoxydopa, the entrance of which into brain is responsible for most of the brain's nonspecific radioactivity. By infusing an unlabeled amino acid, L-phenylalanine, starting 15 min after 18F-DOPA administration, we preferentially blocked the accumulation of 18F-fluoromethoxydopa by preventing its entrance into brain through competition atmore » the large neutral amino acid transport system of the blood-brain barrier. This method appears as reliable as the original and more sensitive, as demonstrated by the comparison of normal and MPTP-treated animals under both conditions.« less
Bacterial infection imaging with [18F]fluoropropyl-trimethoprim
Lee, Iljung; Hou, Catherine; Weng, Chi-Chang; Li, Shihong; Lieberman, Brian P.; Zeng, Chenbo; Mankoff, David A.; Mach, Robert H.
2017-01-01
There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential. PMID:28716936
18F-FDG uptake and its clinical relevance in primary gastric lymphoma.
Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog
2010-06-01
We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.
Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P
2015-11-01
To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.
PET imaging of proliferation with pyrimidines.
Tehrani, Omid S; Shields, Anthony F
2013-06-01
Several new tracers are being developed for use with PET to assess pathways that are altered in cancers, including energy use, cellular signaling, transport, and proliferation. Because increased proliferation is a hallmark of many cancers, several tracers have been tested to track the DNA synthesis pathway. Thymidine, which is incorporated into DNA but not RNA, has been used in laboratory studies to measure tumor growth. Because thymidine labeled with (11)C undergoes rapid biologic degradation and has a short physical half-life, tracers labeled with (18)F have been preferred in PET imaging. One such tracer is (18)F-labeled 3'-deoxy-3'-fluorothymidine ((18)F-FLT). (18)F-FLT is trapped after phosphorylation by thymidine kinase 1, whose expression is increased in replicating cells. Several studies on breast, lung, and brain tumors have demonstrated that retention of (18)F-FLT correlated with tumor proliferation. Although (18)F-FLT has been used to image and stage several tumor types, the standardized uptake value is generally lower than that obtained with (18)F-FDG. (18)F-FLT can be used to image many areas of the body, but background uptake is high in the liver, marrow, and renal system, limiting use in these organs. (18)F-FLT PET imaging has primarily been studied in the assessment of treatment response. Rapid declines in (18)F-FLT retention within days to weeks have been demonstrated in several tumor types treated with cytotoxic drugs, targeted agents, and radiotherapy. Further work is ongoing to validate this approach and determine its utility in the development of new drugs and in the clinical evaluation of standard treatment approaches.
Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro
2015-04-16
Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.
Deleye, Steven; Waldron, Ann-Marie; Verhaeghe, Jeroen; Bottelbergs, Astrid; Wyffels, Leonie; Van Broeck, Bianca; Langlois, Xavier; Schmidt, Mark; Stroobants, Sigrid; Staelens, Steven
2017-12-01
In this study, we investigated the effects of chronic administration of an inhibitor of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) on Alzheimer-related pathology by multitracer PET imaging in transgenic APPPS1-21 (TG) mice. Methods: Wild-type (WT) and TG mice received vehicle or BACE inhibitor (60 mg/kg) starting at 7 wk of age. Outcome measures of brain metabolism, neuroinflammation, and amyloid-β pathology were obtained through small-animal PET imaging with 18 F-FDG, 18 F-peripheral benzodiazepine receptor ( 18 F-PBR), and 18 F-florbetapir ( 18 F-AV45), respectively. Baseline scans were acquired at 6-7 wk of age and follow-up scans at 4, 7, and 12 mo. 18 F-AV45 uptake was measured at 8 and 13 mo of age. After the final scans, histologic measures of amyloid-β (4G8), microglia (ionized calcium binding adaptor molecule 1), astrocytes (glial fibrillary acidic protein), and neuronal nuclei were performed. Results: TG mice demonstrated significant age-associated increases in 18 F-AV45 uptake. An effect of treatment was observed in the cortex ( P = 0.0014), hippocampus ( P = 0.0005), and thalamus ( P < 0.0001). Histology confirmed reduction of amyloid-β pathology in TG-BACE mice. Regardless of treatment, TG mice demonstrated significantly lower 18 F-FDG uptake than WT mice in the thalamus ( P = 0.0004) and hippocampus ( P = 0.0332). Neuronal nucleus staining was lower in both TG groups in the thalamus and cortex. 18 F-PBR111 detected a significant age-related increase in TG mice ( P < 0.0001) but did not detect the treatment-induced reduction in activated microglia as demonstrated by histology. Conclusion: Although 18 F-FDG, 18 F-PBR111, and 18 F-AV45 all detected pathologic alterations between TG and WT mice, only 18 F-AV45 could detect an effect of BACE inhibitor treatment. However, changes in WT binding of 18 F-AV45 undermine the specificity of this effect. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Li, Junfeng; Zhang, Xiang; Jin, Hongjun; Fan, Jinda; Flores, Hubert; Perlmutter, Joel S.; Tu, Zhude
2015-01-01
A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [11C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a–j, 19d–j, 20a–b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [18F]18a–e, [18F]18g, and [18F]20a were radiosynthesized by 18F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [18F]18a–d and [18F]20a. Micro-PET studies of [18F]18d and [18F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a 18F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington’s disease and schizophrenia. PMID:26430878
Guérin, T; Dean, D S
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F
English, Sean J.; Piert, Morand R.; Diaz, Jose A.; Gordon, David; Ghosh, Abhijit; D'Alecy, Louis G.; Whitesall, Steven E.; Sharma, Ashish K.; DeRoo, Elise P.; Watt, Tessa; Su, Gang; Henke, Peter K.; Eliason, Jonathan L.; Ailawadi, Gorav; Upchurch, Gilbert R.
2015-01-01
Objective To determine whether 18F-fluorodeoxyglucose (18F-FDG) micro–positron emission tomography (micro-PET) can predict abdominal aortic aneurysm (AAA) rupture. Background An infrarenal AAA model is needed to study inflammatory mechanisms that drive rupture. 18F-FDG PET can detect vascular inflammation in animal models and patients. Methods After exposing Sprague-Dawley rats to intra-aortic porcine pancreatic elastase (PPE) (12 U/mL), AAA rupture was induced by daily, subcutaneous, β-aminopropionitrile (BAPN, 300 mg/kg, N = 24) administration. Negative control AAA animals (N = 15) underwent daily saline subcutaneous injection after PPE exposure. BAPN-exposed animals that did not rupture served as positive controls [nonruptured AAA (NRAAA) 14d, N = 9]. Rupture was witnessed using radiotelemetry. Maximum standard uptakes for 18F-FDG micro-PET studies were determined. Aortic wall PAI-1, uPA, and tPA concentrations were determined by western blot analyses. Interleukin (IL)-1β, IL-6, IL-10, and MIP-2 were determined by Bio-Plex bead array. Neutrophil and macrophage populations per high-power field were quantified. Matrix metalloproteinase (MMP) activities were determined by zymography. Results When comparing ruptured AAA (RAAA) to NRAAA 14d animals, increased focal 18F-FDG uptakes were detected at subsequent sites of rupture (P = 0.03). PAI-1 expression was significantly less in RAAA tissue (P = 0.01), with comparable uPA and decreased tPA levels (P = 0.02). IL-1β (P = 0.04), IL-6 (P = 0.001), IL-10 (P = 0.04), and MIP-2 (P = 0.02)expression, neutrophil (P = 0.02) and macrophage presence (P = 0.002), and MMP9 (P < 0.0001) activity were increased in RAAA tissue. Conclusions With this AAA rupture model, increased prerupture 18F-FDG uptake on micro-PET imaging was associated with increased inflammation in the ruptured AAA wall. 18F-FDG PET imaging may be used to monitor inflammatory changes before AAA rupture. PMID:24651130
Gritti, Fabrice; Guiochon, Georges
2015-03-06
Previous data have shown that could deliver a minimum reduced plate height as small as 1.7. Additionally, the reduction of the mesopore size after C18 derivatization and the subsequent restriction for sample diffusivity across the Titan-C18 particles were found responsible for the unusually small value of the experimental optimum reduced velocity (5 versus 10 for conventional particles) and for the large values of the average reduced solid-liquid mass transfer resistance coefficients (0.032 versus 0.016) measured for a series of seven n-alkanophenones. The improvements in column efficiency made by increasing the average mesopore size of the Titan silica from 80 to 120Å are investigated from a quantitative viewpoint based on the accurate measurements of the reduced coefficients (longitudinal diffusion, trans-particle mass transfer resistance, and eddy diffusion) and of the intra-particle diffusivity, pore, and surface diffusion for the same series of n-alkanophenone compounds. The experimental results reveal an increase (from 0% to 30%) of the longitudinal diffusion coefficients for the same sample concentration distribution (from 0.25 to 4) between the particle volume and the external volume of the column, a 40% increase of the intra-particle diffusivity for the same sample distribution (from 1 to 7) between the particle skeleton volume and the bulk phase, and a 15-30% decrease of the solid-liquid mass transfer coefficient for the n-alkanophenone compounds. Pore and surface diffusion are increased by 60% and 20%, respectively. The eddy dispersion term and the maximum column efficiency (295000plates/m) remain virtually unchanged. The rate of increase of the total plate height with increasing the chromatographic speed is reduced by 20% and it is mostly controlled (75% and 70% for 80 and 120Å pore size) by the flow rate dependence of the eddy dispersion term. Copyright © 2015 Elsevier B.V. All rights reserved.
Palner, Mikael; Shen, Bin; Jeon, Jongho; Lin, Jianguo; Chin, Frederick T; Rao, Jianghong
2015-09-01
Early detection of tumor response to therapy is crucial to the timely identification of the most efficacious treatments. We recently developed a novel apoptosis imaging tracer, (18)F-C-SNAT (C-SNAT is caspase-sensitive nanoaggregation tracer), that undergoes an intramolecular cyclization reaction after cleavage by caspase-3/7, a biomarker of apoptosis. This caspase-3/7-dependent reaction leads to an enhanced accumulation and retention of (18)F activity in apoptotic tumors. This study aimed to fully examine in vivo pharmacokinetics of the tracer through PET imaging and kinetic modeling in a preclinical mouse model of tumor response to systemic anticancer chemotherapy. Tumor-bearing nude mice were treated 3 times with intravenous injections of doxorubicin before undergoing a 120-min dynamic (18)F-C-SNAT PET/CT scan. Time-activity curves were extracted from the tumor and selected organs. A 2-tissue-compartment model was fitted to the time-activity curves from tumor and muscle, using the left ventricle of the heart as input function, and the pharmacokinetic rate constants were calculated. Both tumor uptake (percentage injected dose per gram) and the tumor-to-muscle activity ratio were significantly higher in the treated mice than untreated mice. Pharmacokinetic rate constants calculated by the 2-tissue-compartment model showed a significant increase in delivery and accumulation of the tracer after the systemic chemotherapeutic treatment. Delivery of (18)F-C-SNAT to the tumor tissue, quantified as K1, increased from 0.31 g⋅(mL⋅min)(-1) in untreated mice to 1.03 g⋅(mL⋅min)(-1) in treated mice, a measurement closely related to changes in blood flow. Accumulation of (18)F-C-SNAT, quantified as k3, increased from 0.03 to 0.12 min(-1), proving a higher retention of (18)F-C-SNAT in treated tumors independent from changes in blood flow. An increase in delivery was also found in the muscular tissue of treated mice without increasing accumulation. (18)F-C-SNAT has significantly increased tumor uptake and significantly increased tumor-to-muscle ratio in a preclinical mouse model of tumor therapy. Furthermore, our kinetic modeling of (18)F-C-SNAT shows that chemotherapeutic treatment increased accumulation (k3) in the treated tumors, independent of increased delivery (K1). © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
18F-FEAnGA for PET of β-glucuronidase activity in neuroinflammation.
Antunes, Inês F; Doorduin, Janine; Haisma, Hidde J; Elsinga, Philip H; van Waarde, Aren; Willemsen, Antoon T M; Dierckx, Rudi A; de Vries, Erik F J
2012-03-01
Activation of microglia is a hallmark of inflammatory, infectious, and degenerative diseases of the central nervous system. Several studies have indicated that there is an increase in release of β-glucuronidase by activated microglia into the extracellular space at the site of neuroinflammation. β-glucuronidase is involved in the hydrolysis of glycosaminoglycans on the cell surface and the degradation of the extracellular matrix. Therefore, β-glucuronidase might be a biomarker for ongoing neurodegeneration induced by neuroinflammation. In this study, we investigated whether the PET tracer (18)F-FEAnGA was able to detect β-glucuronidase release during neuroinflammation in a rat model of herpes encephalitis. Male Wistar rats were intranasally inoculated with herpes simplex virus 1 (HSV-1) or phosphate-buffered saline as a control. (11)C-(R)-PK11195 and (18)F-FEAnGA small-animal PET scans were acquired for 60 min. Logan graphical analysis was used to calculate (18)F-FEAnGA distribution volumes (DV(Logan)) in various brain areas. After administration of (18)F-FEAnGA, the area under the activity concentration-versus-time curve of the whole brain was 2 times higher in HSV-1-infected rats than in control rats. In addition, the DV(Logan) of (18)F-FEAnGA was most increased in the frontopolar cortex, frontal cortex, bulbus olfactorius, cerebral cortex, cerebellum, and brainstem of HSV-1-infected rats, when compared with control rats. The conversion of (18)F-FEAnGA to 4-hydroxy-3-nitrobenzyl alcohol was found to be 1.6 times higher in HSV-1-infected rats than in control rats and correlated with the DV(Logan) of (18)F-FEAnGA in the same areas of the brain. Furthermore, the DV(Logan) of (18)F-FEAnGA also correlated with β-glucuronidase activity in the same brain regions. In addition, DV(Logan) of (18)F-FEAnGA showed a tendency to correlate with (11)C-(R)-PK11195 uptake (marker for activated microglia) in the same brain regions. Despite relatively low brain uptake, (18)F-FEAnGA was able to detect an increased release of β-glucuronidase during neuroinflammation.
Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof
2018-01-01
Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F]NS12137 with the [ 18 F]Selectfluor method providing an approximate three-fold higher yield than the [ 18 F]F 2 method. As an electrostatically neutral radiotracer [ 18 F]NS12137 crosses the blood-brain barrier and enabled specific labeling of NET-rich regions of rat brain tissue with the highest concentration in the LCoe. Copyright © 2017 Elsevier Inc. All rights reserved.
Bérubé, Julie; Roussel, Lucie; Nattagh, Leila; Rousseau, Simon
2010-01-01
In cystic fibrosis (CF), the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) translates into chronic bacterial infection, excessive inflammation, tissue damage, impaired lung function and eventual death. Understanding the mechanisms underlying this vicious circle of inflammation is important to design better therapies for CF. We found in CF lung biopsies increased immunoreactivity for p38 MAPK activity markers. Moreover, when compared with their non-CF counterpart, airway epithelial cells expressing the most common mutation in CF (CFTRΔF508) were more potent at inducing neutrophil chemotaxis through increased interleukin (IL)-6 synthesis when challenged with Pseudomonas aeruginosa diffusible material. We then discovered that in CFTRΔF508 cells, the p38 and ERK MAPKs are hyperactivated in response to P. aeruginosa diffusible material, leading to increased IL-6 mRNA expression and stability. Moreover, although TLR5 contributes to p38 MAPK activation upon P. aeruginosa challenge, it only played a weak role in IL-6 synthesis. Instead, we found that the production of reactive oxygen species is essential for IL-6 synthesis in response to P. aeruginosa diffusible material. Finally, we uncovered that in CFTRΔF508 cells, the extracellular glutathione levels are decreased, leading to a greater sensitivity to reactive oxygen species, providing an explanation for the hyperactivation of the p38 and ERK MAPKs and increased IL-6 synthesis. Taken together, our study has characterized a mechanism whereby the CFTRΔF508 mutation in airway epithelial cells contributes to increase inflammation of the airways. PMID:20460375
Vignal, Nicolas; Cisternino, Salvatore; Rizzo-Padoin, Nathalie; San, Carine; Hontonnou, Fortune; Gelé, Thibaut; Declèves, Xavier; Sarda-Mantel, Laure; Hosten, Benoît
2018-06-07
[ 18 F]FEPPA is a specific ligand for the translocator protein of 18 kDa (TSPO) used as a positron emission tomography (PET) biomarker for glial activation and neuroinflammation. [ 18 F]FEPPA radiosynthesis was optimized to assess in a mouse model the cerebral inflammation induced by an intraperitoneal injection of Salmonella enterica serovar Typhimurium lipopolysaccharides (LPS; 5 mg/kg) 24 h before PET imaging. [ 18 F]FEPPA was synthesized by nucleophilic substitution (90 °C, 10 min) with tosylated precursor, followed by improved semi-preparative HPLC purification (retention time 14 min). [ 18 F]FEPPA radiosynthesis were carried out in 55 min (from EOB). The non-decay corrected radiochemical yield were 34 ± 2% ( n = 17), and the radiochemical purity greater than 99%, with a molar activity of 198 ± 125 GBq/µmol at the end of synthesis. Western blot analysis demonstrated a 2.2-fold increase in TSPO brain expression in the LPS treated mice compared to controls. This was consistent with the significant increase of [ 18 F]FEPPA brain total volume of distribution ( V T ) estimated with pharmacokinetic modelling. In conclusion, [ 18 F]FEPPA radiosynthesis was implemented with high yields. The new purification/formulation with only class 3 solvents is more suitable for in vivo studies.
Imaging of prostate cancer with PET/CT using 18F-Fluorocholine
Vali, Reza; Loidl, Wolfgang; Pirich, Christian; Langesteger, Werner; Beheshti, Mohsen
2015-01-01
While 18F-Fluorodeoxyglucose (18F-FDG) Positron-Emission Tomography (PET) has limited value in prostate cancer (PCa), it may be useful for specific subgroups of PCa patients with hormone-resistant poorly differentiated cell types. 18F-Fluorocholine (18F-FCH) PET/CT has been increasingly used in primary and recurrent PCa and has been shown to add valuable information. Although there is a correlation between the foci of activity and the areas of malignancy in the prostate gland, the clinical value of 18F-FCH is still controversial for detection of the malignant focus in the prostate. For the T-staging of PCa at diagnosis the value of 18F-FCH is limited. This is probably due to limited resolution of PET system and positive findings in benign prostate diseases. Conversely, 18F-FCH PET/CT is a promising imaging modality for the delineation of local and distant nodal recurrence and bone metastases and is poised to have an impact on therapy management. In this review, recent studies of 18F-FCH PET/CT in PCa are summarized. PMID:25973332
Strongly extended diffusion length for the nonequilibrium magnons in Y3F e5O12 by photoexcitation
NASA Astrophysics Data System (ADS)
Wang, S. H.; Li, G.; Guo, E. J.; Zhao, Y.; Wang, J. Y.; Zou, L. K.; Yan, H.; Cai, J. W.; Zhang, Z. T.; Wang, M.; Tian, Y. Y.; Zheng, X. L.; Sun, J. R.; Jin, K. X.
2018-05-01
Y3F e5O12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previous reported ˜10 μm up to ˜156 μm (for the sample prepared by liquid phase epitaxy) and ˜180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ˜30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the F e3 + ion in YIG. Long-wavelength laser is more effective since it causes a transition of the F e3 + ions in Fe O6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. The present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.
NASA Astrophysics Data System (ADS)
van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.
2004-09-01
Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.
Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud
2017-10-01
Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.
Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A
2018-04-10
Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers. Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18 F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.
Jenkins, William S. A.; Irkle, Agnese; Moss, Alastair; Sng, Greg; Forsythe, Rachael O.; Clark, Tim; Roberts, Gemma; Fletcher, Alison; Lucatelli, Christophe; Rudd, James H. F.; Davenport, Anthony P.; Mills, Nicholas L.; Al-Shahi Salman, Rustam; Dennis, Martin; Whiteley, William N.; van Beek, Edwin J. R.; Dweck, Marc R.; Newby, David E.
2017-01-01
Background— Combined positron emission tomography (PET) and computed tomography (CT) can assess both anatomy and biology of carotid atherosclerosis. We sought to assess whether 18F-fluoride or 18F-fluorodeoxyglucose can identify culprit and high-risk carotid plaque. Methods and Results— We performed 18F-fluoride and 18F-fluorodeoxyglucose PET/CT in 26 patients after recent transient ischemic attack or minor ischemic stroke: 18 patients with culprit carotid stenosis awaiting carotid endarterectomy and 8 controls without culprit carotid atheroma. We compared standardized uptake values in the clinically adjudicated culprit to the contralateral asymptomatic artery, and assessed the relationship between radiotracer uptake and plaque phenotype or predicted cardiovascular risk (ASSIGN score [Assessing Cardiovascular Risk Using SIGN Guidelines to Assign Preventive Treatment]). We also performed micro PET/CT and histological analysis of excised plaque. On histological and micro PET/CT analysis, 18F-fluoride selectively highlighted microcalcification. Carotid 18F-fluoride uptake was increased in clinically adjudicated culprit plaques compared with asymptomatic contralateral plaques (log10standardized uptake valuemean 0.29±0.10 versus 0.23±0.11, P=0.001) and compared with control patients (log10standardized uptake valuemean 0.29±0.10 versus 0.12±0.11, P=0.001). 18F-Fluoride uptake correlated with high-risk plaque features (remodeling index [r=0.53, P=0.003], plaque burden [r=0.51, P=0.004]), and predicted cardiovascular risk [r=0.65, P=0.002]). Carotid 18F-fluorodeoxyglucose uptake appeared to be increased in 7 of 16 culprit plaques, but no overall differences in uptake were observed in culprit versus contralateral plaques or control patients. However, 18F-fluorodeoxyglucose did correlate with predicted cardiovascular risk (r=0.53, P=0.019), but not with plaque phenotype. Conclusions— 18F-Fluoride PET/CT highlights culprit and phenotypically high-risk carotid plaque. This has the potential to improve risk stratification and selection of patients who may benefit from intervention. PMID:28292859
Shi, Changzheng; Zhang, Dong; Xiao, Zeyu; Wang, Li; Ma, Rong; Chen, Hanwei; Luo, Liangping
2017-09-01
To investigate the reproducibility of diffusion-weighted imaging (DWI) with ultrahigh b-values, and analyze the age-related differences in normal prostates. In all, 67 healthy participants were divided into three age groups (group A, 15-30 years; group B, 31-50 years; group C, ≥51 years), and underwent DWI scanning twice with 15 b-factors from 0 to 3000 at 3.0T. Triexponential fits were applied to calculate the molecular diffusion coefficient (D), the pseudo-diffusion coefficient (D*), the ultrahigh apparent diffusion coefficient (ADC uh ), and perfusion fraction (f). The interobserver and short-term interscan reproducibility were evaluated, and the change in these parameters with age were assessed. The D, ADC uh , and f values presented good to excellent reproducibility. With increasing age, a trend of increasing D values was observed, with significant difference in both peripheral zone (PZ, P = 0.01) and central gland (CG, P = 0.01) of normal prostate tissue. The f value increased in the CG beginning at 50 years of age while the ADC uh value decreased in the PZ after 50 years of age; all of them showed significant differences between groups A and C and groups B and C (P = 0.01/0.01). The D, ADC uh , and f values have good to excellent reproducibility in the normal prostate, and these values change with age. The ultrahigh b-values magnetic resonance imaging (MRI) can provide additional information (ADC uh ), which is different from the IVIM (intravoxel incoherent motion)-derived parameters. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:801-812. © 2017 International Society for Magnetic Resonance in Medicine.
2018-04-30
Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma
Snellman, Anniina; Rokka, Johanna; López-Picón, Francisco R; Eskola, Olli; Salmona, Mario; Forloni, Gianluigi; Scheinin, Mika; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja
2014-01-01
The purpose of the study was to evaluate the applicability of (18) F-labelled amyloid imaging positron emission tomography (PET) agent [ (18) F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [ (18) F]flutemetamol would make it an attractive small animal Aβ imaging agent. [ (18) F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [ (18) F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1-40 immunohistochemistry. In APP23 mice, [ (18) F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1-40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [ (18) F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Increased [ (18) F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [ (18) F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [(11)C]PIB. For its practical benefits, [ (18) F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative.
2014-01-01
Background The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods [18F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [18F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1−40 immunohistochemistry. Results In APP23 mice, [18F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1−40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [18F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Conclusions Increased [18F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [18F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [11C]PIB. For its practical benefits, [18F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative. PMID:25977876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhlel, Ahlem; Zhou, Dong; Li, Aixiao
In this paper, a novel 18F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[ 18F]fluoro-2-methylpentanoic acid ([ 18F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [ 18F]FAMPe were obtained in good radiochemical yield (24–52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that ( S)-[ 18F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and smallmore » animal PET/CT studies in the mouse DBT model of glioblastoma showed that both ( R)- and ( S)-[ 18F]FAMPe have good tumor imaging properties with the ( S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Finally, comparison of the SUVs showed that ( S)-[ 18F]FAMPe had higher tumor to brain ratios compared to ( S)-[ 18F]FET, a well-established system L substrate.« less
Bouhlel, Ahlem; Zhou, Dong; Li, Aixiao; ...
2015-04-06
In this paper, a novel 18F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[ 18F]fluoro-2-methylpentanoic acid ([ 18F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [ 18F]FAMPe were obtained in good radiochemical yield (24–52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that ( S)-[ 18F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and smallmore » animal PET/CT studies in the mouse DBT model of glioblastoma showed that both ( R)- and ( S)-[ 18F]FAMPe have good tumor imaging properties with the ( S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Finally, comparison of the SUVs showed that ( S)-[ 18F]FAMPe had higher tumor to brain ratios compared to ( S)-[ 18F]FET, a well-established system L substrate.« less
Pantel, Austin R.; Li, Shihong; Lieberman, Brian P.; Ploessl, Karl; Choi, Hoon; Blankemeyer, Eric; Lee, Hsiaoju; Kung, Hank F.; Mach, Robert H.
2017-01-01
Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [18F](2S,4R)4-fluoroglutamine ([18F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution 1H magnetic resonance spectroscopy (MRS). GLS inhibition significantly increased glutamine pool size in TNBC tumors. MCF-7 tumors, with inherently low GLS activity compared to TNBC, displayed a larger baseline glutamine pool size that did not change as much in response to GLS inhibition. The tumor-to-blood-activity-ratios (T/B) obtained from [18F]4F-Gln PET images matched the distinct glutamine pool sizes of both tumor models at baseline. After a short course of GLS inhibitor treatment, the T/B values increased significantly in TNBC, but did not change in MCF-7 tumors. Across both tumor types and after GLS inhibitor or vehicle treatment, we observed a strong positive correlation between T/B values and tumor glutamine pool size measured using MRS (R2=0.71). In conclusion, [18F]4F-Gln PET tracked cellular glutamine pool size in breast cancers with differential GLS activity and detected increases in cellular glutamine pool size induced by GLS inhibitors. This study accomplished the first necessary step towards validating [18F]4F-Gln PET as a PD marker for glutaminase-targeting drugs. PMID:28202527
Selective 2-( sup 18 F)fluorodopa uptake for melanogenesis in murine metastatic melanomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, K.; Kubota, K.; Kubota, R.
The relationship between 3,4-dihydroxy-2-({sup 18}F)fluoro-L-phenylalanine (2-({sup 18}F)FDOPA) uptake and melanogenesis was studied using mice bearing two B16 melanomas: B16-F1 has a higher melanin synthesis ability and a slower growing rate than the higher metastatic B16-F10. A significantly higher 2-({sup 18}F)FDOPA uptake by B16-F1 than by B16-F10 and a reverse relationship for the uptake of ({sup 14}C) 2-deoxy-2-fluoro-D-glucose and ({sup 3}H)thymidine were observed 1 hr postinjection. F1-to-F10 ratios of both the 2-({sup 18}F)FDOPA uptake and the acid-insoluble radioactivity increased to about 5 at 6 hr, which paralleled the melanin content. FM3A mammary carcinoma showed a 2-({sup 18}F)FDOPA uptake similar to themore » B16-F10 but without the acid-insoluble radioactivity. With D,L-DOPA loading, a 55% decreased uptake by FM3A 1 hr postinjection was significantly greater than the 20% reduction in both melanomas. O-Methylated 2-({sup 18}F)FDOPA was a predominant acid-soluble metabolite in all tumors. Whole-body autoradiography discriminated the two melanomas clearly. 2-({sup 18}F)FDOPA may be a promising tracer for the selective imaging of melanogenesis.« less
Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi
2011-01-01
Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.
Thermal storage in drywall using organic phase-change material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, M.M.; Feldman, D.; Hawes, D.
1987-01-01
Two mixtures of phase-change material (PCM), 49% butyl stearate with 48% butyl palmitate, and 55% lauric acid with 45% capric acid, diluted 10% with fire retardant, were diffused into 13-mm (0.5-in.) wallboard. No exudation of liquid PCM occurs below 25% by weight. In the wallboard, initial PCM freezing points were 21/sup 0/ and 22/sup 0/C (70/sup 0/ and 72/sup 0/F), respectively, with melting points of 17/sup 0/ and 18/sup 0/C (63/sup 0/ and 64/sup 0/F). For a 4/sup 0/C (7/sup 0/F) temperature swing, thermal storage capacities up to 350 kJ/m/sup 2/ (31 Btu/ft/sup 2/) and 317 kJ/m/sup 2/ (28 Btu/ft/supmore » 2/), respectively, are available. These are equivalent to about 3.8 cm (1.5 in.) of concrete cycled through 7/sup 0/C (13/sup 0/F). Preliminary tests showed little extra flame spread beyond that of unloaded wallboard. The thermal conductivity of the wallboard increased from 0.19 to 0.22 W/m /sup 0/C (0.11 to 0.13 Btu/h ft /sup 0/F) with liquid PCM. During melting, the effective thermal diffusivity falls from 2.1 x 10/sup -7/ m/sup 2//s (2.3 x 10/sup -6/ ft/sup 2//s) for the unloaded wallboard to 1.4 x 10/sup -7/ m/sup 2//s (1.5 x 10/sup -6/ ft/sup 2//s) with 23.4% butyl stearate-palmitate and to 1.6 x 10/sup -7/ m/sup 2//s (1.7 x 10/sup -6/ ft/sup 2//s) with 28% of the lauric-capric mixture. (The mixture fraction is defined as the ratio of PCM mass to gypsum mass.)« less
Rizzo-Padoin, Nathalie; Chaussard, Michael; Vignal, Nicolas; Kotula, Ewa; Tsoupko-Sitnikov, Vadim; Vaz, Sofia; Hontonnou, Fortune; Liu, Wang-Qing; Poyet, Jean-Luc; Vidal, Michel; Merlet, Pascal; Hosten, Benoit; Sarda-Mantel, Laure
2016-12-01
Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. MEL050 is a synthetic benzamide-derived molecule that specifically binds to melanin with high affinity. Our aim was to implement a fully automated radiosynthesis of [ 18 F]MEL050, using for the first time, the AllInOne™ synthesis module (Trasis), and to evaluate the potential of [ 18 F]MEL050 for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases, and to compare it with that of [ 18 F]FDG. Automated radiosynthesis of [ 18 F]MEL050, including HPLC purification and formulation, were performed on an AllInOne™ synthesis module. [ 18 F]MEL050 was synthesized using a one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumor) or intravenous (pulmonary metastases) injection of B16-F10-luc2 cells in NMRI mice. The maximum percentage of [ 18 F]MEL050 Injected Dose per g of lung tissue (%ID/g Max) was determined on PET images, compared to [ 18 F]FDG and correlated to in vivo bioluminescence imaging. The automated radiosynthesis of [ 18 F]MEL050 required an overall radiosynthesis time of 48min, with a yield of 13-18% (not-decay corrected) and radiochemical purity higher than 99%. [ 18 F]MEL050 PET/CT images were concordant with bioluminescence imaging, showing increased radiotracer uptake in all primary subcutaneous tumors and pulmonary metastases of mice. PET quantification of radiotracers uptake in tumors and muscles demonstrated similar tumor-to-background ratio (TBR) with [ 18 F]MEL050 and [ 18 F]FDG in subcutaneous tumors and higher TBR with [ 18 F]MEL050 than with [ 18 F]FDG in pulmonary metastases. We successfully implemented the radiosynthesis of [ 18 F]MEL050 using the AllInOne™ module, including HPLC purification and formulation. In vivo PET/CT validation of [ 18 F]MEL050 was obtained in mouse models of pigmented melanoma, where higher [ 18 F]MEL050 uptake was observed in sub-millimetric pulmonary metastases, comparatively to [ 18 F]FDG. Copyright © 2016 Elsevier Inc. All rights reserved.
Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.
Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R
2012-01-01
(18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.
Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P
2017-06-01
The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.
18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response
Watanabe, Satoru; Herr, Keira J.; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M.F.; Cheung, Yin Bun; Low, Jenny G.H.; Vasudevan, Subhash G.
2017-01-01
Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection–associated inflammation biomarker for assessing treatment response during therapeutic intervention trials. PMID:28469088
Roelcke, Ulrich; Bruehlmeier, Matthias; Hefti, Martin; Hundsberger, Thomas; Nitzsche, Egbert U
2012-01-01
Positron emission tomography (PET) with radiolabeled amino acids provides information on biopsy target and chemotherapy response in patients with low-grade gliomas (LGG). In this article, we addressed whether PET with F-18 choline (CHO) detects increased metabolism in F-18 fluoroethyltyrosine (FET)-negative LGG patients. Six LGG patients with nongadolinium-enhancing (magnetic resonance) FET-negative LGG were imaged with CHO PET. Regions of interest were positioned over tumor and contralateral brain. Uptake of FET and CHO was quantified as count ratio of tumor to contralateral brain. The mean FET uptake ratio for FET-negative LGG was 0.95 ± 0.03 (mean ± standard deviation). Five tumors did not show increased uptake ratios for CHO (0.96 ± 0.12). Slightly increased CHO uptake was found in 1 patient (1.24), which, however, was not associated with tumor visualization. Amino acid and choline uptake appear to behave similar in nongadolinium-enhancing LGG. For clinical purposes, CHO PET is not superior to FET PET.
Kim, Dong Gyu; Kim, Seong Ho; Kim, Oh Lyong; Cho, Yun Woo; Son, Su Min; Jang, Sung Ho
2009-01-01
There have been no studies on motor recovery in severe quadriplegic patients with traumatic brain injury (TBI) resulting from combined causes of weakness; this type of patient is often seen in rehabilitation clinics. We report on a quadriplegic patient who showed long-term motor recovery from severe weakness caused by a diffuse axonal injury (DAI) on the brainstem and a traumatic intracerebral hemorrhage (ICH) on left cerebral peduncle, as evaluated by diffuse tensor imaging (DTI) and functional MRI (fMRI). A 17-year-old male patient presented with quadriparesis at the onset of TBI. Over the 28-month period following the onset of the injury, the motor function of the four extremities slowly recovered to a range that was nearly normal. Two longitudinal DTIs (at 11 and 28 months from onset) and fMRI (at 28 months) were performed. Fractional anisotropy and an apparent diffusion coefficient were measured using the region of interest method, and diffusion tensor tractography was conducted using a DTI/fMRI combination. Fractional anisotrophy values in the brainstem, which were markedly decreased on the 11-month DTI, were increased on the 28-month DTI. On the fMRI performed at 28 months, the contralateral primary sensori-motor cortex was activated by the movement of either the right or left hand. Diffusion tensor tractography showed that fiber tracts originating from the motor-sensory cortex passed through the known corticospinal tract pathway to the pons. It seems that the weakness of this patient recovered due to the recovery of the damaged corticospinal tracts.
[18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.
Kim, Woosuk; Le, Thuc M; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T; Abt, Evan R; Capri, Joseph R; Austin, Wayne R; Van Valkenburgh, Juno S; Steele, Dalton; Gipson, Raymond M; Slavik, Roger; Cabebe, Anthony E; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S; Lee, Jason T; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F; Witte, Owen N; Donahue, Timothy R; Phelps, Michael E; Herschman, Harvey R; Herrmann, Ken; Czernin, Johannes; Radu, Caius G
2016-04-12
Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.
[18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity
Kim, Woosuk; Le, Thuc M.; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T.; Abt, Evan R.; Capri, Joseph R.; Austin, Wayne R.; Van Valkenburgh, Juno S.; Steele, Dalton; Gipson, Raymond M.; Slavik, Roger; Cabebe, Anthony E.; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S.; Lee, Jason T.; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F.; Witte, Owen N.; Donahue, Timothy R.; Phelps, Michael E.; Herschman, Harvey R.; Herrmann, Ken; Czernin, Johannes; Radu, Caius G.
2016-01-01
Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds—[18F]Clofarabine; 2-chloro-2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-adenine ([18F]CFA) and 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-guanine ([18F]F-AraG)—for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [18F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [18F]F-AraG is a better substrate for dGK than for dCK. [18F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [18F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [18F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [18F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [18F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [18F]CFA PET as a new cancer biomarker for treatment stratification and monitoring. PMID:27035974
Prato, Frank S; Butler, John; Sykes, Jane; Keenliside, Lynn; Blackwood, Kimberley J; Thompson, R Terry; White, James A; Mikami, Yoko; Thiessen, Jonathan D; Wisenberg, Gerald
2015-02-01
Inflammation that occurs after acute myocardial infarction plays a pivotal role in healing by facilitating the creation of a supportive scar. (18)F-FDG, which is taken up avidly by macrophages, has been proposed as a marker of cell-based inflammation. However, its reliability as an accurate indicator of inflammation has not been established, particularly in the early postinfarction period when regional myocardial perfusion is often severely compromised. Nine adult dogs underwent left anterior descending coronary occlusion with or without reperfusion. Animals were imaged between 7 and 21 d after infarction with PET/MR imaging after bolus injection of gadolinium-diethylenetriaminepentaacetic acid (DTPA), bolus injection of (18)F-FDG, bolus injection of (99)Tc-DTPA to simulate the distribution of gadolinium-DTPA (which represents its partition coefficient in well-perfused tissue), and injection of (111)In-labeled white blood cells 24 h earlier. After sacrifice, myocardial tissue concentrations of (18)F, (111)In, and (99)Tc were determined in a well counter. Linear regression analysis evaluated the relationships between the concentrations of (111)In and (18)F and the dependence of the ratio of (111)In/(18)F to the apparent distribution volume of (99m)Tc-DTPA. In 7 of 9 animals, (111)In increased as (18)F increased with the other 2 animals, showing weak negative slopes. With respect to the dependence of (111)In/(18)F with partition coefficient, 4 animals showed no dependence and 4 showed a weak positive slope, with 1 animal showing a negative slope. Further, in regions of extensive microvascular obstruction, (18)F significantly underestimated the extent of the presence of (111)In. In the early post-myocardial infarction period, (18)F-FDG PET imaging after a single bolus administration may underestimate the extent and degree of inflammation within regions of microvascular obstruction. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice
Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.
2014-05-28
Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality and/or low dose rate from PET scans is less damaging than equivalent doses of gamma radiation.« less
Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.
Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality and/or low dose rate from PET scans is less damaging than equivalent doses of gamma radiation.« less
18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.
Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B
2017-03-01
The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum, thalamus, midbrain, and in the dentate nucleus of the cerebellum (t's > 2.7, P's < 0.02). The support vector machine assigned patients' diagnoses with 94% accuracy. The post-mortem autoradiographic data showed that 18F-AV-1451 strongly bound to Alzheimer-related tau pathology, but less specifically in progressive supranuclear palsy. 18F-AV-1451 binding to the basal ganglia was strong in all groups in vivo. Postmortem histochemical staining showed absence of neuromelanin-containing cells in the basal ganglia, indicating that off-target binding to neuromelanin is an insufficient explanation of 18F-AV-1451 positron emission tomography data in vivo, at least in the basal ganglia. Overall, we confirm the potential of 18F-AV-1451 as a heuristic biomarker, but caution is indicated in the neuropathological interpretation of its binding. Off-target binding may contribute to disease profiles of 18F-AV-1451 positron emission tomography, especially in primary tauopathies such as progressive supranuclear palsy. We suggest that 18F-AV-1451 positron emission tomography is a useful biomarker to assess tau pathology in Alzheimer's disease and to distinguish it from other tauopathies with distinct clinical and pathological characteristics such as progressive supranuclear palsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Potier, Marie Claude; Corlier, Fabian; Kuhnast, Bertrand; Caillé, Fabien; Dubois, Bruno; Fillon, Ludovic; Chupin, Marie; Bottlaender, Michel; Sarazin, Marie
2018-06-01
Although brain neuroinflammation may play an instrumental role in the pathophysiology of Alzheimer's disease, its actual impact on disease progression remains controversial, being reported as either detrimental or protective. This work aimed at investigating the temporal relationship between microglial activation and clinical progression of Alzheimer's disease. First, in a large cohort of patients with Alzheimer's disease we analysed the predictive value of microglial activation assessed by 18F-DPA-714 PET imaging on functional, cognitive and MRI biomarkers outcomes after a 2-year follow-up. Second, we analysed the longitudinal progression of 18F-DPA-714 binding in patients with Alzheimer's disease by comparison with controls, and assessed its influence on clinical progression. At baseline, all participants underwent a clinical assessment, brain MRI, 11C-PiB, 18F-DPA-714 PET imaging and TSPO genotyping. Participants were followed-up annually for 2 years. At the end of the study, subjects were asked to repeat a second 18F-DPA-714-PET imaging. Initial 18F-DPA-714 binding was higher in prodromal (n = 33) and in demented patients with Alzheimer's disease (n = 19) compared to controls (n = 17). After classifying patients into slow and fast decliners according to functional (Clinical Dementia Rating change) or cognitive (Mini-Mental State Examination score decline) outcomes, we found a higher initial 18F-DPA-714 binding in slow than fast decliners. Negative correlations were observed between initial 18F-DPA-714 binding and the Clinical Dementia Rating Sum of Boxes score increase, the MMSE score loss and the progression of hippocampal atrophy. This suggests that higher initial 18F-DPA-714 binding is associated with better clinical prognosis. Twenty-four patients with Alzheimer's disease and 15 control subjects performed a second DPA-PET. We observed an increase of 18F-DPA-714 in patients with Alzheimer's disease as compared with controls (mean 13.2% per year versus 4.2%) both at the prodromal (15.8%) and at the demented stages (8.3%). The positive correlations between change in 18F-DPA-714 binding over time and the three clinical outcome measures (Clinical Dementia Rating, Mini-Mental State Examination, hippocampal atrophy) suggested a detrimental effect on clinical Alzheimer's disease progression of increased neuroinflammation after the initial PET examination, without correlation with PiB-PET uptake at baseline. High initial 18F-DPA-714 binding was correlated with a low subsequent increase of microglial activation and favourable clinical evolution, whereas the opposite profile was observed when initial 18F-DPA-714 binding was low, independently of disease severity at baseline. Taken together, our results support a pathophysiological model involving two distinct profiles of microglial activation signatures with different dynamics, which differentially impact on disease progression and may vary depending on patients rather than disease stages.
Analysis of the Large Urban Fire Environment. Part 1. Theory
1982-07-01
the fire. It is the buoyancy-generated pressure forces, and not diffusive entrainment, that control the low-level induction of ambient air into the...18-- IV. RESULTS FLAMBEAU FIRES The multiple-fuel-bed Flambeau fires (Countryman, 1969; Palmer, 1981] were large, controlled burns conducted to...Station Northern Forest Fire Laboratory Alexandria, VA 22314 (12) Missoula, MT 59801 (1) Department of Defense 2. Mr. Clay F. Butler Command and Control
Dietlein, Felix; Kobe, Carsten; Neubauer, Stephan; Schmidt, Matthias; Stockter, Simone; Fischer, Thomas; Schomäcker, Klaus; Heidenreich, Axel; Zlatopolskiy, Boris D; Neumaier, Bernd; Drzezga, Alexander; Dietlein, Markus
2017-06-01
Several studies outlined the sensitivity of 68 Ga-labeled PET tracers against the prostate-specific membrane antigen (PSMA) for localization of relapsed prostate cancer in patients with renewed increase in the prostate-specific antigen (PSA), commonly referred to as biochemical recurrence. Labeling of PSMA tracers with 18 F offers numerous advantages, including improved image resolution, longer half-life, and increased production yields. The aim of this study was to assess the PSA-stratified performance of the 18 F-labeled PSMA tracer 18 F-DCFPyL and the 68 Ga-labeled reference 68 Ga-PSMA-HBED-CC. Methods: We examined 191 consecutive patients with biochemical recurrence according to standard acquisition protocols using 18 F-DCFPyL ( n = 62, 269.8 MBq, PET scan at 120 min after injection) or 68 Ga-PSMA-HBED-CC ( n = 129, 158.9 MBq, 60 min after injection). We determined PSA-stratified sensitivity rates for both tracers and corrected our calculations for Gleason scores using iterative matched-pair analyses. As an orthogonal validation, we directly compared tracer distribution patterns in a separate cohort of 25 patients, sequentially examined with both tracers. Results: After prostatectomy ( n = 106), the sensitivity of both tracers was significantly associated with absolute PSA levels ( P = 4.3 × 10 -3 ). Sensitivity increased abruptly, when PSA values exceeded 0.5 μg/L ( P = 2.4 × 10 -5 ). For a PSA less than 3.5 μg/L, most relapses were diagnosed at a still limited stage ( P = 3.4 × 10 -6 ). For a PSA of 0.5-3.5 μg/L, PSA-stratified sensitivity was 88% (15/17) for 18 F-DCFPyL and 66% (23/35) for 68 Ga-PSMA-HBED-CC. This significant difference was preserved in the Gleason-matched-pair analysis. Outside of this range, sensitivity was comparably low (PSA < 0.5 μg/L) or high (PSA > 3.5 μg/L). After radiotherapy ( n = 85), tracer sensitivity was largely PSA-independent. In the 25 patients examined with both tracers, distribution patterns of 18 F-DCFPyL and 68 Ga-PSMA-HBED-CC were strongly comparable ( P = 2.71 × 10 -8 ). However, in 36% of the PSMA-positive patients we detected additional lesions on the 18 F-DCFPyL scan ( P = 3.7 × 10 -2 ). Conclusion: Our data suggest that 18 F-DCFPyL is noninferior to 68 Ga-PSMA-HBED-CC, while offering the advantages of 18 F labeling. Our results indicate that imaging with 18 F-DCFPyL may even exhibit improved sensitivity in localizing relapsed tumors after prostatectomy for moderately increased PSA levels. Although the standard acquisition protocols, used for 18 F-DCFPyL and 68 Ga-PSMA-HBED-CC in this study, stipulate different activity doses and tracer uptake times after injection, our findings provide a promising rationale for validation of 18 F-DCFPyL in future prospective trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Tau PET in Alzheimer disease and mild cognitive impairment.
Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Lee, Jae Hoon; Kim, You Jin; Lee, Hye Mi; Lyoo, Chul Hyoung; Ryu, Young Hoon; Lee, Myung Sik
2016-07-26
To investigate the topographical distribution of tau pathology and its effect on functional and structural changes in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) by using (18)F-AV-1451 PET. We included 20 patients with AD, 15 patients with MCI, and 20 healthy controls, and performed neuropsychological function tests, MRI, as well as (18)F-florbetaben (for amyloid) and (18)F-AV-1451 (for tau) PET scans. By using the regional volume-of-interest masks extracted from MRIs, regional binding values of standardized uptake value ratios and volumes were measured. We compared regional binding values among 3 diagnostic groups and identified correlations among the regional binding values, performance in each cognitive function test, and regional atrophy. (18)F-AV-1451 binding was increased only in the entorhinal cortex in patients with MCI, while patients with AD exhibited greater binding in most cortical regions. In the 35 patients with MCI and AD, (18)F-AV-1451 binding in most of the neocortex increased with a worsening of global cognitive function. The visual and verbal memory functions were associated with the extent of (18)F-AV-1451 binding, especially in the medial temporal regions. The (18)F-AV-1451 binding also correlated with the severity of regional atrophy of the cerebral cortex. Tau PET imaging with (18)F-AV-1451 could serve as an in vivo biomarker for the evaluation of AD-related tau pathology and monitoring disease progression. The accumulation of pathologic tau is more closely related to functional and structural deterioration in the AD spectrum than β-amyloid. © 2016 American Academy of Neurology.
Sadeghi, Saman; Liang, Vincent; Cheung, Shilin; Woo, Suh; Wu, Curtis; Ly, Jimmy; Deng, Yuliang; Eddings, Mark; van Dam, R. Michael
2015-01-01
A brass-platinum electrochemical micro flow cell was developed to extract [18F]fluoride from an aqueous solution and release it into an organic based solution, suitable for subsequent radio-synthesis, in a fast and reliable manner. This cell does not suffer electrode erosion and is thus reusable while operating faster by enabling increased voltages. By optimizing temperature, trapping and release potentials, flow rates, and electrode materials, an overall [18F]fluoride trapping and release efficiency of 84±5% (n=7) was achieved. X-ray photoelectron spectroscopy (XPS) was used to analyze electrode surfaces of various metal-metal systems and the findings were correlated with the performance of the electrochemical cell. To demonstrate the reactivity of the released [18F]fluoride, the cell was coupled to a flow-through reactor and automated synthesis of [18F]FDG with a repeatable decay-corrected yield of 56±4% (n=4) was completed in <15 min. A multi-human dose of 5.92 GBq [18F]FDG was also demonstrated. PMID:23474380
Ackermann, Uwe; Lewis, Jason S; Young, Kenneth; Morris, Michael J; Weickhardt, Andrew; Davis, Ian D; Scott, Andrew M
2016-08-01
Imaging of androgen receptor expression in prostate cancer using F-18 FDHT is becoming increasingly popular. With the radiolabelling precursor now commercially available, developing a fully automated synthesis of [(18) F] FDHT is important. We have fully automated the synthesis of F-18 FDHT using the iPhase FlexLab module using only commercially available components. Total synthesis time was 90 min, radiochemical yields were 25-33% (n = 11). Radiochemical purity of the final formulation was > 99% and specific activity was > 18.5 GBq/µmol for all batches. This method can be up-scaled as desired, thus making it possible to study multiple patients in a day. Furthermore, our procedure uses 4 mg of precursor only and is therefore cost-effective. The synthesis has now been validated at Austin Health and is currently used for [(18) F]FDHT studies in patients. We believe that this method can easily adapted by other modules to further widen the availability of [(18) F]FDHT. Copyright © 2016 John Wiley & Sons, Ltd.
Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert
2017-07-01
We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.
NASA Astrophysics Data System (ADS)
Varghai, Davood; Cross, Nathan; Spring-Robinson, Chandra; Sharma, Rahul; Feyes, Denise K.; Ahmad, Yusra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David
2007-02-01
Introduction: We have previously demonstrated the use of phthalocyanine Pc 4 for the photodynamic therapy (PDT) of ectopic human glial tumors in the athymic nude rat brain. We wish to determine whether 18F-fluorodeoxy-glucose ( 18F-FDG) Positron Emission Tomography (PET) imaging can detect the reduction in tumor metabolism that must occur after Pc 4-PDT-induced necrosis. Methods: 2.5 x 10 5 U87 cells were injected into the brains of 12 athymic nude rats. After 7 days of tumor growth, all 12 animals were imaged functionally by 18F-FDG micro-PET (μPET) and structurally by micro-CT and/or micro-MR. These animals received 0.5 mg/kg b.w. Pc 4 via tail-vein injection. One day later the scalp was re-incised and the tumor illuminated with 30 J/cm2 of 672-nm light from a diode laser. The next day these animals were again 18F-FDG μPET imaged. Next, the animals were euthanized and their brains were explanted for H&E histology. Results: Histology showed that tumors in the 6 Pc 4-PDT-treated animals demonstrated necrosis ranging from full to frank (severe). Preliminary analysis showed that 18F-FDG μPET activity in 3 of the 6 non-PDT group (i.e., no tumor necrosis observed) animals was seen to increase 2.28 times following tumor photoirradiation, whereas 18F-FDG μPET activity in 5 of the 6 PDT group (i.e., tumor necrosis observed) animals was seen to increase 1.15 times following tumor photoirradiation. Discussion: The increased 18F-FDG μPET activity in the PDT group was unexpected. We had expected this activity to decrease and are presently investigating the cause of this observation.
Use of [18F]FDG PET to Monitor The Development of Cardiac Allograft Rejection
Daly, Kevin P.; Dearling, Jason L. J.; Seto, Tatsuichiro; Dunning, Patricia; Fahey, Frederic; Packard, Alan B.; Briscoe, David M.
2014-01-01
Background Positron Emission Tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated 18F-labeled fluorodeoxyglucose ([18F]FDG) and 13N-labeled ammonia ([13N]NH3) small animal PET imaging in a well-established murine cardiac rejection model. Methods Heterotopic transplants were performed using minor MHC mismatched B6.C-H2bm12 donor hearts in C57BL/6(H-2b) recipients. C57BL/6 donor hearts into C57BL/6 recipients served as isograft controls. [18F]FDG PET imaging was performed weekly between post-transplant days 7 and 42 and the percent injected dose was computed for each graft. [13N]NH3 imaging was performed to evaluate myocardial perfusion. Results There was a significant increase in [18F]FDG uptake in allografts from day 14 to day 21 (1.6% to 5.2%; P<0.001) and uptake in allografts was significantly increased on post-transplant days 21 (5.2% vs. 0.9%; P=0.005) and 28 (4.8% vs. 0.9%; P=0.006) compared to isograft controls. Furthermore, [18F]FDG uptake correlated with an increase in rejection within allografts between days 14 and 28 post-transplant. Finally, the uptake of [13N]NH3 was significantly lower relative to the native heart in allografts with chronic vasculopathy compared to isograft controls on day 28 (P=0.01). Conclusions PET imaging with [18F]FDG can be used following transplantation to monitor the evolution of rejection. In addition, decreased uptake of [13N]NH3 in rejecting allografts may be reflective of decreased myocardial blood flow. These data suggest that combined [18F]FDG and [13N]NH3 PET imaging could be used as a non-invasive, quantitative technique for serial monitoring of allograft rejection and has potential application in human transplant recipients. PMID:25675207
Jensen, Mette Munk; Kjaer, Andreas
2015-01-01
Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and 3’-deoxy-3’-[18F]fluorothymidine(18F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With 18F-FDG and 18F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether 18F-FDG and/or 18F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in 18F-FDG and 18F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used 18F-FDG and/or 18F-FLT PET for response monitoring of cancer therapeutics. PMID:26550536
Shipilevsky, Boris M
2017-06-01
We consider diffusion-controlled evolution of a d-dimensional A-particle island in the B-particle sea at propagation of the sharp reaction front A+B→0 at equal species diffusivities. The A-particle island is formed by a localized (point) A-source with a strength λ that acts for a finite time T. We reveal the conditions under which the island collapse time t_{c} becomes much longer than the injection period T (long-living island) and demonstrate that regardless of d the evolution of the long-living island radius r_{f}(t) is described by the universal law ζ_{f}=r_{f}/r_{f}^{M}=sqrt[eτ|lnτ|], where τ=t/t_{c} and r_{f}^{M} is the maximal island expansion radius at the front turning point t_{M}=t_{c}/e. We find that in the long-living island regime the ratio t_{c}/T changes with the increase of the injection period T by the law ∝(λ^{2}T^{2-d})^{1/d}, i.e., increases with the increase of T in the one-dimensional (1D) case, does not change with the increase of T in the 2D case and decreases with the increase of T in the 3D case. We derive the scaling laws for particles death in the long-living island and determine the limits of their applicability. We demonstrate also that these laws describe asymptotically the evolution of the d-dimensional spherical island with a uniform initial particle distribution generalizing the results obtained earlier for the quasi-one-dimensional geometry. As striking results, we present a systematic analysis of the front relative width evolution for fluctuation, logarithmically modified, and mean-field regimes, and we demonstrate that in a wide range of parameters the front remains sharp up to a narrow vicinity of the collapse point.
Tang, Tien T.; Rendon, David A.; Zawaski, Janice A.; Afshar, Solmaz F.; Kaffes, Caterina K.; Sabek, Omaima M.
2017-01-01
Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied using non-invasive imaging modalities. PMID:28052129
Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed
2017-01-01
Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied using non-invasive imaging modalities.
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.
Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji
2017-01-01
Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453
Sun, Xiaochuan; Li, Chen; Cao, Yihan; Shi, Ximin; Li, Li; Zhang, Weihong; Wu, Xia; Wu, Nan; Jing, Hongli; Zhang, Wen
2018-05-22
Whole-body bone scintigraphy (WBBS) and MRI are widely used in assessment of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. However, the value of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in SAPHO syndrome was unclear. The aim of this study was to characterize the manifestation of SAPHO syndrome on 18 F-FDG PET/CT and explore its relationship with clinical symptoms and WBBS. Twenty-six patients who suffered from SAPHO syndrome and had undergone whole-body 18 F-FDG PET/CT were recruited in Peking Union Medical College Hospital from 2004 to 2016. Clinical manifestations and laboratory findings were recorded for all patients. Imaging data on 18F-FDG PET/CT and WBBS were collected and analyzed retrospectively. All the 26 patients (20 females and 6 males) exhibited skeletal abnormalities on 18 F-FDG PET/CT. Multiple skeletal lesions affecting the anterior chest wall or spine with low to moderate 18 F-FDG uptake and coexistence of osteolysis and osteosclerosis presented as the typical features of SAPHO syndrome. Sixteen (61.5%) patients had abnormal 18 F-FDG uptake outside the osteoarticular system. PET scan had moderate to substantial agreement with CT and WBBS in revealing lesions in the anterior chest wall and axial skeleton. Nonetheless, the correlation between increased 18 F-FDG uptake and clinical symptoms was weak. SAPHO syndrome exhibits characteristic features on 18 F-FDG PET/CT. It showed comparable capacity in revealing skeletal lesions with bone scintigraphy.
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F(1)-ATPase.
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-19
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F(1), which is a component of F(o)F(1) adenosine triphosphate synthase. We discuss the energetic properties of F(1) and identify a high energy barrier of the rotary potential to be 20k(B)T, with the condition that the adenosine diphosphates are tightly bound to the F(1) catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Mondragão, Miguel A; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W; Rose, Christine R
2016-10-01
Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Radhakrishnan, Rupa; Betts, Aaron M; Care, Marguerite M; Serai, Suraj; Zhang, Bin; Jones, Blaise V
2016-05-01
Reduced field of view diffusion-weighted imaging (rFOV DWI) is a more recently described technique in the evaluation of spine pathology. In adults, this technique has been shown to increase clinician confidence in identification of diffusion restricting lesions. In this study, we evaluate the image quality and diagnostic confidence of the rFOV DWI technique in pediatric spine MRI. We included patients with MRI of the lumbar spine for suspected congenital abnormalities who had conventional SS-EPI (single shot echo planar imaging) with full field of view (fFOV) and rFOV DWI performed. Images were graded for image quality and observer confidence for detection of lesions with reduced diffusion. Position of the conus and L3 vertebral body measurements were recorded. Comparisons were made between the fFOV and rFOV scores. Fifty children (30 girls, 20 boys) were included (median 3.6 years). Compared to the fFOV images, the rFOV images scored higher in image quality (P < 0.0001) and for confidence in detecting lesions with reduced diffusion (P < 0.0001). The average spread of identified conus position was smaller for in rFOV compared to fFOV (P = 0.0042). There was no significant difference in the L3 vertebral body measurements between the two methods. In rFOV, the anterior aspects of the vertebral bodies were excluded in a few studies due to narrow FOV. rFOV DWI of the lumbar spine in the pediatric population has qualitatively improved image quality and observer confidence for lesion detection when compared to conventional fFOV SS-EPI DWI. Copyright © 2015 by the American Society of Neuroimaging.
Chong, Gun Oh; Lee, Yoon Hee; Hong, Dae Gy; Cho, Young Lae; Lee, Yoon Soon
2015-07-01
To evaluate the incidence and characteristics of the unabsorbed polylactide adhesion barrier with increased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake after surgeries for gynecologic malignancies. Between September 2006 and November 2009, we reviewed the charts of 75 patients who were provided a polylactide adhesion barrier after surgery for gynecologic malignant diseases. We surveyed the cases of increased (18)F-FDG uptake on positron emission tomography/computed tomography (PET/CT), and evaluated the effectiveness of polylactide adhesion barrier using an adhesion scoring system. Ten patients (13.3 %) had a solitary pelvic mass with increased (18)F-FDG uptake in the follow up PET/CT. The characteristics of patients and tumors are described below. The median age was 48 years (range 19-66 years). The median tumor size was 1.9 cm (range 1.0-2.3 cm), and the median SUVmax of the pelvic mass was 5.1 (range 3.7-7.9). The median time between initial operations and second operation was 13.5 months (range 8-23 months). We performed laparoscopic excision of the pelvic mass, and the biopsy revealed foreign body reactions with the exception of 1 case, which contained tumor cells under the unabsorbed polylactide adhesion barrier. The median adhesion grade was 1 (range 0-2). A solitary pelvic mass found in the PET/CT with increased (18)F-FDG uptake after usage of a polylactide adhesion barrier may be an unabsorbed remnant. The adhesion barrier should be used with caution in patients with gynecologic malignant diseases.
NASA Astrophysics Data System (ADS)
Guérin, T.; Dean, D. S.
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F
Basu, Sandip; Abhyankar, Amit
2014-12-01
This report describes a case of extensive diffuse bone marrow involvement with bilateral breast metastases from duodenal neuroendocrine tumor giving rise to a superscan-like appearance on somatostatin receptor-targeted (99m)Tc-hydrazinonicotinamide-TOC scintigraphy. The metastatic lesions demonstrated partial concordance with (18)F-FDG PET/CT findings, signifying varying tumor biology and heterogeneity among metastatic lesions in the same individual, as illustrated with a dual-tracer approach. There was a dramatic symptomatic and biochemical response and better health-related quality of life with a single fraction of peptide receptor radionuclide therapy with (177)Lu-DOTATATE, and radiologically there was stable disease at that point. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI
Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila
2016-01-01
Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical interactions in the whole knee joint in OA, which potentially could help assess therapeutic targets in treating OA. PMID:28654417
Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja
2017-08-01
Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo 18 F-FDG and 18 F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18 F-FDG and 18 F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18 F-FDG SUVs were lower and the 18 F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo 18 F-DPA-714 studies but not the 18 F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.
Hathi, Deep; DeLassus, Elizabeth; Achilefu, Samuel; McConathy, Jonathan; Shokeen, Monica
2018-04-26
Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B-cells that has resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a small molecule DNA alkylating agent, are commonly prescribed to patients with relapsed/refractory MM, which necessitates the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 18 F-FDOPA, a clinically available positron emission tomography (PET) radiotracer with specificity to the L-type amino acid transporter-1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM. Methods: C57Bl/KaLwRij mice were implanted subcutaneously with unilateral murine 5TGM1-GFP tumors, and divided into three independent groups: untreated, treated beginning week 2, and treated beginning week 3 post tumor implantation. The untreated and week 2 therapy cohorts were imaged with preclinical magnetic resonance imaging (MRI) and dynamic 18 F-FDG and 18 F-FDOPA-PET/computed tomography (PET/CT) at week 4 on separate, contiguous days, while the week 3 therapy cohort was longitudinally imaged weekly for 2 weeks. Metabolic tumor volume, lesion avidity, maximum standard uptake value, and total uptake metrics were calculated for both tracers. Immunohistochemistry was performed on representative tissue from all groups for LAT1 and glucose transporter-1 (GLUT1) expression. Results: Melphalan therapy induced a statistically significant reduction in lesion avidity and uptake metrics for both 18 F-FDG and 18 F-FDOPA. There was no visible effect on GLUT1 expression, but LAT1 density was increased in the week 2 therapy cohort. Longitudinal imaging of the week 3 group showed variable changes in 18 F-FDG and 18 F-FDOPA uptake, with increase in 18 F-FDOPA lesion avidity in the 2nd week relative to baseline. LAT1 and GLUT1 surface density in the untreated tumor and week 3 treatment group were qualitatively similar. Conclusion: 18 F-FDOPA-PET/CT served as a complementary method to 18 F-FDG-PET/CT in imaging melphalan therapy response in extramedullary preclinical MM. 18 F-FDOPA uptake was linked to LAT1 expression and melphalan response, with longitudinal imaging suggesting stabilization of LAT1 levels and melphalan tumor cytotoxicity. Future work will explore additional MM cell lines with heterogeneous LAT1 expression and response to melphalan therapy. . Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes
2015-01-01
Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β+ decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of 18F into molecules of interest. The significant increase in 18F radiotracers for PET imaging accentuates the need for simple and efficient 18F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for 18F labeling of small molecules and biomolecules. PMID:25473848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, Sarah G.J.A., E-mail: sarah.peeters@maastrichtuniversity.nl; Zegers, Catharina M.L.; Lieuwes, Natasja G.
Purpose: Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [{sup 18}F]FMISO, [{sup 18}F]FAZA, and [{sup 18}F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification. Methods and Materials: PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, andmore » reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing. Results: TBR was stabilized and maximal at 2 hours p.i. for [{sup 18}F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [{sup 18}F]HX4 (7.2 ± 0.7), whereas [{sup 18}F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [{sup 18}F]FMISO (R = 0.86; Dice coefficient = 0.76) and [{sup 18}F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [{sup 18}F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [{sup 18}F]HX4 and [{sup 18}F]FAZA upon 7% oxygen breathing. Only [{sup 18}F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen. Conclusions: This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be put forward.« less
Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Jung, Myunghwan; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang
2012-05-01
A vaccine delivery system based on thiolated eudragit microsphere (TEMS) was studied in vivo for its ability to elicit mucosal immunity against enterotoxigenic Escherichia coli (ETEC). Groups of mice were orally immunized with F4 or F18 fimbriae of ETEC and F4 or F18 loaded in TEMS. Mice that were orally administered with F4 or F18 loaded TEMS showed higher antigen-specific IgG antibody responses in serum and antigen-specific IgA in saliva and feces than mice that were immunized with antigens only. In addition, oral vaccination of F4 or F18 loaded TEMS resulted in higher numbers of IgG and IgA antigen-specific antibody secreting cells in the spleen, lamina propria, and Peyer's patches of immunized mice than other groups. Moreover, TEMS administration loaded with F4 or F18 induced mixed Th1 and Th2 type responses based on similarly increased levels of IgG1 and IgG2a. These results suggest that F4 or F18 loaded TEMS may be a promising candidate for an oral vaccine delivery system to elicit systemic and mucosal immunity against ETEC. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Spearing, Dane R.; Stebbins, Jonathan F.; Farnan, Ian
1994-10-01
Cryolite is a mixed-cation perovskite (Na2(NaAl)F6) which undergoes a monoclinic to orthorhombic displacive phase transition at ˜550° C. Chiolite (Na5Al3F14) is associated with cryolite in natural deposits, and consists of sheets of corner sharing [AlF6] octahedra interlayered with edge-sharing [NaF6] octahedra. Multi-nuclear NMR line shape and relaxation time (T1) studies were performed on cryolite and chiolite in order to gain a better understanding of the atomic motions associated with the phase transition in cryolite, and Na diffusion in cryolite and chiolite. 27Al, 23Na, and 19F static NMR spectra and T1's in cryolite suggest that oscillatory motions of the [AlF6] octahedra among four micro-twin and anti-phase domains in α-cryolite begin at least 150° C below the transition temperature and persist above it. Variable temperature 23Na MAS NMR further indicates diffusional exchange at a rate of at least 13 kHz between the Na sites by the time the transition temperature is reached. 27Al and 23Na T1's show the same behavior with increasing temperature, indicating the same relaxation mechanisms are responsible for both. The first order nature of the cryolite transition is apparent as a jump in the 23Na and 27Al T1's. Above the transition temperature, the T1's decrease slightly indicating that the motions responsible for the drop in T1, are still present above the transition, further supporting the dynamic nature of the high temperature phase of cryolite. Chiolite 23Na static spectra decrease in linewidth with increasing temperature, indicating increased Na diffusion, which is interpreted as occurring within the [NaF6] sheets in the chiolite structure, but not between the two different Na sites. 27Al and 23Na T1's show similar behavior as in cryolite, but there is no discontinuity due to a phase transition. 19F T1's are constant from room temperature to 150° C indicating no oscillatory motion of the [AlF6] octahedra in chiolite.
Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants.
Schaeverbeke, Jolien; Evenepoel, Charlotte; Declercq, Lieven; Gabel, Silvy; Meersmans, Karen; Bruffaerts, Rose; Adamczuk, Kate; Dries, Eva; Van Bouwel, Karen; Sieben, Anne; Pijnenburg, Yolande; Peeters, Ronald; Bormans, Guy; Van Laere, Koen; Koole, Michel; Dupont, Patrick; Vandenberghe, Rik
2018-06-26
To assess the binding of the PET tracer [ 18 F]THK5351 in patients with different primary progressive aphasia (PPA) variants and its correlation with clinical deficits. The majority of patients with nonfluent variant (NFV) and logopenic variant (LV) PPA have underlying tauopathy of the frontotemporal lobar or Alzheimer disease type, respectively, while patients with the semantic variant (SV) have predominantly transactive response DNA binding protein 43-kDa pathology. The study included 20 PPA patients consecutively recruited through a memory clinic (12 NFV, 5 SV, 3 LV), and 20 healthy controls. All participants received an extensive neurolinguistic assessment, magnetic resonance imaging and amyloid biomarker tests. [ 18 F]THK5351 binding patterns were assessed on standardized uptake value ratio (SUVR) images with the cerebellar grey matter as the reference using statistical parametric mapping. Whole-brain voxel-wise regression analysis was performed to evaluate the association between [ 18 F]THK5351 SUVR images and neurolinguistic scores. Analyses were performed with and without partial volume correction. Patients with NFV showed increased binding in the supplementary motor area, left premotor cortex, thalamus, basal ganglia and midbrain compared with controls and patients with SV. Patients with SV had increased binding in the temporal lobes bilaterally and in the right ventromedial frontal cortex compared with controls and patients with NFV. The whole-brain voxel-wise regression analysis revealed a correlation between agrammatism and motor speech impairment, and [ 18 F]THK5351 binding in the left supplementary motor area and left postcentral gyrus. Analysis of [ 18 F]THK5351 scans without partial volume correction revealed similar results. [ 18 F]THK5351 imaging shows a topography closely matching the anatomical distribution of predicted underlying pathology characteristic of NFV and SV PPA. [ 18 F]THK5351 binding correlates with the severity of clinical impairment.
Zhang, Yu-Dong; Wang, Qing; Wu, Chen-Jiang; Wang, Xiao-Ning; Zhang, Jing; Liu, Hui; Liu, Xi-Sheng; Shi, Hai-Bin
2015-04-01
To evaluate histogram analysis of intravoxel incoherent motion (IVIM) for discriminating the Gleason grade of prostate cancer (PCa). A total of 48 patients pathologically confirmed as having clinically significant PCa (size > 0.5 cm) underwent preoperative DW-MRI (b of 0-900 s/mm(2)). Data was post-processed by monoexponential and IVIM model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analysis was performed by outlining entire-tumour regions of interest (ROIs) from histological-radiological correlation. The ability of imaging indices to differentiate low-grade (LG, Gleason score (GS) ≤6) from intermediate/high-grade (HG, GS > 6) PCa was analysed by ROC regression. Eleven patients had LG tumours (18 foci) and 37 patients had HG tumours (42 foci) on pathology examination. HG tumours had significantly lower ADCs and D in terms of mean, median, 10th and 75th percentiles, combined with higher histogram kurtosis and skewness for ADCs, D and f, than LG PCa (p < 0.05). Histogram D showed relatively higher correlations (ñ = 0.641-0.668 vs. ADCs: 0.544-0.574) with ordinal GS of PCa; and its mean, median and 10th percentile performed better than ADCs did in distinguishing LG from HG PCa. It is feasible to stratify the pathological grade of PCa by IVIM with histogram metrics. D performed better in distinguishing LG from HG tumour than conventional ADCs. • GS had relatively higher correlation with tumour D than ADCs. • Difference of histogram D among two-grade tumours was statistically significant. • D yielded better individual features in demonstrating tumour grade than ADC. • D* and f failed to determine tumour grade of PCa.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.
1999-11-01
OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.
Proteomic analysis of liver in rats chronically exposed to fluoride.
Pereira, Heloísa Aparecida Barbosa da Silva; Leite, Aline de Lima; Charone, Senda; Lobo, Janete Gualiume Vaz Madureira; Cestari, Tania Mary; Peres-Buzalaf, Camila; Buzalaf, Marília Afonso Rabelo
2013-01-01
Fluoride (F) is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old) were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group). At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS). Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE) and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.
2004-01-01
IL-1F7b, a novel homologue of the IL-1 (interleukin 1) family, was discovered by computational cloning. We demonstrated that IL-1F7b shares critical amino acid residues with IL-18 and binds to the IL-18-binding protein enhancing its ability to inhibit IL-18-induced interferon-γ. We also showed that low levels of IL-1F7b are constitutively present intracellularly in human blood monocytes. In this study, we demonstrate that similar to IL-18, both mRNA and intracellular protein expression of IL-1F7b are up-regulated by LPS (lipopolysaccharide) in human monocytes. In stable transfectants of murine RAW264.7 macrophage cells, there was no IL-1F7b protein expression despite a highly active CMV promoter. We found that IL-1F7b-specific mRNA was rapidly degraded in transfected cells, via a 3′-UTR (untranslated region)-independent control of IL-1F7b transcript stability. After LPS stimulation, there was a rapid transient increase in IL-1F7b-specific mRNA and concomitant protein levels. Using sequence alignment, we found a conserved ten-nucleotide homology box within the open reading frame of IL-F7b, which is flanking the coding region instability elements of some selective genes. In-frame deletion of downstream exon 5 from the full-length IL-1F7b cDNA markedly increased the levels of IL-1F7b mRNA. A similar coding region element is located in IL-18. When transfected into RAW264.7 macrophages, IL-18 mRNA was also unstable unless treated with LPS. These results indicate that both IL-1F7b and IL-18 mRNA contain functional instability determinants within their coding region, which influence mRNA decay as a novel mechanism to regulate the expression of IL-1 family members. PMID:15046617
Stegmayr, Carina; Stoffels, Gabriele; Kops, Elena Rota; Lohmann, Philipp; Galldiks, Norbert; Shah, Nadim J; Neumaier, Bernd; Langen, Karl-Josef
2018-05-29
O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) is an established positron emission tomography (PET) tracer for brain tumor imaging. This study explores the influence of dexamethasone therapy on [ 18 F]FET uptake in the normal brain and its influence on the maximum and mean tumor-to-brain ratio (TBR). [ 18 F]FET PET scans of 160 brain tumor patients were evaluated (80 dexamethasone treated, 80 untreated; each group with 40 men/40 women). The standardized uptake value of [ 18 F]FET uptake in the normal brain (SUV brain ) in the different groups was compared. Nine patients were examined repeatedly with and without dexamethasone therapy. SUV brain of [ 18 F]FET uptake was significantly higher in dexamethasone-treated patients than in untreated patients (SUV brain 1.33 ± 0.1 versus 1.06 ± 0.16 in male and 1.45 ± 0.25 versus 1.31 ± 0.28 in female patients). Similar results were observed in patients with serial PET scans. Furthermore, compared to men, a significantly higher SUV brain was found in women, both with and without dexamethasone treatment. There were no significant differences between the different groups for TBR max and TBR mean , which could have been masked by the high standard deviation. In a patient with a stable brain metastasis investigated twice with and without dexamethasone, the TBR max and the biological tumor volume (BTV) decreased considerably after dexamethasone due to an increased SUV brain . Dexamethasone treatment appears to increase the [ 18 F]FET uptake in the normal brain. An effect on TBR max , TBR mean , and BTV cannot be excluded which should be considered especially for treatment monitoring and the estimation of BTV using [ 18 F]FET PET.
Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo
2016-01-01
Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with (18)F-fallypride and (18)F-fluorodeoxyglucose ((18)F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with (18)F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with (18)F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with (18)F-fallypride and (18)F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment.
Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M
2016-08-18
A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.
NASA Technical Reports Server (NTRS)
Ting, E. Y.; Kennedy, J. R.
1989-01-01
Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.
Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting
2007-04-02
The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.
The Value of 18F-FDG PET/CT in Diagnosis and During Follow-up in 273 Patients with Chronic Q Fever.
Kouijzer, Ilse J E; Kampschreur, Linda M; Wever, Peter C; Hoekstra, Corneline; van Kasteren, Marjo E E; de Jager-Leclercq, Monique G L; Nabuurs-Franssen, Marrigje H; Wegdam-Blans, Marjolijn C A; Ammerlaan, Heidi S M; Buijs, Jacqueline; Geus-Oei, Lioe-Fee de; Oyen, Wim J G; Bleeker-Rovers, Chantal P
2018-01-01
In 1%-5% of all acute Q fever infections, chronic Q fever develops, mostly manifesting as endocarditis, infected aneurysms, or infected vascular prostheses. In this study, we investigated the diagnostic value of 18 F-FDG PET/CT in chronic Q fever at diagnosis and during follow-up. Methods: All adult Dutch patients suspected of chronic Q fever who were diagnosed since 2007 were retrospectively included until March 2015, when at least one 18 F-FDG PET/CT scan was obtained. Clinical data and results from 18 F-FDG PET/CT at diagnosis and during follow-up were collected. 18 F-FDG PET/CT scans were prospectively reevaluated by 3 nuclear medicine physicians using a structured scoring system. Results: In total, 273 patients with possible, probable, or proven chronic Q fever were included. Of all 18 F-FDG PET/CT scans performed at diagnosis, 13.5% led to a change in diagnosis. Q fever-related mortality rate in patients with and without vascular infection based on 18 F-FDG PET/CT was 23.8% and 2.1%, respectively ( P = 0.001). When 18 F-FDG PET/CT was added as a major criterion to the modified Duke criteria, 17 patients (1.9-fold increase) had definite endocarditis. At diagnosis, 19.6% of 18 F-FDG PET/CT scans led to treatment modification. During follow-up, 57.3% of 18 F-FDG PET/CT scans resulted in treatment modification. Conclusion: 18 F-FDG PET/CT is a valuable technique in diagnosis of chronic Q fever and during follow-up, often leading to a change in diagnosis or treatment modification and providing important prognostic information on patient survival. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Dean, Scott N.; Chung, Myung-Chul
2015-01-01
In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649
NASA Astrophysics Data System (ADS)
Cross, Nathan; Varghai, Davood; Spring-Robinson, Chandra; Sharma, Rahul; Muzic, Raymond F., Jr.; Oleinick, Nancy L.; Dean, D.
2007-02-01
Introduction: Several workers have proposed the use of PET (Positron Emission Tomography) imaging for the outcome assessment of photodynamic therapy (PDT), especially for deep-seated tumors. We report on our study of 18Ffluorodeoxy- glucose (18F-FDG) PET imaging following brain tumor Pc4-PDT. Our working hypothesis was that the tumor's metabolic activity would decline dramatically following Pc 4-PDT owing to tumor necrosis. Methods: Seven days after intraparenchymal implantation of U87 cells, the brains of 12 athymic nude rats were imaged by micro-CT and/or micro-MR. These animals were also 18F-FDG micro-PET (μPET) scanned before and after Pc 4-PDT. 18F-FDG was used to trace metabolic activity that was monitored via μPET. Occurrence of PDT was confirmed on histology. The analysis of 18F-FDG dose and animal weight normalized μPET activity was studied over the 90 minute µPET scan. Results: Currently, μPET data have been studied for: (1) three of the animals that did not indicate tumor necrosis on histology and were assigned to a "Non-PDT" group, and (2) six animals that exhibited tumor necrosis on histology and were assigned to a "PDT" group. The μPET-detected 18F-FDG uptake activity in the tumor region before and after photoirradiation increased in the Non-PDT group an average of 2.28 times, and in the PDT group it increased an average of 1.15 times. Discussion: We are investigating the cause of the increase in 18F-FDG μPET activity that we observed in the PDT group. The methodology used in this study should be useful in determining whether this or other PET, SPECT, or MR functional imaging protocols will detect both the specificity and sensitivity of brain tumor necrosis following Pc 4-PDT.
STM study of C60F18 high dipole moment molecules on Au(111)
NASA Astrophysics Data System (ADS)
Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.
2015-11-01
Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.
NASA Technical Reports Server (NTRS)
Bales, T. T.; Cain, R. L.
1971-01-01
A study has been initiated to determine the effects of elevated-temperature exposure on the room-temperature mechanical properties of titanium honeycomb-core sandwich panels fabricated by brazing or spot diffusion bonding. Only flatwise tensile properties following exposure have been determined to date. Preliminary results indicate very little change in the flatwise tensile strength of sandwich panels fabricated by spot diffusion bonding following exposures of 10,000 hr at 600 and 800 F and 1000 hr at 1000 F. Titanium panels fabricated by using a Ti-Zr-Be braze alloy are susceptible to oxidation at elevated temperature and experience flatwise tensile strength degradation after continuous exposures of 7500 hr at 600 F, 1000 hr at 800 F, and less than 100 hr at 1000 F. It is possible that the exposure life of the brazed panels may be substantially increased if the panel edges are sealed to prevent oxidation of the braze alloy.
[18F-Fluorocholine PET-CT for localization of parathyroid adenomas].
Kluijfhout, Wouter P; Vriens, Menno R; Borel Rinkes, Inne H M; Valk, Gerlof D; de Klerk, John M H; de Keizer, Bart
2015-01-01
18F-fluorocholine PET-CT is a new imaging modality for the localization of pathological parathyroid glands in patients with primary hyperparathyroidism. The PET-CT is a combination scan that uses both the physiological information from the PET and the anatomical information from the CT. Uptake of the radio-isotope 18F-fluorocholine is increased in pathological parathyroid glands. 18F-fluorocholine PET-CT helps clinicians to localize the pathological parathyroid glands where conventional modalities fail to do so. This enables surgeons to carry out targeted minimal invasive surgery. It may also prevent the patient having to undergo a more extensive exploration, with its associated risks, and alleviate the necessity of taking medications with side effects. Although the literature on this subject is still scarce, preliminary results are promising. As any hospital with a PET-CT can perform the scan, we expect that its use in patients with hyperparathyroidism will increase over the next few years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yildirim, Handan; Kinaci, Alper; Chan, Maria K. Y.
The formation mechanism and composition of the solid electrolyte interphase (SEI) in lithium ion batteries has been widely explored. However, relatively little is known about the function of the SEI as a transport medium. Such critical information is directly relevant to battery rate performance, power loss, and capacity fading. To partially bridge this gap in the case of inorganic SEI compounds, we report herein the results of first-principles calculations on the defect thermodynamics, the dominant diffusion carriers, and the diffusion pathways associated with crystalline LiF and NaF, which are stable components of the SEI in Li-ion and Na-ion batteries, respectively.more » The thermodynamics of common point defects are computed, and the dominant diffusion carriers are determined over a voltage range of 0-4 V, corresponding to conditions relevant to both anode and cathode SEI's. Our analyses reveal that for both compounds, vacancy defects are energetically more favorable, therefore form more readily than interstitials, due to the close-packed nature of the crystal structures. However, the vacancy concentrations are very small for the diffusion processes facilitated by defects. Ionic conductivities are calculated as a function of voltage, considering the diffusion carrier concentration and the diffusion barriers as determined by nudged elastic band calculations. These conductivities are more than ten orders of magnitude smaller in NaF than in LiF. As compared to the diffusivity of Li in other common inorganic SEI compounds, such as Li2CO3 and Li2O,the cation diffusivity in LiF and NaF is quite low, with at least three orders of magnitude lower ionic conductivities. The results quantify the extent to which fluorides pose rate limitations in Li and Na batteries.« less
NASA Astrophysics Data System (ADS)
Accary, J.-B.; Teboul, V.
2013-07-01
We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).
Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S
2016-01-01
AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student’s t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10-3 mm2/s. The 1.0 × 10-3 ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar’s test). CONCLUSION: These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients. PMID:27028112
Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S
2016-03-28
To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student's t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10(-3) mm(2)/s. The 1.0 × 10(-3) ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar's test). These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients.
Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing
2018-01-01
Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase
NASA Astrophysics Data System (ADS)
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-01
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F1 , which is a component of Fo F1 adenosine triphosphate synthase. We discuss the energetic properties of F1 and identify a high energy barrier of the rotary potential to be 20 kBT , with the condition that the adenosine diphosphates are tightly bound to the F1 catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Mitsis, E M; Riggio, S; Kostakoglu, L; Dickstein, D L; Machac, J; Delman, B; Goldstein, M; Jennings, D; D'Antonio, E; Martin, J; Naidich, T P; Aloysi, A; Fernandez, C; Seibyl, J; DeKosky, S T; Elder, G A; Marek, K; Gordon, W; Hof, P R; Sano, M; Gandy, S
2014-09-16
Single, severe traumatic brain injury (TBI) which elevates CNS amyloid, increases the risk of Alzheimer's disease (AD); while repetitive concussive and subconcussive events as observed in athletes and military personnel, may increase the risk of chronic traumatic encephalopathy (CTE). We describe two clinical cases, one with a history of multiple concussions during a career in the National Football League (NFL) and the second with frontotemporal dementia and a single, severe TBI. Both patients presented with cognitive decline and underwent [(18)F]-Florbetapir positron emission tomography (PET) imaging for amyloid plaques; the retired NFL player also underwent [(18)F]-T807 PET imaging, a new ligand binding to tau, the main constituent of neurofibrillary tangles (NFT). Case 1, the former NFL player, was 71 years old when he presented with memory impairment and a clinical profile highly similar to AD. [(18)F]-Florbetapir PET imaging was negative, essentially excluding AD as a diagnosis. CTE was suspected clinically, and [(18)F]-T807 PET imaging revealed striatal and nigral [(18)F]-T807 retention consistent with the presence of tauopathy. Case 2 was a 56-year-old man with personality changes and cognitive decline who had sustained a fall complicated by a subdural hematoma. At 1 year post injury, [(18)F]-Florbetapir PET imaging was negative for an AD pattern of amyloid accumulation in this subject. Focal [(18)F]-Florbetapir retention was noted at the site of impact. In case 1, amyloid imaging provided improved diagnostic accuracy where standard clinical and laboratory criteria were inadequate. In that same case, tau imaging with [(18)F]-T807 revealed a subcortical tauopathy that we interpret as a novel form of CTE with a distribution of tauopathy that mimics, to some extent, that of progressive supranuclear palsy (PSP), despite a clinical presentation of amnesia without any movement disorder complaints or signs. A key distinguishing feature is that our patient presented with hippocampal involvement, which is more frequently seen in CTE than in PSP. In case 2, focal [(18)F]-Florbetapir retention at the site of injury in an otherwise negative scan suggests focal amyloid aggregation. In each of these complex cases, a combination of [(18)F]-fluorodeoxyglucose, [(18)F]-Florbetapir and/or [(18)F]-T807 PET molecular imaging improved the accuracy of diagnosis and prevented inappropriate interventions.
Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons
Mondragão, Miguel A.; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W.
2016-01-01
Key points Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity.Recovery from global sodium loads critically relies on Na+/K+‐ATPase and an intact energy metabolism in both somata and dendrites.For recovery from local sodium loads in dendrites, Na+/K+‐ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10‐fold higher than for global sodium signals.Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non‐stimulated regions strongly reduces local energy requirements. Abstract Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage‐ and ligand‐activated channels. Recovery from resulting sodium transients has mainly been attributed to Na+/K+‐ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole‐cell patch‐clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min−1 (∼0.03 mm min−1 μm−2). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10‐fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion‐based fast dissemination to non‐stimulated regions might reduce local energy requirements. PMID:27080107
Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1960-01-01
The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.
Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network
Kaplan, Raphael; Adhikari, Mohit H.; Hindriks, Rikkert; Mantini, Dante; Murayama, Yusuke; Logothetis, Nikos K.; Deco, Gustavo
2016-01-01
Summary The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1, 2, 3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]—particularly in DMN regions [6, 7, 8]. Mechanistic support for the DMN’s role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples—both during sleep [9, 10] and awake deliberative periods [11, 12, 13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16, 17, 18, 19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20, 21, 22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24, 25, 26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs—like the DMN—unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics. PMID:26898464
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726
Nilica, Bernhard; Waitz, Dietmar; Stevanovic, Vlado; Uprimny, Christian; Kendler, Dorota; Buxbaum, Sabine; Warwitz, Boris; Gerardo, Llanos; Henninger, Benjamin; Virgolini, Irene; Rodrigues, Margarida
2016-08-01
To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). We evaluated 66 patients who had histologically proven NET and underwent both PRRT and three combined (68)Ga-DOTA-TOC and (18)F-FDG PET/CT studies. (68)Ga-DOTA-TOC PET/CT was performed before PRRT, 3 months after completion of PRRT and after a further 6 - 9 months. (18)F-FDG PET/CT was done within 2 months of (68)Ga-DOTA-TOC PET/CT. Follow-up ranged from 11.8 to 80.0 months (mean 34.5 months). All patients were (68)Ga-DOTA-TOC PET-positive initially and at follow-up after the first full PRRT cycle. Overall, 62 of the 198 (18)F-FDG PET studies (31 %) were true-positive in 38 of the 66 patients (58 %). Of the 66 patients, 28 (5 grade 1, 23 grade 2) were (18)F-FDG-negative initially and during follow-up (group 1), 24 (5 grade 1, 13 grade 2, 6 grade 3) were (18)F-FDG-positive initially and during follow-up (group 2), 9 patients (2 grade 1, 6 grade 2, 1 grade 3) were (18)F-FDG-negative initially but (18)F-FDG-positive during follow-up (group 3), and 5 patients (all grade 2) were (18)F-FDG-positive initially but (18)F-FDG-negative during follow-up (group 4).(18)F-FDG PET showed more and/or larger metastases than (68)Ga-DOTA-TOC PET in five patients of group 2 and four patients of group 3, all with progressive disease. In three patients with progressive disease who died during follow-up tumour SUVmax increased by 41 - 82 % from the first to the last follow-up investigation. In NET patients, the presence of (18)F-FDG-positive tumours correlates strongly with a higher risk of progression. Initially, patients with (18)F-FDG-negative NET may show (18)F-FDG-positive tumours during follow-up. Also patients with grade 1 and grade 2 NET may have (18)F-FDG-positive tumours. Therefore, (18)F-FDG PET/CT is a complementary tool to (68)Ga-DOTA-TOC PET/CT with clinical relevance for molecular investigation.
Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Rochester, Chris W.; Jacobs, Ian E.
2015-12-03
The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less
Cunningham, Danielle A; Lowe, Lisa H; Shao, Lei; Acosta, Natasha R
2016-08-01
Astroblastoma is a rare tumor of uncertain origin most commonly presenting in the cerebrum of children and young adults. The literature contains only case reports and small series regarding its radiologic features. This systematic review is the largest study of imaging findings of astroblastoma to date and serves to identify features that might differentiate it from other neoplasms. This study describes the imaging features of astroblastoma based on a systematic review of the literature and two new cases. We conducted a PubMed and Google Scholar database search that identified 59 publications containing 125 cases of pathology-confirmed astroblastoma, and we also added two new cases from our own institution. Data collected include patient age, gender, tumor location, morphology, calcifications and calvarial changes. We recorded findings on CT, MRI, diffusion-weighted imaging (DWI), MR spectroscopy, positron emission tomography (PET) and catheter angiography. Age at diagnosis ranged 0-70 years (mean 18 years; median 14 years). Female-to-male ratio was 8:1. Of 127 cases, 66 reported CT, 78 reported MRI and 47 reported both findings. Not all authors reported all features, but the tumor features reported included supratentorial in 96% (122/127), superficial in 72% (48/67), well-demarcated in 96% (79/82), mixed cystic-solid in 93% (79/85), and enhancing in 99% (78/79). On CT, 84% (26/31) of astroblastomas were hyperattenuated, 73% (27/37) had calcifications and 7 cases reported adjacent calvarial erosion. Astroblastomas were hypointense on T1-W in 58% (26/45) and on T2-W in 50% (23/46) of MRI sequences. Peritumoral edema was present in 80% (40/50) of cases but was typically described as slight. Six cases included DWI findings, with 100% showing restricted diffusion. On MR spectroscopy, 100% (5/5) showed nonspecific tumor spectra with elevated choline and decreased N-acetylaspartate (NAA). PET revealed nonspecific reduced uptake of [F-18] 2-fluoro-2-deoxyglucose ((18)F-FDG) and increased uptake of [11C]-Methionine in 100% (3/3) of cases. Catheter angiography findings (n=12) were variable, including hypervascularity in 67%, arteriovenous shunting in 33% and avascular areas in 25%. Astroblastomas occur most often in adolescent girls. Imaging often shows a supratentorial, superficial, well-defined, cystic-solid enhancing mass. On CT, most are hyperattenuated, have calcifications, and may remodel adjacent bone if superficial. MRI characteristically reveals a hypointense mass on T1-W and T2-W sequences with restricted diffusion. MR spectroscopy, PET and catheter angiography findings are nonspecific.
F18 Life Support: APECS and EDOX Cockpit Integration
NASA Technical Reports Server (NTRS)
Herrick, Paul
1998-01-01
Two systems are currently being integrated into the F18 Hornet support aircraft at NASA Dryden Flight Research Center (DFRC). The first system is the Aircrew Personal Environmental Control System (APECS). The system is designed to increase aircrew performance by combating heat stress in the cockpit. The second system is the Extended Duration Oxygen System (EDOX). This system will provide additional redundancy and oxygen system duration to the F18 without extensive modification to the current system.
Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi
2015-01-01
A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.
Magnetic conjugate observation of the F3 layer using the SEALION ionosonde network
NASA Astrophysics Data System (ADS)
Uemoto, Jyunpei; Ono, Takayuki; Maruyama, Takashi; Saito, Susumu; Iizima, Masahide; Kumamoto, Atsushi
2007-01-01
Results from the meridional ionosonde network located in Southeast Asia (SEALION) demonstrate the interesting nature of the F 3 layer, showing its generation mechanism. Ionograms obtained on 16 November 2004 and 31 March 2005 at Chiang Mai (CMU; geographic latitude 18.8°N, geographic longitude 98.9°E, and magnetic latitude 13.2°N), Chumphon (CPN; 10.7°N, 99.4°E, and 3.2°N) and Kototabang (KTB; 0.2°S, 100.3°E, and 10.1°S) showed significant differences between CPN near the magnetic equator, and CMU and KTB in the magnetic low-latitude region. The simultaneous magnetic conjugate observations of the F 3 layer achieved using the SEALION ionosonde network data showed clear dependences of the F 3 layer on the magnetic latitude. It is suggested that these magnetic latitude dependences of the F 3 layer can be explained by considering the plasma diffusion effects along the magnetic field lines in the magnetic low-latitude region.
Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P
2016-10-03
To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.
Woods, Amy L; Sharma, Avish P; Garvican-Lewis, Laura A; Saunders, Philo U; Rice, Anthony J; Thompson, Kevin G
2017-02-01
High altitude exposure can increase resting metabolic rate (RMR) and induce weight loss in obese populations, but there is a lack of research regarding RMR in athletes at moderate elevations common to endurance training camps. The present study aimed to determine whether 4 weeks of classical altitude training affects RMR in middle-distance runners. Ten highly trained athletes were recruited for 4 weeks of endurance training undertaking identical programs at either 2200m in Flagstaff, Arizona (ALT, n = 5) or 600m in Canberra, Australia (CON, n = 5). RMR, anthropometry, energy intake, and hemoglobin mass (Hb mass ) were assessed pre- and posttraining. Weekly run distance during the training block was: ALT 96.8 ± 18.3km; CON 103.1 ± 5.6km. A significant interaction for Time*Group was observed for absolute (kJ.day -1 ) (F-statistic, p-value: F (1,8) =13.890, p = .01) and relative RMR (F (1,8) =653.453, p = .003) POST-training. No significant changes in anthropometry were observed in either group. Energy intake was unchanged (mean ± SD of difference, ALT: 195 ± 3921kJ, p = .25; CON: 836 ± 7535kJ, p = .75). A significant main effect for time was demonstrated for total Hb mass (g) (F (1,8) =13.380, p = .01), but no significant interactions were observed for either variable [Total Hb mass (g): F (1,8) =1.706, p = .23; Relative Hb mass (g.kg -1 ): F (1,8) =0.609, p = .46]. These novel findings have important practical application to endurance athletes routinely training at moderate altitude, and those seeking to optimize energy management without compromising training adaptation. Altitude exposure may increase RMR and enhance training adaptation,. During training camps at moderate altitude, an increased energy intake is likely required to support an increased RMR and provide sufficient energy for training and performance.
White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging
Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2015-01-01
Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513
Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A
2017-11-01
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients.
Dumarey, Nicolas; Egrise, Dominique; Blocklet, Didier; Stallenberg, Bernard; Remmelink, Myriam; del Marmol, Véronique; Van Simaeys, Gaëtan; Jacobs, Frédérique; Goldman, Serge
2006-04-01
The aim of this study was to assess the feasibility and the potential role of PET/CT with (18)F-FDG-labeled autologous leukocytes in the diagnosis and localization of infectious lesions. Twenty-one consecutive patients with suspected or documented infection were prospectively evaluated with whole-body PET/CT 3 h after injection of autologous (18)F-FDG-labeled leukocytes. Two experienced nuclear medicine physicians who were unaware of the clinical end-diagnosis reviewed all PET/CT studies. A visual score (0-3)-according to uptake intensity-was used to assess studies. The results of PET/CT with (18)F-FDG-labeled white blood cell ((18)F-FDG-WBC) assessment were compared with histologic or biologic diagnosis in 15 patients and with clinical end-diagnosis after complete clinical work-up in 6 patients. Nine patients had fever of unknown etiology, 6 patients had documented infection but with unknown extension of the infectious disease, 4 patients had a documented infection with unfavorable evolution, and 2 patients had a documented infection with known extension. The best trade-off between sensitivity and specificity was obtained when a visual score of >or=2 was chosen to identify increased tracer uptake as infection. With this threshold, sensitivity, specificity, and accuracy were each 86% on a patient-per-patient basis and 91%, 85%, and 90% on a lesion-per-lesion basis. In this small group of patients, the absence of areas with increased WBC uptake on WBC PET/CT had a 100% negative predictive value. Hybrid (18)F-FDG-WBC PET/CT was found to have a high sensitivity and specificity for the diagnosis of infection. It located infectious lesions with a high precision. In this small series, absence of areas with increased uptake virtually ruled out the presence of infection. (18)F-FDG-WBC PET/CT for infection detection deserves further investigation in a larger prospective series.
De Rosa, Viviana; Iommelli, Francesca; Monti, Marcello; Mainolfi, Ciro Gabriele; Fonti, Rosa; Del Vecchio, Silvana
2016-12-01
The two main mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) are the occurrence of T790M secondary mutation in the kinase domain of EGFR and MET amplification. The aim of the present study was to test whether early changes of 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in animal models bearing erlotinib-resistant NSCLC may have different imaging patterns of response to erlotinib depending on the molecular mechanisms underlying resistance. Animal tumor models were developed using NSCLC H1975 cells bearing the T790M mutation and H1993 cells with MET amplification. Nude mice bearing erlotinib-resistant H1975 and H1993 xenografts (four animals for each cell line and for each treatment) were subjected to 18 F-FDG PET/CT scan before and immediately after treatment (50 mg/kg p.o. for 3 days) with erlotinib, WZ4002, crizotinib, or vehicle. A three-dimensional region of interest analysis was performed to determine the percent change of 18 F-FDG uptake in response to treatment. At the end of the imaging studies, tumors were removed and analyzed for glycolytic and mitochondrial proteins as well as levels of cyclin D1. Imaging studies with 18 F-FDG PET/CT in H1975 tumor-bearing mice showed a reduction of 18 F-FDG uptake of 25.87 % ± 8.93 % after treatment with WZ4002 whereas an increase of 18 F-FDG uptake up to 23.51 % ± 9.72 % was observed after treatment with erlotinib or vehicle. Conversely, H1993 tumors showed a reduction of 18 F-FDG uptake after treatment with both crizotinib (14.70 % ± 1.30 %) and erlotinib (18.40 % ± 9.19 %) and an increase of tracer uptake in vehicle-treated (56.65 % ± 5.65 %) animals. The in vivo reduction of 18 F-FDG uptake was always associated with downregulation of HKII and p-PKM2 Tyr105 glycolytic proteins and upregulation of mitochondrial complexes (subunits I-IV) in excised tumors. 18 F-FDG uptake is a reliable imaging biomarker of T790M-mediated resistance and its reversal in NSCLC whereas it may not be accurate in the detection of MET-mediated resistance.
Matusiak, Nathalie; van Waarde, Aren; Rozeveld, Dennie; van Oosterhout, Antoon J M; Heijink, Irene H; Castelli, Riccardo; Overkleeft, Herman S; Bischoff, Rainer; Dierckx, Rudi A J O; Elsinga, Philip H
2015-10-01
Matrix metalloproteinases (MMPs) are the main proteolytic enzymes involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). A radiolabeled MMP inhibitor, [(18)F]FB-ML5, was prepared, and its in vivo kinetics were tested in a mouse model of pulmonary inflammation. BALB/c mice were exposed for 4 days to cigarette smoke (CS) or air. On the fifth day, a dynamic microPET scan was made with [(18)F]FB-ML5. Standardized uptake values (PET-SUVmean) were 0.19 ± 0.06 in the lungs of CS-exposed mice (n = 6) compared to 0.11 ± 0.03 (n = 5) in air-exposed controls (p < 0.05), 90 min post-injection MMP-9 levels in bronchoalveolar lavage fluid (BALF) were increased from undetectable level to 4615 ± 1963 pg/ml by CS exposure. Increased MMP expression in a COPD mouse model was shown to lead to increased retention of [(18)F]FB-ML5.
Improving the prospects of cleavage-based nanopore sequencing engines
NASA Astrophysics Data System (ADS)
Brady, Kyle T.; Reiner, Joseph E.
2015-08-01
Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.
Dual acquisition of 18F-FMISO and 18F-FDOPA
NASA Astrophysics Data System (ADS)
Bell, Christopher; Rose, Stephen; Puttick, Simon; Pagnozzi, Alex; Poole, Christopher M.; Gal, Yaniv; Thomas, Paul; Fay, Michael; Jeffree, Rosalind L.; Dowson, Nicholas
2014-07-01
Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of 18F-FDOPA to identify infiltrative tumour and 18F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating 18F-FMISO from a single frame prior to injection of 18F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of 18F-FMISO and 18F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.
Evaluation of Prostate Cancer with 11C- and 18F-Choline PET/CT: Diagnosis and Initial Staging.
Nitsch, Sascha; Hakenberg, Oliver W; Heuschkel, Martin; Dräger, Desiree; Hildebrandt, Guido; Krause, Bernd J; Schwarzenböck, Sarah M
2016-10-01
Early diagnosis and adequate staging are crucial for the choice of adequate treatment in prostate cancer (PC). Morphologic and functional imaging modalities, such as CT and MRI, have had limited accuracy in the diagnosis and nodal staging of PC. Molecular PET/CT imaging with 11 C- or 18 F-choline-labeled derivatives is increasingly being used, but its role in the diagnosis and initial staging of PC is controversial because of limitations in sensitivity and specificity for the detection of primary PC. For T staging, functional MRI is superior to 11 C- or 18 F-choline PET/CT. For N staging, 11 C- or 18 F-choline PET/CT can provide potentially useful information that may influence treatment planning. For the detection of bone metastases, 11 C- or 18 F-choline PET/CT has had promising results; however, in terms of cost-effectiveness, the routine use of 11 C- or 18 F-choline PET/CT is still debatable. 11 C- or 18 F-choline PET/CT might be used in high-risk PC before radiation treatment planning, potentially affecting this planning (e.g., regarding dose escalation). This review provides an overview of the diagnostic accuracy and limitations of 11 C- or 18 F-choline PET/CT in the diagnosis and staging of PC. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
2014-01-01
Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring. PMID:25053370
Effects of fO2, fH2O and aoxide on formation and density of extended planar defects in olivine
NASA Astrophysics Data System (ADS)
Burgess, K.; Cooper, R. F.
2011-12-01
Melt inclusions are used in geochemistry to inform our understanding of many physiochemical processes taking place in the mantle, such as melting, melt-rock interactions and magma mixing. Fundamental to this interpretation of melt inclusions is the assumption that they act as closed systems, i.e., they are chemically isolated after trapping and preserve primitive magma compositions. However, recent work indicates that volatiles (e.g., H and F) can be rapidly reset [Portnyagin et al., 2008], and the diffusion mechanisms and rates in tracer diffusion experiments, specifically of REEs, are a matter of some debate [Spandler and O'Neill, 2010; Cherniak, 2010]. The compendium of observations and experiments suggests a role of planar extended defects in effecting and affecting diffusion kinetics in olivine. Planar extended defects are the exothermic condensation of charged point defects into two-dimensional structures, their third dimension insufficient (i.e., sub-unit cell) to describe them as a unique phase. These planar defects, in a manner similar to mechanisms of "pipe" diffusion along dislocations and of grain boundary diffusion, can lead to measured diffusivities far greater than the lattice diffusivity, and their overall effect on flux is proportional to their spatial density [cf. Hart, 1957]. High-resolution TEM and AEM investigation of experimental olivine-basalt samples show the presence of planar defects near the olivine-melt interface, with the area fraction of the high-contrast defects in the images being greatest at high fO2 and/or fH2O while temperature has an effect on the defect dimensions but not total areal density. EDS analysis of the interface regions indicate high Ti/Ca and Ti/Al ratios compared to the glass; the stability of intercalated humite-type defects in olivine, a planar defect type found in some natural olivines [e.g., Risold et al., 2001; Hermann et al., 2007], is increased to higher temperature by the incorporation of Ti. Activities of oxides clearly affect the presence and density of the defects. Olivine-ilmenite experiments were also carried out in varying fO2 and fH2O conditions. Thermodynamic calculations for concentrations of point defects, defect association(s) and defect condensation in olivine can relate experimental data for measured diffusivities to discerning natural conditions where condensed-defect, fast-path diffusion in olivine could be significant. Planar extended defects can potentially play a role in the kinetics of deformation of olivine in the mantle, particularly as the condensation reaction lowers the activity of mobile point defects. Cherniak, Am. Mineral. 95 (2010) 362-368. Hart, Acta Met. 5 (1957) 597. Hermann et al., Contrib. Mineral. Petrol. 153 (2007) 417-428. Portnyagin et al., Earth Planet. Sci.Lett. 272 (2008) 541-552. Risold et al., Contrib. Mineral. Petrol. 142 (2001) 619-628. Spandler and O'Neill, Contrib. Mineral. Petrol. 159 (2010) 791-818.
Demons versus Level-Set motion registration for coronary 18F-sodium fluoride PET.
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R; Fletcher, Alison; Motwani, Manish; Thomson, Louise E; Germano, Guido; Dey, Damini; Berman, Daniel S; Newby, David E; Slomka, Piotr J
2016-02-27
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18 F-sodium fluoride ( 18 F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18 F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18 F-NaF PET. To this end, fifteen patients underwent 18 F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18 F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Demons versus level-set motion registration for coronary 18F-sodium fluoride PET
NASA Astrophysics Data System (ADS)
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.
2016-03-01
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Riou, Virginie; Fonseca-Batista, Debany; Roukaerts, Arnout; Biegala, Isabelle C; Prakya, Shree Ram; Magalhães Loureiro, Clara; Santos, Mariana; Muniz-Piniella, Angel E; Schmiing, Mara; Elskens, Marc; Brion, Natacha; Martins, M Ana; Dehairs, Frank
2016-01-01
To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF) system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN) distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 μmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C), most saline (36.5-37.0) and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 μmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.
Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.
Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael
2018-01-11
The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.
Kim, Yemi; Lee, Ho-Young; Yoon, Hai-Jeon; Kim, Bom Sahn
2016-04-01
The aim of this study was to determine the clinical utility of positron emission tomography/computed tomography (PET/CT) using 18F-FDG and 18F-NaF for the diagnosis of osteonecrosis of the jaw (ONJ), by observing characteristics in rat models treated with zoledronic acid (ZA) and/or dexamethasone (DX) followed by tooth extraction. A total of 48 rats were divided randomly into four groups: Group 1, rats treated with ZA and DX; Group 2, rats treated with ZA; Group 3, rats treated with DX; and Group 4, rats treated with vehicle as normal controls. They underwent examinations with both 18F-FDG and 18F-NaF PET/CT at 4 weeks prior to tooth extraction (baseline) and 4 weeks after tooth extraction. Rats were then sacrificed to evaluate the histological incidence and characteristics of ONJ. Histological and radiological characteristics of all groups were compared to assess the effects of medication and tooth extraction. Baseline PET/CT studies using 18F-FDG and 18F-NaF showed no difference in uptake among the groups. However, 18F-FDG PET/CT performed at 4 weeks after tooth extraction showed increased glucose metabolism at the extraction site in both the ZA/DX and the ZA-only groups compared with that in the vehicle-treated group, in accordance with the higher incidence of histological ONJ (p < 0.05, respectively). 18F-NaF PET/CT performed at 4 weeks after tooth extraction showed decreased bone uptake in the extraction site in the ZA/DX, ZA, and DX groups versus the vehicle group (all p < 0.05), but this was not correlated with the incidence of histological ONJ. The incidence of ONJ was highest in the ZA/DX group (66.7%), followed by the ZA group, both of which were significantly higher than in the DX and vehicle groups (both p < 0.05). 18F-FDG PET/CT as an inflammatory marker appeared to be a more appropriate imaging modality than 18F-NaF PET/CT in diagnosing ONJ in a rat model including a ZA/DX group. However, the decreased bone remodeling tendency highlighted by 18F-NaF PET/CT may be an indicator of a possible risk of ONJ before the onset of clinical signs and symptoms. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Electronic Noise and Fluctuations in Solids
NASA Astrophysics Data System (ADS)
Kogan, Sh.
2008-07-01
Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.
Çavuşoğlu, Berrin; Durak, Hatice
2011-01-01
Objective: Relation between patient age and Hounsfield Unit (HU),which is the linear attenuation coefficient, and Standardized Uptake Values (SUV) which is the amount of 18F-fluorodeoxyglucose (F-18 FDG) uptake, measured in the areas of interest drawn to prostate, seminal vesicles and testicles in F-18 FDG Positron Emission Tomography/Computed Tomography (PET/CT) images was investigated. Material and Methods: Mean and maximum SUV and HU values were recorded from the areas of interest (min 12 mm in diameter) which showed FDG uptake in prostate, seminal vesicles and testicles from F-18 FDG PET-CT images of 21 male patients under 40 years without genitourinary cancer. The effect of patient age to SUV and HU values was examined with Pearson correlation test using SPSS program. Results: There was a negative insignificant correlation between patient age and SUV and HU values for prostate. For seminal vesicles, correlation between patient age and SUV values and HUmax were positive but insignificant, while correlation with HUmean was significant (r=0.459, p=0.00). Correlation between patient age and SUVmax and SUVmean values were significant for testicles (r=0.506, p=0.002 and r=0.467, p=0.005, respectively) but the correlation between patient age and HUmax and HUmean values was not significant. Conclusion: F-18 FDG uptake in testicles in males increases with age until 40, suggesting an increase in metabolic rate. The significant correlation between age and mean HU values is probably caused by thickening of the tissue without an increase in glucose metabolism in seminal vesicles. In prostate, the effect of patient age to SUV and HU values was not observed until the age 40. Conflict of interest:None declared. PMID:23486855
Duan, Qiangde; Zhou, Mingxu; Zhu, Xiaofang; Bao, Wenbin; Wu, Shenglong; Ruan, Xiaosai; Zhang, Weiping; Yang, Yang; Zhu, Jun; Zhu, Guoqiang
2012-11-09
Bacterial flagella contribute to pathogen virulence; however, the role of flagella in the pathogenesis of F18ab E. coli-mediated swine edema disease (ED) is not currently known. We therefore evaluated the role of flagella in F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production using an in vitro cell infection model approach with gene-deletion mutant and complemented bacterial strains. We demonstrated that the flagellin-deficient fliC mutant had a marked decrease in the ability to adhere to and invade porcine epithelial IPEC-J2 cells. Surprisingly, there was no difference in adhesion between the F18 fimbriae-deficient ΔfedA mutant and its parent strain. In addition, both the ΔfedA and double ΔfliCΔfedA mutants exhibited an increased ability to invade IPEC-J2 cells compared to the wild-type strain, although this may be due to increased expression of other adhesins following the loss of F18ab fimbriae and flagella. Compared to the wild-type strain, the ΔfliC mutant showed significantly reduced ability to form biofilm, whereas the ΔfedA mutant increased biofilm formation. Although ΔfliC, ΔfedA, and ΔfliCΔfedA mutants had a reduced ability to stimulate IL-8 production from infected Caco-2 cells, the ΔfliC mutant impaired this ability to a greater extent than the ΔfedA mutant. The results from this study clearly demonstrate that flagella are required for efficient F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production in vitro. Copyright © 2012 Elsevier B.V. All rights reserved.
Shi, Cindy Q; Young, Lawrence H; Daher, Edouard; DiBella, Edward V R; Liu, Yi-Hwa; Heller, Eliot N; Zoghbi, Sami; Wackers, Frans J Th; Soufer, Robert; Sinusas, Albert J
2002-03-01
Myocardial ischemia is associated with reduced free fatty acid (FFA) beta-oxidation and increased glucose utilization. This study evaluated the potential of dynamic SPECT imaging of a FFA analog, p-(123)I-iodophenylpentadecanoic acid (IPPA), for detection of ischemia and compares retention of IPPA with (18)F-FDG accumulation. In a canine model of regional low-flow ischemia (n = 9), serial IPPA SPECT images (2 min per image) were acquired over 52--90 min. In a subset of dogs (n = 6), (18)F-FDG was injected after completing SPECT imaging and allowed to accumulate for 40 min before killing the animals. Flow was assessed with radiolabeled microspheres. Myocardial metabolism was evaluated independently by selective coronary arterial and venous sampling. Serial IPPA SPECT images showed an initial defect in the ischemic region (0.70% plus minus 0.03% ischemic-to-nonischemic ratio), which normalized within 48 min because of the slower IPPA clearance from the ischemic region (t(1/2) = 54.2 plus minus 3.3 min) relative to the nonischemic region (t(1/2) = 36.7 plus minus 5.6 min) (P < 0.05). Delayed myocardial IPPA and (18)F-FDG activities were correlated (r = 0.70; n = 576 segments), and both were maximally increased in segments with a moderate flow reduction (IPPA, 151% of nonischemic; (18)F-FDG, 450% of nonischemic; P < 0.05). Serial SPECT imaging showed delayed myocardial clearance of IPPA in ischemic regions with moderate flow reduction, which lead to increased late myocardial retention of IPPA. Retention of IPPA correlated with (18)F-FDG accumulation, supporting the potential of IPPA as a noninvasive marker of ischemic myocardium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yaoyao, E-mail: xiaoqi_198863@126.com; Graduate School of Chinese Academy of Sciences, Beijing 100039; Wang, Xin
2015-04-15
Highlights: • We prepare Tm{sup 3+}-doped tellurite-zinc glasses with F{sup −} substitution. • Thermal stability becomes better with increasing F{sup −} in present glasses. • Tm{sup 3+} 1.8 μm radiative lifetime increases with F{sup −} concentration. • The origin of the increased lifetime has been discussed. - Abstract: The 1.8 μm emission properties of Tm{sup 3+}-doped zinc tellurite glasses modified by the substitution of ZnF{sub 2} are investigated in this paper. The thermal stability, Raman and phonon sideband spectra, transmission and absorption spectra, emission spectra and decay curves are discussed. It is found that substitution of fluoride ions into themore » zinc tellurite matrix produces dramatic increase in the emission lifetime of Tm{sup 3+} 1.8 μm emission. Absorption, Raman and phonon sideband spectra are used to estimate the local structure of Tm{sup 3+} ions. These analyses indicate structural change around Tm{sup 3+} ions caused by substitution of fluoride ions monitors the increased intrinsic radiative lifetimes. An increase in the measured radiative lifetimes of the Tm{sup 3+}:{sup 3}F{sub 4} → {sup 3}H{sub 6} transition is observed. The origin has been discussed and the reduction of OH{sup −} absorption, decrease of maximum phonon energy and phonon density are considered to be dominant in all of the nonradiative relaxations.« less
The value of FDG-PET in the diagnosis of thromboangiitis obliterans--a case series.
Hackl, Gerald; Milosavljevic, Robert; Belaj, Klara; Gary, Thomas; Rief, Peter; Hafner, Franz; Lipp, Rainer W; Brodmann, Marianne
2015-04-01
Thromboangiitis obliterans (TAO) is an inflammatory vascular disease affecting dominantly the vessels of the extremities and is etiologically strongly associated with tobacco consumption. Different imaging techniques are generally used to exclude potential differential diagnoses. We investigated the value of (18) F-flourodeoxyglucose positron emission tomography ([(18) F]FDG-PET) in the diagnosis of TAO. All consecutive patients with diagnosed TAO between Nov 2001 and Nov 2003 at our institution who underwent [(18) F]FDG-PET in the diagnostic workup were analyzed retrospectively. Whole-body scans were conducted after a fasting period of at least 6 h and blood glucose levels lower than 180 mg/dl. The primary endpoint was defined as significantly increased vascular FDG uptake. Tracer uptake was visually determined and, in accordance with strength, divided into grades 0 to 3. In total, ten patients were statistically evaluated. The median patient age at the date of the first [(18) F]FDG-PET was 41.5 years. Repetitive FDG-PET imaging was performed in seven out of ten patients (70 %). The endpoint was objectified in one of the initial examinations (10 %) and in another one out of seven follow-up scans (14.3 %). One positive [(18) F]FDG-PET was observed in the pelvic vessels and the other in the infrapopliteal arteries. Therefore, increased tracer uptake could be observed in two examinations on two different patients (both with grade 3 tracer uptake) out of 17 conducted [(18) F]FDG-PETs in total. The [(18) F]FDG-PET was not a suitable investigative procedure for the diagnosis of TAO in the present patient cohort.
High (18)F-FDG uptake in urinary calculi on PET/CT: An unrecognized non-malignant accumulation.
Fu, Zhanli; Li, Ziao; Huang, Jia; Zhang, Jin; Liu, Meng; Li, Qian; Li, Yi
2016-08-01
To assess the high (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in urinary calculi on positron-emission tomography/computed tomography (PET/CT). In this study, (18)F-FDG PET/CT examinations were retrospectively reviewed from November 2013 to February 2016 in a single center, and patients with high (18)F-FDG uptake in urinary calculi were identified. The following data were collected from each patient, including age, sex, primary disease, method to verify the urinary calculus, and imaging characteristics of the calculus. A total of 2758 PET/CT studies (2567 patients) were reviewed, and 52 patients with urinary calculi were identified, in which 6 (11.5%, 6/52) patients (5 males, 1 female, age 34-73 years, median age 60.5 years) demonstrated high (18)F-FDG uptake in the urinary calculi. Among the 6 patients, 3 patients had bladder calculi, 2 patients had renal calculi, and 1 patient had both bladder and renal calculi. The size of the urinary calculi varied from sandy to 19mm on CT. The maximal Hounsfield units of the calculi ranged from 153 to 1078. The SUVmax of the calculi on the routine PET/CT scan ranged from 11.7 to 143.0. Delayed PET/CT scans were performed on 4 patients, which showed the calculi SUVmax increasing in 2 patients, while decreasing in the other 2 patients. One patient with bladder calculus underwent a follow-up PET/CT, which showed enlargement of the calculus as well as the increased SUVmax. This study shows an uncommon high (18)F-FDG uptake in urinary calculi. Recognition of this non-malignant accumulation in urinary calculi is essential for correct interpretation of PET/CT findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Awde, Ali R; Boisgard, Raphaël; Thézé, Benoit; Dubois, Albertine; Zheng, Jinzi; Dollé, Frédéric; Jacobs, Andreas H; Tavitian, Bertrand; Winkeler, Alexandra
2013-12-01
On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.
Wu, Xianying; Zhou, Xue; Zhang, Shuxian; Zhang, Yan; Deng, Aifang; Han, Jie; Zhu, Lin; Kung, Hank F; Qiao, Jinping
2015-07-01
9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Karlberg, Anna; Berntsen, Erik Magnus; Johansen, Håkon; Myrthue, Mariane; Skjulsvik, Anne Jarstein; Reinertsen, Ingerid; Esmaeili, Morteza; Dai, Hong Yan; Xiao, Yiming; Rivaz, Hassan; Borghammer, Per; Solheim, Ole; Eikenes, Live
2017-12-01
Structural magnetic resonance imaging (MRI) and histopathologic tissue sampling are routinely performed as part of the diagnostic workup for patients with glioma. Because of the heterogeneous nature of gliomas, there is a risk of undergrading caused by histopathologic sampling errors. MRI has limitations in identifying tumor grade and type, detecting diffuse invasive growth, and separating recurrences from treatment induced changes. Positron emission tomography (PET) can provide quantitative information of cellular activity and metabolism, and may therefore complement MRI. In this report, we present the first patient with brain glioma examined with simultaneous PET/MRI using the amino acid tracer 18 F-fluciclovine ( 18 F-FACBC) for intraoperative image-guided surgery. A previously healthy 60-year old woman was admitted to the emergency care with speech difficulties and a mild left-sided hemiparesis. MRI revealed a tumor that was suggestive of glioma. Before surgery, the patient underwent a simultaneous PET/MRI examination. Fused PET/MRI, T1, FLAIR, and intraoperative three-dimensional ultrasound images were used to guide histopathologic tissue sampling and surgical resection. Navigated, image-guided histopathologic samples were compared with PET/MRI image data to assess the additional value of the PET acquisition. Histopathologic analysis showed anaplastic oligodendroglioma in the most malignant parts of the tumor, while several regions were World Health Organization (WHO) grade II. 18 F-Fluciclovine uptake was found in parts of the tumor where regional WHO grade, cell proliferation, and cell densities were highest. This finding suggests that PET/MRI with this tracer could be used to improve accuracy in histopathologic tissue sampling and grading, and possibly for guiding treatments targeting the most malignant part of extensive and eloquent gliomas. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui
2016-09-14
To compare (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent (18)F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ(2) test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma.
Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui
2016-01-01
AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma. PMID:27678362
Gritti, Fabrice; Guiochon, Georges
2013-07-05
The effective diffusion coefficients of five low molecular weigh compounds (naphthalene, uracil, uridine, adenosine, and cytosine) were measured at room temperature in a 4.6mm×100mm column packed with 3.5μm XBridge HILIC particles. The mobile phase was an acetonitrile-water mixture (92.5/7.5, v/v) containing 10mM ammonium acetate and 0.02% acetic acid. Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), accurate estimates of the intra-particle diffusivities in the HILIC particles were obtained as a function of the retention of these analytes. The HILIC diffusion coefficients were compared to those previously obtained for endcapped RPLC-C18 particles (5.0μm Gemini-C18). The experimental results confirm that adsorption sites are not localized in RPLC whereas they are so in the HILIC mode. In contrast to RPLC columns, HILIC columns provide longitudinal diffusion B/u terms that increase very little with increasing retention factors. This confirms the absence of surface diffusion in HILIC. The impact of intra-particle diffusivity on the column efficiency was projected in HILIC and RPLC on the basis of the measured intra-particle diffusivities and on the well established theory of band broadening in particulate columns. Accordingly, RPLC columns generate short-range eddy dispersion and solid-liquid mass transfer resistance Cu terms that increase less than do HILIC column with increasing retention factors. The HETP contribution caused by the trans-column structure heterogeneity is smaller in the HILIC than in the RPLC modes because the transverse excursion length is smaller in HILIC. Even though the overall column efficiencies are comparable in HILIC and RPLC, this study shows that the individual mass transfer phenomena are inherently different in the HILIC and the RPLC retention modes. Copyright © 2013 Elsevier B.V. All rights reserved.
Fluorinase: a tool for the synthesis of ¹⁸F-labeled sugars and nucleosides for PET.
Onega, Mayca; Winkler, Margit; O'Hagan, David
2009-08-01
There is an increasing interest in the preparation of (18)F-labeled radiopharmaceuticals with potential applications in PET for medicinal imaging. Appropriate synthetic methods require a quick and efficient route in which to incorporate the (18)F into a ligand, due to the relatively short half-life of the (18)F isotope. Enzymatic methods are rare in this area; however, the discovery of a fluorinating enzyme from Streptomyces cattleya (EC 2.5.1.63) has opened up the possibility of the enzymatic synthesis and formation of C-(18)F bonds from the [(18)F]fluoride ion. In this article, the development of enzymatic preparations of (18)F-labeled sugars and nucleosides as potential radiotracers using the fluorinase from S. cattleya for PET applications is reviewed. Enzymatic reactions are not traditional in PET synthesis, but this enzyme has some attractive features. The enzyme is available in an overexpressed form from Escherichia coli and it is relatively stable and can be easily purified and manipulated. Most notably, it utilizes [(18)F] fluoride, the form of the isotope normally generated by the cyclotron and usually in very high specific radioactivity. The disadvantage with the enzyme is that it is substrate specific; however, when the fluorinase is used in combination biotransformations with a second or third enzyme, then a range of radiolabeled nucleosides and ribose sugars can be prepared. The fluorinase enzyme has emerged as a curiosity from biosynthesis studies, but it now has some potential as a new catalyst for (18)F incorporation for PET syntheses. The focus is now on delivering a user-friendly catalyst to the PET synthesis community and establishing a clinical role for some of the (18)F-labeled molecules available using this technology.
Heinzmann, Kathrin; Nguyen, Quang-De; Honess, Davina Jean; Smith, Donna-Michelle; Stribbling, Stephen; Brickute, Diana; Barnes, Christopher; Griffiths, John Richard; Aboagye, Eric Ofori
2018-05-24
Imaging biomarkers must demonstrate their value in monitoring treatment. Two PET tracers, the caspase-3/7-specific isatin-5-sulfonamide 18 F-ICMT-11 and 3'-Deoxy-3'-[ 18 F]Fluorothymidine ( 18 F-FLT), were employed to detect early treatment-induced changes in tumor biology and whether any changes indicate response to cetuximab, administered as mono- or combination therapy with gemcitabine. Methods: Effects of single or repeated doses of the anti-Epidermal Growth Factor Receptor (EGFR) antibody cetuximab (10mg/kg on day 1 only or day 1 and 2) and/or a single dose of gemcitabine (125mg/kg; day 2) were investigated in mice bearing cetuximab-sensitive H1975 tumors (non-small cell lung cancer) by 18 F-ICMT-11 or 18 F-FLT-PET (day 3). Imaging was also performed in mice bearing cetuximab-insensitive HCT116 tumors (colorectal cancer) after two doses of cetuximab (day 1 and 2). For imaging/histology comparison, tumors were evaluated for proliferation (Ki67; thymidine kinase 1, TK1), cell death (cleaved caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)) and target engagement (EGFR expression) by immunohistochemistry, immunofluorescence and immunoblot, respectively. Tumor and plasma were analysed for thymidine and gemcitabine metabolites by liquid chromatography-mass spectrometry. Results: Retention of both tracers was sensitive to cetuximab in H1975 tumors. 18 F-ICMT-11 uptake and ex vivo cleaved caspase-3 staining notably increased in tumors treated with repeated doses of cetuximab- (75%) and combination-treatment (46%). While one dose of cetuximab was insufficient to induce apoptosis it did affect proliferation. Significant reduction in tumor 18 F-FLT uptake (44 to 50%; P < 0.001) induced by cetuximab mono- and combination-therapy were paralleled with a clear decrease in proliferation (%Ki67 decrease: 72 to 95%; P < 0.0001) and followed by marked tumor growth delay. TK1 expression and tumor thymidine concentrations were profoundly reduced. Neither imaging tracer depicted the gemcitabine-induced tumor changes. However, cleaved caspase-3 and Ki67 staining were not significantly different while TK1 expression and thymidine concentrations increased after gemcitabine-treatment. No cetuximab-induced modulation of the imaging tracers or other response markers was detected in the insensitive model HCT116. Conclusion: 18 F-ICMT-11 and 18 F-FLT are valuable tools to assess cetuximab-sensitivity depicting distinct and time-variant aspects of treatment response. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, J.; Yang, Z.Y.; Brown, T.
1996-07-19
We have developed (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-{sup 18}F-fluoropropyl)-2-methoxybenzamide ({sup 18}F-desmethoxyfallypride) as a fluorine-18 radiotracer with properties analogous to that of {sup 11}C-raclopride. In vitro experiments in rat brain homogenates showed an association rate constant of 2.1X10{sup 8} M{sup -1} min{sup -1} and a dissociation rate constant of 0.073 min{sup -1}. High striatal uptake (up to 0.08% injected dose/cc) of {sup 18}F-desmethoxyfallypride in rhesus monkeys was observed in PET experiments. The radiotracer cleared from the striata with a dissociation rate of 1.80X10{sup -2} min{sup -1}. Striatum to cerebellum ratios peaked at 3.0 in 30 min after which they decreased steadily. Intravenously administered haloperidol displacedmore » specifically bound {sup 18}F-desmethoxyfallypride with a k{sub off} of 0.058 min{sup -1}. Synaptic dopamine released by the treatment of the monkeys with a d-amphetamine increased the dissociation rate of {sup 18}F-desmethoxyfallypride to 0.83 min{sup -1} thus reducing specifically bound {sup 18}F-desmethoxyfallypride by 56% over a period of 42 mins compared to a reduction of only 20% in controls during this time period. The sensitivity of {sup 18}F-desmethoxyfallypride towards competition with dopamine should make this radiotracer useful in PET studies to evaluate in vivo pharmacological effects of various agents that alter levels of endogenous dopamine. 27 refs., 8 figs.« less
Effects of admixture gas on the production of (18)F radioisotope in plasma focus devices.
Talaei, Ahmad; Sadat Kiai, S M; Zaeem, A A
2010-12-01
In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of (18)F production through the (16)O((3)He, p)(18)F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of (18)F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq. Copyright 2010 Elsevier Ltd. All rights reserved.
Choi, Grace G; Han, Yuchi; Weston, Brian; Ciftci, Esra; Werner, Thomas J; Torigian, Drew; Salavati, Ali; Alavi, Abass
2015-01-01
The aim of this study was to evaluate fluorine-18 fluorodeoxyglucose (18F-FDG) uptake in the right ventricle (RV) of patients with chronic obstructive pulmonary disease (COPD) and to characterize the variability of 18F-FDG uptake in the RV at different time points following radiotracer administration using PET/computerized tomography (CT). Impaired RV systolic function, RV hypertrophy, and RV dilation are associated with increases in mean pulmonary arterial pressure in patients with COPD. Metabolic changes in the RV using 18F-FDG-PET images 2 and 3 h after tracer injection have not yet been investigated. Twenty-five patients with clinical suspicion of lung cancer underwent 18F-FDG-PET/CT imaging at 1, 2, and 3 h after tracer injection. Standardized uptake values (SUVs) and volumes of RV were recorded from transaxial sections to quantify the metabolic activity. The SUV of RV was higher in patients with COPD stages 1-3 as compared with that in patients with COPD stage 0. RV SUV was inversely correlated with FEV1/FVC pack-years of smoking at 1 h after 18F-FDG injection. In the majority of patients, 18F-FDG activity in RV decreased over time. There was no significant difference in the RV myocardial free wall and chamber volume on the basis of COPD status. The severity of lung obstruction and pack-years of smoking correlate with the level of 18F-FDG uptake in the RV myocardium, suggesting that there may be metabolic changes in the RV associated with lung obstruction that can be detected noninvasively using 18F-FDG-PET/CT. Multiple time-point images of the RV did not yield any additional value in this study.
Sachpekidis, Christos; Mai, Elias K; Goldschmidt, Hartmut; Hillengass, Jens; Hose, Dirk; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-06-01
The value of F-FDG PET in the diagnostic approach of multiple myeloma (MM) remains incompletely elicited. Little is known about the kinetics of F-FDG in the bone marrow and extramedullary sites in MM. This study aimed to evaluate quantitative data on kinetics and distribution patterns of F-FDG in MM patients with regard to pelvic bone marrow plasma cell infiltration. The study included 40 patients with primary MM. Dynamic PET/CT scanning of the lower lumbar spine and pelvis was performed after the administration of F-FDG. Whole-body PET/CT studies were performed. Sites of focal increased tracer uptake were considered as highly suggestive of myelomatous involvement after taking into account the patient history and CT findings. Bone marrow of the os ilium without pathologic tracer accumulation served as reference. The evaluation of dynamic PET/CT studies was based in addition to the conventional visual (qualitative) assessment, on semiquantitative (SUV) calculations, as well as on absolute quantitative estimations after application of a 2-tissue compartment model and a noncompartmental approach. F-FDG quantitative information and corresponding distribution patterns were correlated with pelvic bone marrow plasma cell infiltration. Fifty-two myelomatous lesions were detected in the pelvis. All parameters in suspected MM lesions ranged in significantly higher levels than in reference tissue (P < 0.01). Correlative analyses revealed that bone marrow plasma cell infiltration rate correlated significantly with SUVaverage, SUVmax, and the parameters K1, influx, and fractal dimension of F-FDG in reference bone marrow (P < 0.01). In addition, whole-body static PET/CT imaging demonstrated 4 patterns of tracer uptake; these are as follows: negative, focal, diffuse, and mixed (focal/diffuse) tracer uptake. Patients with a mixed pattern of radiotracer uptake had the highest mean plasma cell infiltration rate in their bone marrow, whereas those with negative PET/CT scans demonstrated the lowest bone marrow plasma cell infiltration. In total, 265 focal myeloma-indicative F-FDG-avid lesions were detected, 129 of which correlated with low-dose CT osteolytic findings. No significant correlation between the number of focal lesions detected in PET/CT and bone marrow infiltration was detected. The F-FDG kinetic parameters K1, influx, and fractal dimension as well as SUVaverage from reference tissue correlated significantly with bone marrow malignant plasma cell infiltration rate. Patients with negative PET/CT demonstrated the lowest bone marrow infiltration by malignant plasma cells, whereas those with a mixed pattern of tracer uptake had the highest infiltration.
Crystallization kinetics of the borax decahydrate
NASA Astrophysics Data System (ADS)
Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.
2007-03-01
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M
2018-05-10
Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18 F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Fowler, Amy M; Chan, Szeman Ruby; Sharp, Terry L; Fettig, Nicole M; Zhou, Dong; Dence, Carmen S; Carlson, Kathryn E; Jeyakumar, M; Katzenellenbogen, John A; Schreiber, Robert D; Welch, Michael J
2012-07-01
Estrogen receptor-α (ERα) and progesterone receptor (PR) are expressed in most human breast cancers and are important predictive factors for directing therapy. Because of de novo and acquired resistance to endocrine therapy, there remains a need to identify which ERα-positive (ERα(+))/PR-positive (PR(+)) tumors are most likely to respond. The purpose of this study was to use estrogen- and progestin-based radiopharmaceuticals to image ERα and PR in mouse mammary tumors at baseline and after hormonal therapy and to determine whether changes in these imaging biomarkers can serve as an early predictive indicator of therapeutic response. Mammary adenocarcinomas that spontaneously develop in aged female mice deficient in signal transducer and activator of transcription-1 (STAT1) were used. Imaging of ERα and PR in primary tumor-bearing mice and mice implanted with mammary cell lines (SSM1, SSM2, and SSM3) derived from primary STAT1-deficient (STAT1(-/-)) tumors was performed. Hormonal treatments consisted of estradiol, an ER agonist; letrozole, an aromatase inhibitor; and fulvestrant, a pure ER antagonist. Small-animal PET/CT was performed using (18)F-fluoroestradiol ((18)F-FES) for ER, (18)F-fluoro furanyl norprogesterone ((18)F-FFNP) for PR, and (18)F-FDG for glucose uptake. Tracer uptake in the tumor was quantified and compared with receptor concentration determined by in vitro assays of resected tumors. Primary STAT1(-/-) mammary tumors and implanted SSM2 and SSM3 tumors showed high (18)F-FES and (18)F-FFNP uptake and were confirmed to be ERα(+)/PR(+). Classic estrogen-induced regulation of the progesterone receptor gene was demonstrated by increased (18)F-FFNP uptake of estradiol-treated SSM3 tumors. Treatment with fulvestrant decreased (18)F-FFNP, (18)F-FES, and (18)F-FDG uptake and inhibited growth of SSM3 tumors but decreased only (18)F-FES uptake in SSM2 tumors, with no effect on growth, despite both tumors being ERα(+)/PR(+). Decreased (18)F-FFNP uptake by SSM3 tumors occurred early after initiation of treatment, before measurable tumor growth inhibition. Using small-animal PET, a profile was identified that distinguished fulvestrant-sensitive from fulvestrant-resistant ERα(+)/PR(+) tumors before changes in tumor size. This work demonstrates that imaging baseline tumoral (18)F-FES uptake and initial changes in (18)F-FFNP uptake in a noninvasive manner is a potentially useful strategy to identify responders and nonresponders to endocrine therapy at an early stage.
Wang, Feng; Fang, Wei; Zhang, Ming-Rong; Zhao, Ming; Liu, Biao; Wang, Zizheng; Hua, Zichun; Yang, Min; Kumata, Katsushi; Hatori, Akiko; Yamasaki, Tomoteru; Yanamoto, Kazuhiko; Suzuki, Kazutoshi
2013-01-01
The C2A domain of synaptotagmin I can target apoptotic cells by binding to exposed anionic phospholipids. The goal of this study was to synthesize and develop 18F-labeled C2A-gluta-thione-S-transferase (GST) as a molecular imaging probe for the detection of apoptosis and to assess the response of paclitaxel chemotherapy in VX2 rabbit lung cancer. Methods 18F-C2A-GST was prepared by labeling C2A-GST with N-succinimidyl 4-18F-fluorobenzoate (18F-SFB). 18F-C2A-GST was confirmed by high-performance liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The binding of 18F-C2A-GST toward apoptosis was validated in vitro using camptothecin-induced Jurkat cells. Biodistribution of 18F-C2A-GST was determined in mice by a dissection method and small-animal PET. Single-dose paclitaxel was used to induce apoptosis in rabbits bearing VX2 tumors (n = 6), and 2 VX2 rabbits without treatment served as control. 18F-C2A-GST PET was performed before and at 72 h after therapy, and 18F-FDG PET/CT was also performed before treatment. To confirm the presence of apoptosis, tumor tissue was analyzed and activated caspase-3 was measured. Results 18F-C2A-GST was obtained with more than 95% radiochemical purity and was stable for 4 h after formulation. 18F-C2A-GST bound apoptotic cells specifically. Biodistribution in mice showed that 18F-C2A-GST mainly excreted from the kidneys and rapidly cleared from blood and nonspecific organs. High focal uptake of 18F-C2A-GST in the tumor area was determined after therapy, whereas no significant uptake before therapy was found in the tumor with 18F-FDG–avid foci. The maximum standardized uptake value after therapy was 0.47 ± 0.28, significantly higher than that in the control (0.009 ± 0.001; P < 0.001). The apoptotic index was 79.81% ± 8.73% in the therapy group, significantly higher than that in the control (5.03% ± 0.81%; P < 0.001). Activated caspase-3 after paclitaxel treatment increased to 69.55% ± 16.27% and was significantly higher than that in the control (12.26% ± 5.39%; P < 0.001). Conclusion 18F-C2A-GST was easily synthesized by conjugation with 18F-SFB and manifested a favorable biodistribution. Our results demonstrated the feasibility of 18F-C2A-GST for the early detection of apoptosis after chemotherapy in a VX2 lung cancer model that could imitate the human lung cancer initiation, development, and progress. PMID:21421722
Nedelska, Zuzana; Schwarz, Christopher G.; Boeve, Bradley F.; Lowe, Val; Reid, Robert I.; Przybelski, Scott A.; Lesnick, Timothy G.; Gunter, Jeffrey L.; Senjem, Matthew L.; Ferman, Tanis J.; Smith, Glenn E.; Geda, Yonas E.; Knopman, David S.; Petersen, Ronald C.; Jack, Clifford R.; Kantarci, Kejal
2015-01-01
Many patients with dementia with Lewy bodies have overlapping Alzheimer's disease (AD)–related pathology, which may contribute to white matter (WM) diffusivity alterations on diffusion tensor imaging (DTI). Consecutive patients with DLB (n=30), age and sex matched AD patients (n=30), and cognitively normal controls (CN; n=60) were recruited. All subjects underwent DTI, 18F 2-fluoro-deoxy-d-glucose (FDG) and 11C Pittsburgh compound B (PiB) PET scans. DLB patients had reduced fractional anisotropy (FA) in the parieto-occipital WM but not elsewhere compared to CN, and elevated FA in parahippocampal WM compared to AD patients, which persisted after controlling for Aβ load in DLB. The pattern of WM FA alterations on DTI was consistent with the more diffuse posterior parietal and occipital glucose hypometabolism of FDG PET in the cortex. DLB is characterized by a loss of parieto-occipital WM integrity, independent of concomitant AD-related Aβ load. Cortical glucose hypometabolism accompanies WM FA alterations with a concordant pattern of gray and white matter involvement in the parieto-occipital lobes in DLB. PMID:25863527
Mazaheri, Yousef; Hötker, Andreas M; Shukla-Dave, Amita; Akin, Oguz; Hricak, Hedvig
2018-09-01
To determine whether water diffusion and the perfusion fraction coefficients in prostate peripheral zone (PZ) and prostate cancer (PCa) are affected by intravenous contrast injection and explore the potential mechanism behind previously reported differences between pre- and post-contrast ADC values. Our institutional review board waived informed consent for this HIPAA-compliant, retrospective study, which included 32 patients (median age, 63 years; range, 47-77 years) with biopsy-proven, untreated PCa who underwent 3-Tesla MRI, including DW-MRI at b-values 0, 400, 700, 1000 s/mm 2 before and after gadolinium injection. For regions of interest (ROIs) in presumed benign PZ and PZ PCa, apparent diffusion coefficient (ADC), perfusion fraction f, and diffusion coefficient D were estimated voxel-wise, and signal-to-noise ratio (SNR) and contrast-to-noise (CNR) were estimated. Pre- and post-contrast measurements were compared by Wilcoxon signed-rank test; P < 0.05 was considered significant. In PZ, f (P = 0.002) was significantly higher on post-contrast imaging than on pre-contrast imaging, but ADC and D values did not change significantly (P = 0.562 and 0.295 respectively). In PCa, all parameters differed significantly between post-contrast and pre-contrast imaging (P < 0.0001 for ADC, P = 0.0084 for D, and P = 0.029 for f). On post-contrast imaging, SNR was not significantly different in PZ (P = 0.260) but was significantly lower in PCa (P < 0.0001); CNR did not change significantly (P = 0.059). After contrast injection, ADC and D declined significantly in PCa only, while f increased significantly in both PCa and PZ. Pre- and post-contrast diffusion parameters cannot be used interchangeably for diagnostic purposes that require quantitative diffusion estimates. Copyright © 2018. Published by Elsevier Inc.
Paraneoplastic syndromes: detection of malignant tumors using [(18)F]FDG-PET.
Berner, U; Menzel, C; Rinne, D; Kriener, S; Hamscho, N; Döbert, N; Diehl, M; Kaufmann, R; Grünwald, F
2003-06-01
Paraneoplastic syndromes (PS) comprise a variety of clinical symptoms and diseases associated with underlying malignancy. Differentiation towards benign autoimmune diseases is necessary due to different therapeutic options. This diagnostic challenge includes cost- and time-consuming methods and is not successful in many cases. The aim of this study was the evaluation of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) for detecting or ruling out malignancy in these patients. In this retrospective work-up a total of 30 patients with suspected PS (m:f = 17:13, mean age 55, range 22-76 years) were examined with [(18)F]FDG-PET between 1996 and 2001. Diagnoses were erythrodermia, cerebellar degeneration, dermatomyositis, polyneuropathia and others. PET scans were compared to histopathological (n=14), radiological and follow up data (mean follow up 3.6 years, range 1-6 years). In 7 out of 30 patients (23%) an underlying malignancy was detected. Six out of 7 malignant neoplasms showed a distinctly increased glucose consumption. One benign neoplasm caused increased tracer uptake, another PET positive patient refused biopsy and showed no growth of a malignant tumour during clinical follow up of 28 months. The remaining 21 patients without suspicious glucose consumption did not demonstrate a malignancy in other diagnostic modalities or during subsequent clinical follow-up. [(18)F]FDG-PET seems to be a useful tool in the diagnostic work-up of patients with suspected paraneoplastic syndrome.
Ying, M L; Xiao, W W; Xu, S L; Shu, J E; Pan, J F; Fu, J F; Lu, J H; Pan, Y H; Jiang, Y
2016-11-20
Objective: To investigate the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in the differential diagnosis and blood perfusion evaluation of benign and malignant hepatic lesions. Methods: A retrospective analysis was performed for 86 patients (96 lesions) with pathologically or clinically confirmed hepatic lesions or hepatic lesions diagnosed based on follow-up results, among whom 48 had malignant lesions (53 lesions) and 38 had benign lesions (43 lesions). The patients underwent conventional magnetic resonance (MR) plain scan, contrast-enhanced scan, and diffusion-weighted imaging (DWI) with different b values (b = 0, 50, 100, 150, 200, 400, 600, 800, 1 000, and 1 200 s/mm 2 ) to determine the parameters of the double exponential model for intravoxel incoherent motion (IVIM): fast diffusion coefficient Dfast, slow diffusion coefficient Dslow, and percentage of fast-diffusion constituent F value. The patients were divided into groups according to the blood supply to lesions on conventional MR plain scan and contrast-enhanced scan, and there were 47 lesions in abundant blood supply group and 49 in poor blood supply group. The data for analysis were Dfast, Dslow, and F values of benign/malignant lesion groups and abundant/poor blood supply groups. The independent samples t-test was used for statistical analysis; the independent samples non-parametric test Mann-Whitney U test was used for the comparison of F value; the receiver operating characteristic (ROC) curve was used to evaluate the value of above parameters in the differentiation of benign and malignant lesions and blood supply evaluation. Results: Compared with the malignant lesion group, the benign lesion group had significantly higher Dslow, and F values ( P < 0.001 or P = 0.001) and a higher Dfast value ( P = 0.053). Compared with the poor blood supply group, the abundant blood supply group had significantly higher Dfast and F values ( P < 0.001 or P = 0.001) and a higher Dslow value ( P = 0.185). According to the ROC curve, the cut-off values of Dslow, Dfast, and F values in the diagnosis of benign/malignant hepatic lesions and evaluation of abundant/poor blood supply were 1.18×10 -3 mm 2 /s, 27.20×10 -3 mm 2 /s, 20.25%, 1.17×10 -3 mm 2 /s, 20.30×10 -3 mm 2 /s, and 17.80%, respectively, with sensitivities, specificities, accuracy, and areas under the ROC curve of 90.69%/92.45%/91.66%/0.938, 46.51%/73.58%/61.45%/0.589, 74.41%/50.94%/62.50%/0.653, 59.57%/57.14%/58.33%/0.559, 55.32%/63.26%/59.37%/0.618, and 93.61%/89.79%/90.62%/0.961, respectively. Conclusion: The parameter of the double exponential model for IVIM, Dslow value, has a certain value in the differential diagnosis of benign and malignant hepatic lesions, and F value can show blood perfusion in benign and malignant hepatic lesions without the need for contrast-enhanced scan, which provides a reference for the qualitative diagnosis of liver tumor.
Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.
2015-01-01
18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong
2018-06-01
The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Suchorska, Bogdana; Giese, Armin; Biczok, Annamaria; Unterrainer, Marcus; Weller, Michael; Drexler, Mark; Bartenstein, Peter; Schüller, Ulrich; Tonn, Jörg-Christian; Albert, Nathalie L
2018-01-22
Stratification of glioma according to isocitrate dehydrogenase 1/2 (IDH1/2) mutation and 1p/19q codeletion status has gained major importance in the new World Health Organization (WHO) classification. Parameters derived from uptake dynamics of 18F-fluoro-ethyl-tyrosine PET (18F-FET-PET) such as minimal time-to-peak (TTPmin) allow discrimination between different prognostic glioma subgroups, too. The present study is aimed at exploring whether TTPmin analysis provides prognostic information beyond the WHO classification. Three hundred patients with newly diagnosed WHO 2007 grades II-IV gliomas with 18F-FET-PET imaging at diagnosis were grouped into 4 subgroups (IDH1/2 mut-1p/19q codel; IDH1/2 mut-1p/19q non-codel; IDH1/2 wildtype WHO grade II and III tumors; and glioblastoma). Clinical and imaging factors such as age, Karnofsky performance score, treatment, TTPmin, and maximal tumor-to-brain ratio (TBRmax) were analyzed with regard to progression-free and overall survival (PFS and OS) via univariate and multivariate regression analysis. PFS and OS were longest in the IDH1/2 mut-1p/19q codel subgroup, followed by IDH1/2 mut-1p/19q non-codel, IDH1/2 wildtype, and GBM (P < 0.001). Further, outcome stratified by TTPmin with a cutoff of 17.5 minutes revealed significantly longer PFS and OS in patients with TTPmin >17.5 minutes (P < 0.001 for PFS and OS). Lower TBRmax values or the absence of 18F-FET uptake was also associated with favorable outcome in the entire group. In the subgroup analyses, longer median TTPmin was associated with improved outcome specifically in the IDH1/2 mut-1p/19q non-codel group. 18F-FET-PET-derived dynamic analysis defines prognostically distinct subgroups of IDH1/2 mutant-1p/19q non-codel gliomas which cannot be distinguished as yet by molecular marker analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.
Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2014-11-12
Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.
NASA Astrophysics Data System (ADS)
Kawabata, Hiroshi; Iyama, Tetsuji; Tachikawa, Hiroto
2008-01-01
Hybrid density functional theory (DFT) calculations have been carried out for the lithium adsorbed on a fluorinated graphene surface (F-graphene, C96F24) to elucidate the effect of fluorination of amorphous carbon on the diffusion mechanism of lithium ion. Also, direct molecular orbital-molecular dynamics (MO-MD) calculation [H. Tachikawa and A. Shimizu: J. Phys. Chem. B 109 (2005) 13255] was applied to diffusion processes of the Li+ ion on F-graphene. The B3LYP/LANL2MB calculation showed that the Li+ ion is most stabilized around central position of F-graphene, and the energy was gradually instabilized for the edge region. The direct MO-MD calculations showed that the Li+ ion diffuses on the bulk surface region of F-graphite at 300 K. The nature of the interaction between Li+ and F-graphene was discussed on the basis of theoretical results.
Grunewald, Catrin; Sauberer, Michael; Filip, Thomas; Wanek, Thomas; Stanek, Johann; Mairinger, Severin; Rollet, Sofia; Kudejova, Petra; Langer, Oliver; Schütz, Christian; Blaickner, Matthias; Kuntner, Claudia
2017-01-01
In recent years extra-corporal application of boron neutron capture therapy (BNCT) was evaluated for liver primary tumors or liver metastases. A prerequisite for such a high-risk procedure is proof of preferential delivery and high uptake of a 10 B-pharmaceutical in liver malignancies. In this work we evaluated in a preclinical tumor model if [ 18 F]FBPA tissue distribution measured with PET is able to predict the tissue distribution of [ 10 B]L-BPA. Tumor bearing mice (hepatocellular carcinoma cell line, HuH-7) were either subject of a [ 18 F]FBPA-PET scan with subsequent measurement of radioactivity content in extracted organs using a gamma counter or injected with [ 10 B]L-BPA with tissue samples analyzed by prompt gamma activation analysis (PGAA) or quantitative neutron capture radiography (QNCR). The impact of L-tyrosine, L-DOPA and L-BPA preloading on the tissue distribution of [ 18 F]FBPA and [ 10 B]L-BPA was evaluated and the pharmacokinetics of [ 18 F]FBPA investigated by compartment modeling. We found a significant correlation between [ 18 F]FBPA and [ 10 B]L-BPA uptake in tumors and various organs as well as high accumulation levels in pancreas and kidneys as reported in previous studies. Tumor-to-liver ratios of [ 18 F]FBPA ranged from 1.2 to 1.5. Preloading did not increase the uptake of [ 18 F]FBPA or [ 10 B]L-BPA in any organ and compartment modeling showed no statistically significant differences in [ 18 F]FBPA tumor kinetics. [ 18 F]FBPA-PET predicts [ 10 B]L-BPA concentration after amino acid preloading in HuH-7 hepatocellular carcinoma models. Preloading had no effect on tumor uptake of [ 18 F]FBPA. Despite differences in chemical structure and administered dose [ 18 F]FBPA and [ 10 B]L-BPA demonstrate an equivalent biodistribution in a preclinical tumor model. IMPLICATIONS FOR PATIENT CARE: [ 18 F]FBPA-PET is suitable for treatment planning and dose calculations in BNCT applications for liver malignancies. However, alternative tracers with more favorable tumor-to-liver ratios should be investigated. Copyright © 2016 Elsevier Inc. All rights reserved.
Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri
2017-01-01
Abstract Background Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose (l8F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. Patients and methods We examined the SUVmax value of lesions on control or restaging 18F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Results Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Conclusions Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18F-FDG-PET/CT. PMID:29333115
Ince, Semra; Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri
2017-12-01
Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose ( l8 F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18 F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. We examined the SUVmax value of lesions on control or restaging 18 F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18 F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18 F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18 F-FDG-PET/CT.
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-06-01
[ 18 F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [ 18 F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [ 18 F]fluorocholine PET/CT before tumor resection. Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [ 18 F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [ 18 F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [ 18 F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [ 18 F]fluorocholine uptake. Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [ 18 F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors.
Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano
2016-01-01
The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-01-01
BACKGROUND [18F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [18F]fluorocholine PET/CT to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [18F]fluorocholine PET/CT before tumor resection. METHODS Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80% of total profile variation. RESULTS Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly-saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly-saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [18F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [18F]fluorocholine uptake ratio was 93%, while sensitivity for HCC based on increased tumor [18F]fluorocholine uptake was 84%, with lower levels of highly-saturated phosphatidylcholines in tumors showing low [18F]fluorocholine uptake. CONCLUSION Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de-novo fatty acid metabolism for phospholipid membrane synthesis. While [18F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors. PMID:27787742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, Georg, E-mail: georg.schramm@kuleuven.be; Maus, Jens; Hofheinz, Frank
Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data setsmore » acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone segmentation worked well in the pelvis and spine. However, it showed artifacts in the skull and in the extremities. The analysis of the 20 [{sup 18}F]NaF PET/MRI examinations revealed relative SUV{sub max} differences between PET{sub nobone} and PET{sub bone} of (−8.8% ± 2.7%, p = 0.01) and (−8.1% ± 1.9%, p = 2.4 × 10{sup −8}) in pelvic and spinal lesions, respectively. A maximum SUV{sub max} underestimation of −13.7% was found in lesion in the third cervical spine. The averaged SUV{sub mean} differences in volumes of interests in lung, liver, and bladder were below 3%. The average SUV{sub max} differences in pelvic and spinal lesions increased from −9% to −18% and −8% to −17%, respectively, when increasing the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}. Conclusions: The developed automatic [{sup 18}F]NaF PET-based bone segmentation allows to include higher bone attenuation in whole-body MRAC and thus improves quantification accuracy for pelvic and spinal lesions in [{sup 18}F]NaF PET/MRI examinations. In nonbone structures (e.g., lung, liver, and bladder), MRAC{sub nobone} yields clinically acceptable accuracy.« less
Kagna, Olga; Kurash, Marina; Ghanem-Zoubi, Nesrin; Keidar, Zohar; Israel, Ora
2017-11-01
18 F-FDG PET/CT plays a significant role in the assessment of various infectious processes. Patients with suspected or known sites of infection are often referred for 18 F-FDG imaging while already receiving antibiotic treatment. The current study assessed whether antibiotic therapy affected the detectability rate of infectious processes by 18 F-FDG PET/CT. Methods: A 5-y retrospective study of all adult patients who underwent 18 F-FDG PET/CT in search of a focal source of infection was performed. The presence, duration, and appropriateness of antibiotic treatment before 18 F-FDG imaging were recorded. Diagnosis of an infectious process was based on microbiologic or pathologic data as well as on clinical and radiologic follow-up. Results: Two hundred seventeen patients underwent 243 PET/CT studies in search of a focal source of infection and were included in the study. Sixty-seven studies were excluded from further analysis because of a final noninfectious etiology or lack of further follow-up or details regarding the antibiotic treatment. The final study population included 176 18 F-FDG PET/CT studies in 153 patients (107 men, 46 women; age range, 18-86 y). One hundred nineteen studies (68%) were performed in patients receiving antibiotic therapy for a range of 1-73 d. A diagnosis of infection was made in 107 true-positive cases (61%), including 63 studies (59%) in patients receiving appropriate antibiotic therapy started before the performance of the 18 F-FDG PET/CT study. There were 52 true-negative (29%) and 17 false-positive (10%) 18 F-FDG PET/CT studies. No false-negative results were found. Conclusion: 18 F-FDG PET/CT correctly identified foci of increased uptake compatible with infection in most patients, including all patients receiving appropriate antimicrobial therapy, with no false-negative cases. On the basis of the current study results, the administration of antibiotics appears to have no clinically significant impact on the diagnostic accuracy of 18 F-FDG PET/CT performed for evaluation of known or suspected infectious processes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature?
Taïeb, David; Sebag, Frederic; Barlier, Anne; Tessonnier, Laurent; Palazzo, Fausto F; Morange, Isabelle; Niccoli-Sire, Patricia; Fakhry, Nicolas; De Micco, Catherine; Cammilleri, Serge; Enjalbert, Alain; Henry, Jean-François; Mundler, Olivier
2009-05-01
Our objective was to evaluate (18)F-FDG PET uptake in patients with nonmetastatic and metastatic chromaffin-derived tumors. Twenty-eight consecutive unrelated patients with chromaffin tumors, including 9 patients with genetically determined disease, were studied. A combination of preoperative imaging work-up, surgical findings, and pathologic analyses was used to classify the patients into 2 groups: those with nonmetastatic disease (presumed benign, n = 18) and those with metastatic tumors (n = 10). (18)F-FDG PET was performed in all cases. Visual and quantitative analyses were individually graded for each tumor. Somatic mutations of the succinate dehydrogenase subunits B and D and Von-Hippel Lindau genes were also evaluated in 6 benign sporadic tumor samples. All but 2 patients showed significantly increased (18)F-FDG uptake on visual analysis. The maximum standardized uptake value (SUVmax) ranged from 1.9 to 42 (mean +/- SD, 8.2 +/- 9.7; median, 4.6) in nonmetastatic tumors and 2.3 to 29.3 (mean +/- SD, 9.7 +/- 8.4; median, 7.4) in metastatic tumors. No statistical difference was observed between the groups (P = 0.44), but succinate dehydrogenase-related tumors were notable in being the most (18)F-FDG-avid tumors (SUVmax, 42, 29.3, 21, 17, and 5.3). Succinate dehydrogenase and Von-Hippel Lindau-related tumors had a significantly higher SUVmax than did neurofibromatosis type 1 and multiple endocrine neoplasia type 2A syndrome-related tumors (P = 0.02). (18)F-FDG PET was superior to (131)I-metaiodobenzylguanidine in all metastatic patients but one. By contrast, (18)F-FDG PET underestimated the extent of the disease, compared with 6-(18)F-fluorodopa PET, in 5 patients with metastatic pheochromocytoma. However, succinate dehydrogenase mutations (germline and somatic) and functional dedifferentiation do not adequately explain (18)F-FDG uptake since most tumors were highly avid for (18)F-FDG. (18)F-FDG PET positivity is almost a constant feature of pheochromocytomas and paragangliomas. It may be considered a molecular signature of such tumors, although which aspect of the plethora of molecular changes associated with dedifferentiation, germline genetic defects, or the adaptive response to hypoxia is responsible for this characteristic requires further elucidation.
18F-FDG PET/CT Can Predict Development of Thyroiditis due to Immunotherapy for Lung Cancer.
Eshghi, Naghmehossadat; Garland, Linda; Nia, Emily Saghar; Betancourt, Robert; Krupinski, Elizabeth; Kuo, Phillip H
2018-03-29
Objective: For patients undergoing immunotherapy with nivolumab for lung cancer, determine if increased 18 F-FDG uptake in the thyroid gland predicts development of thyroiditis with subsequent hypothyroidism. Secondarily, determine if 18 F-FDG uptake in the thyroid gland correlates with administered cycles of nivolumab. Materials and Methods: Retrospective chart review over 2 years found 18 lung cancer patients treated with nivolumab and with 18 F-FDG PET/CT scans pre- and during therapy. Standardized uptake value (SUV) mean and maximum and total lesion glycolysis (TLG) of the thyroid gland were measured. SUVs were also measured for the pituitary gland, liver and spleen. Patients obtained monthly thyroid testing. PET/CT parameters were analyzed by unpaired t-test for differences between two groups (patients who developed hypothyroidism and those who did not). Correlation between development of thyroiditis and number of cycles of nivolumab received was also tested. Results: Six of eighteen patients developed hypothyroidism. T-test comparing the two groups (patients who developed hypothyroidism and those who did not) demonstrated significant differences in SUVmean ( P = 0.04), SUV max ( P = 0.04) and TLG ( P = 0.02) of the thyroid gland. Two of four patients who developed thyroiditis and had increased 18 F-FDG uptake in the thyroid gland, had normal TSH at time of follow-up 18 F-FDG PET/CT. Patients who developed thyroiditis with subsequent hypothyroidism stayed longer on therapy (10.6 cycles) compared to patients without thyroiditis (7.6 cycles), but the trend was not statistically significant. No significant difference in PET/CT parameters was observed for pituitary gland, liver or spleen. Conclusion: 18 F-FDG PET/CT can predict the development of thyroiditis with subsequent hypothyroidism before laboratory testing. Further study is required to confirm the positive trend between thyroiditis and duration of therapy. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.
1996-02-01
Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.
Kovšca Janjatović, A; Lacković, G; Božić, F; Spoljarić, D; Popović, M; Valpotić, H; Vijtiuk, N; Pavičić, Z; Valpotić, I
2009-12-29
Colidiarrhea and colienterotoxemia caused by F4(+) and/or F18(+) enterotoxigenic E. coli (ETEC) strains are the most prevalent infections of suckling and weaned pigs. Here we tested the immunogenicity and protective effectiveness of attenuated F18ac(+) non-ETEC vaccine candidate strain against challenge infection with F4ac(+) ETEC strain by quantitative phenotypic analysis of small intestinal leukocyte subsets in weaned pigs.We also evaluated levamisole as an immune response modifier (IRM) and its adjuvanticity when given in the combination with the experimental vaccine. The pigs were parenterally immunized with either levamisole (at days -2, -1 and 0) or with levamisole and perorally given F18ac(+) non-ETEC strain (at day 0), and challenged with F4ac(+) ETEC strain 7 days later.At day 13 the pigs were euthanatized and sampled for immunohistological/histomorphometrical analyses. Lymphoid CD3(+), CD45RA(+), CD45RC(+), CD21(+), IgA(+) and myeloid SWC3(+) cell subsets were identified in jejunal and ileal epithelium, lamina propria and Peyer's patches using the avidin-biotin complex method, and their numbers were determined by computer-assisted histomorphometry. Quantitative immunophenotypic analyses showed that levamisole treated pigs had highly increased numbers of jejunal CD3(+), CD45RC(+) and SWC3(+) cells (p<0.05) as compared to those recorded in nontreated control pigs.In the ileum of these pigs we have recorded that only CD21(+) cells were significantly increased (p<0.01). The pigs that were treated with levamisole adjuvanted experimental vaccine had significantly increased numbers of all tested cell subsets in both segments of the small intestine. It was concluded that levamisole adjuvanted F18ac(+) non-ETEC vaccine was a requirement for the elicitation of protective gut immunity in this model; nonspecific immunization with levamisole was less effective, but confirmed its potential as an IRM.
Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K
2017-07-01
18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, H.R.
Bohm diffusion has been found to be approximately valid for many plasmas in strong magnetic fields. Assuming Bohm diffusion describes electron diffusion directly (H. R. Kaufman, AIAA J. {bold 23}, 78 (1985)), with an equal ion loss possible from the ambipolar field that is generated (F. F. Chen, {ital Introduction} {ital to} {ital Plasma} {ital Physics} (Plenum, New York, 1974), p. 169), an order-of-magnitude analysis can show why such electron diffusion should be expected.
Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert
2018-01-30
The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUV max distributions at both pre and post treatment. This study included 57 patients that underwent 18 F-fluorodeoxyglucose ( 18 F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18 F-Fluorothymidine ( 18 F-FLT) PET scans at our institution. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18 F-FDG SUV distributions deviated significantly from normality (P > 0.10). Similar results were found for 18 F-FLT PET SUV distributions (P > 0.10). For both 18 F-FDG and 18 F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18 F-FDG and 18 F-FLT where a log transformation was not optimal for providing normal SUV distributions. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when the log transformation is insufficient. The log transformation is not always the appropriate transformation for producing normally distributed PET SUVs.
Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N
2016-03-31
Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific brain regions that occur in preclinical AD.
NASA Astrophysics Data System (ADS)
Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert
2018-02-01
The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. Methods. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUVmax distributions at both pre and post treatment. This study included 57 patients that underwent 18F-fluorodeoxyglucose (18F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18F-Fluorothymidine (18F-FLT) PET scans at our institution. Results. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18F-FDG SUV distributions deviated significantly from normality (P > 0.10). Similar results were found for 18F-FLT PET SUV distributions (P > 0.10). For both 18F-FDG and 18F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18F-FDG and 18F-FLT where a log transformation was not optimal for providing normal SUV distributions. Conclusion. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when the log transformation is insufficient. The log transformation is not always the appropriate transformation for producing normally distributed PET SUVs.
Performance of high-area-ratio annular dump diffuser using suction-stabilized-vortex flow control
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Smith, J. M.
1977-01-01
A short annular dump diffuser having a geometry conductive to formation of suction stabilized toroidal vortices in the region of abrupt area change was tested. The overall diffuser area ratio was 4.0 and the length to inlet height ratio was 2.0. Performance data were obtained at near ambient temperature and pressure for inlet Mach numbers of 0.18 and 0.30 with suction rates ranging from 0 to 18 percent of total inlet mass flowrate. Results show that the exit velocity profile could be readily biased toward either wall by adjustment of inner and outer wall suction rates. Symmetric exit velocity profiles were inherently unstable with a tendency to revert to a hub or tip bias. Diffuser effectiveness was increased from about 38 percent without suction to over 85 percent at a total suction rate of 10 to 12 percent. At the same time diffuser total pressure loss was reduced from 3.1 percent to 1.1 percent at an inlet Mach number of 0.3.
Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A
2013-01-01
Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Rayhan, Rakib U; Stevens, Benson W; Timbol, Christian R; Adewuyi, Oluwatoyin; Walitt, Brian; VanMeter, John W; Baraniuk, James N
2013-01-01
Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness.
Lin, Jolinta; Kligerman, Seth; Goel, Rakhi; Sajedi, Payam; Suntharalingam, Mohan
2015-01-01
Molecular imaging techniques are increasingly being used in addition to standard imaging methods such as endoscopic ultrasound (EUS) and computed tomography (CT) for many cancers including those of the esophagus. In this review, we will discuss the utility of the most widely used molecular imaging technique, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). 18F-FDG PET has a variety of potential applications ranging from improving staging accuracy at the time of initial diagnosis to assisting in radiation target volume delineation. Furthermore, 18F-FDG PET can be used to evaluate treatment response after completion of neoadjuvant therapy or potentially during neoadjuvant therapy. Finally, we will also discuss other novel molecular imaging techniques that have potential to further improve cancer care. PMID:25642333
Methods to Increase the Metabolic Stability of (18)F-Radiotracers.
Kuchar, Manuela; Mamat, Constantin
2015-09-03
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of (18)F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [(18)F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Structural Investigations of Fibers and Films of Poly(p-phenylene benzobisthiazole). Volume 1
1982-05-01
differential scanning calorimetry, is unrelated to the diffuse scattered intensity [45]. Cellulose acetate which is known to be noncrystalline exhibits a high...Weidinger [45] found the diffuse scattered intensity increased with decreasing density and therefore, increasing void fraction, in air swollen cellulose ... Cellulose , and Poly(y-Benzyl-L-Glutamate)." J. Polym. Sci., Polym. Phys. Ed., 18, 663-682 (1980). 39. C.H. Kao and J.M. Ottino, personal communication
NASA Astrophysics Data System (ADS)
Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.
2006-12-01
Volcanic ash soils (Andisols) have a unique dual porosity structure that results in good drainage and high soil- water retention. Despite of the complicated and highly developed soil structure, recent studies have reported a simple, highly linear relation between the soil-gas diffusion coefficient, Dp, and the soil-air content, ɛ, for several Japanese Andisols. In this study, we explain the linear Dp(ɛ) behavior from the effects of the inter- and intra-aggregate pore-size distributions. We couple the bimodal van Genuchten soil-water retention model with a general Dp(ɛ) model, ɛ^{X}, allowing the tortuosity- connectivity factor X to vary with pF (= log(-ψ; the soil-water matric potential in cm H2O)). Measured data suggest that the tortuosity-connectivity parameter X is at the minimum at pF 3 (where X ~ 2, following Buckingham, 1904), equal to the water retention point where a separation of inter- and intra-aggregate effects on Dp is observed. At pF < 3, the X values increased as pF decreased because of inactive/remote air-filled pore space entrapped by the inter-connected water films between inter-aggregate pore spaces. At pF > 3, X increased to a high value at very dry conditions due to remote air-filled space inside the intra-aggregate pores. By combining the complex dual porosity soil-water retention model with the power- law gas diffusivity model using a parabolic X(pF) function, the surprisingly simple linear behavior of Dp with ɛ was captured while the variation of Dp with pF followed a dual s-shaped curve similar to the water retention curve. A simple linear model to predict Dp(ɛ) is suggested, with slope C and threshold soil-air content, ɛth, calculated from the power-law model ɛ^{X} at pF 2 (near field capacity) and at pF 4.1 (near wilting point) using the same X value (= 2.3) at both pF in agreement with measured data. This linear Dp(ɛ) model performed better, especially at dry conditions, compared to the traditionally-used predictive models when tested against several independent Andisol datasets from literature.
Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N
2016-05-01
An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK/RK/AK values, indicating substantial anatomical variability of these discrepancies. In the HCP dataset, the median voxelwise percentage differences across the whole white matter skeleton were (nonlinear least squares algorithm) 14.5% (8.2%-23.1%) for MD, 4.3% (1.4%-17.3%) for FA, -5.2% (-48.7% to -0.8%) for MO, 12.5% (6.4%-21.2%) for RD, and 16.1% (9.9%-25.6%) for AD (all ranges computed as 0.01 and 0.99 quantiles). All differences/trends were consistent between the discovery (HCP) and replication (local) datasets and between estimation algorithms. However, the relationships between such trends, estimated diffusion tensor invariants, and kurtosis estimates were impacted by the choice of fitting routine. Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.
Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge
NASA Astrophysics Data System (ADS)
Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.
2017-12-01
The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.
Kråkenes, Jostein; Brauckhoff, Katrin; Haugland, Hans Kristian; Heinecke, Achim; Akslen, Lars A; Varhaug, Jan Erik; Brauckhoff, Michael
2015-01-01
Background Positron emission tomography (PET) using fluor-18-deoxyglucose (18F-FDG) with or without computed tomography (CT) is generally accepted as the most sensitive imaging modality for diagnosing recurrent differentiated thyroid cancer (DTC) in patients with negative whole body scintigraphy with iodine-131 (I-131). Purpose To assess the potential incremental value of ultrasound (US) over 18F-FDG-PET-CT. Material and Methods Fifty-one consecutive patients with suspected recurrent DTC were prospectively evaluated using the following multimodal imaging protocol: (i) US before PET (pre-US) with or without fine needle biopsy (FNB) of suspicious lesions; (ii) single photon emission computed tomography (≥3 GBq I-131) with co-registered CT (SPECT-CT); (iii) 18F-FDG-PET with co-registered contrast-enhanced CT of the neck; (iv) US in correlation with the other imaging modalities (post-US). Postoperative histology, FNB, and long-term follow-up (median, 2.8 years) were taken as composite gold standard. Results Fifty-eight malignant lesions were identified in 34 patients. Forty lesions were located in the neck or upper mediastinum. On receiver operating characteristics (ROC) analysis, 18F-FDG-PET had a limited lesion-based specificity of 59% at a set sensitivity of 90%. Pre-US had poor sensitivity and specificity of 52% and 53%, respectively, increasing to 85% and 94% on post-US, with knowledge of the PET/CT findings (P < 0.05 vs. PET and pre-US). Multimodal imaging changed therapy in 15 out of 51 patients (30%). Conclusion In patients with suspected recurrent DTC, supplemental targeted US in addition to 18F-FDG-PET-CT increases specificity while maintainin sensitivity, as non-malignant FDG uptake in cervical lesions can be confirmed. PMID:25770086
Buongiorno, Mariateresa; Antonelli, Francesca; Compta, Yaroslau; Fernandez, Yolanda; Pavia, Javier; Lomeña, Francisco; Ríos, José; Ramírez, Isabel; García, José Ramón; Soler, Marina; Cámara, Ana; Fernández, Manel; Basora, Misericòrdia; Salazar, Fàtima; Sanchez-Etayo, Gerard; Valldeoriola, Francesc; Barrio, Jorge Raúl; Marti, Maria Jose
2017-01-01
Tau and amyloid-β (Aβ) aggregates have been suggested to play a role in the development of dementia in Parkinson's disease (PD). Positron emission tomography (PET) with [18F]FDDNP and the determination of cerebrospinal fluid (CSF) levels of these proteins constitute a means to visualize in vivo Aβ and tau brain accumulation. Information about longitudinal changes of these CSF and PET biomarkers in PD with regard to progression to dementia is lacking. We assessed the cross-sectional and longitudinal associations of CSF and PET biomarkers of tau and Aβ with PD-related cognitive dysfunction in 6 healthy-controls (HC), 16 patients with PD without dementia (PDND), and 8 PD with dementia (PDD). All subjects underwent comprehensive neuropsychological testing, [18F]FDDNP PET, and CSF Aβ-tau determination. After 18 months, the PDND group was re-assessed clinically and by neuropsychological, PET, and CSF determinations. Cross-sectionally, PDD had higher [18F]FDDNP binding in lateral temporal regions and lower levels of CSF Aβ levels compared to PDND, with a congruent correlation between the [18F]FDDNP binding and CSF Aβ levels. Longitudinally, higher baseline lateral temporal [18F]FDDNP binding was associated to longitudinal worsening in cognitive performances and progression to dementia among subjects classified as PDND at baseline, who additionally disclosed at follow-up an increase in lateral-temporal FDDNP binding, as well as a reduction in CSF Aβ and an increase in CSF tau levels. These results confirm the relevance of these CSF and PET biomarkers to PDD, being specifically the first to show [18F]FDDNP PET as a dementia risk biomarker in PD, along with longitudinal CSF and PET changes over time.
Bartholomä, Mark D; He, Huamei; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; McGowan, Francis X; Cowan, Douglas B; Treves, S Ted; Packard, Alan B
2013-11-01
Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an (18)F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on (18)F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of (18)F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake (18)F-labeled rhodamine B by cardiomyocytes. A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100-150 μCi of (18)F-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [(18)F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Small-animal PET showed intense and uniform uptake of [(18)F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [(18)F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [(18)F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Fluorine-18-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) provides excellent image quality and clear delineation of myocardial infarcts in a rat infarct model. In vitro studies demonstrate localization of the tracer in the mitochondria of cardiac myocytes. In combination, these results support the continued evaluation of this tracer for the PET assessment of myocardial perfusion. © 2013.
Bartholomä, Mark D.; He, Huamei; Pacak, Christina; Dunning, Patricia; Fahey, Frederic H.; McGowan, Francis; Cowan, Douglas; Treves, S. Ted; Packard, Alan B.
2013-01-01
Introduction Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an F-18-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on F-18-labeled rhodamine B. The goal of this study was to more completely define the biological properties of F-18-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake F-18-labeled rhodamine B by cardiomyocytes. Methods A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100–150 µCi of F-18-labeled rhodamine B diethylene glycol ester ([18F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1 mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [18F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Results Small-animal PET showed intense and uniform uptake of [18F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [18F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [18F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Conclusion Fluorine-18-labeled rhodamine B diethylene glycol ester ([18F]RhoBDEGF) provides excellent image quality and clear delineation of myocardial infarcts in a rat infarct model. In vitro studies demonstrate localization of the tracer in the mitochondria of cardiac myocytes. In combination, these results support the continued evaluation of this tracer for the PET assessment of myocardial perfusion. PMID:24011396
Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.
FDG uptake in cervical lymph nodes in children without head and neck cancer.
Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer
2017-06-01
Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups.
Solingapuram Sai, Kiran Kumar; Das, Bhaskar C; Sattiraju, Anirudh; Almaguel, Frankis G; Craft, Suzanne; Mintz, Akiva
2017-03-15
Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [ 18 F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [ 18 F]KBM-1 was carried out through KHF 2 assisted substitution of [ 18 F] - from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [ 18 F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5min to 60min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30min to 60min post injection. Tumor uptake in subset of 30min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [ 18 F]KBM-1 as a RAR-α imaging agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herrero, Pilar; Laforest, Richard; Shoghi, Kooresh; Zhou, Dong; Ewald, Gregory; Pfeifer, John; Duncavage, Eric; Krupp, Kitty; Mach, Robert; Gropler, Robert
2012-06-01
Nitric oxide (NO), the end product of the inducible form of NO synthase (iNOS), is an important mediator of a variety of inflammatory diseases. Therefore, a radiolabeled iNOS radiopharmaceutical for assessing iNOS protein concentration as a marker for its activity would be of value to the study and treatment of NO-related diseases. We recently synthesized an (18)F-radiolabeled analog of the reversible NOS inhibitor, 2-amino-4-methylpyridine ((18)F-NOS), and confirmed its utility in a murine model of lung inflammation. To determine its potential for use in humans, we measured (18)F-NOS myocardial activity in patients after orthotopic heart transplantation (OHT) and correlated it with pathologic allograft rejection, tissue iNOS levels, and calculated human radiation dosimetry. Two groups were studied-a kinetic analysis group and a dosimetry group. In the kinetic analysis group, 10 OHT patients underwent dynamic myocardial (18)F-NOS PET/CT, followed by endomyocardial biopsy. Myocardial (18)F-NOS PET was assessed using volume of distribution; standardized uptake values at 10 min; area under the myocardial moment curve (AUMC); and mean resident time at 5, 10, and 30 min after tracer injection. Tissue iNOS levels were measured by immunohistochemistry. In the dosimetry group, the biodistribution and radiation dosimetry were calculated using whole-body PET/CT in 4 healthy volunteers and 12 OHT patients. The combined time-activity curves were used for residence time calculation, and organ doses were calculated with OLINDA. Both AUMC at 10 min (P < 0.05) and tissue iNOS (P < 0.0001) were higher in patients exhibiting rejection than in those without rejection. Moreover, the (18)F-NOS AUMC at 10 min correlated positively with tissue iNOS at 10 min (R(2) = 0.42, P < 0.05). (18)F-NOS activity was cleared by the hepatobiliary system. The critical organ was the bladder wall, with a dose of 95.3 μGy/MBq, and an effective dose of 15.9 μSv/MBq was calculated. Myocardial (18)F-NOS activity is increased in organ rejection (a condition associated with increased iNOS levels) and correlates with tissue iNOS measurements with acceptable radiation exposure. Although further modifications to improve the performance of (18)F-NOS are needed, these data show the feasibility of PET of iNOS in the heart and other tissues.
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
NASA Astrophysics Data System (ADS)
Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.
1998-01-01
The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.
Constraints on oxygen fugacity within metal capsules
NASA Astrophysics Data System (ADS)
Faul, Ulrich H.; Cline, Christopher J., II; Berry, Andrew; Jackson, Ian; Garapić, Gordana
2018-06-01
Experiments were conducted with olivine encapsulated or wrapped in five different metals (Pt, Ni, Ni_{70}Fe_{30}, Fe, and Re) to determine the oxygen fugacity in the interior of large capsules used for deformation and seismic property experiments. Temperature (1200°C), pressure (300 MPa), and duration (24 h) were chosen to represent the most common conditions in these experiments. The oxygen fugacity was determined by analysing the Fe content of initially pure Pt particles that were mixed with the olivine powder prior to the experiments. Oxygen fugacities in the more oxidizing metal containers are substantially below their respective metal-oxide buffers, with the fO_2 of sol-gel olivine in Ni about 2.5 orders of magnitude below Ni-NiO. Analysis of olivine and metal blebs reveals three different length-, and hence diffusive time scales: (1) Fe loss to the capsule over ˜ 100 μ m, (2) fO_2 gradients at the sample-capsule interface up to 2 mm into the sample, and (3) constant interior fO_2 values with an ordering corresponding to the capsule material. The inferred diffusive processes are: Fe diffusion in olivine with a diffusivity ˜ 10^{-14} m^2/s, diffusion possibly of oxygen along grain boundaries with a diffusivity ˜ 10^{-12} m^2/s, and diffusion possibly involving pre-existing defects with a diffusivity ˜ 10^{-10} m^2/s. The latter, fast adjustment to changing fO_2 may consist of a rearrangement of pre-existing defects, representing a metastable equilibrium, analogous to decoration of pre-existing defects by hydrogen. Full adjustment to the external fO_2 requires atomic diffusion.
Rockne, Russell C.; Trister, Andrew D.; Jacobs, Joshua; Hawkins-Daarud, Andrea J.; Neal, Maxwell L.; Hendrickson, Kristi; Mrugala, Maciej M.; Rockhill, Jason K.; Kinahan, Paul; Krohn, Kenneth A.; Swanson, Kristin R.
2015-01-01
Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. PMID:25540239
Haskali, Mohammad B; Denoyer, Delphine; Noonan, Wayne; Culinane, Carleen; Rangger, Christine; Pouliot, Normand; Haubner, Roland; Roselt, Peter D; Hicks, Rodney J; Hutton, Craig A
2017-04-03
Control of the biodistribution of radiolabeled peptides has proven to be a major challenge in their application as imaging agents for positron emission tomography (PET). Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[ 18 F]fluoropropionate, and the biodistribution of the radiolabeled peptides was compared with that of their nonsulfonated, clinically relevant counterparts, [ 18 F]GalactoRGD and [ 18 F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da toward the MW, compared with 189 Da for both the "Galacto" and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabeled peptides.
Riccardi, Patrizia; Baldwin, Ron; Salomon, Ronald; Anderson, Sharlet; Ansari, Mohammad S; Li, Rui; Dawant, Benoit; Bauernfeind, Amy; Schmidt, Dennis; Kessler, Robert
2008-01-15
This study examined whether positron emission tomography (PET) studies with [18F] fallypride performed before and after alpha-methyl-para-tyrosine (AMPT) administration can be used to estimate baseline dopamine (DA) D2 receptor occupancy in striatal and extrastriatal regions. Six normal subjects underwent PET with [18 F] fallypride before and after administration of AMPT. The DA D2 receptor binding potentials (bp) were calculated with the reference region method. Percent changes in bp in striatal and extrastriatal regions were calculated with both region-of-interest analysis and on a voxel by voxel basis with parametric images of DA D2 receptor levels. The results of the current study indicate that AMPT treatment significantly increased the bp in the caudate, putamen, ventral striatum, and substantia nigra. A trend level increase was seen in the medial thalamus. This study demonstrates that PET with [18F] fallypride can be used to estimate baseline DA D2 receptor occupancy in striatal and extrastriatal regions.
Fully automated synthesis of 4-[18F]fluorobenzylamine based on borohydride/NiCl2 reduction.
Way, Jenilee; Wuest, Frank
2013-04-01
4-[(18)F]Fluorobenzylamine ([(18)F]FBA) is an important building block for the synthesis of (18)F-labeled compounds. Synthesis of [(18)F]FBA usually involves application of strong reducing agents like LiAlH4 which is challenging to handle in automated synthesis units (ASUs). Therefore, alternative methods for the preparation of [(18)F]FBA compatible with remotely-controlled syntheses in ASUs are needed. (18)F]FBA was prepared in a remotely-controlled synthesis unit (GE TRACERlab™ FX) based on Ni(II)-mediated borohydride exchange resin (BER) reduction of 4-[(18)F]fluorobenzonitrile ([(18)F]FBN). [(18)F]FBA was used for the synthesis of novel thiol-reactive prosthetic group 4-[(18)F]fluorobenzyl)maleimide [(18)F]FBM and Hsp90 inhibitor 17-(4-[(18)F]fluorobenzylamino)-17-demethoxy-geldanamycin [(18)F] GA. [(18)F]FBA could be prepared in high radiochemical yield greater than 80% (decay-corrected) within 60min. In a typical experiment, 7.4GBq of [(18)F]FBA could be obtained in high radiochemical purity of greater than 95% starting from 10GBq of cyclotron-produced n.c.a. [(18)F]fluoride. [(18)F]FBA was used for the preparation of 4-[(18)F]fluorobenzyl)maleimide as a novel prosthetic group for labeling of thiol groups as demonstrated with tripeptide glutathione. [(18)F]FBA was also used as building block for the syntheses of small molecules as exemplified by the preparation of Hsp90 inhibitor 17-(4-[(18)F]fluorobenzylamino)-17-demethoxy-geldanamycin. The described remotely-controlled synthesis of [(18)F]FBA will significantly improve the availability of [(18)F]FBA as an important and versatile building block for the development of novel (18)F-labeled compounds containing a fluorobenzylamine moiety. Copyright © 2013 Elsevier Inc. All rights reserved.
Folding time dependence of the motions of a molecular motor in an amorphous medium
NASA Astrophysics Data System (ADS)
Ciobotarescu, Simona; Bechelli, Solene; Rajonson, Gabriel; Migirditch, Samuel; Hester, Brooke; Hurduc, Nicolae; Teboul, Victor
2017-12-01
We investigate the dependence of the displacements of a molecular motor embedded inside a glassy material on its folding characteristic time τf. We observe two different time regimes. For slow foldings (regime I) the diffusion evolves very slowly with τf, while for rapid foldings (regime II) the diffusion increases strongly with τf(D ≈τf-2 ), suggesting two different physical mechanisms. We find that in regime I the motor's displacement during the folding process is counteracted by a reverse displacement during the unfolding, while in regime II this counteraction is much weaker. We notice that regime I behavior is reminiscent of the scallop theorem that holds for larger motors in a continuous medium. We find that the difference in the efficiency of the motor's motion explains most of the observed difference between the two regimes. For fast foldings the motor trajectories differ significantly from the opposite trajectories induced by the following unfolding process, resulting in a more efficient global motion than for slow foldings. This result agrees with the fluctuation theorems expectation for time reversal mechanisms. In agreement with the fluctuation theorems we find that the motors are unexpectedly more efficient when they are generating more entropy, a result that can be used to increase dramatically the motor's motion.
Sze, M F F; McKay, G
2010-05-01
Batch adsorption experiments were carried out to study the adsorptive removal and diffusion mechanism of para-chlorophenol (p-CP) onto Calgon Filtrasorb 400 (F400) activated carbon. The external mass transfer resistance is negligible in the adsorption process carried out under different conditions in batch operation. Intraparticle diffusion model plots were used to correlate the batch p-CP adsorption data; three distinct linear sections were obtained for every batch operation. The textural properties of F400 activated carbon showed that it has a large portion of supermicropores, which is comparable to the size of the p-CP molecules. Due to the stronger interactions between p-CP molecules and F400 micropores, p-CP molecules predominantly diffused and occupied active sites in micropore region by hopping mechanism, and eventually followed by a slow filling of mesopores and micropores. This hypothesis is proven by the excellent agreement of the intraparticle diffusion model plots and the textural properties of F400 activated carbon. Copyright 2009 Elsevier Ltd. All rights reserved.
Abo-Elmagd, M; Sadek, A M
2014-12-01
Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.
F-18 simulation with Simulation Group Lead Martha Evans at the controls
NASA Technical Reports Server (NTRS)
1993-01-01
Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.
Moon, Byung Seok; Park, Jun Hyung; Lee, Hong Jin; Lee, Byung Chul; Kim, Sang Eun
2014-10-01
[(18)F]Flumazenil, which has the advantage of a longer half-life than [(11)C]flumazenil, is well known for determining of the central benzodiazepine receptor concentrations. However, [(18)F]flumazenil has not been widely used because fluctuating and relatively low yields render automatic production insufficient for routine and multicenter clinical trials. Here, we describe the results of a 2.5-year production study of [(18)F]flumazenil using an iodonium tosylate precursor, which allowed us to overcome the limitations of low and fluctuating radiochemical yields. We developed a clinically applicable production system by modifying a commercial synthesizer for the reliable and reproducible production of [(18)F]flumazenil for routine clinical studies. [(18)F]Flumazenil was prepared at 150 °C for 5 min in the presence of 4-methylphenyl-mazenil iodonium tosylate (4 mg), a radical scavenger (TEMPO, 1 mg), and [(18)F]KF/kryptofix 2.2.2 complex in N,N-dimethylformamide (1 ml). In the purification step, the final mixture was pretreated using different cartridges before performing high-performance liquid chromatography (HPLC) separation. Finally, we measured the radiochemical yield and performed quality-control assays on 94 batches. After carrying out additional purification before HPLC separation using a C18 plus Sep-Pak cartridge, the radiochemical yield of [(18)F]flumazenil increased from 34.4 ± 9.7 % (without the pretreatment, n = 24) to 53.4 ± 9.0 % (n = 94), and the lifetime of the semi-preparative column was five times that of the column without the C18 plus Sep-Pak cartridge. The mean-specific activity of [(18)F]flumazenil was 572 ± 116 GBq/μmol at the end of synthesis, and the radiochemical purity was more than 99 %, as determined by analytical HPLC and radio-TLC. [(18)F]Flumazenil prepared using this method satisfied all quality-control test standards and was highly stable for up to 6 h after preparation. The results of the 2.5-year production study using an iodonium tosylate precursor indicate that [(18)F]flumazenil has commercial and routine clinical applicability.
Addeo, Pietro; Poncet, Gilles; Goichot, Bernard; Leclerc, Loic; Brigand, Cécile; Mutter, Didier; Romain, Benoit; Namer, Izzie-Jacques; Bachellier, Philippe; Imperiale, Alessio
2018-04-01
The precise localization of the primary tumor and/or the identification of multiple primary tumors improves the preoperative work-up in patients with small bowel (SB) neuroendocrine tumor (NET). The present study assesses the diagnostic value of 18 F-fluorodihydroxyphenylalanine ( 18 F-FDOPA) positron emission tomography/computed tomography (PET/CT) during the preoperative wok-up of SB NETs. Between January 2010 and June 2017, all consecutive patients with SB NETs undergoing preoperative 18 F-FDOPA PET/CT and successive resection were analyzed. Preoperative work-up included computed tomography (CT), somatostatin receptor scintigraphy (SRS), and 18 F-FDOPA PET/CT. Sensitivity and accuracy ratio for primary and multiple tumor detection were compared with data from surgery and pathology. There were 17 consecutive patients with SB NETs undergoing surgery. Nine patients (53%) had multiple tumors, 15 (88%) metastatic lymph nodes, 3 (18%) peritoneal carcinomatosis, and 9 patients (53%) liver metastases. A total of 70 SB NETs were found by pathology. Surgery identified the primary in 17/17 (100%) patients and recognized seven of 9 patients (78%) with multiple synchronous SB. Preoperatively, 18 F-FDOPA PET/CT displayed a statistically significant higher sensitivity for primary tumor localization (100 vs. 23.5 vs. 29.5%) and multiple tumor detection (78 vs. 22 vs. 11%) over SRS and CT. Compared with pathology, 18 F-FDOPA PET/CT displayed the highest accuracy ratio for number of tumor detected over CT and SRS (2.0 ± 2.2 vs. 0.4 ± 0.7 vs. 0.6 ± 1.5, p = 0.0003). 18 F-FDOPA PET/CT significantly increased the sensitivity and accuracy for primary and multiple SB NET identification. 18 F-FDOPA PET/CT should be included systematically in the preoperative work-up of SB NET.
A first-principles study of elastic and diffusion properties of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ganeshan, Swetha
2011-12-01
In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)
Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone.
Sampath, Srinath C; Sampath, Srihari C; Mosci, Camila; Lutz, Amelie M; Willmann, Juergen K; Mittra, Erik S; Gambhir, Sanjiv S; Iagaru, Andrei
2015-03-01
Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain
2018-04-30
The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p < 0.001). The use of 3D-OSEM with eight iterations and a zoom factor 2 yielded optimal PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p < 0.006). Optimizing reconstruction parameters significantly impacted on the assessment of mineralization process in a preclinical model of accelerated atherosclerosis using Na[ 18 F]F PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.
Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi
2017-06-01
To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.
Electronic shot noise in fractal conductors.
Groth, C W; Tworzydło, J; Beenakker, C W J
2008-05-02
By solving a master equation in the Sierpiński lattice and in a planar random-resistor network, we determine the scaling with size L of the shot noise power P due to elastic scattering in a fractal conductor. We find a power-law scaling P proportional, variantL;{d_{f}-2-alpha}, with an exponent depending on the fractal dimension d_{f} and the anomalous diffusion exponent alpha. This is the same scaling as the time-averaged current I[over ], which implies that the Fano factor F=P/2eI[over ] is scale-independent. We obtain a value of F=1/3 for anomalous diffusion that is the same as for normal diffusion, even if there is no smallest length scale below which the normal diffusion equation holds. The fact that F remains fixed at 1/3 as one crosses the percolation threshold in a random-resistor network may explain recent measurements of a doping-independent Fano factor in a graphene flake.
Measurement of the magneto-optical correlation length in turbid media
NASA Astrophysics Data System (ADS)
Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg
2002-11-01
In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l scr>* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.
Giovanella, Luca; Trimboli, Pierpaolo; Verburg, Frederik A; Treglia, Giorgio; Piccardo, Arnoldo; Foppiani, Luca; Ceriani, Luca
2013-06-01
To assess the relationship between serum thyroglobulin (Tg) levels, Tg doubling time (Tg-DT) and the diagnostic performance of (18)F-FDG PET/CT in detecting recurrences of (131)I-negative differentiated thyroid carcinoma (DTC). Included in the present study were 102 patients with DTC. All patients were treated by thyroid ablation (e.g. thyroidectomy and (131)I), and underwent (18)F-FDG PET/CT due to detectable Tg levels and negative conventional imaging. Consecutive serum Tg measurements performed before the (18)F-FDG PET/CT examination were used for Tg-DT calculation. The (18)F-FDG PET/CT results were assessed as true or false after histological and/or clinical follow-up. Serum Tg levels were higher in patients with a positive (18)F-FDG PET/CT scan (median 6.7 ng/mL, range 0.7-73.6 ng/mL) than in patients with a negative scan (median 1.8 ng/mL, range 0.5-4.9 ng/mL; P < 0.001). In 43 (88 %) of 49 patients with a true-positive (18)F-FDG PET/CT scan, the Tg levels were >5.5 ng/mL, and in 31 (74 %) of 42 patients with a true-negative (18)F-FDG PET/CT scan, the Tg levels were ≤5.5 ng/mL. A Tg-DT of <1 year was found in 46 of 49 patients (94 %) with a true-positive (18)F-FDG PET/CT scan, and 40 of 42 patients (95 %) with a true-negative scan had a stable or increased Tg-DT. Moreover, combining Tg levels and Tg-DT as selection criteria correctly distinguished between patients with a positive and a negative scan (P<0.0001). The accuracy of (18)F-FDG PET/CT significantly improves when the serum Tg level is above 5.5 ng/mL during levothyroxine treatment or when the Tg-DT is less than 1 year, independent of the absolute value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, William, E-mail: william.hsu@utexas.edu; Kim, Taegon; Chou, Harry
2016-07-07
Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B{sup +} implantation, the use of the heavier BF{sub 2}{sup +} ions or even BF{sup +} is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B{sup +}, BF{sup +}, and BF{sub 2}{sup +} implants in crystalline and pre-amorphized Ge, employing rapid thermal annealingmore » at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF{sup +}, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p{sup +}/n junctions formed by BF{sup +} implantation was evaluated.« less
Amaral, Jackeline G; Freire, Isabelle R; Valle-Neto, Eduardo F R; Cunha, Robson F; Martinhon, Cleide C R; Delbem, Alberto C B
2014-10-01
This study aimed to evaluate the fluoride concentration in the fingernails and toenails of children aged 18-30 months during use of fluoride-containing toothpastes supplemented with calcium glycerophosphate (CaGP) or sodium trimetaphosphate (TMP). According to the toothpaste used, children (n = 56) were randomly assigned into three groups: 500 μg F/g with 1% TMP, 500 μg F/g with 0.25% CaGP, and 1100 μg F/g. Fingernails and toenails were collected monthly over a period of 330 days, from the beginning of toothpaste use. Fluoride concentration in the water consumed by the volunteers and fluoride intake from diet and toothpaste were also determined. Fluoride analyses were performed with the electrode after hexamethyldisiloxane-facilitated diffusion or by the direct method, according to the samples. Data passed normality and homoscedasticity tests and were analyzed by 2-way analysis of variance (anova) and 1-way anova followed by Student-Newman-Keuls test (P < 0.05). Fluoride levels in the fingernails and toenails as well as fluoride intake from toothpaste were similar for the groups treated with 500 μg F/g with 1% TMP and 500 μg F/g with 0.25% CaGP toothpastes, but significantly lower than the 1100 μg F/g group (P < 0.05). No significant differences were noted among the groups regarding fluoride intake from diet and that by water consumed by the volunteers (P > 0.05). The results of the longitudinal study suggest that the level of fluoride present in nails was lower with the use of toothpastes with a low fluoride concentration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Iurchenko, Natalia; Kovalevska, Larysa; Stip, Maria C; Budnikova, Daria; Andersson, Sonia; Polischuk, Ludmila; Buchynska, Lubov; Kashuba, Elena
2016-01-01
Endometrial cancer (EC) is one of the most frequent causes of cancer death among women in developed countries. Histopathological diagnosis and imaging techniques for EC are limited, thus new prognostic markers are needed to offer patients the best treatment and follow-up. In the present paper we showed that the level of mitochondrial ribosomal protein MRPS18-2 (S18-2) increased in EC compared with the normal endometrium and hyperplasia, based on a study of 42 patient biopsies. Importantly, high expression of free E2F1 in EC correlates well with high S18-2 expression. The EC cell line HEC-1-A, which overexpresses S18-2 constitutively, showed an increased proliferation capacity in vitro and in vivo (in SCID mice). Moreover, pan-keratin, beta-catenin and E-cadherin signals are diminished in these cells, compared to the parental HEC-1-A line, in contrast to vimentin signal that is increased. This may be associated with epithelial-mesenchymal cell transition (EMT). We conclude that high expression of S18-2 and free E2F1, and low pan-keratin, beta-catenin, and E-cadherin signals might be a good set of prognostic markers for EC. PMID:26959119
Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang
2015-06-01
It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (P<0.05). ED (18)F-FDG PET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P<0.001 and P>0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Liu, Ren-Shyan; Chou, Ta-Kai; Chang, Chih-Hsien; Wu, Chun-Yi; Chang, Chi-Wei; Chang, Tsui-Jung; Wang, Shih-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell
2009-04-01
2-Deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG), [(18)F]fluoroacetate ([(18)F]FAc) and [(18)F]fluoromisonidazole ([(18)F]FMISO) were all considered to be positron emission tomography (PET) probes for tumor diagnosis, though based on different rationale of tissue uptake. This study compared the biodistribution, pharmacokinetics and imaging of these three tracers in a sarcoma- and inflammation-bearing mouse model. C3H mice were inoculated with 2x10(5) KHT sarcoma cells in the right thigh on Day 0. Turpentine oil (0.1 ml) was injected in the left thigh on Day 11 to induce inflammatory lesion. Biodistribution, pharmacokinetics and microPET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc were performed on Day 14 after tumor inoculation. The inflammatory lesions were clearly visualized by [(18)F]FDG/microPET and autoradiography at 3 days after turpentine oil injection. The tumor-to-muscle and inflammatory lesion-to-muscle ratios derived from microPET imaging were 6.79 and 1.48 for [(18)F]FMISO, 8.12 and 4.69 for [(18)F]FDG and 3.72 and 3.19 for [(18)F]FAc at 4 h post injection, respectively. Among these, the tumor-to-inflammation ratio was the highest (4.57) for [(18)F]FMISO compared with that of [(18)F]FDG (1.73) and [(18)F]FAc (1.17), whereas [(18)F]FAc has the highest bioavailability (area under concentration of radiotracer vs. time curve, 116.2 hxpercentage of injected dose per gram of tissue). MicroPET images and biodistribution studies showed that the accumulation of [(18)F]FMISO in the tumor is significantly higher than that in inflammatory lesion at 4 h post injection. [(18)F]FDG and [(18)F]FAc delineated both tumor and inflammatory lesions. Our results demonstrated the potential of [(18)F]FMISO/PET in distinguishing tumor from inflammatory lesion.
Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease
Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc
2013-01-01
Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
This report summarizes research done over the past two years as part of NASA Grant NCC 2-729. This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into two main topics: the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, and the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1995-01-01
This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full-aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into three main topics; the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg, and research done using the simplified geometry of an ogive-cylinder configuration to investigate the physics of unsteady shear-layer shedding. The last section briefly summarizes the discussion.
Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application
2005-07-01
load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly
NASA Astrophysics Data System (ADS)
Yin, Deshun; Qu, Pengfei
2018-02-01
Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.
Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A; Lam, Marnix G E; Diederichsen, Axel C P; Olsen, Michael H; Mickley, Hans; Mali, Willem P T M; Alavi, Abass; Høilund-Carlsen, Poul F
2017-11-01
Coronary artery fluorine-18-sodium fluoride (F-NaF) uptake reflects coronary artery calcification metabolism and is considered to be an early prognostic marker of coronary heart disease. This study evaluated the relationship between coronary artery F-NaF uptake and cardiovascular risk in healthy adults at low cardiovascular risk. Study participants underwent blood pressure measurements, blood analyses, and coronary artery F-NaF PET/CT imaging. In addition, the 10-year risk for the development of cardiovascular disease, on the basis of the Framingham Risk Score, was estimated. Multivariable linear regression evaluated the dependence of coronary artery F-NaF uptake on cardiovascular risk factors. We recruited 89 (47 men, 42 women) healthy adults aged 21-75 years. Female sex (0.34 kBq/ml; P=0.009), age (0.16 kBq/ml per SD; P=0.002), and BMI (0.42 kBq/ml per SD; P<0.001) were independent determinants of increased coronary artery F-NaF uptake (adjusted R=0.21; P<0.001). Coronary artery F-NaF uptake increased linearly according to the number of cardiovascular risk factors present (P<0.001 for a linear trend). The estimated 10-year risk for the development of cardiovascular disease was on average 2.4 times higher in adults with coronary artery F-NaF uptake in the highest quartile compared with those in the lowest quartile of the distribution (8.0 vs. 3.3%, P<0.001). Our findings indicate that coronary artery F-NaF PET/CT imaging is feasible in healthy adults at low cardiovascular risk and that an unfavorable cardiovascular risk profile is associated with a marked increase in coronary artery F-NaF uptake.
NASA Astrophysics Data System (ADS)
Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim
2016-03-01
Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.
Youland, Ryan S; Pafundi, Deanna H; Brinkmann, Debra H; Lowe, Val J; Morris, Jonathan M; Kemp, Bradley J; Hunt, Christopher H; Giannini, Caterina; Parney, Ian F; Laack, Nadia N
2018-05-01
Treatment-related changes can be difficult to differentiate from progressive glioma using MRI with contrast (CE). The purpose of this study is to compare the sensitivity and specificity of 18F-DOPA-PET and MRI in patients with recurrent glioma. Thirteen patients with MRI findings suspicious for recurrent glioma were prospectively enrolled and underwent 18F-DOPA-PET and MRI for neurosurgical planning. Stereotactic biopsies were obtained from regions of concordant and discordant PET and MRI CE, all within regions of T2/FLAIR signal hyperintensity. The sensitivity and specificity of 18F-DOPA-PET and CE were calculated based on histopathologic analysis. Receiver operating characteristic curve analysis revealed optimal tumor to normal (T/N) and SUVmax thresholds. In the 37 specimens obtained, 51% exhibited MRI contrast enhancement (M+) and 78% demonstrated 18F-DOPA-PET avidity (P+). Imaging characteristics included M-P- in 16%, M-P+ in 32%, M+P+ in 46% and M+P- in 5%. Histopathologic review of biopsies revealed grade II components in 16%, grade III in 43%, grade IV in 30% and no tumor in 11%. MRI CE sensitivity for recurrent tumor was 52% and specificity was 50%. PET sensitivity for tumor was 82% and specificity was 50%. A T/N threshold > 2.0 altered sensitivity to 76% and specificity to 100% and SUVmax > 1.36 improved sensitivity and specificity to 94 and 75%, respectively. 18F-DOPA-PET can provide increased sensitivity and specificity compared with MRI CE for visualizing the spatial distribution of recurrent gliomas. Future studies will incorporate 18F-DOPA-PET into re-irradiation target volume delineation for RT planning.
He, Yunyan; Luo, Jianming; Chen, Yang; Zhou, Xiaoheng; Yu, Shanjuan; Jin, Ling; Xiao, Xuan; Jia, Siyuan; Liu, Qiang
2018-02-01
Foetal haemoglobin (HbF) plays a dominant role in ameliorating the morbidity and mortality of β-thalassaemia. A better understanding of the loci and genes involved in HbF expression would be beneficial for the treatment of β-thalassaemia major. However, the genes associated with HbF expression remain largely unknown. In this study, we first explored large-scale data sets and examined the human genome for evidence of positive natural selection to screen out single nucleotide polymorphisms (SNPs). A genetic analysis of HbF levels was conducted in a Chinese cohort of patients with β-thalassaemia to confirm the bioinformatics results. A total of 1141 subjects with β-thalassaemia were recruited. The results showed that the SNP rs11759328 in the ARHGAP18 gene was significantly associated with HbF levels (Ρ = 5.1 × 10 -4 ). ARHGAP18 belongs to the RhoGAP family and controls angiogenesis, cellular morphology and motility. Second, after determining that ARHGAP18 was highly expressed in the human K562 cell line, we used lentiviral-mediated small interfering RNA to knock down ARHGAP18 expression and subsequently assessed cell proliferation and apoptosis using cell proliferation assays and flow cytometry, respectively. ARHGAP18 downregulation in K562 cells significantly increased HBG1/2 expression and apoptosis, but proliferation was not significantly affected in vitro. Our data suggest that ARHGAP18, which was located by the SNP rs11759328 via positive selection, plays a potential role in regulating HbF expression in β-thalassaemia and may be a promising therapeutic target. Knockout studies of ARHGAP18 warrant further investigation into its aetiology in HbF.
Dickstein, D L; Pullman, M Y; Fernandez, C; Short, J A; Kostakoglu, L; Knesaurek, K; Soleimani, L; Jordan, B D; Gordon, W A; Dams-O'Connor, K; Delman, B N; Wong, E; Tang, C Y; DeKosky, S T; Stone, J R; Cantu, R C; Sano, M; Hof, P R; Gandy, S
2016-01-01
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder most commonly associated with repetitive traumatic brain injury (TBI) and characterized by the presence of neurofibrillary tangles of tau protein, known as a tauopathy. Currently, the diagnosis of CTE can only be definitively established postmortem. However, a new positron emission tomography (PET) ligand, [18F]T807/AV1451, may provide the antemortem detection of tau aggregates, and thus various tauopathies, including CTE. Our goal was to examine [18F]T807/AV1451 retention in athletes with neuropsychiatric symptoms associated with a history of multiple concussions. Here we report a 39-year-old retired National Football League player who suffered 22 concussions and manifested progressive neuropsychiatric symptoms. Emotional lability and irritability were the chief complaints. Serial neuropsychological exams revealed a decline in executive functioning, processing speed and fine motor skills. Naming was below average but other cognitive functions were preserved. Structural analysis of longitudinally acquired magenetic resonance imaging scans revealed cortical thinning in the left frontal and lateral temporal areas, as well as volume loss in the basal ganglia. PET with [18F]florbetapir was negative for amyloidosis. The [18F]T807/AV1451 PET showed multifocal areas of retention at the cortical gray matter–white matter junction, a distribution considered pathognomonic for CTE. [18F]T807/AV1451 standard uptake value (SUV) analysis showed increased uptake (SUVr⩾1.1) in bilateral cingulate, occipital, and orbitofrontal cortices, and several temporal areas. Although definitive identification of the neuropathological underpinnings basis for [18F]T807/AV1451 retention requires postmortem correlation, our data suggest that [18F]T807/AV1451 tauopathy imaging may be a promising tool to detect and diagnose CTE-related tauopathy in living subjects. PMID:27676441
NASA Astrophysics Data System (ADS)
Dienerowitz, Maria; Ilchenko, Mykhailo; Su, Bertram; Deckers-Hebestreit, Gabriele; Mayer, Günter; Henkel, Thomas; Heitkamp, Thomas; Börsch, Michael
2016-02-01
Observation times of freely diffusing single molecules in solution are limited by the photophysics of the attached fluorescence markers and by a small observation volume in the femtolitre range that is required for a sufficient signal-to-background ratio. To extend diffusion-limited observation times through a confocal detection volume, A. E. Cohen and W. E. Moerner have invented and built the ABELtrap -- a microfluidic device to actively counteract Brownian motion of single nanoparticles with an electrokinetic trap. Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA chip. This ABELtrap holds single fluorescent nanoparticles for more than 100 seconds, increasing the observation time of fluorescent nanoparticles compared to free diffusion by a factor of 10000. To monitor conformational changes of individual membrane proteins in real time, we record sequential distance changes between two specifically attached dyes using Förster resonance energy transfer (smFRET). Fusing the a-subunit of the FoF1-ATP synthase with mNeonGreen results in an improved signal-to-background ratio at lower laser excitation powers. This increases our measured trap duration of proteoliposomes beyond 2 s. Additionally, we observe different smFRET levels attributed to varying distances between the FRET donor (mNeonGreen) and acceptor (Alexa568) fluorophore attached at the a- and c-subunit of the FoF1-ATP synthase respectively.
Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S
2008-06-23
The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.
Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes
2008-01-01
The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem; ...
2017-01-10
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
Tan, Chengbo; Zhao, Songji; Higashikawa, Kei; Wang, Zifeng; Kawabori, Masahito; Abumiya, Takeo; Nakayama, Naoki; Kazumata, Ken; Ukon, Naoyuki; Yasui, Hironobu; Tamaki, Nagara; Kuge, Yuji; Shichinohe, Hideo; Houkin, Kiyohiro
2018-05-02
The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [ 18 F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [ 18 F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [ 18 F]DPA-714 PET was performed 3 and 10 days after MCAO. Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [ 18 F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [ 18 F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
[18F]FDOPA PET as an Endophenotype for Parkinson’s Disease Linkage Studies
Racette, Brad A.; Good, Laura; Antenor, Jo Ann; McGee-Minnich, Lori; Moerlein, Stephen M.; Videen, Tom O.; Perlmutter, Joel S.
2008-01-01
Parkinson Disease (PD) is a late onset disorder with age-dependent penetrance that may confound genetic studies since affected individuals may not demonstrate clinical manifestations at the time of evaluation. The use of endophenotypes, biologic surrogates for clinical disease diagnoses, may permit more accurate classification of at-risk subjects. Positron emission tomography (PET) measurements of 6-[18F]fluorodopa ([18F]FDOPA) uptake indicate nigrostriatal neuronal integrity and may provide a useful endophenotype for PD linkage studies. We performed [18F]FDOPA PET in 11 members of a large, multi-incident Amish family with PD, 24 normals and 48 people with clinically definite idiopathic PD (PD controls). Clinical diagnoses in the Amish were clinically definite PD in four, clinically probable in one, clinically possible in five, and normal in one. Abnormal [18F]FDOPA posterior putamen uptake was defined as less than three standard deviations below the normal mean. The criteria were applied to the Amish sample to determine a PET endophenotype for each. We performed genetic simulations using SLINK to model the effect phenoconversion with the PET endophenotype had on logarithm of odds (LOD) scores. PET endophenotype confirmed the status of two clinically definite subjects. Two clinically definite Amish PD subjects had normal PETs. Two possible PD were converted to “PET definite PD”. The remainder had normal PETs. The average maximum LOD score with the pre-PET was 6.14±0.84. Simulating phenoconversion of subjects with unknown phenotypes increased the LOD score to 7.36±1.23. The [18F]FDOPA PET endophenotype permits phenoconversion in multi-incident PD families and may increase LOD score accuracy and power of an informative pedigree. PMID:16528749
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.
Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J
2017-01-01
Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.
Diffusion of Redox-Sensitive Elements in Basalt at Different Oxygen Fugacities
NASA Technical Reports Server (NTRS)
Szumila, I.; Trail, D.; Danielson, L. R.
2017-01-01
The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.
Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG.
Minn, Heikki; Salonen, Anna; Friberg, Johan; Roivainen, Anne; Viljanen, Tapio; Långsjö, Jaakko; Salmi, Jorma; Välimäki, Matti; Någren, Kjell; Nuutila, Pirjo
2004-06-01
Our aim was to evaluate the use of PET with (11)C-metomidate and (18)F-FDG for the diagnosis of adrenal incidentalomas. Twenty-one patients underwent hormonal screening before dynamic imaging of the upper abdomen with (11)C-metomidate, and for 19 of these 21 patients, static (18)F-FDG imaging followed. Uptake of (11)C-metomidate and (18)F-FDG in incidentalomas was quantified and correlated with the hormonal work-up and the mass size on CT (median, 2.5 cm; range, 2-10 cm). The final diagnoses were hormonally active adenoma (n = 7), nonsecretory adenoma (n = 5), adrenocortical carcinoma (n = 1), pheochromocytoma (n = 2), benign noncortical tumor (n = 2), normal adrenal (n = 1), and malignant noncortical tumor (n = 3). Diagnosis was established at surgery (n = 9), percutaneous biopsy (n = 4), or follow-up (n = 8). The highest uptake of (11)C-metomidate, expressed as standardized uptake value (SUV), was found in adrenocortical carcinoma (SUV = 28.0), followed by active adenomas (median SUV = 12.7), nonsecretory adenomas (median SUV = 12.2), and noncortical tumors (median SUV = 5.7). Patients with adenomas had significantly higher tumor-to-normal-adrenal (11)C-metomidate SUV ratios than did patients with noncortical tumors. (18)F-FDG detected 2 of 3 noncortical malignancies but failed to detect adrenal metastases from renal cell carcinoma. All inactive and most active adenomas were difficult to detect with (18)F-FDG against background activity, whereas both pheochromocytomas and adrenocortical carcinoma showed slightly increased uptake of (18)F-FDG. There was no correlation between uptake of (11)C-metomidate or (18)F-FDG and mass size. (11)C-Metomidate is a promising PET tracer to identify incidentalomas of adrenocortical origin. (18)F-FDG should be reserved for patients with a moderate to high likelihood of neoplastic disease.
Beuthien-Baumann, B; Strumpf, A; Zessin, J; Bredow, J; Kotzerke, J
2007-10-01
In patients with medullary thyroid carcinoma (MTC), rising levels of the tumour markers calcitonin and CEA after primary surgery indicate tumour recurrence or metastases. The only chance of cure is the resection of localised tumour tissue. For positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) and (18)F-dihydroxyphenylalanine ((18)F-DOPA), sensitivities of 78% and 63% have been reported, but in a considerable percentage of MTC patients the source of tumour marker elevation is not detected. The aim of this retrospective data evaluation was to compare the value of PET with (18)F-FDG, (18)F-DOPA and the amino acid tracer 3-O-methyl-6-[(18)F]fluoro-DOPA ((18)F-OMFD) in the detection of MTC recurrence. Fifteen patients with elevated calcitonin were investigated with PET as part of their individual clinical work-up. All patients underwent (18)F-FDG PET and (18)F-DOPA PET, and ten patients underwent (18)F-OMFD PET. With (18)F-FDG, seven patients showed foci in the neck, mediastinum, upper abdomen or bone. In seven patients, (18)F-DOPA revealed suspicious foci; five of these seven patients showed partially corresponding uptake of (18)F-FDG in the neck and mediastinum. Two of these patients underwent surgery and metastases were verified. With (18)F-OMFD, a small focus in the liver was suspected in one patient without a correlate on (18)F-FDG PET, (18)F-DOPA PET or conventional imaging. (18)F-FDG and (18)F-DOPA showed foci that were highly suspicious for local recurrence or metastasis of MTC, although histological verification in these patients with numerous previous surgical interventions was performed in only two patients. The amino acid tracer (18)F-OMFD had no diagnostic impact in these patients.
Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting
2014-08-01
The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.
2015-12-01
Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon
2014-09-01
A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgqvist, Joergen; Andersson, Hakan; Bernhardt, Peter
Purpose: To elucidate the therapeutic efficacy of {alpha}-radioimmunotherapy of ovarian cancer in mice. This study: (i) estimated the minimum required activity (MRA), giving a reasonable high therapeutic efficacy; and (ii) calculated the specific energy to tumor cell nuclei and the metastatic cure probability (MCP) using various assumptions regarding monoclonal-antibody (mAb) distribution in measured tumors. The study was performed using the {alpha}-particle emitter Astatine-211 ({sup 211}At) labeled to the mAb MX35 F(ab'){sub 2}. Methods and Materials: Animals were inoculated intraperitoneally with {approx}1 x 10{sup 7} cells of the cell line NIH:OVCAR-3. Four weeks later animals were treated with 25, 50, 100,more » or 200 kBq {sup 211}At-MX35 F(ab'){sub 2} (n = 74). Another group of animals was treated with a nonspecific mAb: 100 kBq {sup 211}At-Rituximab F(ab'){sub 2} (n = 18). Eight weeks after treatment the animals were sacrificed and presence of macro- and microscopic tumors and ascites was determined. An MCP model was developed and compared with the experimentally determined tumor-free fraction (TFF). Results: When treatment was given 4 weeks after cell inoculation, the TFFs were 25%, 22%, 50%, and 61% after treatment with 25, 50, 100, or 200 kBq {sup 211}At-MX35 F(ab'){sub 2}, respectively, the specific energy to irradiated cell nuclei varying between {approx}2 and {approx}400 Gy. Conclusion: As a significant increase in the therapeutic efficacy was observed between the activity levels of 50 and 100 kBq (TFF increase from 22% to 50%), the conclusion was that the MRA is {approx}100 kBq {sup 211}At-MX35 F(ab'){sub 2}. MCP was most consistent with the TFF when assuming a diffusion depth of 30 {mu}m of the mAbs in the tumors.« less
NASA Astrophysics Data System (ADS)
Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.
2018-05-01
Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.
Pasha, Ahmed K; Moghbel, Mateen; Saboury, Babak; Gharavi, Mohammed H; Blomberg, Björn A; Torigian, Drew A; Kwee, Thomas C; Basu, Sandip; Mohler Iii, Emile R; Alavi, Abass
2015-01-01
To quantify fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in the aorta and peripheral arteries and assess the variation of (18)F-FDG uptake with age and cardiovascular risk factors. The subject population of this retrospective study comprises melanoma patients who underwent whole-body (18)F-FDG PET/CT scans. The patients' medical records were examined for cardiovascular risk factors and for a history of coronary artery disease or peripheral artery disease. Fluorine-18-FDG uptake in the peripheral arteries (iliac and femoral) and aorta was semi-quantified as a weighted-average mean standardized uptake value (wA-SUVmean), while background noise was accounted for by measuring mean venous blood pool SUV (V-SUVmean) in the superior vena cava. Atherosclerosis was semi-quantified by the tissue-to-background ratio (TBR) (wA-SUVmean divided by V-SUVmean). A regression model and t-test were used to evaluate the effect of age and location on the degree of atherosclerosis. To assess the effect of cardiovascular risk factors on atherosclerotic burden, the wA-SUVmean of patients with at least one of these risk factors was compared to that of patients without any risk factors. A total of 76 patients (46 men, 30 women; 22-91 years old) were included in this study. The average TBR of the aorta and peripheral arteries were 2.68 and 1.43, respectively, and increased with age in both locations. In regression analysis, the beta coefficients of age for TBR in the aorta and peripheral arteries were 0.55 (P<0.001) and 0.03 (P<0.001), respectively. In all age groups, the TBR of the aorta was significantly greater than that of the peripheral arteries. The Pearson correlation coefficients between the four age groups and the TBR of the aorta and peripheral arteries were 0.83 (P<0.001) and 0.75 (P<0.001), respectively. The wA-SUVmean of patients with cardiovascular risk factors was only significant (P<0.05) in the aorta. An increase in (18)F-FDG uptake was observed in the peripheral arteries and aorta with increasing age. Cardiovascular risk factors were significantly correlated with (18)F-FDG uptake in aorta. The early detection of atherosclerosis with (18)F-FDG PET may allow for the initiation of preventative interventions prior to the manifestation of significant structural abnormalities or symptoms of disease.
Niccoli Asabella, Artor; Iuele, Francesca; Simone, Francesco; Fanelli, Margherita; Lavelli, Valentina; Ferrari, Cristina; Di Palo, Alessandra; Notaristefano, Antonio; Merenda, Nunzio Clemente; Rubini, Giuseppe
2015-01-01
Spondylodiscitis is characterized by infection involving the intervertebral disc and adjacent vertebrae. It can occur anywhere in the vertebral column but more commonly involves lumbar spine. Our aim was to evaluate the usefulness of (18)F-FDG PET/CT to detect the early response to antibiotic therapy in patients affected by infectious spondylodiscitis and to compare the role of (18)F-FDG PET/CT and MRI in post-treatment evaluation. 15 patients (12M, 3F), with mean age 65±13 years old, with typical clinical symptoms of Infectious Spondylodiscitis (pain, fever and increase of inflammatory indexes) and confirmed by blood culture or vertebral biopsy underwent within three day-interval a (18)F-FDG PET/CT and Magnetic Resonance (MR) at "baseline" and after antibiotic therapy. Semiquantitative parameters at (18)F-FDG PET/CT "baseline" SUVmax1, MTV1 and TLG1 and after therapy SUVmax2, MTV2 and TLG2 of involved vertebrae were calculated. Follow-up period of at least three months was available for all patients. T-student test for paired groups was performed to compare baseline and after therapy (18)F-FDG PET/CT semiquantitative parameters. According to (18)F-FDG PET/CT parameters all patients showed a response to antibiotic therapy. All patients were positive at "baseline" MRI of the spine, while at follow-up, 7/15 patients showed MR signs of infection and were considered "positive" and 8/15 showed resolution of infectious condition and, therefore they were considered "negative". A statistical significant difference between (18)F-FDG PET/CT "baseline" and after antibiotic therapy was found for all semiquantitative parameters: SUVmax (t=5.8, P=0.01); MTV (t=5.17, P=0.001); TLG (t=5,26, P=0,001). The comparison between the "baseline" and "after treatment" (18)F-FDG semiquantitative parameters showed a significant reduction of all parameters. This reduction was relevant also in patients with positive post-treatment MRI. This can be probably related to the tissue remodeling in the very immediate phase post-treatment, resulted positive at MRI and negative at (18)F-FDG PET/CT. Clinical follow-up of at least three months confirmed these results. (18)F-FDG PET/CT is useful to detect the early response to antibiotic therapy in patients affected by infectious spondylodiscitis. (18)F-FDG PET/CT semiquantitative parameters provide critical diagnostic information of the infectious process. (18)F-FDG PET/CT should be considered as first-line exam in the early post-treatment evaluation of spondylodiscitis while MR should be preferred for delayed assessment.
Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI
NASA Astrophysics Data System (ADS)
Chang, Yulin V.; Conradi, Mark S.
2006-08-01
We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
NASA Astrophysics Data System (ADS)
Wan, Yimao; Bullock, James; Cuevas, Andres
2015-05-01
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta2O5) underneath plasma enhanced chemical vapour deposited silicon nitride (SiNx). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta2O5 and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω.cm and n-type 1.0 Ω.cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm2 and 68 fA/cm2 are measured on 150 Ω/sq boron-diffused p+ and 120 Ω/sq phosphorus-diffused n+ c-Si, respectively. Capacitance-voltage measurements reveal a negative fixed insulator charge density of -1.8 × 1012 cm-2 for the Ta2O5 film and -1.0 × 1012 cm-2 for the Ta2O5/SiNx stack. The Ta2O5/SiNx stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi
There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less
Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi; ...
2014-05-28
There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less
Werner, Rudolf A; Rischpler, Christoph; Onthank, David; Lapa, Constantin; Robinson, Simon; Samnick, Samuel; Javadi, Mehrbod; Schwaiger, Markus; Nekolla, Stephan G; Higuchi, Takahiro
2015-09-01
(18)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine ((18)F-LMI1195) is a new PET tracer designed for noninvasive assessment of sympathetic innervation of the heart. The (18)F label facilitates the imaging advantages of PET over SPECT technology while allowing centralized manufacturing. Highly specific neural uptake of (18)F-LMI1195 has previously been established, but the retention kinetics are not yet fully understood. Healthy New Zealand White rabbits were studied with (18)F-LMI1195 using a small-animal PET system. Dynamic 40-min chest scans were started just before intravenous bolus injection of (18)F-LMI1195. Imaging was performed under norepinephrine transport inhibition with desipramine pretreatment, a 1.5 mg/kg desipramine chase administered 10 min after tracer injection, and saline treatment of controls. As a reference, cardiac uptake of (11)C-hydroxyephedrine and (123)I-metaiodobenzylguanidine ((123)I-MIBG) was examined by PET and planar scintigraphy, respectively. Cardiac uptake of all 3 tracers was inhibited by pretreatment with desipramine. Stable cardiac tracer retention was delineated by dynamic PET in control rabbits for (11)C-hydroxyephedrine (washout rate, 0.42% ± 0.57%/min) and (18)F-LMI1195 (washout rate, 0.058% ± 0.28%/min). A desipramine chase increased (11)C-hydroxyephedrine washout from the heart (2.43% ± 0.15%/min, P < 0.001), whereas (18)F-LMI1195 washout was not influenced (0.059% ± 0.11%/min, not statistically significant). Additionally, a desipramine chase did not change the cardiac (123)I-MIBG uptake (delayed heart-to-mediastinum ratio, 1.99 ± 0.12 (desipramine chase) vs. 2.05 ± 0.16 (controls), not statistically significant). In vivo norepinephrine transporter (NET) blockade with desipramine confirmed specific neural uptake of (18)F-LMI1195, (11)C-hydroxyephedrine, and (123)I-MIBG in rabbit hearts. (11)C-hydroxyephedrine cardiac retention was sensitive to a NET inhibitor chase, indicating a cycle of continuous NET uptake and release at the nerve terminals. In contrast, (18)F-LMI1195 and (123)I-MIBG demonstrated stable storage at the nerve terminal with resistance to a NET inhibitor chase, mimicking physiologic norepinephrine turnover. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A broadly applicable [18F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging
NASA Astrophysics Data System (ADS)
Huiban, Mickael; Tredwell, Matthew; Mizuta, Satoshi; Wan, Zehong; Zhang, Xiaomin; Collier, Thomas Lee; Gouverneur, Véronique; Passchier, Jan
2013-11-01
Molecules labelled with the unnatural isotope fluorine-18 are used for positron emission tomography. Currently, this molecular imaging technology is not exploited at its full potential because many 18F-labelled probes are inaccessible or notoriously difficult to produce. Typical challenges associated with 18F radiochemistry are the short half-life of 18F (<2 h), the use of sub-stoichiometric amounts of 18F, relative to the precursor and other reagents, as well as the limited availability of parent 18F sources of suitable reactivity ([18F]F- and [18F]F2). There is a high-priority demand for general methods allowing access to [18F]CF3-substituted molecules for application in pharmaceutical discovery programmes. We report the development of a process for the late-stage [18F]trifluoromethylation of (hetero)arenes from [18F]fluoride using commercially available reagents and (hetero)aryl iodides. This [18F]CuCF3-based protocol benefits from a large substrate scope and is characterized by its operational simplicity.
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.
1994-01-01
As part of the NASA High-Angle-of-Attack Technology Program (HATP), flight tests are currently being conducted with a multi-axis thrust vectoring system applied to the NASA F-18 High Alpha Research Vehicle (HARV). A follow-on series of flight tests with the NASA F-18 HARV will be focusing on the application of actuated forebody strake controls. These controls are designed to provide increased levels of yaw control at high angles of attack where conventional aerodynamic controls become ineffective. The series of flight tests are collectively referred to as the Actuated Nose Strakes for Enhanced Rolling (ANSER) Flight Experiment. The development of actuated forebody strake controls for the F-18 HARV is discussed and a summary of the ground tests conducted in support of the flight experiment is provided. A summary of the preparations for the flight tests is also provided.
DeGrado, Timothy R; Bhattacharyya, Falguni; Pandey, Mukesh K; Belanger, Anthony P; Wang, Shuyan
2010-08-01
Fatty acid oxidation (FAO) is a major energy-providing process with important implications in cardiovascular, oncologic, neurologic, and metabolic diseases. A novel 4-thia oleate analog, 18-(18)F-fluoro-4-thia-oleate ((18)F-FTO), was evaluated in relationship to the previously developed palmitate analog 16-(18)F-fluoro-4-thia-palmitate ((18)F-FTP) as an FAO probe. (18)F-FTO was synthesized from a corresponding bromoester. Biodistribution and metabolite analysis studies were performed in rats. Preliminary small-animal PET studies were performed with (18)F-FTO and (18)F-FTP in rats. A practical synthesis of (18)F-FTO was developed, providing a radiotracer of high radiochemical purity (>99%). In fasted rats, myocardial uptake of (18)F-FTO (0.70 +/- 0.30% dose kg [body mass]/g [tissue mass]) was similar to that of (18)F-FTP at 30 min after injection. At 2 h, myocardial uptake of (18)F-FTO was maintained, whereas (18)F-FTP uptake in the heart was 82% reduced. Similar to (18)F-FTP, (18)F-FTO uptake by the heart was approximately 80% reduced at 30 min by pretreatment of rats with the CPT-I inhibitor etomoxir. Folch-type extraction analyses showed 70-90% protein-bound fractions in the heart, liver, and skeletal muscle, consistent with efficient trafficking of (18)F-FTO to the mitochondrion with subsequent metabolism to protein-bound species. Preliminary small-animal PET studies showed rapid blood clearance and avid extraction of (18)F-FTO and of (18)F-FTP into the heart and liver. Images of (18)F-FTO accumulation in the rat myocardium were clearly superior to those of (18)F-FTP. (18)F-FTO is shown to be a promising metabolically trapped FAO probe that warrants further evaluation.
Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging.
Yu, Yunhan; Chan, Chung; Ma, Tianyu; Liu, Yaqiang; Gallezot, Jean-Dominique; Naganawa, Mika; Kelada, Olivia J; Germino, Mary; Sinusas, Albert J; Carson, Richard E; Liu, Chi
2016-07-01
Existing respiratory motion-correction methods are applied only to static PET imaging. We have previously developed an event-by-event respiratory motion-correction method with correlations between internal organ motion and external respiratory signals (INTEX). This method is uniquely appropriate for dynamic imaging because it corrects motion for each time point. In this study, we applied INTEX to human dynamic PET studies with various tracers and investigated the impact on kinetic parameter estimation. The use of 3 tracers-a myocardial perfusion tracer, (82)Rb (n = 7); a pancreatic β-cell tracer, (18)F-FP(+)DTBZ (n = 4); and a tumor hypoxia tracer, (18)F-fluoromisonidazole ((18)F-FMISO) (n = 1)-was investigated in a study of 12 human subjects. Both rest and stress studies were performed for (82)Rb. The Anzai belt system was used to record respiratory motion. Three-dimensional internal organ motion in high temporal resolution was calculated by INTEX to guide event-by-event respiratory motion correction of target organs in each dynamic frame. Time-activity curves of regions of interest drawn based on end-expiration PET images were obtained. For (82)Rb studies, K1 was obtained with a 1-tissue model using a left-ventricle input function. Rest-stress myocardial blood flow (MBF) and coronary flow reserve (CFR) were determined. For (18)F-FP(+)DTBZ studies, the total volume of distribution was estimated with arterial input functions using the multilinear analysis 1 method. For the (18)F-FMISO study, the net uptake rate Ki was obtained with a 2-tissue irreversible model using a left-ventricle input function. All parameters were compared with the values derived without motion correction. With INTEX, K1 and MBF increased by 10% ± 12% and 15% ± 19%, respectively, for (82)Rb stress studies. CFR increased by 19% ± 21%. For studies with motion amplitudes greater than 8 mm (n = 3), K1, MBF, and CFR increased by 20% ± 12%, 30% ± 20%, and 34% ± 23%, respectively. For (82)Rb rest studies, INTEX had minimal effect on parameter estimation. The total volume of distribution of (18)F-FP(+)DTBZ and Ki of (18)F-FMISO increased by 17% ± 6% and 20%, respectively. Respiratory motion can have a substantial impact on dynamic PET in the thorax and abdomen. The INTEX method using continuous external motion data substantially changed parameters in kinetic modeling. More accurate estimation is expected with INTEX. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Zhou, Zhengyuan; Chitneni, Satish K; Devoogdt, Nick; Zalutsky, Michael R; Vaidyanathan, Ganesan
2018-05-01
In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18 F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18 F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18 F using an 18 F-labeled aza-dibenzocyclooctyne derivative ([ 18 F]F-ADIBO) via SPAAC, generating the desired conjugate ([ 18 F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[ 125 I]iodobenzoate ([ 125 I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [ 18 F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [ 18 F]RL-II-2Rs15d and [ 125 I]SGMIB-2Rs15d, and microPET/CT imaging of [ 18 F]RL-II-2Rs15d and the [ 18 F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ± 6.9% (n = 8) was achieved for the SPAAC reaction between [ 18 F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (K d ) and IRF for the binding of [ 18 F]RL-II-2Rs15d to HER2 were 5.6 ± 1.3 nM and 73.1 ± 22.5% (n = 3), respectively. The specific uptake of [ 18 F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for co-incubated [ 125 I]SGMIB-2Rs15d. The uptake of [ 18 F]RL-II-2Rs15d in SKOV-3 xenografts at 1 h and 2 h p.i. were 5.54 ± 0.77% ID/g and 6.42 ± 1.70% ID/g, respectively, slightly higher than those for co-administered [ 125 I]SGMIB-2Rs15d (4.80 ± 0.78% ID/g and 4.78 ± 1.39% ID/g). MicroPET/CT imaging with [ 18 F]RL-II-2Rs15d at 1-3 h p.i. clearly delineated SKOV-3 tumors while no significant accumulation of activity in tumor was seen for [ 18 F]RL-II-R3B23. With the exception of kidneys, normal tissue levels for [ 18 F]RL-II-2Rs15d were low and cleared rapidly. To our knowledge, this is the first time SPAAC method has been used to label an sdAb with 18 F, especially with residualizing functionality. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Jun; Mills, Allen P.; Case, Carlye
2005-08-01
Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10-5 in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate that it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.
Courtois, Audrey; Nusgens, Betty V; Hustinx, Roland; Namur, Gauthier; Gomez, Pierre; Somja, Joan; Defraigne, Jean-Olivier; Delvenne, Philippe; Michel, Jean-Baptiste; Colige, Alain C; Sakalihasan, Natzi
2013-10-01
Rupture of abdominal aortic aneurysms (AAAs) leads to a significant morbidity and mortality in aging populations, and its prediction would be most beneficial to public health. Spots positive for uptake of (18)F-FDG detected by PET are found in 12% of AAA patients (PET+), who are most often symptomatic and at high rupture risk. Comparing the (18)F-FDG-positive site with a negative site from the same aneurysm and with samples collected from AAA patients with no (18)F-FDG uptake should allow the discrimination of biologic alterations that would help in identifying markers predictive of rupture. Biopsies of the AAA wall were obtained from patients with no (18)F-FDG uptake (PET0, n = 10) and from PET+ patients (n = 8), both at the site positive for uptake and at a distant negative site of the aneurysmal wall. Samples were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and zymography. The sites of the aneurysmal wall with a positive (18)F-FDG uptake were characterized by a strikingly increased number of adventitial inflammatory cells, highly proliferative, and by a drastic reduction of smooth muscle cells (SMCs) in the media as compared with their negative counterpart and with the PET0 wall. The expression of a series of genes involved in the maintenance and remodeling of the wall was significantly modified in the negative sites of PET+, compared with the PET0 wall, suggesting a systemic alteration of the aneurysmal wall. Furthermore, a striking increase of several matrix metalloproteinases (MMPs), notably the MMP1 and MMP13 collagenases, was observed in the positive sites, mainly in the adventitia. Moreover, PET+ patients were characterized by a higher circulating C-reactive protein. Positive (18)F-FDG uptake in the aneurysmal wall is associated with an active inflammatory process characterized by a dense infiltrate of proliferating leukocytes in the adventitia and an increased circulating C-reactive protein. Moreover, a loss of SMC in the media and alterations of the expression of genes involved in the remodeling of adventitia and collagen degradation potentially participate in the weakening of the aneurysmal wall preceding rupture.
NASA Astrophysics Data System (ADS)
Bindeman, Ilya N.; Schmitt, Axel K.; Lundstrom, Craig C.; Hervig, Richard L.
2018-05-01
Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B) labeled water with a nominal δ18O value of +450‰ over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a 130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 µm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of 20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with 1 µm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850 °C) are <1-3×10-23 m2/sec, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang
2015-09-01
Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang
2015-01-01
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jiayin; Gao, Yaozong; Shi, Feng
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less
[11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.
Sasaki, Toru
2004-02-01
To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.
Weinberg, Richard L; Morgenstern, Rachelle; DeLuca, Albert; Chen, Jennifer; Bokhari, Sabahat
2017-12-01
Sarcoidosis is an inflammatory disorder of unknown etiology that can involve the heart. While effective in imaging cardiac sarcoidosis, F-18 fluorodeoxyglucose (FDG) PET/CT often shows non-specific myocardial uptake. F-18 sodium fluoride (NaF) has been used to image inflammation in coronary artery plaques and has low background myocardial uptake. Here, we evaluated whether F-18 NaF can image myocardial inflammation due to clinically suspected cardiac sarcoidosis. We performed a single institution pilot study testing if F-18 NaF PET/CT can detect myocardial inflammation in patients with suspected cardiac sarcoidosis. Patients underwent cardiac PET/CT with F-18 FDG as part of their routine care and subsequently received an F-18 NaF PET/CT scan. Three patients underwent F-18 FDG and F-18 NaF imaging. In all patients, there was F-18 FDG uptake consistent with cardiac sarcoidosis. The F-18 NaF PET/CT scans showed no myocardial uptake. In this small preliminary study, PET/CT scan using F-18 NaF does not appear to detect myocardial inflammation caused by suspected cardiac sarcoidosis.
Gas mixture for diffuse-discharge switch
Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.
1984-01-01
Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.
Gas mixture for diffuse-discharge switch
Christophorou, L.G.; Carter, J.G.; Hunter, S.R.
1982-08-31
Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.
Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus
2013-02-01
Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, James T; Liau, Joy; Murphy, Paul; Schroeder, Michael E; Sirlin, Claude B; Bydder, Mark
2012-05-01
The purpose of this study was to investigate the relationship between liver fat fraction (FF) and diffusion parameters derived from the intravoxel incoherent motion (IVIM) model. Thirty-six subjects with suspected nonalcoholic fatty liver disease underwent diffusion-weighted magnetic resonance imaging with 10 b-values and spoiled gradient recalled echo imaging with six echoes for fat quantification. Correlations were measured between FF, transverse relaxivity (R2), diffusivity (D) and perfusion fraction (f). The primary finding was that no significant correlation was obtained for D vs. FF or f vs. FF. Significant correlations were obtained for D vs. R2 (r=-0.490, P=.002) and f vs. D (r=-0.458, P=.005). The conclusion is that hepatic steatosis does not affect measurement of perfusion or diffusion and therefore is unlikely to confound the use of apparent diffusivity to evaluate hepatic fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1978-01-01
A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Spectrum of the Nuclear Environment for GaAs Spin Qubits.
Malinowski, Filip K; Martins, Frederico; Cywiński, Łukasz; Rudner, Mark S; Nissen, Peter D; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand
2017-04-28
Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1 Hz. Increasing the applied magnetic field from 0.1 to 0.75 T suppresses electron-mediated spin diffusion, which decreases the spectral content in the 1/f^{2} region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime (≲16π pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime (≳32 π pulses), where longitudinal Overhauser fluctuations with a 1/f spectrum dominate.
1993-01-01
Nanovid (video-enhanced) microscopy was used to determine whether lateral diffusion in the plasma membrane of colloidal gold-tagged lipid molecules is confined or is unrestricted. Confinement could be produced by domains within the plane of the plasma membrane or by filamentous barriers within the pericellular matrix. Fluorescein- phosphatidylethanolamine (F1-PE), incorporated into the plasma membranes of cultured fibroblasts, epithelial cells and keratocytes, was labeled with 30-nm colloidal gold conjugated to anti-fluorescein (anti-F1). The trajectories of the gold-labeled lipids were used to compute diffusion coefficients (DG) and to test for restricted motion. On the cell lamella, the gold-labeled lipids diffused freely in the plasma membrane. Since the gold must move through the pericellular matrix as the attached lipid diffuses in the plasma membrane, this result suggests that any extensive filamentous barriers in the pericellular matrix are at least 40 nm from the plasma membrane surface. The average diffusion coefficients ranged from 1.1 to 1.7 x 10(-9) cm2/s. These values were lower than the average diffusion coefficients (DF) (5.4 to 9.5 x 10(-9) cm2/s) obtained by FRAP. The lower DG is partially due to the pericellular matrix as demonstrated by the result that heparinase treatment of keratocytes significantly increased DG to 2.8 x 10(-9) cm2/s, but did not affect DF. Pericellular matrix viscosity was estimated from the frictional coefficients computed from DG and DF and ranged from 0.5 to 0.9 poise for untreated cells. Heparinase treatment of keratocytes decreased the apparent viscosity to approximately 0.1 poise. To evaluate the presence of domains or barriers, the trajectories and corresponding mean square displacement (MSD) plots of gold-labeled lipids were compared to the trajectories and MSD plots resulting from computer simulations of random walks within corrals. Based on these comparisons, we conclude that, if there are domains limiting the diffusion of F1-PE, most are larger than 5 microns in diameter. PMID:8416991
Ding, W; Kou, L; Cao, B; Wei, Y
2010-03-01
Chemical composition, cholesterol levels, fatty acid profile, meat taste, and quality parameters were evaluated in 48 buck kids from goats of the Guanzhong Dairy breed (Group G) and their crosses (Group F1: 1/2 Boermale symbolx1/2 Guanzhong Dairyfemale symbol; Group F2: 3/4 Boermale symbolx1/4 Guanzhong Dairyfemale symbol; Group F3: 7/8 Boermale symbolx1/8 Guanzhong Dairyfemale symbol) at different ages of slaughter (6, 8 and 10 months). Results indicated that grading hybridization (P<0.05) affected meat nutritive value. The muscle of hybrid goats had lower crude fat and cholesterol, higher crude protein, and greater proportion of C18:2 and C18:3 than that of Group G at each age. Group F1 goats had better (P<0.05) desirable fatty acid (DFA) and polyunsaturated fatty acid (PUFA) to saturated fatty acid (SFA) ratios and greater (C18:0+C18:1/C16:0) ratios (P<0.01) than those of the other genotypes. Furthermore, the muscles of hybrid goats were tenderer and juicier compared to Group G. In all four groups, cholesterol levels increased (P<0.01), muscle color became redder (P<0.05) and tenderness decreased (P<0.05) with increasing age. The low level of lipids and cholesterol, good meat quality, and the higher ratio of unsaturated to SFA in Group F1 indicate better quality for human consumption. Copyright 2009. Published by Elsevier Ltd.
Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas
2018-04-01
Our purpose was to provide data regarding relationships between different imaging and histopathological parameters in HNSCC. MEDLINE library was screened for associations between different imaging parameters and histopathological features in HNSCC up to December 2017. Only papers containing correlation coefficients between different imaging parameters and histopathological findings were acquired for the analysis. Associations between 18 F-FDG positron emission tomography (PET) and KI 67 were reported in 8 studies (236 patients). The pooled correlation coefficient was 0.20 (95% CI = [-0.04; 0.44]). Furthermore, in 4 studies (64 patients), associations between 18 F-fluorothymidine PET and KI 67 were analyzed. The pooled correlation coefficient between SUV max and KI 67 was 0.28 (95% CI = [-0.06; 0.94]). In 2 studies (23 patients), relationships between KI 67 and dynamic contrast-enhanced magnetic resonance imaging were reported. The pooled correlation coefficient between K trans and KI 67 was -0.68 (95% CI = [-0.91; -0.44]). Two studies (31 patients) investigated correlation between apparent diffusion coefficient (ADC) and KI 67. The pooled correlation coefficient was -0.61 (95% CI = [-0.84; -0.38]). In 2 studies (117 patients), relationships between 18 F-FDG PET and p53 were analyzed. The pooled correlation coefficient was 0.0 (95% CI = [-0.87; 0.88]). There were 3 studies (48 patients) that investigated associations between ADC and tumor cell count in HNSCC. The pooled correlation coefficient was -0.53 (95% CI = [-0.74; -0.32]). Associations between 18 F-FDG PET and HIF-1α were investigated in 3 studies (72 patients). The pooled correlation coefficient was 0.44 (95% CI = [-0.20; 1.08]). ADC may predict cell count and proliferation activity, and SUV max may predict expression of HIF-1α in HNSCC. SUV max cannot be used as surrogate marker for expression of KI 67 and p53. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Ono, Maiko; Sahara, Naruhiko; Kumata, Katsushi; Ji, Bin; Ni, Ruiqing; Koga, Shunsuke; Dickson, Dennis W.; Trojanowski, John Q.; Lee, Virginia M-Y.; Yoshida, Mari; Hozumi, Isao; Yoshiyama, Yasumasa; van Swieten, John C.; Nordberg, Agneta; Suhara, Tetsuya; Zhang, Ming-Rong; Higuchi, Makoto
2017-01-01
Abstract Diverse neurodegenerative disorders are characterized by deposition of tau fibrils composed of conformers (i.e. strains) unique to each illness. The development of tau imaging agents has enabled visualization of tau lesions in tauopathy patients, but the modes of their binding to different tau strains remain elusive. Here we compared binding of tau positron emission tomography ligands, PBB3 and AV-1451, by fluorescence, autoradiography and homogenate binding assays with homologous and heterologous blockades using tauopathy brain samples. Fluorescence microscopy demonstrated intense labelling of non-ghost and ghost tangles with PBB3 and AV-1451, while dystrophic neurites were more clearly detected by PBB3 in brains of Alzheimer’s disease and diffuse neurofibrillary tangles with calcification, characterized by accumulation of all six tau isoforms. Correspondingly, partially distinct distributions of autoradiographic labelling of Alzheimer’s disease slices with 11C-PBB3 and 18F-AV-1451 were noted. Neuronal and glial tau lesions comprised of 4-repeat isoforms in brains of progressive supranuclear palsy, corticobasal degeneration and familial tauopathy due to N279K tau mutation and 3-repeat isoforms in brains of Pick’s disease and familial tauopathy due to G272V tau mutation were sensitively detected by PBB3 fluorescence in contrast to very weak AV-1451 signals. This was in line with moderate 11C-PBB3 versus faint 18F-AV-1451 autoradiographic labelling of these tissues. Radioligand binding to brain homogenates revealed multiple binding components with differential affinities for 11C-PBB3 and 18F-AV-1451, and higher availability of binding sites on progressive supranuclear palsy tau deposits for 11C-PBB3 than 18F-AV-1451. Our data indicate distinct selectivity of PBB3 compared to AV-1451 for diverse tau fibril strains. This highlights the more robust ability of PBB3 to capture wide-range tau pathologies. PMID:28087578
Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F
2018-05-01
The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Is (18)F-FDG PET really a promising marker for clinically relevant atherosclerosis?
Brammen, Lindsay; Palumbo, Barbara; Lupattelli, Graziana; Sinzinger, Helmut
2014-01-01
Bural et al (2013), retrospectively investigated 143 subjects who received whole body fluorine-18-fluorodeoxyglucose- positron emission tomography ((18)F-FDG-PET) imaging for the assessment of non-cardiovascular diseases. They reported an increase of (18)F-FDG-positive lesions in various aortic segments, which increased with age, and were more pronounced in subjects being aged below 50 years as compared to those above 50. Bural et al also found the highest segmental (18)F-FDG-uptake in the descending thoracic aorta, but not in the abdominal aorta, where the majority of the most severe atherosclerotic lesions essentially appear. In addition, they did not appreciate any significant gender difference. Despite the severe limitation that no correlation to vascular disease, risk factors, or any clinical parameter was available, this report again raises the question as to what positive (18)F-FDG imaging really reflects and whether it will ever reach the great expectations. Conventional radiotracers revealed an excellent experimental correlation, as well as morphology. Uptake ratios of symptomatic lesion vs. contralateral unaffected side were comparable between (111)In-platelets, (123)I-LDL and (18)FFDG. There was also a mass strategic correlation, but no individual prediction of events at all. Due to better statistics, image quality and solution PET imaging of atherosclerosis holds great promise. However, correlations between various tracers and vascular wall characteristics (and staining methodologies) in 1% cholesterol fed rabbits reveal that (18)F-FDG is not always the best tracer. Vascular foam cell content is reflected by (111)In-HIG > (125)I-oxLp(a) > (18)F-FDG > (125)I-LDL (Brammen L, Palumbo B, Lupattelli G et al. Unpublished data). A close correlation to Framingham risk score is for example not helpful, as this score has a low predictive value of only 0.6. The available clinical correlations between (18)F-FDG-uptake and arterial wall characteristics are poor. For example, Lederman RJ et al (2001) reported a correlation between (18)FFDG uptake with intima/media ratio, whereas no correlation was established in a paper by Ogawa M et al (2004). On the other hand, Laitinen I et al (2006) described a correlation between (18)F-FDG-uptake and calcifications, however, Tatsumi M et al (2003) did not observe this in his paper. The claim that inflammation and macrophage uptake of (18)F-FDG may be able to characterize and identify early atherosclerotic lesions has never been substantiated. Earlier studies reveal a negative correlation between (18)F-FDG uptake and smooth muscle cells, but a positive one with macrophages. The extent of uptake by different vascular wall cells (e.g. endothelial cells, smooth muscle cells, macrophages) in different atherosclerotic lesion types under various biochemical conditions has thus far not been extensively studied, neither in vitro nor in experimental or clinical work. Only one recent report does deal with this issue. Our preliminary studies show that the cellular uptake extremely varies depending on the local metabolic condition. For example, smooth muscle and endothelial cells, when exposed to pro-inflammatory cytokines, exhibit an extremely enhanced (18)F-FDG uptake while local hypoxia results in an opposite behavior. This is not observed in macrophages. Furthermore, when cultured cells were studied, uptake was severely dependent on the duration of incubation and the type of stimulation. This data indicates that (18)F-FDG uptake is enhanced in early foam cell formation, as well as in activated smooth muscle cells that eventually reach, under certain conditions, a comparable uptake. In addition, there is a lack of standardization and of prospective studies preventing reliable clinical interpretation. There seems to be only one consensus. There is no abnormal uptake of (18)F-FDG as well as of conventional tracers in the intact vascular wall and intra individual therapeutic intervention is truly reflected. The goal of non-invasive imaging in humans is to identify plaques at risk, an active lesion or the extent of the disease. As long as no prospective controlled data with other imaging modalities identifying vascular alterations defined per lesion and not per segment are available, it seems very unlikely that (18)F-FDG may significantly succeed in this particular indication.
Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech
Duffy, Joseph R.; Strand, Edythe A.; Machulda, Mary M.; Senjem, Matthew L.; Master, Ankit V.; Lowe, Val J.; Jack, Clifford R.; Whitwell, Jennifer L.
2012-01-01
Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [18F]-fluorodeoxyglucose and [11C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49–82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy and increased mean diffusivity of the superior longitudinal fasciculus, particularly the premotor components. Statistical parametric mapping of the [18F]-fluorodeoxyglucose positron emission tomography scans revealed focal hypometabolism of superior lateral premotor cortex and supplementary motor area, although there was some variability across subjects noted with CortexID analysis. [11C]-Pittsburg compound B positron emission tomography binding was increased in only one of the 12 subjects, although it was unclear whether the increase was actually related to the primary progressive apraxia of speech. A syndrome characterized by progressive pure apraxia of speech clearly exists, with a neuroanatomic correlate of superior lateral premotor and supplementary motor atrophy, making this syndrome distinct from primary progressive aphasia. PMID:22382356
Martiniova, Lucia; Perera, Shiromi M.; Brouwers, Frederieke M.; Alesci, Salvatore; Abu-Asab, Mones; Marvelle, Amanda F.; Kiesewetter, Dale O.; Thomasson, David; Morris, John C.; Kvetnansky, Richard; Tischler, Arthur S.; Reynolds, James C; Fojo, A. Tito; Pacak, Karel
2014-01-01
Purpose [131I]-meta-iodobenzylguanidine ([131I]-MIBG) is the most commonly employed treatment for metastatic pheochromocytoma and paraganglioma; however, its success is limited. Its efficacy depends on the [131I]-MIBG concentration reached within the tumor through its uptake via the norepinephrine transporter and retention in neurosecretory granules. Purpose is to enhance [123I]-MIBG uptake in cells and liver pheochromocytoma tumors. Experimental Design We report the in vitro effects of two histone deacetylase (HDAC) inhibitors, romidepsin and trichostatin A, on increased uptake of [3H]-norepinephrine and [123I]-MIBG in mouse pheochromocytoma (MPC) cells, and the effect of romidepsin on [18F]-fluorodopamine and [123I]-MIBG uptake in a mouse model of metastatic pheochromocytoma. The effects of both inhibitors on norepinephrine transporter activity were assessed in MPC cells by [123I]-MIBG uptake studies with and without the transporter blocking agent desipramine and the vesicular blocking agent reserpine. Results Both HDAC inhibitors increased [3H]-norepinephrine, [123I]-MIBG, and [18F]-fluorodopamine uptake through the norepinephrine transporter in MPC cells. In vivo, inhibitor treatment resulted in increased uptake of [18F]-fluorodopamine and in pheochromocytoma liver metastases as measured by maximal standardized uptake values on PET imaging (p < 0.001). Analysis of biodistribution after inhibitor treatment confirmed the PET results in that uptake of [123I]-MIBG was significantly increased in liver metastases (p < 0.05). Therefore, HDAC inhibitor treatment increased radioisotope uptake in MPC cells in vitro and in liver metastases in vivo, through increased norepinephrine transporter activity. Conclusion These results suggest that HDAC inhibitors could enhance the therapeutic efficacy of [131I]-MIBG treatment in patients with malignant pheochromocytoma. PMID:21098082
In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.
Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun
2016-09-01
Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulation of tissue activity curves of 64Cu-ATSM for sub-target volume delineation in radiotherapy
NASA Astrophysics Data System (ADS)
Dalah, E.; Bradley, D.; Nisbet, A.
2010-02-01
There is much interest in positron emission tomography (PET) for measurements of regional tracer concentration in hypoxic tumour-bearing tissue, focusing on the need for accurate radiotherapy treatment planning. Generally, relevant data are taken over multiple time frames in the form of tissue activity curves (TACs), thus providing an indication of vasculature structure and geometry. This is a potential key in providing information on cellular perfusion and limited diffusion. A number of theoretical studies have attempted to describe tracer uptake in tissue cells in an effort to understand such complicated behaviour of cellular uptake and the mechanism of washout. More recently, a novel computerized reaction diffusion equation method was developed by Kelly and Brady (2006 A model to simulate tumour oxygenation and dynamic [18F]-FMISO PET data Phys. Med. Biol. 51 5859-73), where they managed to simulate the realistic dynamic TACs of 18F-FMISO. The model was developed over a multi-step process. Here we present a refinement to the work of Kelly and Brady, such that the model allows simulation of a realistic tissue activity curve (TAC) of any hypoxia selective PET tracer, in a single step process. In this work we show particular interest in simulating the TAC of perhaps the most promising hypoxia selective tracer, 64Cu-ATSM. In addition, we demonstrate its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the significant high contrast of imaging using ATSM, with a tumour to blood ratio ranging from 2.24 to 4.1.
Is the detection rate of 18F-choline PET/CT influenced by androgen-deprivation therapy?
Chondrogiannis, Sotirios; Marzola, Maria Cristina; Ferretti, Alice; Grassetto, Gaia; Maffione, Anna Margherita; Rampin, Lucia; Fanti, Stefano; Giammarile, Francesco; Rubello, Domenico
2014-07-01
To evaluate if the detection rate (DR) of (18)F-choline (18F-CH) PET/CT is influenced by androgen-deprivation therapy (ADT) in patients with prostate cancer (PC) already treated with radical intent and presenting biochemical relapse. We have retrospectively evaluated (18)F-CH PET/CT scans of 325 consecutive PC patients enrolled in the period November 2009 to December 2012 previously treated with radical intent and referred to our centre to perform (18)F-CH PET/CT for biochemical relapse. Two different groups of patients were evaluated. group A included the whole sample of 325 patients (mean age 70 years, range: 49-86) who presented trigger PSA between 0.1 and 80 ng/ml (mean 5.5 ng/ml), and group B included 187 patients (mean age 70 years, range 49-86) with medium-low levels of trigger PSA ranging between 0.5 and 5 ng/ml (mean PSA 2.1 ng/ml); group B was chosen in order to obtain a more homogeneous group of patients in terms of PSA values also excluding both very low and very high PSA levels avoiding the "a priori" higher probability of negative or positive PET scan, respectively. At the time of examination, 139 patients from group A and 72 patients from group B were under ADT: these patients were considered to be hormone-resistant PC patients because from their oncologic history (>18 months) an increase of PSA levels emerged despite the ongoing ADT. The relationship between (18)F-CH PET/CT findings and possible clinical predictors was investigated using both univariate and multivariate binary logistic regression analyses, including trigger PSA and ADT. Considering the whole population, overall DR of (18)F-CH PET was 58.2 % (189/325 patients). In the whole sample of patients (group A), both at the univariate and multivariate logistic regression analysis, trigger PSA and ADT were significantly correlated with the DR of (18)F-CH PET (p < 0.05). Moreover, the DR in patients under ADT (mean PSA 7.8 ng/ml) was higher than in patients not under ADT (mean PSA 3.9 ng/ml), (DR was 70.5 % and 48.9 %, respectively; p < 0.001), therefore, demonstrating the existence of a significant correlation between the DR of (18)F-CH PET and ADT. In group B patients only trigger PSA resulted a reliable predictor of the (18)F-CH positivity, since ADT was not correlated to the DR of (18)F-CH PET (p = 0.061). Also in group B the DR of (18)F-CH PET in patients under ADT was higher than in patients not under ADT (65.3 % and 51.3 %, respectively) but the difference was not significant without a statistically significant correlation in the Mann Whitney test (p = 0.456) therefore, suggesting the lack of correlation between DR (18)F-CH PET/CT and ADT. Similarly to previous published studies, in our series the overall DR of (18)F-CH PET/CT was 58 % and was significantly correlated to trigger PSA. The most important finding of the present study is that ADT does not negatively influence DR of (18)F-CH PET/CT in PC patients with biochemical relapse; therefore, it can be suggested that it is not necessary to withdraw ADT before performing (18)F-CH PET/CT.
Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Loft, Annika; Berthelsen, Anne Kiil; Federspiel, Birgitte; Binderup, Tina; Kjaer, Andreas
2016-12-01
Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumors arising in various organs and with a large span of aggressiveness and survival rates. The Ki-67 proliferation index is presently used as the key marker of prognosis, and treatment guidelines are largely based on this index. 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) is a proliferation tracer for PET imaging valuable in the monitoring of disease progression and treatment response in various types of cancer. However, until now only data from 10 patients with NEN were available in the literature. The aim of the present study was to investigate 18 F-FLT PET as a prognostic marker for NENs in comparison with 18 F-FDG PET and Ki-67 index. One hundred patients were PET-scanned with both 18 F-FLT and 18 F-FDG within the same week, and the prognostic value of a positive scan was examined in terms of progression-free survival (PFS) and overall survival (OS). The correlation between the Ki-67 index and 18 F-FLT uptake was also investigated. Thirty-seven percent of patients had a positive 18 F-FLT PET scan, and 49% had 18 F-FDG PET-positive foci. Patients with a high 18 F-FLT uptake had a significantly shorter OS and PFS than patients with low or no 18 F-FLT uptake. No correlation was found between Ki-67 index and 18 F-FLT uptake. In a multivariate analysis 18 F-FLT, 18 F-FDG, and Ki-67 all were significant prognostic markers of PFS. For OS, only 18 F-FDG and Ki-67 remained significant. 18 F-FLT PET has prognostic value in NEN patients but when 18 F-FDG PET and Ki-67 index are also available, a multivariate model revealed that 18 F-FLT PET only adds information regarding PFS but not OS, whereas 18 F-FDG PET remains predictive of both PFS and OS. However, a clinically robust algorithm including 18 F-FLT in addition to 18 F-FDG and Ki-67 could not be found. Accordingly, the exact role, if any, of 18 F-FLT PET in NENs remains to be established. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ishiwata, Kiichi; Ebinuma, Ryoichi; Watanabe, Chuichi; Hayashi, Kunpei; Toyohara, Jun
2018-06-05
The aim of this study was to establish a reliable and routine method for the preparation of 4-[ 10 B]borono-2-[ 18 F]fluoro-L-phenylalanine (L-[ 18 F]FBPA) for boron neutron capture therapy-oriented diagnosis using positron emission tomography. To produce L-[ 18 F]FBPA by electrophilic fluorination of 4-[ 10 B]borono-L-phenylalanine (L-BPA) with [ 18 F]acetylhypofluorite ([ 18 F]AcOF) via [ 18 F]F 2 derived from the 20 Ne(d,α) 18 F nuclear reaction, several preparation parameters and characteristics of L-[ 18 F]FBPA were investigated, including: pre-irradiation for [ 18 F]F 2 production, the carrier F 2 content in the Ne target, L-BPA-to-F 2 ratios, separation with high-performance liquid chromatography (HPLC) using 10 different eluents, enantiomeric purity, and residual trifluoroacetic acid used as the reaction solvent by gas chromatography-mass spectrometry. The activity yields and molar activities of L-[ 18 F]FBPA (n = 38) were 1200 ± 160 MBq and 46-113 GBq/mmol, respectively, after deuteron-irradiation for 2 h. Two 5 min pre-irradiations prior to [ 18 F]F 2 production for 18 F-labeling were preferable. For L-[ 18 F]FBPA synthesis, 0.15-0.2% of carrier F 2 in Ne and L-BPA-to-F 2 ratios > 2 were preferable. HPLC separations with five of the 10 eluents provided injectable L-[ 18 F]FBPA without any further formulation processing, which resulted in a synthesis time of 32 min. Among the five eluents, 1 mM phosphate-buffered saline was the eluent of choice. The L-[ 18 F]FBPA injection was sterile and pyrogen-free, and contained very small amounts of D-enantiomer (< 0.1% of L-[ 18 F]FBPA), L-BPA (< 1% of L-FBPA), and trifluoroacetic acid (< 0.5 ppm). L-[ 18 F]FBPA injection was reliably prepared by the electrophilic fluorination of L-BPA with [ 18 F]AcOF followed by HPLC separation with 1 mM phosphate-buffered saline.
Singh, Rambir; Hussain, Shariq; Verma, Rajesh; Sharma, Poonam
2013-05-13
To find out the anti-mycobacterial potential of Cassia sophera (C. sophera), Urtica dioica (U. dioica), Momordica dioica, Tribulus terrestris and Coccinia indica plants against multi-drug resistant (MDR) strain of Mycobacterium tuberculosis (M. tuberculosis). Plant materials were extracted successively with solvents of increasing polarity. Solvent extracts were screened for anti-mycobacterial activity against fast growing, non-pathogenic mycobacterium strain, Mycobacterium semegmatis, by disk diffusion method. The active extracts were tested against MDR and clinical isolates of M. tuberculosis by absolute concentration and proportion methods. The active extracts were subjected to bio-autoassay on TLC followed by silica column chromatography for isolation of potential drug leads. Hexane extract of U. dioica (HEUD) and methanol extract of C. sophera (MECS) produced inhibition zone of 20 mm in disc diffusion assay and MIC of 250 and 125 μ g/mL respectively in broth dilution assay against Mycobacterium semegmatis. Semipurified fraction F2 from MECS produced 86% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. F18 from HEUD produced 81% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. Phytochemical analysis indicated that anti-mycobacterial activity of MECS may be due to presence of alkaloids or flavonoids and that of HEUD due to terpenoids. C. sophera and U. dioica plant extracts exhibited promising anti-mycobacterial activity against MDR strain of M. tuberculosis. This is the first report of anti-mycobacterial activity form C. sophera. This study showed possibility of purifying novel anti-mycobacterial compound(s) from C. sophera and U. dioica. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Tek Chand, Kalawat; Chennu, Krishna Kishore; Amancharla Yadagiri, Lakshmi; Manthri Gupta, Ranadheer; Rapur, Ram; Vishnubotla, Siva Kumar
2017-04-01
Studies on fever of unknown origin (FUO) in patients of chronic kidney disease and end stage renal disease patients on dialysis were not many. In this study, we used 18 F-FDG PET/CT scan whole body survey for detection of hidden infection, in patients on dialysis, labelled as FUO. In this retrospective study, 20 patients of end stage renal disease on dialysis were investigated for the cause of FUO using 18F-FDG PET/CT scan. All these patients satisfied the definition of FUO as defined by Petersdorf and Beeson. Any focal abnormal site of increased FDG concentration detected by PET/CT, either a solitary or multiple lesions was documented and at least one of the detected abnormal sites of radio tracer concentration was further examined for histopathology. All patients were on renal replacement therapy. Of these, 18 were on hemodialysis and two were on peritoneal dialysis. 18F-FDG PET/CT scan showed metabolically active lesions in 15 patients and metabolically quiescent in five patients. After 18F-FDG PET/CT scan all, but one patient had a change in treatment for fever. Anti-tuberculous treatment was given in 15 patients, antibiotics in four patients and anti-malaria treatment in one patient. The present study is first study of 18F-FDG PET/CT scan in patients of end stage renal disease on dialysis with FUO. The study showed that the 18 F FDG PET/CT scan may present an opportunity to attain the diagnosis in end stage renal disease patients on dialysis with FUO. © 2016 International Society for Hemodialysis.
PET imaging of cardiomyocyte apoptosis in a rat myocardial infarction model.
Ma, Hui; Liu, Shaoyu; Xiong, Ying; Zhang, Zhanwen; Sun, Aixia; Su, Shu; Liang, Hong; Yuan, Gongjun; Tang, Ganghua
2018-06-23
Cardiomyocyte apoptosis has been observed in several cardiovascular diseases and contributes to the subsequent cardiac remodeling processes and progression to heart failure. Consequently, apoptosis imaging is helpful for noninvasively detecting the disease progression and providing treatment guidance. Here, we tested 18 F-labeled 2-(5-fluoropentyl)-2-methyl-malonic acid ( 18 F-ML-10) and 18 F-labeled 2-(3-fluoropropyl)-2-methyl-malonic acid ( 18 F-ML-8) for apoptosis imaging in rat models of myocardial infarction (MI) and compared them with 18 F-fluorodeoxyglucose ( 18 F-FDG). MI was induced in Sprague-Dawley rats by permanent left coronary artery ligation. Procedural success was confirmed by echocardiography and positron emission tomography (PET) imaging with 18 F-FDG. In vivo PET imaging with 18 F-ML-10 and 18 F-ML-8 was performed in the MI models at different time points after operation. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemical analyses were used to evaluate myocardial apoptosis. In vitro cell binding assays were performed to validate 18 F-ML-8 binding to apoptotic cardiomyocytes. PET imaging demonstrated high 18 F-ML-10 and 18 F-ML-8 uptake where 18 F-FDG uptake was absent. The focal accumulation of the two tracers was high on days 1 and 3 but was not notable on days 5 and 7 after surgery. The infarct-to-lung uptake ratio was 4.29 ± 0.30 for 18 F-ML-10 and 3.51 ± 0.18 for 18 F-ML-8 (n = 6, analyzed by averaging the uptake ratios on postoperative days 1 and 3, P < 0.05). The TUNEL results showed that myocardial cell apoptosis was closely related to the focal uptake of the apoptotic tracers in the infarct area. In addition, the apoptosis rates calculated from the TUNEL results were better correlated with 18 F-ML-8 uptake than with 18 F-ML-10 uptake. Ex vivo cell binding assays demonstrated that 18 F-ML-8 accumulated in apoptotic cells but not in necrotic or normal cells. PET imaging using 18 F-ML-10 or 18 F-ML-8 allows the noninvasive detection of myocardial apoptosis in the early phase. In addition, 18 F-ML-8 may be better than 18 F-ML-10 for apoptosis imaging. We propose that PET imaging with 18 F-ML-10 or 18 F-ML-8 combined with 18 F-FDG is an alternative for detecting and assessing MI.
Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study
Hartimath, Siddesh V.; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K.; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A.J.O.; de Vries, Erik F.J.
2018-01-01
Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug. PMID:29467958
Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study.
Hartimath, Siddesh V; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A J O; de Vries, Erik F J
2018-01-23
Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [ 18 F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [ 18 F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [ 18 F]FB-IL2v to IL2R was reversible. The volume of distribution (V T ) and the non-displaceable binding potential (BP nd ) of mutant [ 18 F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [ 18 F]FB-IL2 ( p < 0.01). Pretreatment with wt-IL2 significantly reduced the V T and BPnd of mutant [ 18 F]FB-IL2v in the implant ( p < 0.001). This demonstrates that wild-type [ 18 F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [ 18 F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.
Wagner, T; Page, J; Burniston, M; Skillen, A; Ross, J C; Manwani, R; McCool, D; Hawkins, P N; Wechalekar, Ashutosh D
2018-07-01
18 F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18 F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. Seventeen patients with proven cardiac amyloidosis underwent 18 F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123 I-serum amyloid P component (SAP). 18 F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUV mean ) were produced. All 17 patients showed 18 F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123 I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18 F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123 I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. 18 F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18 F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool for AL.
Tran, Ly-Binh-An; Bol, Anne; Labar, Daniel; Karroum, Oussama; Bol, Vanesa; Jordan, Bénédicte; Grégoire, Vincent; Gallez, Bernard
2014-11-01
Hypoxia-driven intervention (oxygen manipulation or dose escalation) could overcome radiation resistance linked to tumor hypoxia. Here, we evaluated the value of hypoxia imaging using (18)F-FAZA PET to predict the outcome and guide hypoxia-driven interventions. Two hypoxic rat tumor models were used: rhabdomyosarcoma and 9L-glioma. For the irradiated groups, the animals were divided into two subgroups: breathing either room air or carbogen. (18)F-FAZA PET images were obtained just before the irradiation to monitor the hypoxic level of each tumor. Absolute pO2 were also measured using EPR oximetry. Dose escalation was used in Rhabdomyosarcomas. For 9L-gliomas, a significant correlation between (18)F-FAZA T/B ratio and tumor growth delay was found; additionally, carbogen breathing dramatically improved the tumor response to irradiation. On the contrary, Rhabdomyosarcomas were less responsive to hyperoxic challenge. For that model, an increase in growth delay was observed using dose escalation, but not when combining irradiation with carbogen. (18)F-FAZA uptake may be prognostic of outcome following radiotherapy and could assess the response of tumor to carbogen breathing. (18)F-FAZA PET may help to guide the hypoxia-driven intervention with irradiation: carbogen breathing in responsive tumors or dose escalation in tumors non-responsive to carbogen. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Huang, Chu-Yun; Liu, Chi-Hung; Tsao, Eusden; Hsieh, Chia-Ju; Weng, Yi-Hsin; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Lin, Kun-Ju; Huang, Chin-Chang
2015-01-01
Recent experimental studies revealed that dopamine neuron dysfunction in chronic manganism may be due to a reduced capacity of dopamine release in the striatum. The findings imposed further difficulty in the differential diagnosis between manganism and IPD. We conducted a long-term clinical follow-up study of 4 manganism patients, applying a new tracer (18)F-9-fluoropropyl-(+)-dihydrotetrabenazine ((18)F-AV-133) with positron emission tomography (PET). Twenty age-matched subjects including 4 manganism patients, 8 idiopathic Parkinson's disease (IPD) patients, and 8 healthy controls were enrolled for comparison. Volumes of interest of the bilateral putamen, caudate nuclei and occipital cortex as the reference region were delineated from individual magnetic resonance images. The clinical features of the manganism patients still progressed, with increased scores on the Unified Parkinson Disease Rating Scale. The (18)F-AV-133 uptake in the IPD patients decreased at the bilateral striatum, compared with the healthy controls. In the manganism patients, there was no decreased uptake of radioactivity involving the bilateral striatum, except Patient 4, who had a stroke with decreased uptake in the right posterior putamen. The (18)F-AV-133 PET finding reveals that nigrostriatum neurons are not degenerated in chronic manganism and can provide a useful neuroimage biomarker in the differential diagnosis. Copyright © 2015. Published by Elsevier B.V.
Advances in PET myocardial perfusion imaging: F-18 labeled tracers.
Rischpler, Christoph; Park, Min-Jae; Fung, George S K; Javadi, Mehrbod; Tsui, Benjamin M W; Higuchi, Takahiro
2012-01-01
Coronary artery disease and its related cardiac disorders represent the most common cause of death in the USA and Western world. Despite advancements in treatment and accompanying improvements in outcome with current diagnostic and therapeutic modalities, it is the correct assignment of these diagnostic techniques and treatment options which are crucial. From a diagnostic standpoint, SPECT myocardial perfusion imaging (MPI) using traditional radiotracers like thallium-201 chloride, Tc-99m sestamibi or Tc-99m tetrofosmin is the most utilized imaging technique. However, PET MPI using N-13 ammonia, rubidium-82 chloride or O-15 water is increasing in availability and usage as a result of the growing number of medical centers with new-generation PET/CT systems taking advantage of the superior imaging properties of PET over SPECT. The routine clinical use of PET MPI is still limited, in part because of the short half-life of conventional PET MPI tracers. The disadvantages of these conventional PET tracers include expensive onsite production and inconvenient on-scanner tracer administration making them unsuitable for physical exercise stress imaging. Recently, two F-18 labeled radiotracers with longer radioactive half-lives than conventional PET imaging agents have been introduced. These are flurpiridaz F 18 (formerly known as F-18 BMS747158-02) and F-18 fluorobenzyltriphenylphosphonium. These longer half-life F-18 labeled perfusion tracers can overcome the production and protocol limitations of currently used radiotracers for PET MPI.
Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.
Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik
2017-04-01
Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
Morita, Motoho; Higuchi, Tetsuya; Achmad, Arifudin; Tokue, Azusa; Arisaka, Yukiko; Tsushima, Yoshito
2013-10-01
The usefulness of (18)F-FDG PET/CT for bone metastasis evaluation has already been established. The amino acid PET tracer [(18)F]-3-fluoro-alpha-methyl tyrosine ((18)F-FAMT) has been reported to be highly specific for malignancy. We evaluated the additional value of (18)F-FAMT PET/CT to complement (18)F-FDG PET/CT in the evaluation of bone metastasis. This retrospective study included 21 patients with bone metastases of various cancers who had undergone both (18)F-FDG and (18)F-FAMT PET/CT within 1 month of each other. (18)F-FDG-avid bone lesions suspicious for malignancy were carefully selected based on the cut-off value for malignancy, and the SUVmax of the (18)F-FAMT in the corresponding lesions were evaluated. A total of 72 (18)F-FDG-positive bone lesions suspected to be metastases in the 21 patients were used as the reference standard. (18)F-FAMT uptake was found in 87.5 % of the lesions. In the lesions of lung cancer origin, the uptake of the two tracers showed a good correlation (40 lesions, r = 0.68, P < 0.01). Bone metastatic lesions of oesophageal cancer showed the highest average of (18)F-FAMT uptake. Bone metastatic lesions of squamous cell carcinoma showed higher (18)F-FAMT uptake than those of adenocarcinoma. No significant difference in (18)F-FAMT uptake was seen between osteoblastic and osteolytic bone metastatic lesions. The usefulness of (18)F-FAMT PET/CT for bone metastasis detection regardless of the lesion phenotype was demonstrated. The fact that (18)F-FAMT uptake was confirmed by (18)F-FDG uptake suggests that (18)F-FAMT PET/CT has the potential to complement (18)F-FDG PET/CT for the detection of bone metastases.
Automated Synthesis of 18F-Fluoropropoxytryptophan for Amino Acid Transporter System Imaging
Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D.; Zhang, Yin-Han; Yang, David J.
2014-01-01
Objective. This study was to develop a cGMP grade of [18F]fluoropropoxytryptophan (18F-FTP) to assess tryptophan transporters using an automated synthesizer. Methods. Tosylpropoxytryptophan (Ts-TP) was reacted with K18F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of 18F-FTP and 18F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with 18F-FTP and 18F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Results. Radio-TLC and HPLC analyses of 18F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of 18F-FTP and 18F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that 18F-FTP had less tumor uptake than 18F-FDG in prostate cancer model. However, 18F-FTP had more uptake than 18F-FDG in small cell lung cancer model. Conclusion. 18F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by 18F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response. PMID:25136592
Automated synthesis of 18F-fluoropropoxytryptophan for amino acid transporter system imaging.
Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D; Yang, Kevin; Zhang, Yin-Han; Yang, David J
2014-01-01
This study was to develop a cGMP grade of [(18)F]fluoropropoxytryptophan ((18)F-FTP) to assess tryptophan transporters using an automated synthesizer. Tosylpropoxytryptophan (Ts-TP) was reacted with K(18)F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of (18)F-FTP and (18)F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with (18)F-FTP and (18)F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Radio-TLC and HPLC analyses of (18)F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of (18)F-FTP and (18)F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that (18)F-FTP had less tumor uptake than (18)F-FDG in prostate cancer model. However, (18)F-FTP had more uptake than (18)F-FDG in small cell lung cancer model. (18)F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by (18)F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response.
Current noise generated by spin imbalance in presence of spin relaxation
NASA Astrophysics Data System (ADS)
Khrapai, V. S.; Nagaev, K. E.
2017-01-01
We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.
Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.
Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M
2015-01-01
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.
Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats
Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.
2015-01-01
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657
One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging.
Basuli, Falguni; Zhang, Xiang; Williams, Mark R; Seidel, Jurgen; Green, Michael V; Choyke, Peter L; Swenson, Rolf E; Jagoda, Elaine M
2018-05-30
Equilibrium single-photon radionuclide imaging methods for assessing cardiac function and the integrity of the vascular system have long been in use for both clinical and research purposes. However, positron-emitting blood pool agents that could provide PET equivalents to these (and other) clinical procedures have not yet been adopted despite technical imaging advantages offered by PET. Our goal was to develop a PET blood pool tracer that not only meets necessary in vivo biological requirements but can be produced with an uncomplicated and rapid synthesis method which would facilitate clinical translation. Herein, albumin labeled with fluorine-18 was synthesized using a one-pot method and evaluated in vitro and in vivo in rats. A ligand (NODA-Bz-TFPE), containing NODA attached to a tetrafluorophenylester (TFPE) via a phenyl linker (Bz), was labeled with aluminum fluoride (Al[ 18 F]F). Conjugation of the serum albumin with the ligand (Al[ 18 F]F-NODA-Bz-TFPE), followed by purification (size exclusion chromatography), yielded the final product (Al[ 18 F]F-NODA-Bz-RSA/HSA). In vitro stability was evaluated in human serum albumin by HPLC. Rat biodistributions and whole-body PET imaging over a 4 h time course were used for the in vivo evaluation. This synthesis exhibited an overall radiochemical yield of 45 ± 10% (n = 30), a 50-min radiolabeling time, a radiochemical purity >99% and apparent stability up to 4 h in human serum. Blood had the highest retention of Al[ 18 F]F-NODA-Bz-RSA at all times with a blood half-life of 5.2 h in rats. Al[ 18 F]F-NODA-Bz-RSA distribution in most rat tissues remained relatively constant for up to 1 h, indicating that the tissue radioactivity content represents the respective tissue plasma volume. Dynamic whole-body PET images were in agreement with these findings. A new ligand has been developed and radiolabeled with Al[ 18 F]F that allows rapid (50-min) preparation of fluorine-18 serum albumin in one-pot. In addition to increased synthetic efficiency, the construct appears to be metabolically stable in rats. This method could encourage wider use of PET to quantify cardiac function and tissue vascular integrity in both research and clinical settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Electrospun F18 Bioactive Glass/PCL—Poly (ε-caprolactone)—Membrane for Guided Tissue Regeneration
Hidalgo Pitaluga, Lucas; Trevelin Souza, Marina; Santocildes Romero, Martin Eduardo; Hatton, Paul V.
2018-01-01
Barrier membranes that are used for guided tissue regeneration (GTR) therapy usually lack bioactivity and the capability to promote new bone tissue formation. However, the incorporation of an osteogenic agent into polymeric membranes seems to be the most assertive strategy to enhance their regenerative potential. Here, the manufacturing of composite electrospun membranes made of poly (ε-caprolactone) (PCL) and particles of a novel bioactive glass composition (F18) is described. The membranes were mechanically and biologically tested with tensile strength tests and tissue culture with MG-63 osteoblast-like cell line, respectively. The PCL-F18 composite membranes demonstrated no increased cytotoxicity and an enhanced osteogenic potential when compared to pure PCL membranes. Moreover, the addition of the bioactive phase increased the membrane tensile strength. These preliminary results suggested that these new membranes can be a strong candidate for small bone injuries treatment by GTR technique. PMID:29517988
Way, Jenilee Dawn; Wuest, Frank
2014-02-01
4-[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal-mediated C-C and C-N cross-coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no-carrier-added [18F]FIB on a GE TRACERlab™ FX automated synthesis unit starting from commercially available(4-iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay-corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/μmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride.
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2013-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated 18F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. 18F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. 18F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on 18F-FDG-PET scan when CT criteria for malignant involvement are not met. 18F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. 18F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. 18F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using 18F-FDG-PET to evaluate equivocal CT findings. As high 18F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, 18F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable 18F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET. PMID:23316478
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2012-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated (18)F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. (18)F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. (18)F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on (18)F-FDG-PET scan when CT criteria for malignant involvement are not met. (18)F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. (18)F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. (18)F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3-6 months, using (18)F-FDG-PET to evaluate equivocal CT findings. As high (18)F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, (18)F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable (18)F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET.
Nadeau, É; Fairbrother, J M; Zentek, J; Bélanger, L; Tremblay, D; Tremblay, C-L; Röhe, I; Vahjen, W; Brunelle, M; Hellmann, K; Cvejić, D; Brunner, B; Schneider, C; Bauer, K; Wolf, R; Hidalgo, Á
2017-08-01
F4- and F18-positive enterotoxigenic E. coli strains (F4-ETEC and F18-ETEC) are important causes of post-weaning diarrhea (PWD) in pigs. F4 (antigenic variant ac) and F18 (ab and ac) fimbriae are major antigens that play an important role in the early stages of infection. Herein, the efficacy of a live oral vaccine consisting of two non-pathogenic E. coli strains, one F4ac- and one F18ac-positive, was evaluated using F4ac-ETEC and F18ab-ETEC challenge models. A randomized, masked, placebo-controlled, block design, parallel-group confirmatory study with two different vaccination-challenge intervals (7 and 21 days) was conducted for each challenge model. The vaccine was administered in one dose, to ≥18-day-old piglets via drinking water. Efficacy was assessed by evaluating diarrhea, clinical observations, weight gain and fecal shedding of F4-ETEC or F18-ETEC. Anti-F4 and anti-F18 immunoglobulins in blood were measured. The vaccination resulted in significant reductions in clinical PWD and fecal shedding of F4-ETEC and F18-ETEC after the 7- and 21-day-post-vaccination heterologous challenges, except for after the 21-day-post-vaccination F4-ETEC challenge, when the clinical PWD was too mild to demonstrate efficacy. A significant reduction of mortality and weight loss by vaccination were observed following the F18-ETEC challenge. The 7-day protection was associated with induction of anti-F4 and anti-F18 IgM, whereas the 21-day protection was mainly associated with anti-F4 and anti-F18 IgA. The 7-day onset and 21-day duration of protection induced by this vaccine administered once in drinking water to pigs of at least 18days of age were confirmed by protection against F4-ETEC and F18-ETEC, and induction of F4 and F18-specific immunity. Cross protection of the vaccine against F18ab-E. coli was demonstrated for both the 7- and 21-day F18-ETEC challenges. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Antunes, Inês F; Haisma, Hidde J; Elsinga, Philip H; Sijbesma, Jurgen W A; Waarde, Aren van; Willemsen, Antoon T M; Dierckx, Rudi A; de Vries, Erik F J
2012-08-01
The PET tracer, 1-O-(4-(2-fluoroethyl-carbamoyloxymethyl)-2-nitrophenyl)-O-β-d-glucopyronuronate ([(18)F]FEAnGA), was recently developed for PET imaging of extracellular β-glucuronidase (β-GUS). However, [(18)F]FEAnGA exhibited rapid renal clearance, which resulted in a relatively low tracer uptake in the tumor. To improve the pharmacokinetics of [(18)F]FEAnGA, we developed its more lipophilic methyl ester analog, [(18)F]FEAnGA-Me. [(18)F]FEAnGA-Me was obtained by alkylation of the O-protected glucuronide methyl ester precursor with [(18)F]-fluoroethylamine ([(18)F]FEA), followed by removal of the acetate protecting groups with NaOMe/MeOH. The PET tracer was evaluated by in vitro and in vivo studies. [(18)F]FEAnGA-Me was obtained in 5%-10% overall radiochemical yield. It is 10-fold less hydrophilic than [(18)F]FEAnGA and it is stable in PBS and in the presence of β-GUS for 1 h. However, in the presence of esterase or plasma [(18)F]FEAnGA-Me is converted to [(18)F]FEAnGA, and subsequently converted to [(18)F]FEA by β-GUS. MicroPET studies in Wistar rats bearing a C6 glioma and a sterile inflammation showed similar uptake in tumors after injection of either [(18)F]FEAnGA-Me or [(18)F]FEAnGA. Both tracers had a rapid two-phase clearance of total plasma radioactivity with a half-life of 1 and 8 min. The [(18)F]FEAnGA fraction generated from [(18)F]FEAnGA-Me by in vivo hydrolysis had a circulation half-life of 1 and 11 min in plasma. Similar distribution volume in the viable part of the tumor was found after injection of either [(18)F]FEAnGA-Me or [(18)F]FEAnGA. The imaging properties of [(18)F]FEAnGA-Me were not significantly better than those of [(18)F]FEAnGA. Therefore, other strategies should be applied in order to improve the kinetics of these tracers. Copyright © 2012 Elsevier Inc. All rights reserved.
Marias, Kostas; Lambregts, Doenja M. J.; Nikiforaki, Katerina; van Heeswijk, Miriam M.; Bakers, Frans C. H.; Beets-Tan, Regina G. H.
2017-01-01
Purpose The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer. Material and methods Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE). To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC) and F-ratio. Results All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area. Conclusion No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior. PMID:28863161
Manikis, Georgios C; Marias, Kostas; Lambregts, Doenja M J; Nikiforaki, Katerina; van Heeswijk, Miriam M; Bakers, Frans C H; Beets-Tan, Regina G H; Papanikolaou, Nikolaos
2017-01-01
The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer. Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE). To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC) and F-ratio. All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area. No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.
Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li
2017-01-01
Purpose Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2′-deoxy-2’-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. Materials and Methods To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. Results 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically significant correlation with GLUT1 and HIF-1α expression and therapeutic effect (necrosis, apoptosis). Conclusions Simultaneous inhibition of HIF-1α and GLUT-1 expression might increase the radiosensitivity of laryngeal carcinoma, decreasing MVD, and promoting apoptosis and necrosis. 18F-FDG-PET/CT wasn't useful in evaluating the therapeutic effect on laryngeal cancer in this animal study. PMID:28410229
Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li
2017-05-23
Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2'-deoxy-2'-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically significant correlation with GLUT1 and HIF-1α expression and therapeutic effect (necrosis, apoptosis). Simultaneous inhibition of HIF-1α and GLUT-1 expression might increase the radiosensitivity of laryngeal carcinoma, decreasing MVD, and promoting apoptosis and necrosis. 18F-FDG-PET/CT wasn't useful in evaluating the therapeutic effect on laryngeal cancer in this animal study.
Yun, Ji-Ae; Huh, Hyu-Jung; Han, Hye-Sung; Huh, Seung; Chae, Jeong-Ho
2018-04-01
The Sewol ferry accident that occurred in April 2014 was one of the most tragic human-made disasters in Korean history. Due to the deaths of hundreds of children, bereaved families likely feel embittered; however, there is little extant research documenting embitterment among those who experienced the disaster. Consequently, we investigated bereaved family members' embitterment and other psychiatric symptoms 18months and 30months after the disaster. Data from a cross-sectional survey were obtained 18months (Time 1) and 30months (Time 2) after the disaster. We ascertained socio-demographic variables and variables obtained from a self-reporting questionnaire (i.e., depression, anxiety, posttraumatic stress disorder, complicated grief, and embitterment) among 56 bereaved family members. Bereaved families showed substantial embitterment at Time 1 (64.3%), which increased at Time 2 (76.8%, t=1.761, p=0.084). The participants who displayed increased embitterment at Time 2 also increased in anxiety, post-traumatic stress symptoms, and complicated grief (but not depression). Furthermore, participants who displayed decreased embitterment at Time 2 also decreased in all other psychiatric symptoms. (time×group interaction in depression (F 0.644, p=0.426), anxiety (F 4.970, p=0.030), PTSD (F 10.699, p=0.002), and complicated grief (F 8.389, p=0.005)). Embitterment of bereaved families had not ceased after 18months and even increased 1year later. Additionally, as embitterment increased, many other psychiatric symptoms also increased, and vice versa. Our results suggest that embitterment is associated or can even influence other psychiatric symptoms; therefore, embitterment should be examined after disasters. Copyright © 2018 Elsevier Inc. All rights reserved.
Barret, Olivier; Alagille, David; Sanabria, Sandra; Comley, Robert A; Weimer, Robby M; Borroni, Edilio; Mintun, Mark; Seneca, Nicholas; Papin, Caroline; Morley, Thomas; Marek, Ken; Seibyl, John P; Tamagnan, Gilles D; Jennings, Danna
2017-07-01
18 F-AV-1451 is currently the most widely used of several experimental tau PET tracers. The objective of this study was to evaluate 18 F-AV-1451 binding with full kinetic analysis using a metabolite-corrected arterial input function and to compare parameters derived from kinetic analysis with SUV ratio (SUVR) calculated over different imaging time intervals. Methods: 18 F-AV-1451 PET brain imaging was completed in 16 subjects: 4 young healthy volunteers (YHV), 4 aged healthy volunteers (AHV), and 8 Alzheimer disease (AD) subjects. Subjects were imaged for 3.5 h, with arterial blood samples obtained throughout. PET data were analyzed using plasma and reference tissue-based methods to estimate the distribution volume, binding potential (BP ND ), and SUVR. BP ND and SUVR were calculated using the cerebellar cortex as a reference region and were compared across the different methods and across the 3 groups (YHV, AHV, and AD). Results: AD demonstrated increased 18 F-AV-1451 retention compared with YHV and AHV based on both invasive and noninvasive analyses in cortical regions in which paired helical filament tau accumulation is expected in AD. A correlation of R 2 > 0.93 was found between BP ND (130 min) and SUVR-1 at all time intervals. Cortical SUVR curves reached a relative plateau around 1.0-1.2 for YHV and AHV by approximately 50 min, but increased in AD by up to approximately 20% at 110-130 min and approximately 30% at 160-180 min relative to 80-100 min. Distribution volume (130 min) was lower by 30%-35% in the YHV than AHV. Conclusion: Our data suggest that although 18 F-AV-1451 SUVR curves do not reach a plateau and are still increasing in AD, an SUVR calculated over an imaging window of 80-100 min (as currently used in clinical studies) provides estimates of paired helical filament tau burden in good correlation with BP ND , whereas SUVR sensitivity to regional cerebral blood changes needs further investigation. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Kim, Dong-Yeon; Kim, Hyeon Sik; Reder, Sybille; Zheng, Jin Hai; Herz, Michael; Higuchi, Takahiro; Pyo, A Young; Bom, Hee-Seung; Schwaiger, Markus; Min, Jung-Joon
2015-10-01
Despite substantial advances in the diagnosis of cardiovascular disease, there is a need for 18F-labeled myocardial perfusion agents for the diagnosis of ischemic heart disease because current PET tracers for myocardial perfusion imaging have a short half-life that limits their widespread clinical use in PET. Thus, 18F-labeled fluoroalkylphosphonium derivatives (18F-FATPs), including (5-18F-fluoropentyl)triphenylphosphonium cation (18F-FPTP), (6-18F-fluorohexyl)triphenylphosphonium cation (18F-FHTP), and (2-(2-18F-fluoroethoxy)ethyl)triphenylphosphonium cation (18F-FETP), were synthesized. The myocardial extraction and image quality of the 18F-FATPs were compared with those of 13N-NH3 in rat models. The first-pass extraction fraction (EF) values of the 18F-FATPs (18F-FPTP, 18F-FHTP, 18F-FETP) and 13N-NH3 were measured in isolated rat hearts perfused with the Langendorff method (flow velocities, 0.5, 4.0, 8.0, and 16.0 mL/min). Normal and myocardial infarction rats were imaged with small-animal PET after intravenous injection of 37 MBq of 18F-FATPs and 13N-NH3. To determine pharmacokinetics, a region of interest was drawn around the heart, and time-activity curves of the 18F-FATPs and 13N-NH3 were generated to obtain the counts per pixel per second. Defect size was analyzed on the basis of polar map images of 18F-FATPs and 13N-NH3. The EF values of 18F-FATPs and 13N-NH3 were comparable at low flow velocity (0.5 mL/min), whereas at higher flows EF values of 18F-FATPs were significantly higher than those of 13N-NH3 (4.0, 8.0, and 16.0 mL/min, P<0.05). Myocardium-to-liver ratios of 18F-FPTP, 18F-FHTP, 18F-FETP, and 13N-NH3 were 2.10±0.30, 4.36±0.20, 3.88±1.03, and 0.70±0.09, respectively, 10 min after injection, whereas myocardium-to-lung ratios were 5.00±0.25, 4.33±0.20, 7.98±1.23, and 2.26±0.14, respectively. Although 18F-FATPs and 13N-NH3 sharply delineated myocardial perfusion defects, defect size on the 13N-NH3 images was significantly smaller than on the 18F-FATP images soon after tracer injection (0-10 min, P=0.027). 18F-FATPs exhibit higher EF values and more rapid clearance from the liver and lung than 13N-NH3 in normal rats, which led to excellent image quality in a rat model of coronary occlusion. Therefore, 18F-FATPs are promising new PET radiopharmaceuticals for myocardial perfusion imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Li, Yuxin; Tafti, Bashir A; Shaba, Wisam; Berenji, Gholam R
2011-07-01
A 68-year-old man with history of heavy smoking was admitted for increasing falls during the past 4 weeks. Chest x-ray revealed a right upper lobe mass. Biopsy demonstrated poorly differentiated non-small-cell carcinoma. F-18 fluoride positron emission tomography/computer tomography (PET/CT) was performed to evaluate bone metastasis. Review of the sectional PET images demonstrated extraosseous fluoride uptake in the primary lung mass, as well as ring-shaped fluoride uptake in the cerebral metastatic lesion. Neither of these lesions demonstrated calcifications on CT images. The patient received radiation treatment of the brain metastasis after F-18 fluoride PET/CT study.
Minamimoto, Ryogo; Loening, Andreas; Jamali, Mehran; Barkhodari, Amir; Mosci, Camila; Jackson, Tatianie; Obara, Piotr; Taviani, Valentina; Gambhir, Sanjiv Sam; Vasanawala, Shreyas; Iagaru, Andrei
2015-12-01
We prospectively evaluated the use of combined (18)F-NaF/(18)F-FDG PET/CT in patients with breast and prostate cancer and compared the results with those for (99m)Tc-MDP bone scintigraphy and whole-body MRI. Thirty patients (15 women with breast cancer and 15 men with prostate cancer) referred for standard-of-care bone scintigraphy were prospectively enrolled in this study. (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI were performed after bone scintigraphy. The whole-body MRI protocol consisted of both unenhanced and contrast-enhanced sequences. Lesions detected with each test were tabulated, and the results were compared. For extraskeletal lesions, (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI had no statistically significant differences in sensitivity (92.9% vs. 92.9%, P = 1.00), positive predictive value (81.3% vs. 86.7%, P = 0.68), or accuracy (76.5% vs. 82.4%, P = 0.56). However, (18)F-NaF/(18)F-FDG PET/CT showed significantly higher sensitivity and accuracy than whole-body MRI (96.2% vs. 81.4%, P < 0.001, 89.8% vs. 74.7%, P = 0.01) and bone scintigraphy (96.2% vs. 64.6%, P < 0.001, 89.8% vs. 65.9%, P < 0.001) for the detection of skeletal lesions. Overall, (18)F-NaF/(18)F-FDG PET/CT showed higher sensitivity and accuracy than whole-body MRI (95.7% vs. 83.3%, P < 0.002, 87.6% vs. 76.0%, P < 0.02) but not statistically significantly so when compared with a combination of whole-body MRI and bone scintigraphy (95.7% vs. 91.6%, P = 0.17, 87.6% vs. 83.0%, P = 0.53). (18)F-NaF/(18)F-FDG PET/CT showed no significant difference from a combination of (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI. No statistically significant differences in positive predictive value were noted among the 3 examinations. (18)F-NaF/(18)F-FDG PET/CT is superior to whole-body MRI and (99m)Tc-MDP scintigraphy for evaluation of skeletal disease extent. Further, (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI detected extraskeletal disease that may change the management of these patients. (18)F-NaF/(18)F-FDG PET/CT provides diagnostic ability similar to that of a combination of whole-body MRI and bone scintigraphy in patients with breast and prostate cancer. Larger cohorts are needed to confirm these preliminary findings, ideally using the newly introduced simultaneous PET/MRI scanners. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
...] Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries per Milliliter... FLUORIDE F 18 (sodium fluoride F-18) injection, 10 to 200 millicuries per milliliter (mCi/mL), was not... abbreviated new drug applications (ANDAs) for SODIUM FLUORIDE F 18 injection, 10 to 200 mCi/mL, if all other...
Holzgreve, Adrien; Brendel, Matthias; Gu, Song; Carlsen, Janette; Mille, Erik; Böning, Guido; Mastrella, Giorgia; Unterrainer, Marcus; Gildehaus, Franz J; Rominger, Axel; Bartenstein, Peter; Kälin, Roland E; Glass, Rainer; Albert, Nathalie L
2016-01-01
Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-(18)F-fluoroethyl)-L-tyrosine ([(18)F]-FET) to determine tumor growth in a murine glioblastoma (GBM) model-including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM-bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [(18)F]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: ≥1.4; ≥1.6; ≥1.8; ≥2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual "optimal" thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [(18)F]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual "optimal" thresholds for BTV assessment correlated highly with SUVmax/BG (ρ = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, ρ = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [(18)F]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model. PVEC is beneficial to improve accuracy of [(18)F]-FET PET SUV quantification. Although SUVmax/BG and SUVmean/BG increase during the disease course, these parameters do not correlate with the respective tumor size. For the first time, we propose a histology-verified method allowing appropriate individual BTV estimation for volumetric in vivo monitoring of tumor growth with [(18)F]-FET PET and show that standardized thresholds from routine clinical practice seem to be inappropriate for BTV estimation in the GBM mouse model.
Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.
Chen, Wei; Cloughesy, Timothy; Kamdar, Nirav; Satyamurthy, Nagichettiar; Bergsneider, Marvin; Liau, Linda; Mischel, Paul; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S
2005-06-01
3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics. (18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0.0005 and P = 0.001, respectively). Thirty-minute (18)F-FLT PET 5 min after injection was more sensitive than (18)F-FDG to image recurrent high-grade tumors, correlated better with Ki-67 values, and was a more powerful predictor of tumor progression and survival. Thus, (18)F-FLT appears to be a promising tracer as a surrogate marker of proliferation in high-grade gliomas.
Barbeta, Adrià; Peñuelas, Josep
2017-12-01
Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.
Munoz, Camila; Kunze, Karl P; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René M; Nekolla, Stephan G; Prieto, Claudia
2018-05-12
Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability ( 18 F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18 F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18 F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18 F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18 F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
1983-08-01
LOOK DOWN F-4J/AWG-10 • ADDED PULSE DOPPLER • GOOD HEAD ON PERFORMANCE • POOR TAIL PERFORMANCE F-14/AWG-9 • ADDED TWS • HIGHER POWER • INCREASED...returned to NAS Lemoore for I level repair retested good . 45B/8-2 ^° F/A-18 YUMA DEPLOYMENT 45A/3-9 • MOST RECENT OF MANY NAVY DEPLOYMENTS...THERMAL ANALYSIS AND DESIGN Following the design process to minimize the parts count, and a selection/screening process to obtain good quality
Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F; Lebech, Anne-Mette; Loft, Annika; Keller, Sune H; Hansen, Adam E; von Benzon, Eric; Højgaard, Liselotte; Kjær, Andreas
2013-01-01
The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131 min after injection. Subsequently,PET/CT was performed. Regions of interest (ROI) were drawn slice by slice to include the carotid arteries and standardized uptake values (SUV) were calculated from both datasets independently. Quantitative comparison of 18F-FDG uptake revealed a high congruence between PET data acquired using the PET/MR system compared to the PET/CT system. The mean difference for SUVmean was -0.18 (p < 0.001) and -0.14 for SUVmax (p < 0.001) indicating a small but significant bias towards lower values using the PET/MR system. The 95% limits of agreement were -0.55 to 0.20 for SUVmean and -0.93 to 0.65 for SUVmax. The image quality of the PET/MR allowed for delineation of the carotid vessel wall. The correlations between 18F-FDG uptake from ROI including both vessel wall and vessel lumen to ROI including only the wall were strong (r = 0.98 for SUVmean and r = 1.00 for SUVmax) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET/CT despite difference in method of PET attenuation correction, reconstruction algorithm, and detector technology. PMID:23900769
Fast and repetitive in-capillary production of [18F]FDG.
Wester, Hans-Jürgen; Schoultz, Bent Wilhelm; Hultsch, Christina; Henriksen, Gjermund
2009-04-01
The increasing demand for radiopharmaceuticals to be provided reproducibly and flexibly with high frequency for clinical application and animal imaging would be better met by improved or even new strategies for automated tracer production. Radiosynthesis in microfluidic systems, i.e. narrow tubing with a diameter of approximately 50-500 microm, holds promise for providing the means for repetitive multidose and multitracer production. In this study, the performance of a conceptually simple microfluidic device integrated into a fully automated synthesis procedure for in-capillary radiosynthesis (ICR) of clinical grade [(18)F]FDG was evaluated. The instrumental set-up consisted of pumps for reagent and solvent delivery into small mixing chambers, micro-fluidic capillaries, in-process radioactivity monitoring, solid-phase extraction and on-column deprotection of the (18)F-labelled intermediate followed by on-line formulation of [(18)F]FDG. In-capillary(18)F-fluorination of 2.1 micromol 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulphonyl-beta-D-mannopyranose (TATM; precursor for [(18)F]FDG) in acetonitrile (MeCN) at a flow rate of 0.3 ml/min within 40 s and subsequent on-line hydrolysis of the intermediate by treatment with 0.3 M NaOH for 1 min at 40 degrees C resulted in a radiochemical yield of 88 +/- 4% within <7 min. Reproducibility, robustness and suitability as a fast and efficient radiopharmaceutical research tool for (18)F-fluorination was demonstrated by eight independent, sequentially performed ICRs which provided identical tracer quality (radiochemical purity >97%, MeCN <5 microg/ml) and similar absolute yields (approximately 1.4 GBq). The described ICR process is a simple and efficient alternative to classic radiotracer production systems and provides a comparatively cheap instrumental methodology for the repetitive production of [(18)F]FDG with remarkably high efficiency and high yield under fully automated conditions. Although the results concerning the levels of activity need to be confirmed after installation of the equipment in a suitable GMP hot-cell environment, we expect the instrumental design to allow up-scaling without major difficulties or fundamental restrictions. Furthermore, we are convinced that similar or nearly identical procedures, and thus instrumentation, will allow ICR of other (18)F-labelled radiopharmaceuticals.
Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).
Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B
2011-01-01
Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca. © 2010 Veterinary Radiology & Ultrasound.
2017-01-01
18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577
Imaging of VMAT2 binding sites in the brain by (18)F-AV-133: the effect of a pseudo-carrier.
Zhu, Lin; Qiao, Hongwen; Lieberman, Brian P; Wu, Jingxiao; Liu, Yajing; Pan, Zhongyun; Ploessl, Karl; Choi, Seok Rye; Chan, Piu; Kung, Hank F
2012-10-01
Recently, 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ((18)F-AV-133) was reported as a new vesicular monoamine transporter (VMAT2) imaging agent for diagnosis of Parkinson's disease (PD). To shorten the preparation of (18)F-AV-133 and to make it more widely available, we evaluated a simple, rapid purification with a solid-phase extraction method (SPE) using an Oasis HLB cartridge instead of high pressure liquid chromatography (HPLC). The SPE method produced doses containing a pseudo-carrier, 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). To test the possible side effects of this pseudo-carrier, comparative dynamic PET scans of the brains of normal monkeys (2 each) and uni-laterally 6-OH-dopamine-lesioned PD monkeys (2 each) were performed using (18)F-AV-133 doses prepared by either SPE (containing pseudo-carrier) or HPLC (containing no pseudo-carrier). Autoradiographs of post mortem monkey brain sections were evaluated to confirm the relative (18)F-AV-133 uptake in the PD monkey brains and the effects of the pseudo-carrier on VMAT2 binding. The radiochemical purity of the (18)F-AV-133, whether prepared by SPE or by HPLC, was excellent (>99%). PET scans of normal and PD monkey brains showed an expected reduction of VMAT2 in the lesioned areas of the striatum. It was not affected by the presence of the pseudo-carrier, AV-149 (maximally 250 μg/dose). The reduced uptake in the striatum of the lesioned monkey brains was confirmed by autoradiography. Ex vivo inhibition studies of (18)F-AV-133 binding in rat brains, conducted with increasing amounts of AV-149, suggested that at the highest concentration (3.5mg/kg) the VMAT2 binding in the striatum was only moderately blocked (20% reduction). The pseudo-carrier, AV-149, did not affect the (18)F-AV-133/PET imaging of VMAT2 binding sites in normal or uni-laterally lesioned monkey brains. The new streamlined SPE purification method will enable (18)F-AV-133 to be widely available for routine clinical application in determining changes in monoamine neurons for patient with movement disorders or other psychiatric illnesses. Copyright © 2012 Elsevier Inc. All rights reserved.
Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan
2018-02-01
The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.
Evaluation of an [(18)F]AlF-NOTA Analog of Exendin-4 for Imaging of GLP-1 Receptor in Insulinoma.
Kiesewetter, Dale O; Guo, Ning; Guo, Jinxia; Gao, Haokao; Zhu, Lei; Ma, Ying; Niu, Gang; Chen, Xiaoyuan
2012-01-01
The GLP-1 receptor plays an important role in glucose homeostasis and thus is a very important target for diabetes therapy. The receptor is also overexpressed in insulinoma, a tumor of pancreatic beta-cells. We previously evaluated two fluorine-18-labeled analogs of exendin-4 prepared by conjugation with [(18)F]FBEM (N-[2-(4-[(18)F]fluorobenzamide)ethyl]maleimide). Both compounds demonstrated good tumor uptake, but the synthesis of the radiotracers was time consuming. To overcome this challenge, we developed a NOTA analog and performed radiolabeling using aluminum [(18)F]fluoride complexation. Cys(40)-exendin-4 was conjugated with NOTA mono N-ethylmaleimide. [(18)F]AlF conjugation was conducted and the radiolabeled product purified by preparative HPLC. Dynamic and static PET imaging scans were conducted on nude mice with established INS-1 xenografts. Uptake of tumor and other major organs in static images was quantitated (%ID/g) and comparison with blocking studies was made. PET quantification was also compared with ex vivo biodistribution results. The radiosynthesis provided [(18)F]AlF-NOTA-MAL-cys(40)-exendin-4 in 23.6 ± 2.4 % radiochemical yield (uncorrected, n = 3) after HPLC; the process required about 55 min. The specific activity at time of injection ranged from 19.6 to 31.4 GBq (0.53-0.85 Ci)/µmol. Tumor uptake had reached its maximum (16.09 ± 1.18% ID/g, n = 4) by 5 min and remained nearly constant for the duration of the study. Kidney uptake continued to increase throughout the entire one hour time course. Pre-injection of exendin-4 caused a marked reduction in tissue uptake with the major exception of liver and kidneys, in which uptake was not affected. HPLC analysis of the radioactive components in extracts of the tumor and plasma showed primarily parent compound at 60 min post-injection, whereas extracts of kidney and urine contained exclusively one polar radioactive component. The radiotracer is prepared in a simple one-step procedure and obtained in high specific activity after HPLC purification. [(18)F]AlF-NOTA-MAL-exendin-4 shows high tumor uptake and highly selective GLP-1 tissue uptake (INS-1 tumor, lung, pancreas), but still suffers from high kidney uptake.
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2007-07-01
Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.
Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.
2012-01-01
Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative control [18F]-L-K-pHLIP revealed pH-dependent tumor retention. This reliable and efficient protocol promises to be useful for the 18F-labeling of large peptides such as pHLIP and will accelerate the evaluation of numerous [18F]-pHLIP analogues as potential PET tracers. PMID:22784215
Wei, Yu-Chun; Gao, Yongsheng; Zhang, Jianbo; Fu, Zheng; Zheng, Jinsong; Liu, Ning; Hu, Xudong; Hou, Wenhong; Yu, Jinming; Yuan, Shuanghu
2016-06-28
This study aimed to stereotactically compare the PET imaging performance of (18)F-Alfatide ((18)F-ALF-NOTA-PRGD2, denoted as (18)F-Alfatide) and (18)F-fluorodeoxyglucose (FDG) and immunohistochemistry (IHC) staining in Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mouse model. (18)F-FDG standard uptake values (SUVs) were higher than (18)F-Alfatide SUVs in tumors, most of the normal tissues and organs except for the bladder. Tumor-to-brain, tumor-to-lung, and tumor-to-heart ratios of (18)F-Alfatide PET were significantly higher than those of (18)F-FDG PET (P < 0.001). The spatial heterogeneity of the tumors was detected, and the tracer accumulation enhanced from the outer layer to the inner layer consistently using the two tracers. The parameters of the tumors were significantly correlated with each other between (18)F-FDG SUV and GLUT-1 (R = 0.895, P < 0.001), (18)F-Alfatide SUV and αvβ3 (R = 0.595, P = 0.019), (18)F-FDG SUV and (18)F-Alfatide SUV (R = 0.917, P < 0.001), and GLUT-1 and αvβ3 (R = 0.637, P = 0.011). Therefore, (18)F-Alfatide PET may be an effective tracer for tumor detection, spatial heterogeneity imaging and an alternative supplement to (18)F-FDG PET, particularly for patients with enhanced characteristics in the brain, chest tumors or diabetes, meriting further study.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken
2016-01-01
Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008
Structural and functional neuroplasticity in human learning of spatial routes.
Keller, Timothy A; Just, Marcel Adam
2016-01-15
Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after humans performed a 45min spatial route-learning task. Relative to a control group with equal practice time, there was decreased diffusivity in the posterior-dorsal dentate gyrus of the left hippocampus in the route-learning group accompanied by increased synchronization of fMRI-measured BOLD signal between this region and cortical areas, and by changes in behavioral performance. These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Jun; Mills, Allen P. Jr.; Case, Carlye
2005-08-01
Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10{sup -5} in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate thatmore » it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.« less
2013-01-01
The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691
Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.
Felipo, F; Vaquero, M; del Agua, C
2004-09-01
An extraordinary case of encapsulated fat necrosis characterized by its large size, diffuse formation of pseudomembranes, and tendency to recur after excision is reported. A 67-year-old Caucasian woman suffering from morbid obesity was admitted for diagnosis and surgical treatment of a soft tissue mass showing a longest diameter of 14 cm and lying adjacently to the scar from previous appendicectomy. Histopathologic features were consistent with a nodular-cystic encapsulated fat necrosis with diffuse pseudomembranous transformation. Eight months after surgery, a new larger mass (longest diameter of 18 cm) sharing identical histopathologic features appeared in the same location. Encapsulated fat necrosis is a well-defined entity even though several names have been proposed for this condition, including mobile encapsulated lipoma, encapsulated necrosis, or nodular-cystic fat necrosis. Its pathogenesis seems to be related to ischemic changes secondary to previous trauma. It may occasionally show degenerative changes, including dystrophic calcifications and presence of pseudomembranes. To our knowledge, these are the first reported cases of encapsulated fat necrosis presenting as lesions of such size and showing diffuse formation of pseudomembranes; these particular features made diagnosis difficult and led to consideration of a wide range of potential diagnostic possibilities. This case expands the clinico-pathologic spectrum of membranocystic fat necrosis, including the potential ability of this subcutaneous fatty tissue abnormality to recur after surgical excision. Felipo F, Vaquero M, del Agua C. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.
18F-FDG or 3'-deoxy-3'-18F-fluorothymidine to detect transformation of follicular lymphoma.
Wondergem, Marielle J; Rizvi, Saiyada N F; Jauw, Yvonne; Hoekstra, Otto S; Hoetjes, Nikie; van de Ven, Peter M; Boellaard, Ronald; Chamuleau, Martine E D; Cillessen, Saskia A G M; Regelink, Josien C; Zweegman, Sonja; Zijlstra, Josée M
2015-02-01
Considering the different treatment strategy for transformed follicular lymphoma (TF) as opposed to follicular lymphoma (FL), diagnosing transformation early in the disease course is important. There is evidence that (18)F-FDG has utility as a biomarker of transformation. However, quantitative thresholds may require inclusion of homogeneous non-Hodgkin lymphoma subtypes to account for differences in tracer uptake per subtype. Moreover, because proliferation is a hallmark of transformation, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) might be superior to (18)F-FDG in this setting. To define the best tracer for detection of TF, we performed a prospective a head-to-head comparison of (18)F-FDG and (18)F-FLT in patients with FL and TF. (18)F-FDG and (18)F-FLT PET scans were obtained in 17 patients with FL and 9 patients with TF. We measured the highest maximum standardized uptake value (SUVmax), defined as the lymph node with the highest uptake per patient, and SUVrange, defined as the difference between the SUVmax of the lymph node with the highest and lowest uptake per patient. To reduce partial-volume effects, only lymph nodes larger than 3 cm(3) (A50 isocontour) were analyzed. Scans were acquired 1 h after injection of 185 MBq of (18)F-FDG or (18)F-FLT. To determine the discriminative ability of SUVmax and SUVrange of both tracers for TF, receiver-operating-characteristic curve analysis was performed. The highest SUVmax was significantly higher for TF than FL for both (18)F-FDG and (18)F-FLT (P < 0.001). SUVrange was significantly higher for TF than FL for (18)F-FDG (P = 0.029) but not for (18)F-FLT (P = 0.075). The ability of (18)F-FDG to discriminate between FL and TF was superior to that of (18)F-FLT for both the highest SUVmax (P = 0.039) and the SUVrange (P = 0.012). The cutoff value for the highest SUVmax of (18)F-FDG aiming at 100% sensitivity with a maximum specificity was found to be 14.5 (corresponding specificity, 82%). For (18)F-FLT, these values were 5.1 and 18%, respectively. When the same method was applied to SUVrange, the cutoff values were 5.8 for (18)F-FDG (specificity, 71%) and 1.5 for (18)F-FLT (specificity, 36%). Our data suggest that (18)F-FDG PET is a better biomarker for TF than (18)F-FLT PET. The proposed thresholds of highest SUVmax and SUVrange should be prospectively validated. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Bouvet, Vincent; Wuest, Melinda; Bailey, Justin J; Bergman, Cody; Janzen, Nancy; Valliant, John F; Wuest, Frank
2017-12-01
Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[ 18 F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [ 18 F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies. Prosthetic groups N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB), 4-[ 18 F]fluorobenzaldehyde, and 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [ 125 I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([ 18 F]4, [ 18 F]7, and [ 18 F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice. F-18-labeled PSMA inhibitors were synthesized in 32-69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [ 18 F]SFB and (2) oxime formation with 4-[ 18 F]fluorobenzaldehyde and [ 18 F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC 50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC 50 values of 13 and 62 nM, respectively. The IC 50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV 60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0.98 ([ 18 F]DCFPyL), 2.11 ([ 18 F]7), 0.40 ([ 18 F]4), and 0.19 ([ 18 F]8). The observed tumor uptake and clearance profiles demonstrate the importance of the selected prosthetic group on the pharmacokinetic profile of analyzed PSMA-targeting radiotracers. Radiotracer [ 18 F]7 displayed the highest uptake and retention in LNCaP tumors, which exceeded uptake values of reference compound [ 18 F]DCFPyL by more than 100 %. Despite the higher kidney and liver uptake and retention of compound [ 18 F]7, the simple radiosynthesis and the exceptionally high tumor uptake (SUV 60min 2.11) and retention make radiotracer [ 18 F]7 an interesting alternative to radiotracer [ 18 F]DCFPyL for PET imaging of PSMA in prostate cancer.
Lee, Joo Myung; Bang, Ji-In; Koo, Bon-Kwon; Hwang, Doyeon; Park, Jonghanne; Zhang, Jinlong; Yaliang, Tong; Suh, Minseok; Paeng, Jin Chul; Shiono, Yasutsugu; Kubo, Takashi; Akasaka, Takashi
2017-11-01
18 F-sodium fluoride ( 18 F-NaF) positron-emission tomography has been introduced as a potential noninvasive imaging tool to identify plaques with high-risk characteristics in patients with coronary artery disease. We sought to evaluate the clinical relevance of 18 F-NaF uptake using optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography in patients with coronary artery disease. The target population consisted of 51 prospectively enrolled patients (93 stenoses) who underwent 18 F-NaF positron-emission tomography before invasive coronary angiography. 18 F-NaF uptake was compared with IVUS- and OCT-derived plaque characteristics. In the coronary computed tomography angiography subgroup (46 lesions), qualitative lesion characteristics were compared between 18 F-NaF-positive and 18 F-NaF-negative plaques using adverse plaque characteristics. The plaques with 18 F-NaF uptake showed significantly higher plaque burden, more frequent posterior attenuation and positive remodeling in IVUS, and significantly higher maximum lipid arc and more frequent microvessels in OCT (all P <0.05). There were no differences in minimum lumen area and area of calcium between 18 F-NaF-positive and 18 F-NaF-negative lesions. Among 51 lesions with 18 F-NaF-positive uptake, 48 lesions (94.1%) had at least one of high-risk characteristics. The 18 F-NaF tissue-to-background ratio in plaques with high-risk characteristics was significantly higher than in those without (1.09 [95% confidence interval, 0.85-1.34] versus 0.62 [95% confidence interval, 0.42-0.82], P <0.001 for IVUS definition; 0.76 [95% confidence interval, 0.54-0.98] versus 0.42 [95% confidence interval, 0.21-0.62], P =0.014 for OCT definition). Among the 15 lesions that met both IVUS- and OCT-defined criteria for high-risk plaque, 14 (93.3%) showed 18 F-NaF-positive uptake. There was no difference in the prevalence of plaques with any adverse plaque characteristics between 18 F-NaF-positive and 18 F-NaF-negative plaques in the coronary computed tomography angiography subgroup (85.2% versus 78.9%; P =0.583). This study's results suggest that 18 F-NaF positron-emission tomography can be a useful noninvasive diagnostic tool to identify and localize plaque with high-risk characteristics. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02388412. © 2017 American Heart Association, Inc.
2013-01-15
Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma
Hultsch, Christina; Berndt, Mathias; Bergmann, Ralf; Wuest, Frank
2007-07-01
Three methods for (18)F-labeling of dimeric and tetrameric neurotensin(8-13) derivatives were evaluated with respect to the labeling yield and the required peptide amounts. Labeling using N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) gave low radiochemical yield for the dimeric peptides. Coupling of the tetramer with [(18)F]SFB was not successful. High yields were obtained for labeling of the aminooxy-functionalized neurotensin(8-13) dimer using 4-[(18)F]fluorobenzaldehyde ([(18)F]FBA) whilst coupling of the corresponding tetramer gave only low yields. Labeling of sulfydryl-functionalized neurotensin(8-13) derivatives using the maleinimide 4-[(18)F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]-oxime ([(18)F]FBAM) resulted in high radiochemical yields for both, the dimer and the tetramer. Therefore, [(18)F]FBAM seems to be the most suitable (18)F-labeling agent for multivalent neurotensin(8-13) derivatives.
Protein crystal growth results from shuttle flight 51-F
NASA Technical Reports Server (NTRS)
Bugg, C. E.
1985-01-01
The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.
Akhtar, Rizwan S; Xie, Sharon X; Chen, Yin J; Rick, Jacqueline; Gross, Rachel G; Nasrallah, Ilya M; Van Deerlin, Vivianna M; Trojanowski, John Q; Chen-Plotkin, Alice S; Hurtig, Howard I; Siderowf, Andrew D; Dubroff, Jacob G; Weintraub, Daniel
2017-01-01
Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative) by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2%) were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%). Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloid-β amyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.
Cardiac PET perfusion tracers: current status and future directions.
Maddahi, Jamshid; Packard, René R S
2014-09-01
PET myocardial perfusion imaging (MPI) is increasingly being used for noninvasive detection and evaluation of coronary artery disease. However, the widespread use of PET MPI has been limited by the shortcomings of the current PET perfusion tracers. The availability of these tracers is limited by the need for an onsite ((15)O water and (13)N ammonia) or nearby ((13)N ammonia) cyclotron or commitment to costly generators ((82)Rb). Owing to the short half-lives, such as 76 seconds for (82)Rb, 2.06 minutes for (15)O water, and 9.96 minutes for (13)N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible ((82)Rb and (15)O water) or not practical ((13)N ammonia). Furthermore, the long positron range of (82)Rb makes image resolution suboptimal and its low myocardial extraction limits its defect resolution. In recent years, development of an (18)F-labeled PET perfusion tracer has gathered considerable interest. The longer half-life of (18)F (109 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of (18)F would result in better image resolution. Flurpiridaz F 18 is by far the most thoroughly studied in animal models and is the only (18)F-based PET MPI radiotracer currently undergoing clinical evaluation. Preclinical and clinical experience with Flurpiridaz F 18 demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast that was stable over time-important properties of an ideal PET MPI radiotracer. Preclinical data from other (18)F-labeled myocardial perfusion tracers are encouraging. Copyright © 2014. Published by Elsevier Inc.
Rinne, Juha O; Frantzen, Janek; Leinonen, Ville; Lonnrot, Kimmo; Laakso, Aki; Virtanen, Kirsi A; Solin, Olof; Kotkansalo, Anna; Koivisto, Anne; Sajanti, Juha; Karppinen, Atte; Lehto, Hanna; Rummukainen, Jaana; Buckley, Chris; Smith, Adrian; Jones, Paul A; Sherwin, Paul; Farrar, Gill; McLain, Richard; Kailajarvi, Marita; Grachev, Igor D
2014-01-01
BACKGOUND/OBJECTIVE: To determine the level of association between uptake of the amyloid positron emission tomography (PET) imaging agent [(18)F]flutemetamol and the level of amyloid-β measured by immunohistochemical and histochemical staining in a frontal cortical region biopsy site. Seventeen patients with probable normal pressure hydrocephalus (NPH) underwent prospective [(18)F]flutemetamol PET and subsequent frontal cortical brain biopsy during ventriculoperitoneal shunting. Tissue amyloid-β was evaluated using the monoclonal antibody 4G8, thioflavin S and Bielschowsky silver stain. Four of the 17 patients (23.5%) had amyloid-β pathology based on the overall pathology read and also showed increased [(18)F]flutemetamol uptake. [(18)F]Flutemetamol standardized uptake values from the biopsy site were significantly associated with biopsy specimen amyloid-β levels (Pearson's r = 0.67; p = 0.006). There was also good correlation between the biopsy specimen amyloid-β level and uptake of [(18)F]flutemetamol in the region contralateral to the biopsy site (r = 0.67; p = 0.006), as well as with composite cortical [(18)F]flutemetamol uptake (r = 0.65; p = 0.008). The blinded visual read showed a high level of agreement between all readers (κ = 0.88). Two of 3 readers were in full agreement on all images; 1 reader disagreed on 1 of the 17 NPH cases. Blinded visual assessments of PET images by 1 reader were associated with 100% sensitivity to the overall pathology read, and assessments by the 2 others were associated with 75% sensitivity (overall sensitivity by majority read was 75%); specificity of all readers was 100%. [(18)F]Flutemetamol detects brain amyloid-β in vivo and shows promise as a valuable tool to study and possibly facilitate diagnosis of Alzheimer's disease both in patients with suspected NPH and among the wider population.
Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk
2012-10-01
(4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.
de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ
2014-01-01
The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837
Guo, Tan; Chen, Juan; Wu, Bing; Zheng, Dandan; Jiao, Sheng; Song, Yan; Chen, Min
2017-04-01
To investigate the hypothesis that the intravoxel incoherent motion (IVIM) diffusion-weighted imaging may depict microcirculation of meniscus and the perfusion changes in meniscal disorder. Fifty patients received diffusion-weighted MRI with multiple b-values ranging from 0 to 400 s/mm 2 . The four horns of the menisci were divided into normal, degenerated, and torn groups. IVIM parameters including perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D), and the product of f and D* (f D*) of normal meniscal red zone and white zone were derived and compared for microcirculation changes of normal, degenerated, and torn posterior horn of the medial meniscus (PMM). The parameters between red and white zones among the groups were compared. Significant differences were considered when P < 0.05. Mean f and fD* were significantly higher in the red zone than those in the white zone for the normal four meniscal horns (P < 0.05), whereas D* (P = 0.882, 0.011, 0.593, and 0.33) and D (P = 0.186, 0.099, 0.767, and 0.041) did not significantly differ between the two zones. Among the normal, degenerated, and torn PMM, f was observed to be lower in the red zone of torn horns as compared to the normal horns (P = 0.013). D*, fD*, and D did not exhibit statistically significant difference among different groups (P = 0.353, 0.661, and 0.327, respectively). This hypothesis driven work shows that IVIM imaging is able to depict microcirculation of meniscus and the perfusion changes in meniscal disorder. 3 J. Magn. Reson. Imaging 2017;45:1090-1096. © 2016 International Society for Magnetic Resonance in Medicine.
Panagiotidis, Emmanouil; Seshadri, Nagabhushan; Vinjamuri, Sobhan
2018-01-01
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant genetic disorder characterized by small papular skin lesions (fibrofolliculomas) causing susceptibility to kidney cancer, renal and pulmonary cysts, spontaneous pneumothoraces, and several noncutaneous tumors. We report a case of a 67-year-old woman, with a previous history of right hemithyroidectomy for adenomatous lesion. She presented with a swelling in the right thyroid bed that on subsequent biopsy revealed features of metastatic carcinoma. 18F-fludeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) performed for the detection of primary malignancy showed increased high-grade metabolic activity in the right supraclavicular soft tissue mass extending into the superior mediastinum. Moreover, on low-dose CT, there have been bilateral renal interpolar cortical lesions with mild metabolic activity. Given the fact that the right neck mass was highly unlikely to represent renal metastases in the absence of widespread metastatic disease, surgical excision of the right neck mass was performed. The histology of the mass was in keeping with hurtle cell thyroid carcinoma. In regard to renal lesions, bilateral partial nephrectomy was performed, which was consistent with chromophobe renal cell carcinoma, raising the suspicion of BHD that was confirmed by the subsequent genetic evaluation. It is well established that 18F-FDG PET/CT study is not an optimal modality for evaluation of renal lesions. However, careful assessment of the CT features in conjunction with the associated metabolic activity of the 18F-FDG PET component increases the diagnostic accuracy of PET/CT.
Ribeiro, Thalles H; S, Raul; Castro, Ana Carolina G; Paulino, Eduardo; Mamede, Marcelo
2017-02-01
Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluordeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 (18F-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, 18F-FDG has shown false-positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with 18F-FDG and 18F-choline PET/CT scan imaging pre- and post-therapy. 18F-FDG and 18F-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment 18F-FDG and 18F-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. 18F-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-18F-FDG tracer can be used for targeted therapy and patient management.
Refinement of Promising Coating Compositions for Directionally Cast Eutectics
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Felten, E. J.; Benden, R. S.
1976-01-01
The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.
Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko
2010-01-01
Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC patients. PMID:17869020
Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs
NASA Astrophysics Data System (ADS)
Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.
2016-03-01
We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.