Sample records for diffusely radiating lumbar

  1. The change in the diffusion of water in normal and degenerative lumbar intervertebral discs following joint mobilization compared to prone lying.

    PubMed

    Beattie, Paul F; Donley, Jonathan W; Arnot, Cathy F; Miller, Ronald

    2009-01-01

    Prospective, repeated measures obtained under treatment and control conditions. The purposes of this study were to provide preliminary evidence regarding the immediate change in the diffusion of water in the nuclear region of normal and degenerative lumbar intervertebral discs (IVDs) following a single session of lumbar joint mobilization, and to compare these findings to the immediate change in the diffusion of water following a 10-minute session of prone lying. There is conflicting evidence regarding the effectiveness and efficacy of lumbar joint mobilization. Increased knowledge of the physiologic effects of lumbar joint mobilization can lead to refinement of its clinical application. A total of 24 people (15 males and 9 females), ranging in age from 22 to 58 years, participated in this study. All subjects had a history of activity-limiting low back pain. Diffusion-weighted magnetic resonance images (DW-MRIs) were obtained immediately before and after a 10-minute session of lumbar joint mobilization. At least 1 month later, a second session was performed in which DW-MRIs were obtained immediately before and after a 10-minute session of prone lying. Following lumbar joint mobilization, a significant increase (P = .002) in the mean values for diffusion of water was observed within degenerative IVDs at L5-S1 (22.2% increase; effect size, 0.97). Degenerative IVDs at L1-2 to L4-5 and normal IVDs at L1-2 to L5-S1 did not demonstrate a change in diffusion following joint mobilization. Prone lying was not associated with a change in diffusion for normal or degenerative IVDs. The stimulus provided by lumbar joint mobilization may influence the diffusion of water in degenerative IVDs at L5-S1; however, these are preliminary findings and the relationship of these findings to pain and function needs further investigation.

  2. A new technique to treat facet joint pain with pulsed radiofrequency.

    PubMed

    Schianchi, Pietro Martino

    2015-02-01

    Facet joint pain affects 5% to 15% of the population with low back pain and the prevalence increases with age due to progression of arthritis. While conservative treatments are often unsuccessful, the scientific evidence on minimally invasive therapies such as intra-articular steroid infiltration and continuous and pulsed radiofrequency (PRF) of the medial branches is contradictory. Since PRF has recently been reported to successfully treat joint pain, a new application of this method is proposed for facetogenic lumbar pain via an intra-articular subcapsular approach. Here we reported two cases with successful treatment. A 71-year-old patient presented because of persisting pain in the left gluteal region radiating to the lateral thigh and calf when standing. Anti-inflammatory drugs produced only short-lasting insufficient relief. A 52-year-old employee was admitted in June 2012 because of axial lower lumbar pain with intermittent diffuse radiation to the right lower extremity that worsened during walking and lying down despite receiving analgesics and physiotherapy. A new approach to treat lumbar facet joint pain with PRF is simple to perform and without serious complications. In view of the good long-lasting results obtained with the two reported cases, randomized control trials are necessary to validate this new approach.

  3. Posteroanterior versus anteroposterior lumbar spine radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuno, M.M.; Shu, G.J.

    The posteroanterior view of the lumbar spine has important features including radiation protection and image quality; these have been studied by various investigators. Investigators have shown that sensitive tissues receive less radiation dosage in the posteroanterior view of the spine for scoliosis screening and intracranial tomography without altering the image quality. This paper emphasizes the importance of the radiation safety aspect of the posteroanterior view and shows the improvement in shape distortion in the lumbar vertebrae.

  4. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    PubMed

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  5. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    PubMed

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Coexisting lumbar spondylosis in patients undergoing TKA: how common and how serious?

    PubMed

    Chang, Chong Bum; Park, Kun Woo; Kang, Yeon Gwi; Kim, Tae Kyun

    2014-02-01

    Information on the coexistence of lumbar spondylosis and its influence on overall levels of pain and function in patients with advanced knee osteoarthritis (OA) undergoing total knee arthroplasty (TKA) would be valuable for patient consultation and management. The purposes of this study were to document the prevalence and severity of coexisting lumbar spondylosis in patients with advanced knee OA undergoing TKA and to determine whether the coexisting lumbar spondylosis at the time of TKA adversely affects clinical scores in affected patients before and 2 years after TKA. Radiographic lumbar spine degeneration and lumbar spine symptoms including lower back pain, radiating pain at rest, and radiating pain with activity were assessed in 225 patients undergoing TKA. In addition, the WOMAC score and the SF-36 scores were evaluated before and 2 years after TKA. Potential associations of radiographic lumbar spine degeneration and lumbar spine symptom severities with pre- and postoperative WOMAC subscales and SF-36 scores were examined. All 225 patients had radiographic degeneration of the lumbar spine, and the large majority (89% [200 of 225]) had either moderate or severe spondylosis (72% and 17%, respectively). A total of 114 patients (51%) had at least one moderate or severe lumbar spine symptom. No association was found between radiographic severity of lumbar spine degeneration and pre- and postoperative clinical scores. In terms of lumbar spine symptoms, more severe symptoms were likely to adversely affect the preoperative WOMAC and SF-36 physical component summary (PCS) scores, but most of these adverse effects improved by 2 years after TKA with the exception of the association between severe radiating pain during activity and a poorer postoperative SF-36 PCS score (regression coefficient = -5.41, p = 0.015). Radiographic lumbar spine degeneration and lumbar spine symptoms are common among patients with advanced knee OA undergoing TKA. Severe lumbar spine symptoms (visual analog scale score of ≥ 7) were likely to adversely affect the preoperative clinical scores of patients undergoing TKA; however, most of the adverse effects were not found 2 years after TKA. Nevertheless, because preexisting severe radiating pain during activity may be a source of a poorer outcome after TKA, careful patient consultation regarding this potential poorer prognosis after TKA needs to be provided to the patient with this symptom.

  7. [Effect of exercise load on apparent diffusion coefficient and fractional anisotropy of normal lumbar intervertebral discs in diffusion tensor imaging].

    PubMed

    Zhong, Xiu; Qiu, Shijun

    2015-06-01

    To investigate the effect of exercise load on apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of normal lumbar intervertebral discs in magnetic resonance (MR) diffusion tensor imaging (DTI). Thirty healthy volunteers (24 males and 6 females, aged 19 to 25 years) underwent examinations with MR T2WI and DTI of the lumbar intervertebral discs before and after exercise load. Pfirrmann grading was evaluated with T2WI, and the B0 map, ADC map and FA map were reconstructed based on the DTI data to investigate the changes in ADC and FA after exercise. Of the 30 volunteers (150 intervertebral discs) receiving the examination, 27 with discs of Pfirrminn grade II were included for analysis. In these 27 volunteers, the average ADC and FA before exercise were (1.99 ± 0.18)×10⁻³ mm²/s and 0.155∓0.059, respectively. After exercise, ADC was lowered significantly to (1.93 ± 0.17)×10⁻³ mm²/s (P<0.05) and FA increased slightly to 0.1623 ± 0.017 (P>0.05). DTI allows quantitatively analysis of the changes in water molecular diffusion and anisotropy of the lumbar intervertebral discs after exercise load, which can cause a decreased ADC and a increased FA value, and the change of ADC is more sensitive to exercise load.

  8. Radiation recall dermatitis, panniculitis, and myositis following cyclophosphamide therapy: histopathologic findings of a patient affected by multiple myeloma.

    PubMed

    Borroni, Giovanni; Vassallo, Camilla; Brazzelli, Valeria; Martinoli, Sara; Ardigò, Marco; Alessandrino, Paolo Emilio; Borroni, Riccardo Giovanni; Franchini, Pietro

    2004-06-01

    Radiation recall dermatitis is one of the skin sequelae that may affect oncology patients. It occurs in a previously irradiated field, when subsequent chemotherapy is given. The eruption may be elicited by chemotherapy, even several months after radiotherapy. Its mechanism is poorly understood, and the histopathologic findings have received, to date, only sketchy descriptions. A 55-year-old male affected by multiple myeloma received radiation therapy both on his left coxofemoral area, and lumbar region (D11-L1). After cyclophosphamide administration, he developed 2 well defined square-shaped, infiltrated erythematoviolaceous plaques in the prior irradiated fields. Histopathologic findings revealed a diffusely fibrosclerosing process, involving deep dermis, hypodermis, as well as the underlying muscle, while sparing the epidermis and superficial-mid dermis. Histopathology was indistinguishable from deep radio-dermatitis, panniculitis, and myositis. This is the first case providing clear evidence of the causative role of cyclophosphamide in inducing a cutaneous and subcutaneous radiation recall reaction.

  9. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    PubMed

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  10. The immediate reduction in low back pain intensity following lumbar joint mobilization and prone press-ups is associated with increased diffusion of water in the L5-S1 intervertebral disc.

    PubMed

    Beattie, Paul F; Arnot, Cathy F; Donley, Jonathan W; Noda, Harmony; Bailey, Lane

    2010-05-01

    Single-group, prospective, repeated-measures design. To determine differences in the changes of diffusion of water in the L5-S1 intervertebral disc between subjects with nonspecific low back pain (LBP) who reported an immediate reduction in pain intensity of 2 or greater on an 11-point (0-10) numeric rating scale after a 10-minute session of lumbar joint mobilization, followed by prone press-up exercises, compared to those who did not report an immediate reduction in pain intensity of 2 or greater on the pain scale. Combining lumbar joint mobilization and prone press-up exercises is a common intervention for patients with LBP; however, there is conflicting evidence regarding the effectiveness and efficacy of this approach. Increased knowledge of the physiologic effects of the combined use of these treatments, and the relationship to pain reports, can lead to refinement of their clinical application. Twenty adults, aged 22 to 54, participated in this study. All subjects reported LBP of at least 2 on an 11-point (0-10) verbally administered numeric rating scale at the time of enrollment in the study and were classified as being candidates for the combination of joint mobilization and prone press-ups. Subjects underwent T2- and diffusion-weighted lumbar magnetic resonance imaging scans before and immediately after receiving a 10-minute session of lumbar pressures in a posterior-to-anterior direction and prone press-up exercises. Subjects who reported a decrease in current pain intensity of 2 or greater immediately following treatment were classified as immediate responders, while the remainder were classified as not-immediate responders. The apparent diffusion coefficient, representing the diffusion of water in the nucleus pulposis, was calculated from the midsagittal diffusion-weighted images. Following treatment, immediate responders (n = 10) had a mean increase in the apparent diffusion coefficient in the middle portion of the L5-S1 intervertebral disc of 4.2% compared to a mean decrease of 1.6% for the not-immediate responders (P<.005). In a group of subjects with LBP, who were classified as being candidates for extension-based treatment, the report of an immediate reduction in pain intensity of 2/10 of greater after a treatment of posterior-to-anterior-directed pressures, followed by prone press-up exercises, was associated with an increase in diffusion of water in the nuclear region of the L5-S1 intervertebral disc. Subjects who did not report a pain reduction of at least 2/10 did not have a change in diffusion. J Orthop Sports Phys Ther 2010;40(5):256-264, Epub 12 March 2010. doi:10.2519/jospt.2010.3284.

  11. Age-related differences in the response of the L5-S1 intervertebral disc to spinal traction.

    PubMed

    Mitchell, Ulrike H; Beattie, Paul F; Bowden, Jennifer; Larson, Robert; Wang, Haonan

    2017-10-01

    Lumbar traction is a common treatment for low back pain; however its mechanisms of action are poorly understood. It has been hypothesized that a key effect of lumbar traction is its capacity to influence fluid movement within the intervertebral disc (IVD). To determine differences in the apparent diffusion coefficient (ADC) obtained with lumbar diffusion-weighted imaging (DWI) of the L5-S1 IVD before, and during, the application of lumbar traction. Case series, repeated measures. A static traction load of ∼50% of body-weight was applied to the low back using a novel "MRI-safe" apparatus. DWI of the lumbar spine was performed prior to, and during the application of the traction load. Participants were currently asymptomatic and included a young adult group (n = 18) and a middle-aged group (n = 15). The young adult group had a non-significant 2.2% increase in ADC (mean change = 0.03 × 10 -3  mm 2 /s, SD = 0.24, 95% CI = -0.09, 0.15). The ADC for the middle-aged group significantly increased by 20% (mean change of 0.18 × 10 -3  mm 2 /s, SD = 0.19; 95% CI = 0.07, 0.28; p = 0.003; effect size = 0.95). There was an inverse relationship between the ADC obtained before traction and the percent increase in ADC that was measured during traction. Static traction was associated with an increase in diffusion of water within the L5-S1 IVDs of middle-age individuals, but not in young adults, suggesting age-related differences in the diffusion response. Further study is needed to assess the relationship between these findings and the symptoms of back pain. 4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ultrasound-guided lumbar puncture in pediatric patients: technical success and safety.

    PubMed

    Pierce, David B; Shivaram, Giri; Koo, Kevin S H; Shaw, Dennis W W; Meyer, Kirby F; Monroe, Eric J

    2018-06-01

    Disadvantages of fluoroscopically guided lumbar puncture include delivery of ionizing radiation and limited resolution of incompletely ossified posterior elements. Ultrasound (US) allows visualization of critical soft tissues and the cerebrospinal fluid (CSF) space without ionizing radiation. To determine the technical success and safety of US-guided lumbar puncture in pediatric patients. A retrospective review identified all patients referred to interventional radiology for lumbar puncture between June 2010 and June 2017. Patients who underwent lumbar puncture with fluoroscopic guidance alone were excluded. For the remaining procedures, technical success and procedural complications were assessed. Two hundred and one image-guided lumbar punctures in 161 patients were included. Eighty patients (43%) had previously failed landmark-based attempts. One hundred ninety-six (97.5%) patients underwent lumbar puncture. Five procedures (2.5%) were not attempted after US assessment, either due to a paucity of CSF or unsafe window for needle placement. Technical success was achieved in 187 (95.4%) of lumbar punctures attempted with US guidance. One hundred seventy-seven (90.3%) were technically successful with US alone (age range: 2 days-15 years, weight range: 1.9-53.1 kg) and an additional 10 (5.1%) were successful with US-guided thecal access and subsequent fluoroscopic confirmation. Three (1.5%) cases were unsuccessful with US guidance but were subsequently successful with fluoroscopic guidance. Of the 80 previously failed landmark-based lumbar punctures, 77 (96.3%) were successful with US guidance alone. There were no reported complications. US guidance is safe and effective for lumbar punctures and has specific advantages over fluoroscopy in pediatric patients.

  13. [Lumbar spondylosis].

    PubMed

    Seichi, Atsushi

    2014-10-01

    Lumbar spondylosis is a chronic, noninflammatory disease caused by degeneration of lumbar disc and/or facet joints. The etiology of lumbar spondylosis is multifactorial. Patients with lumbar spondylosis complain of a broad variety of symptoms including discomfort in the low back lesion, whereas some of them have radiating leg pain or neurologenic intermittent claudication (lumbar spinal stenosis). The majority of patients with spondylosis and stenosis of the lumbosacral spine can be treated nonsurgically. Nonsteroidal anti-inflammatory drugs and COX-2 inhibitors are helpful in controlling symptoms. Prostaglandin, epidural injection, and transforaminal injection are also helpful for leg pain and intermittent claudication. Operative therapy for spinal stenosis or spondylolisthesis is reserved for patients who are totally incapacitated by their condition.

  14. Imaging diagnosis--necrotizing meningomyelitis and polyarthritis.

    PubMed

    Parry, Andrew T; Penning, Victoria A; Smith, Ken C; Kenny, Patrick J; Lamb, Christopher R

    2009-01-01

    A vaccinated 2-year-old female neutered Weimaraner had bilateral pelvic limb ataxia that progressed over 12 h. The dog became nonambulatory, with signs of pain on palpation of the lumbar spine. The dog also developed multiple joint effusions. On magnetic resonance (MR) imaging, there was a diffuse, asymmetric T2-hyperintensity in the thoracolumbar spinal cord which was characterized by contrast enhancement. Lumbar cerebrospinal fluid (CSF) analysis had an elevated white blood cell count and protein. On the basis of MR images and CSF analysis, a presumptive diagnosis of diffuse myelitis was made. The dog became paraplegic and was euthanized. Postmortem examination confirmed the presence of myelitis with vasculitis and nonerosive polyarthritis.

  15. Microstructural Changes in Compressed Nerve Roots Are Consistent With Clinical Symptoms and Symptom Duration in Patients With Lumbar Disc Herniation.

    PubMed

    Wu, Weifei; Liang, Jie; Ru, Neng; Zhou, Caisheng; Chen, Jianfeng; Wu, Yongde; Yang, Zong

    2016-06-01

    A prospective study. To investigate the association between microstructural nerve roots changes on diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with lumbar disc herniation. The ability to identify microstructural properties of the nervous system with DTI has been demonstrated in many studies. However, there are no data regarding the association between microstructural changes evaluated using DTI and symptoms assessed with the Oswestry Disability Index (ODI) and their duration. Forty consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on the S1 nerve roots. Clinical symptoms were evaluated using an ODI questionnaire for each patient, and the duration of clinical symptoms was noted based on the earliest instance of leg pain and numbness. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (P < 0.001). No notable difference in ADC was observed between compressed nerve roots and contralateral nerve roots (P = 0.517). In the compressed nerve roots, a significant negative association was observed between FA values and ODI and symptom duration. However, an obvious positive association was observed between ODI and ADC values and duration on the compressed side. Significant changes in diffusion parameters were found in the compressed sacral nerves in patients with lumbar disc herniation and leg pain, indicating that the microstructure of the nerve root has been damaged. 3.

  16. Whitacre Needle Reduces the Incidence of Intravascular Uptake in Lumbar Transforaminal Epidural Steroid Injections.

    PubMed

    Hong, JiHee; Jung, Sungwon; Chang, Hyuckwon

    2015-01-01

    Transforaminal epidural steroid injection (TFESI) is a commonly used interventional pain management procedures to treat radicular leg pain. Although most reported complications of TFESI are minor, serious morbidity has also been demonstrated including spinal cord infarction, paraplegia, and quadriparesis. Suggested mechanisms include direct vascular injury or intravascular injection of particulate steroid. We compared 2 different needle types, Whitacre and Quincke type needles, with regard to intravascular injection rate with total procedure time and the amount of radiation during lumbar TFESI. Prospective, randomized trial. An interventional pain management practice in South Korea. After Institutional Review Board approval, 149 patients undergoing lumbar TFESI for radicular leg pain were randomly assigned to one of 2 needle groups (Whitacre needle or Quincke type needle). After final confirmation of intravascular injection with digital subtraction angiography, total procedure time and amount of radiation exposure during TFESI were measured. The overall incidence of intravascular injection was 10.4% (28/269). We analyzed the overall incidence of intravascular injection according to the 2 different needle types. The incidence of intravascular injection of the Whitacre needle was 5.4% (8/146), whereas the incidence of intravascular injection of the Quincke needle was 16.2% (20/123). Total procedure time and amount of radiation required to complete the TFESI in the Whitacre and Quincke needle groups was 168.4 ± 57.9 (seconds) and 33.4 ± 15.9 (cGy/cm2), 131.9 ± 46.0 (seconds) and 33.2 ± 15.8 (cGy/cm2), respectively. The physician who performed the TFESI was not blinded to the type of needle for detecting intravascular injection. This study was focused on lumbar TFESI, however, most TFESIs are performed at the L4-5 or L5-S1 level. The Whitacre needle had the benefit of reducing the incidence of intravascular injection with minimal differences in technical difficulties and the amount of radiation exposure during lumbar TFESI.

  17. [Body build and radiation exposure in static roentgen studies (I): A contribution for determining a national reference dose value. Promoted by the Federal Office for Radiation Protection (St.Sch 4163)].

    PubMed

    Golder, W; Weiner, G

    2001-06-01

    To contribute data on radiation exposure in static x-ray procedures and to compare them with anthropometric parameters. 121 chest x-rays and 100 lumbar spine examinations were carried out and the dose-area product (DAP) measured for each of the projections. Additionally, body height, body weight and the sagittal and transversal diameters of the examined regions were recorded. Dose measurements were statistically evaluated and the following data determined: Frequency distribution, median, 25%- and 75%-percentiles as well as correlations with sex, body weight and diameters. Median DAP was 13 (men: 16; women: 11) resp. 50 (62; 37) cGycm2 with pa resp lateral chest x-ray. Values were closely correlated with body weight (r = 0.704/0.659) and diameter of the chest (r = 0.657/0.579). Median DAP was 175 (239; 126) resp 531 (670; 361) cGycm2 with ap resp lateral lumbar spine examinations. Values were closely correlated with body weight (r = 0.678/0.666) and diameter of the abdomen (r = 0.664/0.658). DAP of chest x-rays and lumbar spine examinations is strongly influenced by the constitution of the patients. Men are nearly twice as largely exposed to radiation as women.

  18. Enough positive rate of paraspinal mapping and diffusion tensor imaging with levels which should be decompressed in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Zhong, Zhi-Wei; Li, Chun-Sheng; Bai, Bo

    2016-07-01

    In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis. The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively. 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively). In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  19. Associations between disc space narrowing, anterior osteophytes and disability in chronic mechanical low back pain: a cross sectional study.

    PubMed

    Perera, Romain Shanil; Dissanayake, Poruwalage Harsha; Senarath, Upul; Wijayaratne, Lalith Sirimevan; Karunanayake, Aranjan Lional; Dissanayake, Vajira Harshadeva Weerabaddana

    2017-05-15

    Radiographic features of lumbar disc degeneration (LDD) are common findings in patients with chronic mechanical low back pain; however, its role in disability and intensity of pain is debatable. This study aims to investigate the associations of the x-ray features of LDD and lumbar spondylolisthesis with severity of disability and intensity of pain. A cross-sectional study was conducted on 439 patients with chronic mechanical low back pain who attended the rheumatology clinic, National Hospital of Sri Lanka, Colombo, from May 2012 to May 2014. Severity of disability was measured using Modified Oswestry Disability Index and intensity of pain was assessed using numeric rating scale (0-100). X-ray features of LDD (disc space narrowing, anterior osteophytes and overall LDD) and spondylolisthesis were assessed in lateral recumbent lumbar x-rays (L1/L2 to L5/S1) and graded by a consultant radiologist blinded to clinical data. Generalised linear model with linear response was used to assess the associations of x-ray features of LDD with severity of disability and intensity of pain adjusting for age, gender, body mass index and pain radiating into legs. Mean age was 48.99 ± 11.21 and 323 (73.58%) were females. 87 (19.82%) were obese. Mean severity of disability was 30.95 ± 13.67 and mean intensity of pain was 45.50 ± 20.37. 69 (15.72%), 26 (5.92%) and 85 (19.36%) patients had grade 2 disc space narrowing, anterior osteophytes and overall LDD, respectively. 51 (11.62%) patients had lumbar spondylolisthesis. Grade of disc space narrowing and overall LDD were not associated with severity of disability or intensity of pain. The presence of lumbar spondylolisthesis was associated with severity of disability. Female gender and pain radiating into legs were associated with severity of disability and intensity of pain. Advancing age was associated with x-ray features of LDD and lumbar spondylolisthesis. Lumbar spondylolisthesis is associated with severity of disability in patients with chronic mechanical low back pain. Associations of x-ray features of LDD with severity of disability and intensity of pain are inconclusive. Female gender and pain radiating into legs are significant confounders.

  20. Effective Dose of CT- and Fluoroscopy-Guided Perineural/Epidural Injections of the Lumbar Spine: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Gebhard; Schmitz, Alexander; Borchardt, Dieter

    The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4-10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3-15 pulses/s). Effective doses under CTmore » guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1-3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80-90%.« less

  1. Lumbar foraminal stenosis, the hidden stenosis including at L5/S1.

    PubMed

    Orita, Sumihisa; Inage, Kazuhide; Eguchi, Yawara; Kubota, Go; Aoki, Yasuchika; Nakamura, Junichi; Matsuura, Yusuke; Furuya, Takeo; Koda, Masao; Ohtori, Seiji

    2016-10-01

    In patients with lower back and leg pain, lumbar foraminal stenosis (LFS) is one of the most important pathologies, especially for predominant radicular symptoms. LFS pathology can develop as a result of progressing spinal degeneration and is characterized by exacerbation with foraminal narrowing caused by lumbar extension (Kemp's sign). However, there is a lack of critical clinical findings for LFS pathology. Therefore, patients with robust and persistent leg pain, which is exacerbated by lumbar extension, should be suspected of LFS. Radiological diagnosis is performed using multiple radiological modalities, such as magnetic resonance imaging, including plain examination and novel protocols such as diffusion tensor imaging, as well as dynamic X-ray, and computed tomography. Electrophysiological testing can also aid diagnosis. Treatment options include both conservative and surgical approaches. Conservative treatment includes medication, rehabilitation, and spinal nerve block. Surgery should be considered when the pathology is refractory to conservative treatment and requires direct decompression of the exiting nerve root, including the dorsal root ganglia. In cases with decreased intervertebral height and/or instability, fusion surgery should also be considered. Recent advancements in minimally invasive lumbar lateral interbody fusion procedures enable effective and less invasive foraminal enlargement compared with traditional fusion surgeries such as transforaminal lumbar interbody fusion. The lumbosacral junction can cause L5 radiculopathy with greater incidence than other lumbar levels as a result of anatomical and epidemiological factors, which should be better addressed when treating clinical lower back pain.

  2. Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans

    PubMed Central

    Bosma, Rachael L.; Stroman, Patrick W.

    2012-01-01

    The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord. PMID:22295179

  3. Consecutive assessment of FA and ADC values of normal lumbar nerve roots from the junction of the dura mater.

    PubMed

    Miyagi, Ryo; Sakai, Toshinori; Yamabe, Eiko; Yoshioka, Hiroshi

    2015-06-27

    Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used in the evaluation of the central nervous system and recently have been reported as a potential tool for diagnosis of the peripheral nerve or the lumbar nerve entrapment. The purpose of this study was to evaluate consecutive changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of normal lumbar nerve roots from the junction of the dura mater. The lumbar spinal nerves were examined in 6 male healthy volunteers (mean age, 35 years) with no experiences of sciatica, with a 3.0-T MR unit using a five-element phased-array surface coil. DTI was performed with the following imaging parameters: 11084.6/73.7 ms for TR/TE; b-value, 800 s/mm2; MPG, 33 directions; slice thickness, 1.5 mm; and total scan time, 7 min 35 s. ADC and FA values at all consecutive points along the L4, L5 and S1 nerves were quantified on every 1.5 mm slice from the junction of the dura mater using short fiber tracking. ADC values of all L4, 5, and S1 nerve roots decreased linearly up to 15 mm from the dura junction and was constant distally afterward. ADC values in the proximal portion demonstrated S1 > L5 > L4 (p < 0.05). On the other hand, FA values increased linearly up to 15 mm from the dura junction, and was constant distally afterward. FA values in the proximal portion showed L4 > L5 > S1 (p < 0.05). Our study demonstrated that ADC and FA values of each L4, 5, and S1 at the proximal portion from the junction of the dura matter changed linearly. It would be useful to know the normal profile of DTI values by location of each nerve root so that we can detect subtle abnormalities in each nerve root.

  4. Minimally Invasive versus Open Spine Surgery: What Does the Best Evidence Tell Us?

    PubMed

    McClelland, Shearwood; Goldstein, Jeffrey A

    2017-01-01

    Spine surgery has been transformed significantly by the growth of minimally invasive surgery (MIS) procedures. Easily marketable to patients as less invasive with smaller incisions, MIS is often perceived as superior to traditional open spine surgery. The highest quality evidence comparing MIS with open spine surgery was examined. A systematic review of randomized controlled trials (RCTs) involving MIS versus open spine surgery was performed using the Entrez gateway of the PubMed database for articles published in English up to December 28, 2015. RCTs and systematic reviews of RCTs of MIS versus open spine surgery were evaluated for three particular entities: Cervical disc herniation, lumbar disc herniation, and posterior lumbar fusion. A total of 17 RCTs were identified, along with six systematic reviews. For cervical disc herniation, MIS provided no difference in overall function, arm pain relief, or long-term neck pain. In lumbar disc herniation, MIS was inferior in providing leg/low back pain relief, rehospitalization rates, quality of life improvement, and exposed the surgeon to >10 times more radiation in return for shorter hospital stay and less surgical site infection. In posterior lumbar fusion, MIS transforaminal lumbar interbody fusion (TLIF) had significantly reduced 2-year societal cost, fewer medical complications, reduced time to return to work, and improved short-term Oswestry Disability Index scores at the cost of higher revision rates, higher readmission rates, and more than twice the amount of intraoperative fluoroscopy. The highest levels of evidence do not support MIS over open surgery for cervical or lumbar disc herniation. However, MIS TLIF demonstrates advantages along with higher revision/readmission rates. Regardless of patient indication, MIS exposes the surgeon to significantly more radiation; it is unclear how this impacts patients. These results should optimize informed decision-making regarding MIS versus open spine surgery, particularly in the current advertising climate greatly favoring MIS.

  5. [The possibilities for diagnostics of prescription of death coming based on the changes in the lumbar intervertebral disks (the comparison of the morphological, immunohistochemical and topographical findings)].

    PubMed

    Byval'tsev, V A; Stepanov, I A; Semenov, A V; Perfil'ev, D V; Belykh, E G; Bardonova, L A; Nikiforov, S B; Sudakov, N P; Bespyatykh, I V; Antipina, S L

    The objective of the present study was the comprehensive analysis of the postmortem changes in the lumbar intervertebral disks within different periods after death. A total of seven vertebromotor segments were distinguished in the lumbosacral region of the vertebral column based on the examination of 7 corpses. All these segments were divided into three groups in accordance with the prescription of death coming as follows: up to 12 hours (group 1), between 12 and 24 hours (group 2), and between 24 and 36 hours (group 3) after death. The models of the segments thus obtained were subjected to the study by means of diffusion weighted MRI. The removed intervertebral disks were used for morphological and immunohistochemical investigations. The comparison of the diffusion coefficients (DI) revealed the significant difference between the intervertebral disks assigned to groups 1 and 2 (p<0.01). The number of the cells in the pulpal core, the vertebral end plate, and the fibrous ring in all the above groups of the intervertebral disks was significantly reduced (p<0.01). The analysis of the correlation dependence between cell density and diffusion coefficients has demonstrated the well apparent relationship between these characteristics of the intervertebral disks comprising groups 1 and 2. It is concluded that diffusion weighted MRI in the combination with the calculation of diffusion coefficients for the intervertebral disks provides a tool for diagnostics of prescription of death coming as confirmed by the results of the morphometric studies and immunohistochemical analysis.

  6. Lumbar Aspergillus osteomyelitis mimicking pyogenic osteomyelitis in an immunocompetent adult.

    PubMed

    Yoon, Kyeong-Wook; Kim, Young-Jin

    2015-04-01

    Spinal Aspergillus osteomyelitis is rare and occurs mostly in immunocompromised patients, but especially very rare in immunocompetent adult. This report presents a case of lumbar vertebral osteomyelitis in immunocompetent adult. A 53-year-old male who had no significant medical history was admitted due to complaints of back pain radiating to the flank for the last 3 months, followed by a progressive motor weakness of both lower limbs. Lumbar magnetic resonance imaging (MRI) demonstrated osteomyelitis and diskitis, suspected to be a pyogenic condition rather than a tuberculosis infection. Despite antibiotic treatment for several weeks, the symptoms worsened, and finally, open surgery was performed. Surgical biopsy revealed an Aspergillus infection and medical treatment with amphotericin B was started. It can be diagnosed early through an MRI; biopsy is very important but difficult, and making the correct differential diagnosis is essential for avoiding unexpected complications. The authors report a case of lumbar Aspergillus osteomyelitis in an immunocompetent adult and reviewed previously described cases of spinal aspergillosis.

  7. Lumbosacral Radiculoplexopathy as the Initial Presentation of Lymphoma: A Report of 4 Cases.

    PubMed

    Marquardt, Robert J; Li, Yuebing

    2018-06-01

    To evaluate the clinical, laboratory, and radiological features of 4 cases of biopsy-proven lymphomatous lumbosacral radiculoplexopathy. Retrospective chart review. All patients suffered from diffuse large B-cell lymphoma. A mean diagnostic delay of 10 months was encountered. Presenting symptoms in all 4 patients included back pain, radicular leg pain, and leg weakness, similar to spondylotic radiculopathy. Electrodiagnostic study showed axon loss radiculoplexopathy and magnetic resonance imaging of the lumbar spine or pelvis demonstrated nerve or nerve root enhancement. Increased uptake by lumbosacral roots/plexus on fluorodeoxyglucose-positron emission tomography aided diagnosis in 3 cases. Cytology was positive in 1 of 10 cerebrospinal fluid samples. Combined chemotherapy and radiation treatment led to clinicoradiological improvement, with residual neurological symptoms in all patients. Lymphomatous lumbosacral radiculoplexopathy should be considered in patients with progressive lumbosacral radicular symptoms. Magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography, but not cerebrospinal fluid, are helpful in achieving early diagnosis. Treatment responses seem favorable.

  8. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.

  9. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    PubMed

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.

  11. Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.

    PubMed

    Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M

    2017-12-01

    We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.

  12. Late effects of radiation on the lumbar spinal cord of guinea pigs: Re-treatment tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, K.A.; Withers, H.R.; Chiang, Chi-Shiun

    Using a guinea pig model of lumbar myelopathy, various factors affecting the tolerance of spinal cord to irradiation were assessed: (a) extent of initial injury; (b) time interval between priming and test doses; and (c) animal age at the time of initial radiation treatment. A 3 cm section of lumbar spinal cord of guinea pigs was irradiated with fractionated doses of 4.5 Gy gamma rays given as 9 fractions per week. Guinea pigs were primed with 9 x 4.5 Gy in 7 days which is 60% of the ED[sub 50] for a continuous course of treatment. After 28 or 40more » weeks, animal were retreated with 6-14 fractions of 4.5 Gy. Animals were observed for 2 years following the priming dose and both the incidence and latency of myelopathy recorded. Young adult guinea pigs (8 wk old) showed both a decreased radiation tolerance and latency compared to old individuals (40 wk old). At 28 or 40 wk after 9 x 4.5 Gy, only about 8% of the initial injury was remembered in young adult guinea pigs. The amount of residual injury was dependent on the initial damage as a proportion of the tolerance dose. The spinal cord shows a greater capacity for long-term recovery than generally appreciated and re-treatment doses clinically prescribed may be lower than necessary. 8 refs., 3 figs., 2 tabs.« less

  13. [It starts as a Lumbovertebral syndrome and ends as an acute confusional state].

    PubMed

    Gianella, Pietro; Fusi, Tanja; Bernasconi, Enos

    2013-12-31

    Here we report the case of a 19-year-old somalian man who has been admitted to our emergency department because of an important lumbago without trauma. The physical examination on arrival showed a diffuse painful percussion of the left paraspinal muscles without neurological impairment. The laboratory exams displayed a significant elevation of the inflammatory response (CRP 154 mg/l, procalcitonin 0,05 µg/l), the blood cultures were negative and a thoracic and lumbar computed tomography (CT) was not conclusive. The unclear clinical picture led to a magnetic resonance imaging, showing the presence of an abscess in the left thoraco-lumbar paraspinal musculature with ongoing invasion of the epidural space. The clinical picture became dramatic as the patient suddenly developed a frank nuchal rigidity associated with an acute confusional state, caused by the rupture of the abscess in the meningeal space with secondary meningitis, confirmed by a lumbar puncture, where S. aureus was found.

  14. Reduced Field of View Diffusion-Weighted Imaging in the Evaluation of Congenital Spine Malformations.

    PubMed

    Radhakrishnan, Rupa; Betts, Aaron M; Care, Marguerite M; Serai, Suraj; Zhang, Bin; Jones, Blaise V

    2016-05-01

    Reduced field of view diffusion-weighted imaging (rFOV DWI) is a more recently described technique in the evaluation of spine pathology. In adults, this technique has been shown to increase clinician confidence in identification of diffusion restricting lesions. In this study, we evaluate the image quality and diagnostic confidence of the rFOV DWI technique in pediatric spine MRI. We included patients with MRI of the lumbar spine for suspected congenital abnormalities who had conventional SS-EPI (single shot echo planar imaging) with full field of view (fFOV) and rFOV DWI performed. Images were graded for image quality and observer confidence for detection of lesions with reduced diffusion. Position of the conus and L3 vertebral body measurements were recorded. Comparisons were made between the fFOV and rFOV scores. Fifty children (30 girls, 20 boys) were included (median 3.6 years). Compared to the fFOV images, the rFOV images scored higher in image quality (P < 0.0001) and for confidence in detecting lesions with reduced diffusion (P < 0.0001). The average spread of identified conus position was smaller for in rFOV compared to fFOV (P = 0.0042). There was no significant difference in the L3 vertebral body measurements between the two methods. In rFOV, the anterior aspects of the vertebral bodies were excluded in a few studies due to narrow FOV. rFOV DWI of the lumbar spine in the pediatric population has qualitatively improved image quality and observer confidence for lesion detection when compared to conventional fFOV SS-EPI DWI. Copyright © 2015 by the American Society of Neuroimaging.

  15. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  16. Lumbar vertebral hemangioma causing cauda equina syndrome: a case report.

    PubMed

    Ahn, Henry; Jhaveri, Subir; Yee, Albert; Finkelstein, Joel

    2005-11-01

    Case report. To report a case of lumbar hemangioma causing neurogenic claudication and early cauda equina, managed with hemostatic vertebroplasty and posterior decompression. This is the first report to our knowledge of a lumbar hemangioma causing neurogenic claudication and early cauda equina syndrome. Most hemangiomas causing neurologic symptoms occur in thoracic spine and cause spinal cord compression. Vertebroplasty as a method of hemostasis and for providing mechanical stability in this situation has not been discussed previously in the literature. L4 hemangioma was diagnosed in a 64-year-old woman with severe neurogenic claudication and early cauda equina syndrome. Preoperative angiograms showed no embolizable vessels. Posterior decompression was performed followed by bilateral transpedicular vertebroplasty. The patient received postoperative radiation to prevent recurrence. Complete relief of neurogenic claudication and cauda equina with less than 100 mL of blood loss. A lumbar hemangioma of the vertebral body, although rare, can cause neurogenic claudication and cauda equina syndrome. Intraoperative vertebroplasty can be an effective method of hemostasis and provide stability of the vertebra following posterior decompression.

  17. Interference of Detection Rate of Lumbar Disc Herniation by Socioeconomic Status

    PubMed Central

    Ji, Gyu Yeul; Jung, Nak-Yong; An, Seong Dae; Choi, Won-Seok; Kim, Jung Hoon

    2013-01-01

    Study Design Retrospective study. Purpose The objective of the study is to evaluate the relationship between the detection rate of lumbar disc herniation and socioeconomic status. Overview of Literature Income is one important determinant of public health. Yet, there are no reports about the relationship between socioeconomic status and the detective rate of disc herniation. Methods In this study, 443 cases were checked for lumbar computed tomography for lumbar disc herniation, and they reviewed questionnaires about their socioeconomic status, the presence of back pain or radiating pain and the presence of a medical certificate (to check the medical or surgical treatment for the pain) during the Korean conscription. Results Without the consideration for the presence of a medical certificate, there was no difference in spinal physical grade according to socioeconomic status (p=0.290). But, with the consideration of the presence of a medical certificate, the significant statistical differences were observed according to socioeconomic status in 249 cases in the presence of a medical certificate (p=0.028). There was a lower detection rate in low economic status individuals than those in the high economic class. The common reason for not submitting a medical certificate is that it is neither necessary for the people of lower socioeconomic status nor is it financially affordable. Conclusions The prevalence of lumbar disc herniation is not different according to socioeconomic status, but the detective rate was affected by socioeconomic status. Socioeconomic status is an important factor for detecting lumbar disc herniation. PMID:23508288

  18. Interference of detection rate of lumbar disc herniation by socioeconomic status.

    PubMed

    Ji, Gyu Yeul; Oh, Chang Hyun; Jung, Nak-Yong; An, Seong Dae; Choi, Won-Seok; Kim, Jung Hoon

    2013-03-01

    Retrospective study. The objective of the study is to evaluate the relationship between the detection rate of lumbar disc herniation and socioeconomic status. Income is one important determinant of public health. Yet, there are no reports about the relationship between socioeconomic status and the detective rate of disc herniation. In this study, 443 cases were checked for lumbar computed tomography for lumbar disc herniation, and they reviewed questionnaires about their socioeconomic status, the presence of back pain or radiating pain and the presence of a medical certificate (to check the medical or surgical treatment for the pain) during the Korean conscription. Without the consideration for the presence of a medical certificate, there was no difference in spinal physical grade according to socioeconomic status (p=0.290). But, with the consideration of the presence of a medical certificate, the significant statistical differences were observed according to socioeconomic status in 249 cases in the presence of a medical certificate (p=0.028). There was a lower detection rate in low economic status individuals than those in the high economic class. The common reason for not submitting a medical certificate is that it is neither necessary for the people of lower socioeconomic status nor is it financially affordable. The prevalence of lumbar disc herniation is not different according to socioeconomic status, but the detective rate was affected by socioeconomic status. Socioeconomic status is an important factor for detecting lumbar disc herniation.

  19. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation at 20 independent flux tower sites using the MOD15 LAI product finds that the DTEC model explains 71% of the variability observed in monthly flux GPP. Evaluation at two Amazonian tropical forest sites (KM67 and KM83) indicates this model's potential to capture the unique seasonality in GPP, e.g., higher GPP in diffuse radiation-dominated wet season, while the two-leaf LUE GPP model (He et al., 2013) cannot due to using constant LUE for sunlit and shaded leaf. The DTEC model initially simulated the linear relationship between canopy LUE and Df found at Amazon KM67 and KM83 forest sites. It shows a positive response of forest GPP to the atmosphere diffuse radiation in Amazon. Diffuse radiation was more limiting than global radiation and water for Amazon forest GPP on a seasonal scale. This differs from results of recent studies in which light-controlled leaf phenology plays the dominant role in seasonal variation of GPP in Amazonian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51B2461D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51B2461D"><span>Dependence of radiation belt simulations to assumed radial diffusion rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.</p> <p>2017-12-01</p> <p>Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29909125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29909125"><span>Effectiveness of using low rate fluoroscopy to reduce an examiner's radiation dose during lumbar nerve root block.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamane, Kentaro; Kai, Nobuo; Mazaki, Tetsuro; Miyamoto, Tadashi; Matsushita, Tomohiro</p> <p>2018-06-13</p> <p>Long-term exposure to radiation can lead to gene mutations and increase the risk of cancer. Low rate fluoroscopy has the potential to reduce the radiation exposure for both the examiner and the patient during various fluoroscopic procedures. The purpose of this study was to evaluate the impact of low rate fluoroscopy on reducing an examiner's radiation dose during nerve root block. A total of 101 lumbar nerve root block examinations were performed at our institute during a 6-month period. During the first 3 months, low rate fluoroscopy was performed at 7.5 frames/s (FPS) in 54 examinations, while 47 were performed at 15 FPS during the last 3 months. The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective and equivalent doses for the hands, skin, and eyes were investigated. The mean monthly equivalent doses were significantly lower both inside and outside the hand protector for the 7.5 FPS versus 15 FPS (inside; P = 0.021, outside; P = 0.024). There were no significant differences between the two groups for the mean monthly calculated effective dose for each protector's condition. Radiation exposure was significantly reduced for the skin on the examiner's hand when using low rate fluoroscopy at 7.5 FPS, with no noticeable decrease in image quality or prolonged fluoroscopy time. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5871832-spinal-deformity-children-treated-neuroblastoma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5871832-spinal-deformity-children-treated-neuroblastoma"><span>Spinal deformity in children treated for neuroblastoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.</p> <p>1981-02-01</p> <p>Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis withmore » a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22071649','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22071649"><span>Lumbar vertebral hemangioma with extradural extension, causing neurogenic claudication: a case report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jouibari, Morteza Faghih; Khoshnevisan, Alireza; Ghodsi, Seyed Mohammad; Nejat, Farideh; Naderi, Soheil; Abdollahzadeh, Sina</p> <p>2011-01-01</p> <p>The authors present a rare case of lumbar vertebral hemangioma extending to the epidural space with a bisected appearance and impinging on thecal sac. This 52-year-old lady presented with one year history of low back pain and bilateral leg radiation. Plain radiography showed vertical linear streaks at L2 vertebral body and axial computed tomography (CT) scan revealed small "polka dot" appearance within the vertebral body. Magnetic resonance imaging (MRI) showed low signal intensity on T1-weighted images in L2 vertebral body which was not characteristic for hemangioma. The patient underwent an L2 laminectomy, spinal canal decompression and posterior spinal instrumentation. This study indicates that lumbar vertebral hemangioma can extend to the epidural space and cause neurologic symptoms. Magnetic resonance imaging may not show diagnostic features, especially in active lesions and plain radiography and CT scan may be helpful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26370717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26370717"><span>(18)F-FDG uptake of the spinal cord was decreased after conventional dose radiotherapy in esophageal cancer patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harata, Naoki; Yoshida, Katsuya; Oota, Sayako; Fujii, Hayahiko; Isogai, Jun; Yoshimura, Ryoichi</p> <p>2016-01-01</p> <p>We retrospectively investigated changes of (18)F-fluorodeocyglucose ((18)F-FDG) uptake in the spinal cord, inside and outside the radiation fields, in patients with esophageal cancer before and after conventional dose radiotherapy. A total of 17 consecutive patients with esophageal cancer (16 males, one female; age 50-83 years, mean 67.0 years), who underwent conventional dose radiotherapy and (18)F-FDG PET/CT before and 5.1 months (range 1.6-8.6 months) after the radiotherapy, were retrospectively evaluated. Sixteen patients had esophageal cancer and one patient had esophageal metastasis from thyroid cancer. Mean standardized uptake values (SUVmean) of the cervical, thoracic (inside and outside the radiation fields) and lumbar spinal cord were measured. SUVmean of the thoracic spinal cord inside the radiation field was decreased significantly after radiotherapy compared to those before radiotherapy (p < 0.001). SUVmean of the cervical spinal cord showed the same trend but it was not statistically significant (p = 0.051). SUVmean of the thoracic spinal cord outside the radiation field and the lumbar spinal cord did not differ significantly before and after the radiotherapy (p = 0.146 and p = 0.701, respectively). The results suggest that glucose metabolism of the spinal cord is decreased in esophageal cancer patients after conventional dose radiotherapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5913023','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5913023"><span>Comparative Prospective Study Reporting Intraoperative Parameters, Pedicle Screw Perforation, and Radiation Exposure in Navigation-Guided versus Non-navigated Fluoroscopy-Assisted Minimal Invasive Transforaminal Lumbar Interbody Fusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kundnani, Vishal; Dutta, Shumayou; Patel, Ankit; Mehta, Gaurav; Singh, Mahendra</p> <p>2018-01-01</p> <p>Study Design Prospective cohort study. Purpose To compare intraoperative parameters, radiation exposure, and pedicle screw perforation rate in navigation-guided versus non-navigated fluoroscopy-assisted minimal invasive transforaminal lumbar interbody fusion (MIS TLIF). Overview of Literature The poor reliability of fluoroscopy-guided instrumentation and growing concerns about radiation exposure have led to the development of navigation-guided instrumentation techniques in MIS TLIF. The literature evaluating the efficacy of navigation-guided MIS TLIF is scant. Methods Eighty-seven patients underwent navigation- or fluoroscopy-guided MIS TLIF for symptomatic lumbar/lumbosacral spondylolisthesis. Demographics, intraoperative parameters (surgical time, blood loss), and radiation exposure (sec/mGy/Gy.cm2 noted from C-arm for comparison only) were recorded. Computed tomography was performed in patients in the navigation and non-navigation groups at postoperative 12 months and reviewed by an independent observer to assess the accuracy of screw placement, perforation incidence, location, grade (Mirza), and critical versus non-critical neurological implications. Results Twenty-seven patients (male/female, 11/16; L4–L5/L5–S1, 9/18) were operated with navigation-guided MIS TLIF, whereas 60 (male/female, 25/35; L4–L5/L5–S1, 26/34) with conventional fluoroscopy-guided MIS TILF. The use of navigation resulted in reduced fluoroscopy usage (dose area product, 0.47 Gy.cm2 versus 2.93 Gy.cm2), radiation exposure (1.68 mGy versus 10.97 mGy), and fluoroscopy time (46.5 seconds versus 119.08 seconds), with p-values of <0.001. Furthermore, 96.29% (104/108) of pedicle screws in the navigation group were accurately placed (grade 0) (4 breaches, all grade I) compared with 91.67% (220/240) in the non-navigation group (20 breaches, 16 grade I+4 grade II; p=0.114). None of the breaches resulted in a corresponding neurological deficit or required revision. Conclusions Navigation guidance in MIS TLIF reduced radiation exposure, but the perforation status was not statistically different than that for the fluoroscopy-based technique. Thus, navigation in nondeformity cases is useful for significantly reducing the radiation exposure, but its ability to reduce pedicle screw perforation in nondeformity cases remains to be proven. PMID:29713413</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3009628','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3009628"><span>Bias in the physical examination of patients with lumbar radiculopathy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2010-01-01</p> <p>Background No prior studies have examined systematic bias in the musculoskeletal physical examination. The objective of this study was to assess the effects of bias due to prior knowledge of lumbar spine magnetic resonance imaging findings (MRI) on perceived diagnostic accuracy of the physical examination for lumbar radiculopathy. Methods This was a cross-sectional comparison of the performance characteristics of the physical examination with blinding to MRI results (the 'independent group') with performance in the situation where the physical examination was not blinded to MRI results (the 'non-independent group'). The reference standard was the final diagnostic impression of nerve root impingement by the examining physician. Subjects were recruited from a hospital-based outpatient specialty spine clinic. All adults age 18 and older presenting with lower extremity radiating pain of duration ≤ 12 weeks were evaluated for participation. 154 consecutively recruited subjects with lumbar disk herniation confirmed by lumbar spine MRI were included in this study. Sensitivities and specificities with 95% confidence intervals were calculated in the independent and non-independent groups for the four components of the radiculopathy examination: 1) provocative testing, 2) motor strength testing, 3) pinprick sensory testing, and 4) deep tendon reflex testing. Results The perceived sensitivity of sensory testing was higher with prior knowledge of MRI results (20% vs. 36%; p = 0.05). Sensitivities and specificities for exam components otherwise showed no statistically significant differences between groups. Conclusions Prior knowledge of lumbar MRI results may introduce bias into the pinprick sensory testing component of the physical examination for lumbar radiculopathy. No statistically significant effect of bias was seen for other components of the physical examination. The effect of bias due to prior knowledge of lumbar MRI results should be considered when an isolated sensory deficit on examination is used in medical decision-making. Further studies of bias should include surgical clinic populations and other common diagnoses including shoulder, knee and hip pathology. PMID:21118558</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21118558','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21118558"><span>Bias in the physical examination of patients with lumbar radiculopathy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suri, Pradeep; Hunter, David J; Katz, Jeffrey N; Li, Ling; Rainville, James</p> <p>2010-11-30</p> <p>No prior studies have examined systematic bias in the musculoskeletal physical examination. The objective of this study was to assess the effects of bias due to prior knowledge of lumbar spine magnetic resonance imaging findings (MRI) on perceived diagnostic accuracy of the physical examination for lumbar radiculopathy. This was a cross-sectional comparison of the performance characteristics of the physical examination with blinding to MRI results (the 'independent group') with performance in the situation where the physical examination was not blinded to MRI results (the 'non-independent group'). The reference standard was the final diagnostic impression of nerve root impingement by the examining physician. Subjects were recruited from a hospital-based outpatient specialty spine clinic. All adults age 18 and older presenting with lower extremity radiating pain of duration ≤ 12 weeks were evaluated for participation. 154 consecutively recruited subjects with lumbar disk herniation confirmed by lumbar spine MRI were included in this study. Sensitivities and specificities with 95% confidence intervals were calculated in the independent and non-independent groups for the four components of the radiculopathy examination: 1) provocative testing, 2) motor strength testing, 3) pinprick sensory testing, and 4) deep tendon reflex testing. The perceived sensitivity of sensory testing was higher with prior knowledge of MRI results (20% vs. 36%; p = 0.05). Sensitivities and specificities for exam components otherwise showed no statistically significant differences between groups. Prior knowledge of lumbar MRI results may introduce bias into the pinprick sensory testing component of the physical examination for lumbar radiculopathy. No statistically significant effect of bias was seen for other components of the physical examination. The effect of bias due to prior knowledge of lumbar MRI results should be considered when an isolated sensory deficit on examination is used in medical decision-making. Further studies of bias should include surgical clinic populations and other common diagnoses including shoulder, knee and hip pathology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B43J..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B43J..06M"><span>Diffuse radiation increases global ecosystem-level water-use efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.</p> <p>2012-12-01</p> <p>Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6553586-comparison-modeled-typical-meteorological-year-diffuse-direct-tilted-solar-radiation-values-measured-data-cloudy-climate-seattle-tacoma-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6553586-comparison-modeled-typical-meteorological-year-diffuse-direct-tilted-solar-radiation-values-measured-data-cloudy-climate-seattle-tacoma-data"><span>Comparison of modeled and typical meteorological year. Diffuse, direct, and tilted solar radiation values with measured data in a cloudy climate: Seattle-Tacoma data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Straub, D.; Baylon, D.; Smith, O.</p> <p>1980-01-01</p> <p>Four commonly used solar radiation models that determine the diffuse and direct components of the solar radiation on a horizontal surface are compared against measured data to determine their predictive and modeling applicability. The John Hay model is determined to underpredict the diffuse and the Pereira/Rabl model to overpredict the diffuse radiation. The daily Liu and Jordan correlation and the hourly Boes correlation are shown to be better predictors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27582621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27582621"><span>Lumbar lateral shift in a patient with interspinous device implantation: a case report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterson, Seth; Hodges, Cheri</p> <p>2016-09-01</p> <p>Lumbar lateral shift (LLS) is a common clinical observation but has rarely been described in a patient with a history of lumbar surgery. The purpose of the current case report was to describe the use of the McKenzie Method of Mechanical Diagnosis and Therapy (MDT) in the multi-modal treatment of a patient with an LLS and a history of multiple surgical procedures in the lumbar spine, including interspinous process device (IPD) implantation. A 72-year-old female with chronic low back pain (LBP) and a surgical history in the lumbar spine was referred to physical therapy for radiating leg pain and presented with a right LLS. Her chief complaints included sitting for long periods, vacuuming and ascending stairs into her home. The patient was treated during eight visits over 30 days. Treatment interventions included manual shift correction, self-correction and management, joint mobilisation below the level of IPD implantation ,neurophysiology education, and development of a home exercise programme. At discharge, her leg pain was resolved and all goals had been met. The patient reported maintenance of gains at 6-month follow-up. Utilisation of the MDT approach, including LLS correction, produced positive outcomes in a complex patient with previous IPD implantation. Future research should investigate treatment and outcomes after invasive spinal procedures in similar patient populations to better inform clinical management. 4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4289519','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4289519"><span>Investigation of the Entrance Surface Dose and Dose to Different Organs in Lumbar Spine Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sina, S; Zeinali, B; Karimipoorfard, M; Lotfalizadeh, F; Sadeghi, M; Zamani, E; Faghihi, R</p> <p>2014-01-01</p> <p>Background: Dose assessment using proper dosimeters is especially important in radiation protection optimization and imaging justification in diagnostic radiology. Objective: The aim of this study is to obtain the Entrance Skin Dose (ESD) of patients undergoing lumbar spine imaging using two thermoluminescence dosimeters TLD-100 (LiF: Mg, Ti) and GR-200 (LiF: Mg, Cu, P) and also to obtain the absorbed dose to different organs in lumbar spine imaging with several views. Methods: To measure the ESD values of the patients undergoing lumbar spine imaging, the two TLD types were put on their skin surface. The ESD values for different views of lumbar spine imaging were also measured by putting the TLDs at the surface of the Rando phantom. Several TLD chips were inserted inside different organs of Rando phantom to measure the absorbed dose to different organs in lumbar spine imaging. Results: The results indicate that there is a close agreement between the results of the two dosimeters. Based on the results of this experiment, the ESD dose of the 16 patients included in this study varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for GR-200 measurements. The ESDs obtained by putting the two types of TLDs at the surface of Rando phantom are in close agreement. Conclusion: According to the results, the GR200 has greater sensitivity than the TLD-100. PMID:25599058</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820013253&hterms=big+bang+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWhat%2Bbig%2Bbang%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820013253&hterms=big+bang+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWhat%2Bbig%2Bbang%2Btheory"><span>Diffuse radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1981-01-01</p> <p>A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23990004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23990004"><span>Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tack, Denis; Jahnen, Andreas; Kohler, Sarah; Harpes, Nico; De Maertelaer, Viviane; Back, Carlo; Gevenois, Pierre Alain</p> <p>2014-01-01</p> <p>To report short- and long-term effects of an audit process intended to optimise the radiation dose from multidetector row computed tomography (MDCT). A survey of radiation dose from all eight MDCT departments in the state of Luxembourg performed in 2007 served as baseline, and involved the most frequently imaged regions (head, sinus, cervical spine, thorax, abdomen, and lumbar spine). CT dose index volume (CTDIvol), dose-length product per acquisition (DLP/acq), and DLP per examination (DLP/exa) were recorded, and their mean, median, 25th and 75th percentiles compared. In 2008, an audit conducted in each department helped to optimise doses. In 2009 and 2010, two further surveys evaluated the audit's impact on the dose delivered. Between 2007 and 2009, DLP/exa significantly decreased by 32-69 % for all regions (P < 0.001) except the lumbar spine (5 %, P = 0.455). Between 2009 and 2010, DLP/exa significantly decreased by 13-18 % for sinus, cervical and lumbar spine (P ranging from 0.016 to less than 0.001). Between 2007 and 2010, DLP/exa significantly decreased for all regions (18-75 %, P < 0.001). Collective dose decreased by 30 % and the 75th percentile (diagnostic reference level, DRL) by 20-78 %. The audit process resulted in long-lasting dose reduction, with DRLs reduced by 20-78 %, mean DLP/examination by 18-75 %, and collective dose by 30 %. • External support through clinical audit may optimise default parameters of routine CT. • Reduction of 75th percentiles used as reference diagnostic levels is 18-75 %. • The effect of this audit is sustainable over time. • Dose savings through optimisation can be added to those achievable through CT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1350025-numerical-method-angle-incidence-correction-factors-diffuse-radiation-incident-photovoltaic-modules','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1350025-numerical-method-angle-incidence-correction-factors-diffuse-radiation-incident-photovoltaic-modules"><span>Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marion, Bill</p> <p>2017-03-27</p> <p>Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.747D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.747D"><span>Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam</p> <p></p> <p>Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770012770','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770012770"><span>Correlation of total, diffuse, and direct solar radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buyco, E. H.; Namkoong, D.</p> <p>1977-01-01</p> <p>Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29217742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29217742"><span>Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zakhari, N; Taccone, M S; Torres, C; Chakraborty, S; Sinclair, J; Woulfe, J; Jansen, G H; Nguyen, T B</p> <p>2018-02-01</p> <p>Centrally restricted diffusion has been demonstrated in recurrent high-grade gliomas treated with bevacizumab. Our purpose was to assess the accuracy of centrally restricted diffusion in the diagnosis of radiation necrosis in high-grade gliomas not treated with bevacizumab. In this prospective study, we enrolled patients with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who underwent re-resection. The presence of a centrally restricted diffusion within the ring-enhancing lesion was assessed visually on diffusion trace images and by ADC measurements on 3T preoperative diffusion tensor examination. The percentage of tumor recurrence and radiation necrosis in each surgical specimen was defined histopathologically. The association between centrally restricted diffusion and radiation necrosis was assessed using the Fisher exact test. Differences in ADC and the ADC ratio between the groups were assessed via the Mann-Whitney U test, and receiver operating characteristic curve analysis was performed. Seventeen patients had re-resected ring-enhancing lesions: 8 cases of radiation necrosis and 9 cases of tumor recurrence. There was significant association between centrally restricted diffusion by visual assessment and radiation necrosis ( P = .015) with a sensitivity of 75% and a specificity of 88.9%, a positive predictive value 85.7%, and a negative predictive value of 80% for the diagnosis of radiation necrosis. There was a statistically significant difference in the ADC and ADC ratio between radiation necrosis and tumor recurrence ( P = .027). The presence of centrally restricted diffusion in a new ring-enhancing lesion might indicate radiation necrosis rather than tumor recurrence in high-grade gliomas previously treated with standard chemoradiation without bevacizumab. © 2018 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM43A2284D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM43A2284D"><span>Response of radiation belt simulations to different radial diffusion coefficients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.</p> <p>2013-12-01</p> <p>Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2899461','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2899461"><span>Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource™: a prospective study in 60 patients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.</p> <p>2008-01-01</p> <p>Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9840D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9840D"><span>Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey</p> <p>2017-04-01</p> <p>Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29245270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29245270"><span>Spondylectomy and lateral lumbar interbody fusion for thoracolumbar kyphosis in an adult with achondroplasia: A case report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi</p> <p>2017-12-01</p> <p>Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930011003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930011003"><span>Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.</p> <p>1993-01-01</p> <p>Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/790578','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/790578"><span>Unstructured Polyhedral Mesh Thermal Radiation Diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Palmer, T.S.; Zika, M.R.; Madsen, N.K.</p> <p>2000-07-27</p> <p>Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22814284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22814284"><span>Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V</p> <p>2012-10-01</p> <p>Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.6197T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.6197T"><span>Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.</p> <p>2013-10-01</p> <p>a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28959069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28959069"><span>Lumbar Spine X-Ray as a Standard Investigation for all Low back Pain in Ghana: Is It Evidence Based?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tannor, Abena Y</p> <p>2017-03-01</p> <p>Low back pain (LBP) has a prevalence of 84% in Africa. The commonest form of imaging is plain lumbar spine x-ray. It gives a radiation dose equivalent to 65 times a chest x-ray dose and sends one of the highest doses to the human reproductive organs. The commonest cause of LBP in Africa is degenerative disease. X-ray findings do not change mode of treatment yet most physicians still routinely request for x-rays. This is a systematic review of databases including The Cochrane, CINAHL plus, AMED, and MEDLINE. Key evidence was clinical guidelines on x-ray use for low back pain. Key search terms included low back pain, x-rays, guidelines, Ghana. Four clinical guidelines on LBP emerged from two Systematic Reviews rated excellent and four good Randomized Controlled Trials: The European guidelines for acute and sub-acute non-specific Low Back Pain, The American College of Physicians and the American Pain Society guideline for diagnostic imaging for Low Back Pain, The NICE guidelines for persistent non-specific Low Back Pain and the Ghana Standard Treatment Guidelines (GSTG). All the guidelines agree that a good history and clinical examination for all LBP patients helps in diagnosing. Only GSTG recommends routine plain spinal x-rays. There is strong evidence indicating very little benefit from routine lumbar spine x-rays for all LBP. The GSTG needs to be revised considering the increased risks of radiation exposure and the x-ray costs. None declared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960008435','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960008435"><span>Radiant extinction of gaseous diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.</p> <p>1995-01-01</p> <p>The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006OptCo.261...71V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006OptCo.261...71V"><span>Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.</p> <p>2006-05-01</p> <p>Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090015901&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090015901&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bradiation"><span>Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.</p> <p>2007-01-01</p> <p>In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AnGeo..14.1051B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AnGeo..14.1051B"><span>Diffuse solar radiation and associated meteorological parameters in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.</p> <p>1996-10-01</p> <p>Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin--></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1417808-viscous-regularization-full-set-nonequilibrium-diffusion-grey-radiation-hydrodynamic-equations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1417808-viscous-regularization-full-set-nonequilibrium-diffusion-grey-radiation-hydrodynamic-equations"><span>Viscous regularization of the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim</p> <p>2017-02-17</p> <p>A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ThApC..50...23B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ThApC..50...23B"><span>Effects of cloudiness on global and diffuse UV irradiance in a high-mountain area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blumthaler, M.; Ambach, W.; Salzgeber, M.</p> <p>1994-03-01</p> <p>At the high-mountain station Jungfraujoch (3576 m a.s.l., Switzerland), measurements of the radiation fluxes were made during 16 periods of six to eight weeks by means of a Robertson—Berger sunburn meter (UVB data), an Eppley UVA radiometer and an Eppley pyranometer. Cloudiness, opacity and altitude of clouds were recorded at 30-minute intervals. A second set of instruments was employed for separate measurement of the diffuse radiation fluxes using shadow bands. The global and diffuse UVA- and UVB radiation fluxes change less with cloudiness than the corresponding total radiation fluxes. When the sun is covered by clouds, the global UVA- and UVB radiation fluxes are also affected less than the global total radiation flux. The roughly equal influence of cloudiness on the UVA- and UVB radiation fluxes suggests that the reduction is influenced more by scattering than by ozone. Also, the share of diffuse irradiance in global irradiance is considerably higher for UVA- and UVB irradiance than for total irradiance. At 50° solar elevation and 0/10 cloudiness, the share is 39% for UVB irradiance, 34% for UVA irradiance and 11% for total irradiance. The increased aerosol turbidity after the eruptions of El Chichon and Pinatubo has caused a significant increase in diffuse total irradiance but has not produced any significant changes in diffuse UVA- and UVB irradiances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22054528-local-setup-reproducibility-spinal-column-when-using-intensity-modulated-radiation-therapy-craniospinal-irradiation-patient-supine-position','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22054528-local-setup-reproducibility-spinal-column-when-using-intensity-modulated-radiation-therapy-craniospinal-irradiation-patient-supine-position"><span>Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina</p> <p></p> <p>Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/902372','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/902372"><span>A multigroup radiation diffusion test problem: Comparison of code results with analytic solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shestakov, A I; Harte, J A; Bolstad, J H</p> <p>2006-12-21</p> <p>We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28922280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28922280"><span>Time Demand and Radiation Dose in 3D-Fluoroscopy-based Navigation-assisted 3D-Fluoroscopy-controlled Pedicle Screw Instrumentations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balling, Horst</p> <p>2018-05-01</p> <p>Prospective single-center cohort study to record additional time requirements and radiation dose in navigation-assisted O-arm-controlled pedicle screw (PS) instrumentations. The aim of this study was to evaluate amount of extra-time and radiation dose for navigation-assisted PS instrumentations of the thoracolumbosacral spine using O-arm 3D-real-time-navigation (O3DN) compared to non-navigated spinal procedures (NNSPs) with a single C-arm and postoperative computed tomography (CT) scan for controlling PS positions. 3D-navigation is reported to enhance PS insertion accuracy. But time-consuming navigational steps and considerable additional radiation doses seem to limit this modern technique's attraction. A detailed analysis of additional time demand and extra-radiation dose in 3D-navigated spine surgery is not provided in literature, yet. From February 2011 through July 2015, 306 consecutive posterior instrumentations were performed in vertebral levels T10-S1 using O3DN for PS insertion. The duration of procedure-specific navigational steps of the overall collective (I) and the last cohort of 50 consecutive O3DN-surgeries (II) was compared to the average duration of analogous surgical steps in 100 consecutive NNSP using a single C-arm. 3D-radiation dose (dose-length-product, DLP) of navigational and postinstrumentation O-arm scans in group I and II was compared to the average DLP of 100 diagnostic lumbar CT scans. The average presurgical time from patient positioning on the operating table to skin incision was 46.2 ± 10.1 minutes (O3DN, I) and 40.6 ± 9.8 minutes (O3DN, II) versus 30.6 ± 8.3 minutes (NNSP) (P < 0.001, each). Intraoperative interruptions for scanning and data processing took 3.0 ± 0.6 minutes. DLPs averaged 865.1 ± 360.8 mGycm (O3DN, I) and 562.1 ± 352.6 mGycm (O3DN, II) compared to 575.5 ± 316.5 mGycm in diagnostic lumbar CT scans (P < 0.001 (I), P ≈ 0.81 [II]). After procedural experience, navigated surgeries can be performed with an additional time demand of 13.0 minutes compared to NNSP, and with a total DLP below that of a diagnostic lumbar CT scan (P ≈ 0.81). 4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26723553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26723553"><span>Cadaveric verification of the Eclipse AAA algorithm for spine SBRT treatments with titanium hardware.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grams, Michael P; Fong de Los Santos, Luis E; Antolak, John A; Brinkmann, Debra H; Clarke, Michelle J; Park, Sean S; Olivier, Kenneth R; Whitaker, Thomas J</p> <p>2016-01-01</p> <p>To assess the accuracy of the Eclipse Analytical Anisotropic Algorithm when calculating dose for spine stereotactic body radiation therapy treatments involving surgically implanted titanium hardware. A human spine was removed from a cadaver, cut sagittally along the midline, and then separated into thoracic and lumbar sections. The thoracic section was implanted with titanium stabilization hardware; the lumbar section was not implanted. Spine sections were secured in a water phantom and simulated for treatment planning using both standard and extended computed tomography (CT) scales. Target volumes were created on both spine sections. Dose calculations were performed using (1) the standard CT scale with relative electron density (RED) override of image artifacts and hardware, (2) the extended CT scale with RED override of image artifacts only, and (3) the standard CT scale with no RED overrides for hardware or artifacts. Plans were delivered with volumetric modulated arc therapy using a 6-MV beam with and without a flattening filter. A total of 3 measurements for each plan were made with Gafchromic film placed between the spine sections and compared with Eclipse dose calculations using gamma analysis with a 2%/2 mm passing criteria. A single measurement in a homogeneous phantom was made for each plan before actual delivery. Gamma passing rates for measurements in the homogeneous phantom were 99.6% or greater. Passing rates for measurements made in the lumbar spine section without hardware were 99.3% or greater; measurements made in the thoracic spine containing titanium were 98.6 to 99.5%. Eclipse Analytical Anisotropic Algorithm can adequately model the effects of titanium implants for spine stereotactic body radiation therapy treatments using volumetric modulated arc therapy. Calculations with standard or extended CT scales give similarly accurate results. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A43L..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A43L..06R"><span>Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.</p> <p>2013-12-01</p> <p>Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES model to show that this increase in diffuse radiation is responsible for a substantial growth in gross primary productivity (GPP), enhancing Amazon-wide dry-season GPP by 5% with local increases of up to 15%. Most of this GPP response results in an increase in NPP, estimated in the dry season at 10% across the Amazon with local increases as large as 30%. This substantial NPP enhancement spatially matches observed increases in forest biomass storage across the Amazon. We thus suggest that deforestation fires have an important impact on the Amazon carbon budget and attempt to estimate the fraction of the observed forest carbon sink that can be attributed to this mechanism. Change [%] in diffuse radiation due to deforestation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005oicc.conf...29G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005oicc.conf...29G"><span>Radiation Diffusion:. AN Overview of Physical and Numerical Concepts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graziani, Frank</p> <p>2005-12-01</p> <p>An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3429794','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3429794"><span>Effect of neonatal gene therapy on lumbar spine disease in mucopolysaccharidosis VII dogs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Lachlan J; Martin, John T; O'Donnell, Patricia; Wang, Ping; Elliott, Dawn M; Haskins, Mark E; Ponder, Katherine P</p> <p>2012-01-01</p> <p>Mucopolysaccharidosis VII (MPS VII) is due to deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan, and dermatan sulfate glycosaminoglycans in various tissues including those of the spine. Associated spine disease can be due to abnormalities in the vertebrae, the intervertebral discs, or other spine tissues. The goal of this study was to determine if neonatal gene therapy could prevent lumbar spine disease in MPS VII dogs. MPS VII dogs were injected intravenously with a retroviral vector (RV) expressing canine GUSB at 2 to 3 days after birth, which resulted in transduction of hepatocytes that secreted GUSB into blood. Expression was stable for up to 11 years, and mean survival was increased from 0.4 years in untreated dogs to 6.1 years in treated dogs. Despite a profound positive clinical effect, 6-month-old RV-treated MPS VII dogs still had hypoplastic ventral epiphyses with reduced calcification in the lumbar spine, which resulted in a reduced stiffness and increased range of motion that was not improved relative to untreated MPS VII dogs. At six to 11 years of age, ventral vertebrae remained hypoplastic in RV-treated MPS VII dogs, and there was desiccation of the nucleus pulposus in some discs. Histochemical staining demonstrated that discs did not have detectable GUSB activity despite high serum GUSB activity, which is likely due to poor diffusion into this relatively avascular structure. Thus, neonatal gene therapy cannot prevent lumbar spine disease in MPS VII dogs, which predicts that enzyme replacement therapy (ERT) will similarly be relatively ineffective even if started at birth. PMID:22510705</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24426843','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24426843"><span>Lumbar spine intervertebral disc gene delivery: a pilot study in lewis rats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Damle, Sheela R; Rawlins, Bernard A; Boachie-Adjei, Oheneba; Crystal, Ronald G; Hidaka, Chisa; Cunningham, Matthew E</p> <p>2013-02-01</p> <p>Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc. This study was designed to develop and describe a surgical technique for lumbar spine exposure and disc space preparation, and use of a matrix-free method for gene delivery. Naïve or genetically programmed isogeneic bone marrow stromal cells were surgically delivered to adolescent male Lewis rat lumbar discs, and utilizing quantitative biochemical and qualitative immunohistological assessments, the implanted cells were detected 3 days post-procedure. Statistically significant differences were noted for recovery of the β-galactosidase marker gene comparing delivery of naïve or labeled cells (10(5) cells per disc) from the site of implantation, and between delivery of 10(5) or 10(6) labeled cells per disc at the site of implantation and the adjacent vertebral body. Immunohistology confirmed that the β-galactosidase marker was detected in the adjacent vertebra bone in the zone of surgical implantation. The model requires further testing in larger cohorts and with biologically active genes of interest, but the observations from the pilot experiments are very encouraging that this will be a useful comparative model for basic spine research involving gene or cell delivery, or other locally delivered therapies to the intervertebral disc or adjacent vertebral bodies in rats.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22465631-using-hybrid-implicit-monte-carlo-diffusion-simulate-gray-radiation-hydrodynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22465631-using-hybrid-implicit-monte-carlo-diffusion-simulate-gray-radiation-hydrodynamics"><span>Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick</p> <p></p> <p>This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760015042','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760015042"><span>Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barbosa, D. D.; Coroniti, F. V.</p> <p>1976-01-01</p> <p>The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/15007182-comparison-between-modeled-measured-clear-sky-radiative-shortwave-fluxes-arctic-environments-special-emphasis-diffuse-radiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/15007182-comparison-between-modeled-measured-clear-sky-radiative-shortwave-fluxes-arctic-environments-special-emphasis-diffuse-radiation"><span>A Comparison Between Modeled and Measured Clear-Sky Radiative Shortwave Fluxes in Arctic Environments, with Special Emphasis on Diffuse Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barnard, James C.; Flynn, Donna M.</p> <p>2002-10-08</p> <p>The ability of the SBDART radiative transfer model to predict clear-sky diffuse and direct normal broadband shortwave irradiances is investigated. Model calculations of these quantities are compared with data from the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. The model tends to consistently underestimate the direct normal irradiances at both sites by about 1%. In regards to clear-sky diffuse irradiance, the model overestimates this quantity at the SGP site in a manner similar to what has been observed in other studies (Halthore and Schwartz, 2000). The difference between the diffuse SBDARTmore » calculations and Halthore and Schwartz’s MODTRAN calculations is very small, thus demonstrating that SBDART performs similarly to MODTRAN. SBDART is then applied to the NSA site, and here it is found that the discrepancy between the model calculations and corrected diffuse measurements (corrected for daytime offsets, Dutton et al., 2001) is 0.4 W/m2 when averaged over the 12 cases considered here. Two cases of diffuse measurements from a shaded “black and white” pyranometer are also compared with the calculations and the discrepancy is again minimal. Thus, it appears as if the “diffuse discrepancy” that exists at the SGP site does not exist at the NSA sites. We cannot yet explain why the model predicts diffuse radiation well at one site but not at the other.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5728885','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5728885"><span>Spondylectomy and lateral lumbar interbody fusion for thoracolumbar kyphosis in an adult with achondroplasia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi</p> <p>2017-01-01</p> <p>Abstract Rationale: Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. Patient concerns: A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Diagnoses: Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. Interventions: We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. Outcomes: No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Lessons: Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia. PMID:29245270</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24623190','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24623190"><span>Prevalence of diffuse idiopathic skeletal hyperostosis (DISH) of the whole spine and its association with lumbar spondylosis and knee osteoarthritis: the ROAD study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kagotani, Ryohei; Yoshida, Munehito; Muraki, Shigeyuki; Oka, Hiroyuki; Hashizume, Hiroshi; Yamada, Hiroshi; Enyo, Yoshio; Nagata, Keiji; Ishimoto, Yuyu; Teraguchi, Masatoshi; Tanaka, Sakae; Nakamura, Kozo; Kawaguchi, Hiroshi; Akune, Toru; Yoshimura, Noriko</p> <p>2015-03-01</p> <p>We aimed to assess the prevalence of diffuse idiopathic skeletal hyperostosis (DISH) and its association with lumbar spondylosis (LS) and knee osteoarthritis (KOA) using a population-based cohort study entitled Research on Osteoarthritis/osteoporosis Against Disability (ROAD). In the baseline ROAD study, which was performed between 2005 and 2007, 1,690 participants in mountainous and coastal areas underwent anthropometric measurements and radiographic examinations of the whole spine (cervical, thoracic, and lumbar) and both knees. They also completed an interviewer-administered questionnaire. Presence of DISH was diagnosed according to Resnick criteria, and LS and KOA were defined as Kellgren-Lawrence (KL) grade ≥3. Among the 1,690 participants, whole-spine radiographs of 1,647 individuals (97.5%; 573 men, 1,074 women; mean age, 65.3 years) were evaluated. Prevalence of DISH was 10.8% (men 22.0%, women 4.8%), and was significantly higher in older participants (presence of DISH 72.3 years, absence of DISH 64.4 years) and mainly distributed at the thoracic spine (88.7%). Logistic regression analysis revealed that presence of DISH was significantly associated with older age [+1 year, odds ratio (OR): 1.06, 95% confidence interval (CI): 1.03-1.14], male sex (OR: 5.55, 95% CI: 3.57-8.63), higher body mass index (+1 kg/m(2), OR: 1.08, 95% CI: 1.02-1.14), presence of LS (KL2 vs KL0: 1, OR: 5.50, 95% CI: 2.81-10.8) (KL ≥3 vs KL0: 1, OR: 4.09, 95% CI: 2.08-8.03), and presence of KOA (KL ≥3 vs KL0: 1, OR: 1.89, 95% CI: 1.14-3.10) after adjusting for smoking, alcohol consumption, and residential area (mountainous vs coastal). This cross-sectional population-based study clarified the prevalence of DISH in general inhabitants and its significant association with LS and severe KOA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1374348-equilibrium-diffusion-limit-radiation-hydrodynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1374348-equilibrium-diffusion-limit-radiation-hydrodynamics"><span>The equilibrium-diffusion limit for radiation hydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ferguson, J. M.; Morel, J. E.; Lowrie, R.</p> <p>2017-07-27</p> <p>The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6111201-vertebral-sarcoidosis-demonstration-bone-involvement-computerized-axial-tomography','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6111201-vertebral-sarcoidosis-demonstration-bone-involvement-computerized-axial-tomography"><span>Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dinerstein, S.L.; Kovarsky, J.</p> <p>1984-08-01</p> <p>A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1295098','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1295098"><span>Effect of carbon ion irradiation on Ag diffusion in SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.</p> <p></p> <p>Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295098-effect-carbon-ion-irradiation-ag-diffusion-sic','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295098-effect-carbon-ion-irradiation-ag-diffusion-sic"><span>Effect of carbon ion irradiation on Ag diffusion in SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...</p> <p>2015-11-14</p> <p>Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1260481','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1260481"><span>Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bayu Aji, L. B.; Wallace, J. B.; Shao, L.</p> <p></p> <p>Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1260481-effective-defect-diffusion-lengths-ar-ion-bombarded-sic','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1260481-effective-defect-diffusion-lengths-ar-ion-bombarded-sic"><span>Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...</p> <p>2016-04-14</p> <p>Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMP....58a3301M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMP....58a3301M"><span>The time-fractional radiative transport equation—Continuous-time random walk, diffusion approximation, and Legendre-polynomial expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machida, Manabu</p> <p>2017-01-01</p> <p>We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20804701-multiple-scattering-clouds-insights-from-three-dimensional-diffusion-sub-theory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20804701-multiple-scattering-clouds-insights-from-three-dimensional-diffusion-sub-theory"><span>Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Davis, Anthony B.; Marshak, Alexander</p> <p>2001-03-15</p> <p>In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51F1868Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51F1868Z"><span>A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, J.; Shao, S.; Zhou, L.</p> <p>2017-12-01</p> <p>Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade leaves (photosynthetic active radiation, PAR) results in higher photosynthetic rates; Second, the radiation changes lead to changes in temperature and humidity, thereby changing the rates of the plant biophysical and chemical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24818217','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24818217"><span>Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil</p> <p>2014-06-21</p> <p>A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5510622-analysis-diffuse-radiation-data-beer-sheva-measured-shadow-ring-versus-calculated-global-horizontal-beam-values','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5510622-analysis-diffuse-radiation-data-beer-sheva-measured-shadow-ring-versus-calculated-global-horizontal-beam-values"><span>Analysis of diffuse radiation data for Beer Sheva: Measured (shadow ring) versus calculated (global-horizontal beam) values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kudish, A.I.; Ianetz, A.</p> <p>1993-12-01</p> <p>The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27555964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27555964"><span>Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J</p> <p>2016-01-01</p> <p>Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983385','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983385"><span>Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.</p> <p>2016-01-01</p> <p>Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13A0486T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13A0486T"><span>Alpha-Recoil Damage Annealing Effecfs on Zircon Crystallinity and He Diffusivity: Improving Damage-Diffusivity Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thurston, O. G.; Guenthner, W.; Garver, J. I.</p> <p>2017-12-01</p> <p>The effects of radiation damage on He diffusion in zircon has been a major research focus in thermochronology over the past decade. In the zircon-He system, alpha-recoil damage effects He diffusivity in two ways: a decrease in He diffusivity at low radiation damage levels, and an increase in He diffusivity at high radiation damage levels. The radiation damage accumulation process within zircon is well understood; however, the kinetics of annealing of alpha-recoil damage at geologic timescales as they pertain to damage-diffusivity models, and for metamict zircon (i.e. transition from crystalline to amorphous glass via damage accumulation), has not been well constrained. This study aims to develop a more complete model that describes the annealing kinetics for zircon grains with a broad range of pre-annealing, alpha-induced radiation damage. A suite of zircon grains from the Lucerne pluton, ME were chosen for this study due to their simple thermal history (monotonic cooling), notable range of effective uranium (eU, eU = [U] +0.235*[Th]) (15 - 34,239 ppm eU), and large range of radiation damage as measured by Raman shift from crystalline (>1005 cm-1) to metamict (<1000 cm-1). The zircon grains selected represent the full range of eU and radiation damage present in the pluton. The zircon grains were first mapped for overall crystallinity using Raman spectroscopy, then annealed at different time-temperature (t-T) schedules from 1 hr to 24 hrs at temperatures ranging from 700-1100 °C, followed by remapping with Raman spectroscopy to track the total Raman shift for each t-T step. The temperature window selected is at the "roll-over" point established in prior studies (Zhang et al., 2000), at which most laboratory annealing occurs. Our data show that high radiation damage zircon grains show larger Raman shifts than low radiation damage zircon grains when exposed to the same t-T step. The high damage zircon grains typically show a Raman shift of 4 cm-1 toward crystalline, while low radiation damage grains show a shift of 2 cm-1. These shifts suggest that the annealing process occurs at a faster rate in high damage zircon grains, and slower rates in more crystalline grains. That is, the initial level of radiation damage prior to annealing must be considered in damage-diffusivity models that contain thermal histories from zircon-He dates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960038262','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960038262"><span>Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, R.; Spuckler, C. M.</p> <p>1994-01-01</p> <p>Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRA..115.0F05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRA..115.0F05A"><span>Diffusion by one wave and by many waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albert, J. M.</p> <p>2010-03-01</p> <p>Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MNRAS.420..562H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MNRAS.420..562H"><span>Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haworth, Thomas J.; Harries, Tim J.</p> <p>2012-02-01</p> <p>We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357978-effect-nickel-point-defects-diffusion-fe-ni-alloys','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357978-effect-nickel-point-defects-diffusion-fe-ni-alloys"><span>Effect of nickel on point defects diffusion in Fe – Ni alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Anento, Napoleon; Serra, Anna; Osetsky, Yury N.</p> <p>2017-05-05</p> <p>Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960047111','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960047111"><span>Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Anjan</p> <p>1996-01-01</p> <p>The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for the soot volume fraction was found to be between the processes of soot convection and soot growth. Such a balance yielded to analytical treatment and the soot volume fraction could be expressed in the form of an integral. The integral was evaluated using two approximate methods and the results agreed very well with the numerical solutions for all cases examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6159E..42P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6159E..42P"><span>Diffuser for intravessels radiation based on plastic fiber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pich, Justyna; Grobelny, Andrzej; Beres-Pawlik, Elzbieta</p> <p>2006-03-01</p> <p>Laser radiation is used in such contemporary medicine as: sport medicine, gynecology etc. Because of many radiations inside the system, there is a need of an element, which allows to supply the place of illness with energy. The dimensions of this element are often small and the one that meets these conditions is diffuser.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53076','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53076"><span>Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer</p> <p>2016-01-01</p> <p>Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5748M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5748M"><span>Assessment of diffuse radiation models in Azores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo</p> <p>2014-05-01</p> <p>Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different existing correlation models of diffuse fraction and clearness index or other plain parameters to the Azorean region. Reliable data provided by the Atmospheric Radiation Measurements (ARM) Climate Research Facility from the Graciosa Island deployment of the ARM Mobile Facility (http://www.arm.gov/sites/amf/grw) was used to perform the analysis. Model results showed a tendency to underestimate higher values of diffuse radiation. From the performance results of the correlation models reviewed it was clear that there is room for improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21091490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21091490"><span>The measurement and analysis of normal incidence solar UVB radiation and its application to the photoclimatherapy protocol for psoriasis at the Dead Sea, Israel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kudish, Avraham I; Harari, Marco; Evseev, Efim G</p> <p>2011-01-01</p> <p>The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V52C..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V52C..06G"><span>He diffusion in zircon: Observations from (U-Th)/He age suites and 4He diffusion experiments and implications for radiation damage and anisotropic effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guenthner, W. R.; Reiners, P. W.</p> <p>2009-12-01</p> <p>Despite widespread use of zircon (U-Th)/He thermochronometry in many geologic applications, our understanding of the kinetics of He diffusion in this system is rudimentary. Previous studies have shown that both radiation damage and crystallographic anisotropy may strongly influence diffusion kinetics and ages. We present observations of zircon He ages from multiple single-grain analyses from both detrital and bedrock suites from a wide variety of locations, showing relationships consistent with effects arising from the interaction of radiation damage and anisotropy. Individual zircons in each suite have experienced the same post-depositional or exhumational t-T history but grains appear to have experienced differential He loss that is correlated with effective uranium (eU) content, a proxy for the relative extent of radiation damage within each suite. Several suites of zircons heated to partial resetting upon burial or that have experienced slow cooling show positive correlations between age and eU. Examples of partially reset detrital samples include Cretaceous Sevier foreland basin sandstones buried to ~6-8 km depth, with ages ranging from 88-309 Ma across an eU range of 215-1453 ppm, and Apennines and Olympics greywackes heated to >~120 °C, showing similar trends. Some slowly-cooled bedrock samples also show positive age-eU correlations, suggesting increasing closure temperature with higher extents of radiation damage. Conversely, zircons from cratonal bedrock samples with high levels of radiation damage—measured as accumulated alpha dosage (in this case >~10^18 α/g)—generally show negative age-eU correlations. We interpret these contrasting age-eU relationships as a manifestation of the interaction of radiation damage and anisotropic diffusion: at low damage, He diffusivity is relatively high and preferentially through c-axis-parallel channels. As suggested by Farley (2007), however, with increasing damage, channels are progressively blocked and He diffusivity decreases. Eventually, a crystal reaches a threshold level (>~10^18 α/g ) wherein radiation damage is so extensive that damage zones become interconnected and He diffusivity increases once again. In order to evaluate these assertions, we conducted a series of step-heating experiments on several pairs of zircon slabs. Individual slabs were crystallographically oriented either orthogonal or parallel to the c-axis and each pair possessed varying degrees of radiation damage. Results from these experiments provide new closure temperature estimates, explain age-eU correlations within a data set, and allow us to construct diffusion models that more accurately describe the t-T history of a given sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM23A2583C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM23A2583C"><span>Bayesian inference of radiation belt loss timescales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camporeale, E.; Chandorkar, M.</p> <p>2017-12-01</p> <p>Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhPl....7.2126B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhPl....7.2126B"><span>Diffusive, supersonic x-ray transport in radiatively heated foam cylinders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Back, C. A.; Bauer, J. D.; Hammer, J. H.; Lasinski, B. F.; Turner, R. E.; Rambo, P. W.; Landen, O. L.; Suter, L. J.; Rosen, M. D.; Hsing, W. W.</p> <p>2000-05-01</p> <p>Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in experiments on low density (40 mg/cc to 50 mg/cc) foams. Laser-heated Au hohlraums provided a radiation drive that heated SiO2 and Ta2O5 aerogel foams of varying lengths. Face-on emission measurements at 550 eV provided clean signatures of the radiation breakout. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. The Marshak radiation wave transport is studied in a geometry that allows direct comparisons with analytic models and two-dimensional code simulations. Experiments show important effects that will affect even nondiffusive and transonic radiation transport experiments studied by others in the field. This work is of basic science interest with applications to inertial confinement fusion and astrophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22510705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22510705"><span>Effect of neonatal gene therapy on lumbar spine disease in mucopolysaccharidosis VII dogs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Lachlan J; Martin, John T; O'Donnell, Patricia; Wang, Ping; Elliott, Dawn M; Haskins, Mark E; Ponder, Katherine P</p> <p>2012-09-01</p> <p>Mucopolysaccharidosis VII (MPS VII) is due to deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan, and dermatan sulfate glycosaminoglycans in various tissues including those of the spine. Associated spine disease can be due to abnormalities in the vertebrae, the intervertebral disks, or other spine tissues. The goal of this study was to determine if neonatal gene therapy could prevent lumbar spine disease in MPS VII dogs. MPS VII dogs were injected intravenously with a retroviral vector (RV) expressing canine GUSB at 2 to 3 days after birth, which resulted in transduction of hepatocytes that secreted GUSB into blood. Expression was stable for up to 11 years, and mean survival was increased from 0.4 years in untreated dogs to 6.1 years in treated dogs. Despite a profound positive clinical effect, 6-month-old RV-treated MPS VII dogs still had hypoplastic ventral epiphyses with reduced calcification in the lumbar spine, which resulted in a reduced stiffness and increased range of motion that were not improved relative to untreated MPS VII dogs. At six to 11 years of age, ventral vertebrae remained hypoplastic in RV-treated MPS VII dogs, and there was desiccation of the nucleus pulposus in some disks. Histochemical staining demonstrated that disks did not have detectable GUSB activity despite high serum GUSB activity, which is likely due to poor diffusion into this relatively avascular structure. Thus, neonatal gene therapy cannot prevent lumbar spine disease in MPS VII dogs, which predicts that enzyme replacement therapy (ERT) will similarly be relatively ineffective even if started at birth. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22098589-mobile-arm-cone-beam-ct-guidance-spine-surgery-image-quality-radiation-dose-integration-interventional-guidance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22098589-mobile-arm-cone-beam-ct-guidance-spine-surgery-image-quality-radiation-dose-integration-interventional-guidance"><span>Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schafer, S.; Nithiananthan, S.; Mirota, D. J.</p> <p></p> <p>Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic andmore » lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter, and {approx}3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from {approx}21 {mu}Sv/mGy on average at tableside to {approx}0.1 {mu}Sv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting {approx}zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was {approx}11.5 mGy for CBCT-guided thoracic vertebroplasty and {approx}23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to {approx}1 min of fluoroscopy time ({approx}40-60 {mu}Sv), compared to 5-11 min for the conventional approach. Conclusions: Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/143160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/143160"><span>[Visceral diseases as cause of lumbar syndromes].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tilscher, H; Bogner, G; Landsiedl, F</p> <p>1977-01-01</p> <p>30 patients with hepatitis, 50 patients with gynecological diseases, and 100 with urological diseases were investigated with regards to lumbago to find out whether there is a correlation between the internal disease and the signs of low back pain. The patients were compared with a control group of 33 healthy people. The vertebral localisation of the pain and its radiation were investigated and discussed in certain diseases as well as any correlation between lumbago and average age. The various possibilities of pain radiation are described and the importance of the vertebral column as secondary seat of low back pain is pointed out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29032887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29032887"><span>Virtual Simulation in Enhancing Procedural Training for Fluoroscopy-guided Lumbar Puncture: A Pilot Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ali, Saad; Qandeel, Monther; Ramakrishna, Rishi; Yang, Carina W</p> <p>2018-02-01</p> <p>Fluoroscopy-guided lumbar puncture (FGLP) is a basic procedural component of radiology residency and neuroradiology fellowship training. Performance of the procedure with limited experience is associated with increased patient discomfort as well as increased radiation dose, puncture attempts, and complication rate. Simulation in health care is a developing field that has potential for enhancing procedural training. We demonstrate the design and utility of a virtual reality simulator for performing FGLP. An FGLP module was developed on an ImmersiveTouch platform, which digitally reproduces the procedural environment with a hologram-like projection. From computed tomography datasets of healthy adult spines, we constructed a 3-D model of the lumbar spine and overlying soft tissues. We assigned different physical characteristics to each tissue type, which the user can experience through haptic feedback while advancing a virtual spinal needle. Virtual fluoroscopy as well as 3-D images can be obtained for procedural planning and guidance. The number of puncture attempts, the distance to the target, the number of fluoroscopic shots, and the approximate radiation dose can be calculated. Preliminary data from users who participated in the simulation were obtained in a postsimulation survey. All users found the simulation to be a realistic replication of the anatomy and procedure and would recommend to a colleague. On a scale of 1-5 (lowest to highest) rating the virtual simulator training overall, the mean score was 4.3 (range 3-5). We describe the design of a virtual reality simulator for performing FGLP and present the initial experience with this new technique. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880031353&hterms=gallium+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgallium%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880031353&hterms=gallium+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgallium%2Btemperature"><span>Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.</p> <p>1987-01-01</p> <p>Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790055582&hterms=beer-lambert+law&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbeer-lambert%2Blaw','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790055582&hterms=beer-lambert+law&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbeer-lambert%2Blaw"><span>Atmospheric scattering corrections to solar radiometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Box, M. A.; Deepak, A.</p> <p>1979-01-01</p> <p>Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.129.1003C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.129.1003C"><span>Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo</p> <p>2017-08-01</p> <p>Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5466974-reliable-approach-closure-large-acquired-midline-defects-back','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5466974-reliable-approach-closure-large-acquired-midline-defects-back"><span>A reliable approach to the closure of large acquired midline defects of the back</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Casas, L.A.; Lewis, V.L. Jr.</p> <p>1989-10-01</p> <p>A systematic regionalized approach for the reconstruction of acquired thoracic and lumbar midline defects of the back is described. Twenty-three patients with wounds resulting from pressure necrosis, radiation injury, and postoperative wound infection and dehiscence were successfully reconstructed. The latissimus dorsi, trapezius, gluteus maximus, and paraspinous muscles are utilized individually or in combination as advancement, rotation, island, unipedicle, turnover, or bipedicle flaps. All flaps are designed so that their vascular pedicles are out of the field of injury. After thorough debridement, large, deep wounds are closed with two layers of muscle, while smaller, more superficial wounds are reconstructed with onemore » layer. The trapezius muscle is utilized in the high thoracic area for the deep wound layer, while the paraspinous muscle is used for this layer in the thoracic and lumbar regions. Superficial layer and small wounds in the high thoracic area are reconstructed with either latissimus dorsi or trapezius muscle. Corresponding wounds in the thoracic and lumbar areas are closed with latissimus dorsi muscle alone or in combination with gluteus maximus muscle. The rationale for systematic regionalized reconstruction of acquired midline back wounds is described.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22490940-pitch-angle-diffusion-electrons-through-growing-propagating-along-magnetic-field-electromagnetic-wave-earth-radiation-belts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22490940-pitch-angle-diffusion-electrons-through-growing-propagating-along-magnetic-field-electromagnetic-wave-earth-radiation-belts"><span>Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.</p> <p></p> <p>The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22972703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22972703"><span>1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiong, Wei Feng; Qiu, Shi Jun; Wang, Hong Zhuo; Lv, Xiao Fei</p> <p>2013-01-01</p> <p>To detect radiation-induced changes of temporal lobe normal-appearing white mater (NAWM) following radiation therapy (RT) for nasopharyngeal carcinoma (NPC). Seventy-five H(1)-MR spectroscopy and diffusion-tensor imaging (DTI) examinations were performed in 55 patients before and after receiving fractionated radiation therapy (total dose; 66-75GY). We divided the dataset into six groups, a pre-RT control group and five other groups based on time after completion of RT. N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatine (Cr), Cho/Cr, mean diffusibility (MD), functional anisotropy (FA), radial diffusibility (λ(⊥)), and axial diffusibility (λ(||)) were calculated. NAA/Cho and NAA/Cr decreased and λ(⊥) increased significantly within 1 year after RT compared with pre-RT. After 1 year, NAA/Cho, NAA/Cr, and λ(⊥) were not significantly different from pre-RT. In all post-RT groups, FA decreased significantly. λ(||) decreased within 9 months after RT compared with pre-RT, but was not significantly different from pre-RT more than 9 months after RT. DTI and H(1)-MR spectroscopy can be used to detect early radiation-induced changes of temporal lobe NAWM following radiation therapy for NPC. Metabolic alterations and water diffusion characteristics of temporal lobe NAWM in patients with NPC after RT were dynamic and transient. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58.4277N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58.4277N"><span>Uncertainty in assessment of radiation-induced diffusion index changes in individual patients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue</p> <p>2013-06-01</p> <p>The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and confidence interval of diffusion tensor measurements in white matter structures allow us to determine the true longitudinal change in individual patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22275829-gamma-radiation-induced-effects-floppy-rigid-ge-containing-chalcogenide-thin-films','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22275829-gamma-radiation-induced-effects-floppy-rigid-ge-containing-chalcogenide-thin-films"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago</p> <p></p> <p>We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changesmore » occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398822','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398822"><span>Posterior Epidural Migration of an Extruded Lumbar Disc Mimicking a Facet Cyst: A Case Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yoo, Young Sun; Ju, Chang Il; Kim, Dong Min</p> <p>2015-01-01</p> <p>Dorsal extradural migration of extruded disc material is clinically uncommon. We report a rare case of posterior epidural migration of an extruded lumbar disc mimicking a facet cyst. A 32-year-old man was admitted to our institute with a 2-week history of severe low back pain and radiating pain in the left leg. The magnetic resonance (MR) images revealed a dorsally located, left-sided extradural cystic mass at the L2-3 level. The initial diagnosis was an epidural facet cyst because of the high signal intensity on MR images and its location adjacent to the facet joint. Intraoperatively, an encapsulated mass of soft tissue adherent to the dural sac was observed and excised. The pathological diagnosis was degenerated disc material. After surgery, the patient experienced complete relief from leg pain. PMID:25883662</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1297639-three-temperature-plasma-shock-solutions-gray-radiation-diffusion','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1297639-three-temperature-plasma-shock-solutions-gray-radiation-diffusion"><span>Three-temperature plasma shock solutions with gray radiation diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Johnson, Bryan M.; Klein, Richard I.</p> <p>2016-04-19</p> <p>Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1297639','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1297639"><span>Three-temperature plasma shock solutions with gray radiation diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Bryan M.; Klein, Richard I.</p> <p></p> <p>Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23772925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23772925"><span>Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei</p> <p>2013-07-01</p> <p>Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer. © 2013 by Radiation Research Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24881036','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24881036"><span>Lumbar puncture requirement in acute hemiparesis: diagnosis of tuberculous meningitis after hemiparesis in a child.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sahin, Sevim; Cansu, Ali; Kamaşak, Tülay; Eyüboğlu, İlker; Esenülkü, Gülnur; Ökten, Ayşenur</p> <p>2014-12-01</p> <p>Infections are an important acquired cause of cerebral arteriopathy. Tuberculous (TB) meningitis leading to infectious cerebral vasculopathy is a rare cause of acute hemiparesis. A 14-year-old male patient was examined after acute hemiparesis developing within 1 day. Neurological examination revealed total hemiplegia on the left side. Brain MRI findings showed bilateral focal T2-weighted signal hyperintensity in the subcortical and deep white matter regions. There were also areas of restricted diffusion in the right basal ganglia. Although the father had a history of pulmonary TB, the patient had not been given TB prophylaxis because of PPD negativity. At lumbar puncture, opening cerebrospinal fluid (CSF) pressure was 50 cm/H20, CSF protein 66.9 mg/dL, and glucose 54 mg/dL (concurrent blood glucose 93 mg/dL); 170 polymorphonuclear leukocytes per cubic millimeter were present in CSF. Following tests for TB, treatment was started immediately with four anti-TB drugs. TB PCR of CSF and acid-fast bacteria (AFB) staining in gastric aspirate were positive. At clinical follow-up, the patient was able to walk with support at the end of the first month. Various infectious agents have been reported as causes of cerebral vasculopathy. TB, which affects a significant number of patients worldwide, should be kept in mind in terms of cerebral vascular complications. Lumbar puncture is essential in order to diagnose TB meningitis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994SPIE.2134B.146G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994SPIE.2134B.146G"><span>Two years comparative studies on biological effects of environmental UV radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grof, P.; Ronto, Gyorgyi; Gaspar, S.; Berces, A.; Szabo, Laszlo D.</p> <p>1994-07-01</p> <p>A method has been developed for determination of the biologically effective UV dose based on T7 phage as biosensor. In field experiments clockwork driven telescope has been used for determining doses from direct and global (direct plus diffuse) solar radiation. On fine summer days at mid-latitude this arrangement allowed the following comparisons: measured doses from direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global doses obtained at the same time on different measuring sites (downtown, suburb, outside the town) reflecting the differences caused by air quality; direct and global doses obtained on the same measuring place, in summertime of two different years reflecting the importance of the long-term measurements for estimating the biological risk caused by increased UV-B radiation; measured data and model calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22465664-moving-mesh-finite-difference-method-equilibrium-radiation-diffusion-equations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22465664-moving-mesh-finite-difference-method-equilibrium-radiation-diffusion-equations"><span>A moving mesh finite difference method for equilibrium radiation diffusion equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn</p> <p>2015-10-01</p> <p>An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A51H0194S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A51H0194S"><span>The Impact of Radiation Changes on the Terrestrial Carbon Sink over the Post Pinatubo Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sitch, S.; Mercado, L. M.; Bellouin, N.; Boucher, O.; Huntingford, C.; Cox, P. M.</p> <p>2008-12-01</p> <p>The amount of solar radiation reaching the earth surface is one of the major drivers of plant photosynthesis and therefore changes in radiation are likely to indirectly have an effect on the terrestrial carbon cycle. For example, changes in surface radiation that lead to increasing diffuse surface irradiance are reported to enhance plant photosynthesis (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Solar radiation reaching the land surface has changed over the industrial era due to aerosols emitted from volcanoes and various anthropogenic sources (Kvalevag and Myhre, 2007). Such changes in total surface radiation are accompanied by changes in direct and diffuse surface solar radiation. Recent major volcanic events include the eruptions of el Chichón in 1986 and Mount Pinatubo in 1991. In this study we estimate the impact of changes in surface radiation on photosynthetic carbon uptake during the Post Pinatubo period. We use an offline version of the Hadley Centre land surface scheme (Mercado et al., 2007) modified to account for variations in direct and diffuse radiation on sunlit and shaded canopy photosynthesis. We use meteorological forcing from the Climate Research Unit Data set. Additionally short wave and photosynthetic active radiation are reconstructed from the Hadley centre climate model, which accounts for the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the development of the land carbon cycle through the Pinatubo event and diagnose the impact of changes in diffuse radiation on the atmospheric [CO2] growth-rate</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..60.2345C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..60.2345C"><span>Mapping diffuse photosynthetically active radiation from satellite data in Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.</p> <p>2017-12-01</p> <p>In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5685144-solar-energy-distribution-over-egypt-using-cloudiness-from-meteosat-photos','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5685144-solar-energy-distribution-over-egypt-using-cloudiness-from-meteosat-photos"><span>Solar energy distribution over Egypt using cloudiness from Meteosat photos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mosalam Shaltout, M.A.; Hassen, A.H.</p> <p>1990-01-01</p> <p>In Egypt, there are 10 ground stations for measuring the global solar radiation, and five stations for measuring the diffuse solar radiation. Every day at noon, the Meteorological Authority in Cairo receives three photographs of cloudiness over Egypt from the Meteosat satellite, one in the visible, and two in the infra-red bands (10.5-12.5 {mu}m) and (5.7-7.1 {mu}m). The monthly average cloudiness for 24 sites over Egypt are measured and calculated from Meteosat observations during the period 1985-1986. Correlation analysis between the cloudiness observed by Meteosat and global solar radiation measured from the ground stations is carried out. It is foundmore » that, the correlation coefficients are about 0.90 for the simple linear regression, and increase for the second and third degree regressions. Also, the correlation coefficients for the cloudiness with the diffuse solar radiation are about 0.80 for the simple linear regression, and increase for the second and third degree regression. Models and empirical relations for estimating the global and diffuse solar radiation from Meteosat cloudiness data over Egypt are deduced and tested. Seasonal maps for the global and diffuse radiation over Egypt are carried out.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268835','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268835"><span>Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Silun; Chen, Yifei; Lal, Bachchu; Ford, Eric; Tryggestad, Erik; Armour, Michael; Yan, Kun; Laterra, John; Zhou, Jinyuan</p> <p>2011-01-01</p> <p>Standard MRI cannot distinguish between radiation necrosis and tumor progression; however, this distinction is critical in the assessment of tumor response to therapy. In this study, one delayed radiation necrosis model (dose, 40 Gy; radiation field, 10 × 10 mm2; n = 13) and two orthotopic glioma models in rats (9L gliosarcoma, n = 8; human glioma xenografts, n = 5) were compared using multiple DTI indices. A visible isotropic apparent diffusion coefficient (ADC) pattern was observed in the lesion due to radiation necrosis, which consisted of a hypointense central zone and a hyperintense peripheral zone. There were significantly lower ADC, parallel diffusivity, and perpendicular diffusivity in the necrotic central zone than in the peripheral zone (all p < 0.001). When radiation-induced necrosis was compared with viable tumor, radiation necrosis had significantly lower ADC than 9L gliosarcoma and human glioma xenografts (both p < 0.01) in the central zone, and significantly lower FA than 9L gliosarcoma (p = 0.005) and human glioma xenografts (p = 0.012) in the peripheral zone. Histological analysis revealed parenchymal coagulative necrosis in the central zone, and damaged vessels and reactive astrogliosis in the peripheral zone. These data suggest that qualitative and quantitative analysis of the DTI maps can provide useful information by which to distinguish between radiation necrosis and viable glioma. PMID:21948114</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29274453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29274453"><span>Comparative Cohort Study of Percutaneous Pedicle Screw Implantation without Versus with Navigation in Patients Undergoing Surgery for Degenerative Lumbar Disc Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fomekong, Edward; Pierrard, Julien; Raftopoulos, Christian</p> <p>2018-03-01</p> <p>The major limitation of computer-based three-dimensional fluoroscopy is increased radiation exposure of patients and operating room staff. Combining spine navigation with intraoperative three-dimensional fluoroscopy (io3DF) can likely overcome this shortcoming, while increasing pedicle screw accuracy rate. We compared data from a cohort of patients undergoing lumbar percutaneous pedicle screw placement using io3DF alone or in combination with spine navigation. This study consisted of 168 patients who underwent percutaneous pedicle screw implantation between 2009 and 2016. The primary endpoint was to compare pedicle screw accuracy between the 2 groups. Secondary endpoints were to compare radiation exposure of patients and operating room staff, duration of surgery, and postoperative complications. In group 1, 438 screws were placed without navigation guidance; in group 2, 276 screws were placed with spine navigation. Mean patient age in both groups was 58.6 ± 14.1 years. The final pedicle accuracy rate was 97.9% in group 1 and 99.6% in group 2. Average radiation dose per patient was significantly larger in group 1 (571.9 mGym 2 ) than in group 2 (365.6 mGym 2 ) (P = 0.000088). Surgery duration and complication rate were not significantly different between the 2 groups (P > 0.05). io3DF with spine navigation minimized radiation exposure of patients and operating room staff and provided an excellent percutaneous pedicle screw accuracy rate with no permanent complications compared with io3DF alone. This setup is recommended, especially for patients with a complex degenerative spine condition. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28735464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28735464"><span>Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pireau, Nathalie; Cordemans, Virginie; Banse, Xavier; Irda, Nadia; Lichtherte, Sébastien; Kaminski, Ludovic</p> <p>2017-11-01</p> <p>Spine surgery still remains a challenge for every spine surgeon, aware of the potential serious outcomes of misplaced instrumentation. Though many studies have highlighted that using intraoperative cone beam CT imaging and navigation systems provides higher accuracy than conventional freehand methods for placement of pedicle screws in spine surgery, few studies are concerned about how to reduce radiation exposure for patients with the use of such technology. One of the main focuses of this study is based on the ALARA principle (as low as reasonably achievable). A prospective randomized trial was conducted in the hybrid operating room between December 2015 and December 2016, including 50 patients operated on for posterior instrumented thoracic and/or lumbar spinal fusion. Patients were randomized to intraoperative 3D acquisition high-dose (standard dose) or low-dose protocol, and a total of 216 pedicle screws were analyzed in terms of screw position. Two different methods were used to measure ionizing radiation: the total skin dose (derived from the dose-area product) and the radiation dose evaluated by thermoluminescent dosimeters on the surgical field. According to Gertzbein and Heary classifications, low-dose protocol provided a significant higher accuracy of pedicle screw placement than the high-dose protocol (96.1 versus 92%, respectively). Seven screws (3.2%), all implanted with the high-dose protocol, needed to be revised intraoperatively. The use of low-dose acquisition protocols reduced patient exposure by a factor of five. This study emphasizes the paramount importance of using low-dose protocols for intraoperative cone beam CT imaging coupled with the navigation system, as it at least does not affect the accuracy of pedicle screw placement and irradiates drastically less.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26686604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26686604"><span>Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John</p> <p>2016-03-01</p> <p>Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4230921','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4230921"><span>Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili</p> <p>2014-01-01</p> <p>Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25393629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25393629"><span>Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on Eddy covariance observation in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili</p> <p>2014-01-01</p> <p>Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5900518','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5900518"><span>DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei</p> <p>2018-01-01</p> <p>Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770021114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770021114"><span>SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.</p> <p>1977-01-01</p> <p>An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010074022','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010074022"><span>Unsteady Spherical Diffusion Flames in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.</p> <p>2001-01-01</p> <p>The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1347521-multiple-roles-small-angle-tilt-grain-boundaries-annihilating-radiation-damage-sic','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1347521-multiple-roles-small-angle-tilt-grain-boundaries-annihilating-radiation-damage-sic"><span>The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jiang, Hao; Wang, Xing; Szlufarska, Izabela</p> <p>2017-02-09</p> <p>Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1347521','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1347521"><span>The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jiang, Hao; Wang, Xing; Szlufarska, Izabela</p> <p></p> <p>Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19155304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19155304"><span>Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan</p> <p>2009-02-01</p> <p>Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P < 0.01) and lambda( perpendicular) correlated with demyelination (P < 0.01). Higher radiation dose (30 Gy) induced earlier and more severe histologic changes than lower radiation dose (25 Gy), and these differences were reflected by the magnitude of changes in lambda(//) and lambda( perpendicular). DTI indices reflected the histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22570191-interface-discontinuity-aware-numerical-schemes-plasma-radiation-diffusion-two-three-dimensions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22570191-interface-discontinuity-aware-numerical-schemes-plasma-radiation-diffusion-two-three-dimensions"><span>Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.</p> <p>2015-11-01</p> <p>A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE..84S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE..84S"><span>Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez, G.; Cancillo, M. L.; Serrano, A.</p> <p>2010-09-01</p> <p>This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the top of the atmosphere have also been analyzed. Several interesting features have been found. It is particularly worth to note the decreasing relative contribution of the direct component to the global irradiance as the solar zenith angle increases, due to a longer path crossed within the atmosphere. In broken clouds and overcast conditions, the diffuse component becomes the major contribution to the irradiance being the high-frequency variability the main difference between both type of cases. While in overcast conditions the global irradiance remains remarkably low, under broken clouds the global irradiance shows a very high variability frequently reaching values higher than the irradiance at the top of the atmosphere, due to multi-reflection phenomenon. The present study contributes to a better knowledge of the radiation field and its partitioning, involving original high-frequency measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912865W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912865W"><span>Effects of diffuse radiation on carbon and water fluxes of a high latitude temperate deciduous forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Sheng; Ibrom, Andreas; Pilegaard, Kim; Bauer-Gottwein, Peter; Garcia, Monica</p> <p>2017-04-01</p> <p>Ecosystem carbon and water fluxes are controlled by the interplay of biophysical factors such as solar radiation, temperature and soil moisture. In high latitudes, cloudy days are prevalent with a low amount of solar radiation and a higher proportion of diffuse radiation. For instance, in Denmark 90% of all days are non-clear (fraction of direct radiation < 50%). Changes in cloud cover related with climate change are considered the major source of uncertainty in our understanding of the Earth's climate sensitivity to increased atmospheric CO2 (Brown, 2016). It is also unknown how ecosystems will respond to potential changes in the proportion of diffuse/direct radiation, which can modify the coupled photosynthesis and transpiration rates in future. This study aims to evaluate effects of diffuse radiation on the ecosystem carbon and water fluxes in a temperate deciduous forest using long term eddy covariance observations. Eddy covariance records (Gross Primary Productivity: GPP; Evapotranspiration: ET) from 2002 to 2012, field data, Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), and sap flow data during the period of 2009-2011 at Sorø, a Danish beech forest flux site, were used for analysis. A Cloudiness Index (CI), which is based on actual and potential shortwave incoming radiation and can indicate the proportion of diffuse radiation, was used. First, multiple regression based path analysis was applied to daily and monthly observations to partition direct and indirect effects from CI to GPP and ET. Results indicate diffuse radiation increases the light use efficiency (LUE) with CI being as important as other constraints, e.g. air temperature (Tair), vapor pressure deficit (VPD) and Photosynthetically Active Radiation (PAR), on regulating LUE. An increase of the CI value of 0.1 can increase maximum LUE by about 0.286 gC•MJ-1. Following PAR and LAI, CI has the third largest effects on GPP. For ET, path analysis showed the impact of CI is limited. Further, the CI constraint was added to two physiologically based models for estimating GPP (LUE, Potter et al., 1993) and ET (Priestley-Taylor Jet Propulsion Laboratory, PT-JPL, Fisher et al., 2008) at the daily time scale to assess model improvement. When considering the effect of diffuse radiation by including the CI constraint, the RMSE of the simulated GPP decreases from 2.12 to 1.42 gC•day-1. The performance of PT-JPL improves slightly with RMSE decreasing from 17.92 to 15.51 W•m-2. The sap flow data, which indicates the transpiration, has a higher correlation with the simulated transpiration with CI (0.84) than without CI (0.81). Using these two models (LUE and PT-JPL), the Sobol global sensitivity method was applied to quantify the contribution of CI and its interactions with other forcing variables to the variability of GPP and ET. CI contributes to 23.5% of GPP variation and 4.5% of transpiration variation during summer. This study highlights how important it is to consider diffuse radiation to simulate the coupled carbon and water processes in land surface modeling schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28355766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28355766"><span>[Clinical outcomes of single-level lumbar spondylolisthesis by minimally invasive transforaminal lumbar interbody fusion with bilateral tubular channels].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeng, Z L; Jia, L; Yu, Y; Xu, W; Hu, X; Zhan, X H; Jia, Y W; Wang, J J; Cheng, L M</p> <p>2017-04-01</p> <p>Objective: To evaluate the clinical effectiveness of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for single-level lumbar spondylolisthesis treatment with bilateral Spotlight tubular channels. Methods: A total of 21 patients with lumbar spondylolisthesis whom underwent MIS-TLIF via bilateral Spotlight tubular channels were retrospectively analyzed from October 2014 to November 2015. The 21 patients included 11 males and 10 females ranged from 35 to 82 years (average aged 60.7 years). In term of spondylolisthesis category, there were 18 cases of degenerative spondylolisthesis and 3 cases of isthmic spondylolisthesis. With respect to spondylolisthesis degree, 17 cases were grade Ⅰ° and 4 cases were grade Ⅱ°. Besides, 17 cases at L(4-5) and 4 cases at L(5)-S(1)were categorized by spondylolisthesis levels. Operation duration, blood loss, postoperative drainage and intraoperative exposure time were recorded, functional improvement was defined as an improvement in the Oswestry Disability Index (ODI), Visual Analog Scale (VAS) was also employed at pre and post-operation (3 months and the last follow-up), to evaluate low back and leg pain. Furthermore, to evaluate the recovery of the intervertebral foramen and of lumbar sagittal curvature, average height of intervertebral space, Cobb angles of lumbar vertebrae and operative segments, spondylolisthesis index were measured. At the last follow-up, intervertebral fusion was assessed using Siepe evaluation criteria and the clinical outcome was assessed using the MacNab scale. Radiographic and functional outcomes were compared pre- and post-operation using the paired T test to determine the effectiveness of MIS-TLIF. Statistical significance was defined as P <0.05. Results: All patients underwent a successful MIS-TLIF surgery. The operation time (235.2±30.2) mins, intraoperative blood loss (238.1±130.3) ml, postoperative drainage (95.7±57.1) ml and intraoperative radiation exposure (47.1±8.8) were recorded. Different significance between 3 months post-operative follow-up and pre-operation was exhibited ( P <0.01) in respects of lumbar VAS ( t =11.1, P <0.01) and leg VAS ( t =17.8, P <0.01). Moreover, final follow-up compared with pre-operation, and final follow-up compared with 3 months post-operative follow-up, VAS scores were also statistical difference ( P <0.01). At the final follow-up, there were significant differences compared with pre-operation in ODI scores ( t =30.1, P <0.01). Comparison between 3 months post-operative follow-up and pre-operation, statistical distinctions were demonstrated ( P <0.05) in terms of mean height of intervertebral space ( t =-10.9, P <0.01), the Cobb angles of lumbar vertebrae ( t =-2.4, P <0.05), operative segments Cobb angles ( t =-5.2, P <0.01) and Lumbar spondylolisthesis incidence ( t =17.1, P <0.01). In addition, there was statistical difference between final follow-up and pre-operation ( P <0.05) as well. For instance, mean height of intervertebral space ( t =-10.5, P <0.01), the Cobb angles of lumbar vertebrae ( t =-2.7, P <0.05), operative segments Cobb angles ( t =-4.2, P <0.01) and Lumbar spondylolisthesis incidence ( t =18.6, P <0.01) were involved. All spondylolisthesis vertebrae were restored completely. Lastly, at the last follow-up, 12 cases of grade 1 and 7 cases of grade 2 fusion were present as determined by the Siepe evaluation criteria. McNab scale assessment classified 17 patients having excellent clinical outcome, 3 patients in good and 1 patient having a better clinical outcome. Conclusion: MIS-TLIF with bilateral Spotlight tubular channels is a safe and effective approach for single segment lumbar spondylolisthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16462214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16462214"><span>The use of computerized image guidance in lumbar disk arthroplasty.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Harvey E; Vaccaro, Alexander R; Yuan, Philip S; Papadopoulos, Stephen; Sasso, Rick</p> <p>2006-02-01</p> <p>Surgical navigation systems have been increasingly studied and applied in the application of spinal instrumentation. Successful disk arthroplasty requires accurate midline and rotational positioning for optimal function and longevity. A surgical simulation study in human cadaver specimens was done to evaluate and compare the accuracy of standard fluoroscopy, computer-assisted fluoroscopic image guidance, and Iso-C3D image guidance in the placement of lumbar intervertebral disk replacements. Lumbar intervertebral disk prostheses were placed using three different image guidance techniques in three human cadaver spine specimens at multiple levels. Postinstrumentation accuracy was assessed with thin-cut computed tomography scans. Intervertebral disk replacements placed using the StealthStation with Iso-C3D were more accurately centered than those placed using the StealthStation with FluoroNav and standard fluoroscopy. Intervertebral disk replacements placed with Iso-C3D and FluoroNav had improved rotational divergence compared with standard fluoroscopy. Iso-C3D and FluoroNav had a smaller interprocedure variance than standard fluoroscopy. These results did not approach statistical significance. Relative to both virtual and standard fluoroscopy, use of the StealthStation with Iso-C3D resulted in improved accuracy in centering the lumbar disk prosthesis in the coronal midline. The StealthStation with FluoroNav appears to be at least equivalent to standard fluoroscopy and may offer improved accuracy with rotational alignment while minimizing radiation exposure to the surgeon. Surgical guidance systems may offer improved accuracy and less interprocedure variation in the placement of intervertebral disk replacements than standard fluoroscopy. Further study regarding surgical navigation systems for intervertebral disk replacement is warranted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22045292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22045292"><span>Validation, repeatability and reproducibility of a noninvasive instrument for measuring thoracic and lumbar curvature of the spine in the sagittal plane.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaise, Fabiana O; Candotti, Cláudia T; Torre, Marcelo L; Furlanetto, Tássia S; Pelinson, Patricia P T; Loss, Jefferson F</p> <p>2011-01-01</p> <p>The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1) X-ray examination from which the Cobb angles (CA) of both curvatures were obtained, and (2) measuring the angles with the arcometer (AA). Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. There was a very strong and significant correlation between AA and CA (r=0.94; p<0.01), with no-significant difference (p=0.32), for the thoracic curvature. There was a strong and significant correlation for the lumbar curvature (r=0.71; p<0.01) between AA and CA, with no-significant difference (p=0.30). There is a very strong correlation between intra-evaluator and inter-evaluator AA. It was possible to quantify reliably the thoracic and lumbar curvatures with the arcometer and it can thus be considered valid and reliable and for use in evaluating spinal curvatures in the sagittal plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20370010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20370010"><span>Radiation impedance of condenser microphones and their diffuse-field responses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn</p> <p>2010-04-01</p> <p>The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method. In this way, a hybrid estimate of the radiation impedance is obtained. The resulting estimate of the diffuse-field response is compared with experimental estimates of the diffuse-field response determined using reciprocity and the random-incidence method. The different estimates are in good agreement at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015QuEle..45..366B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015QuEle..45..366B"><span>Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.</p> <p>2015-04-01</p> <p>An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1236062','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1236062"><span>Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang</p> <p></p> <p>The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1236062-ultra-low-frequency-wave-driven-diffusion-radiation-belt-relativistic-electrons','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1236062-ultra-low-frequency-wave-driven-diffusion-radiation-belt-relativistic-electrons"><span>Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...</p> <p>2015-12-22</p> <p>The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960038236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960038236"><span>Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, R.; Spuckler, C. M.</p> <p>1994-01-01</p> <p>Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3927518','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3927518"><span>Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz</p> <p>2008-01-01</p> <p>The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR42A..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR42A..07W"><span>Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willett, C. D.; Fox, M.; Shuster, D. L.</p> <p>2016-12-01</p> <p>Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and annealing in apatite and expand the range of geologic settings that can be studied using low-temperature thermochronology. References: [1] Fox, M., Shuster, D. (2014), EPSL 397, 174-183; [2] Gautheron, C. et al. (2013), Chem. Geol. 351, 257-267; [3] Flowers, R. et al. (2009), GCA 73, 2347-2365; [4] Shuster, D., Farley, K. (2009), GCA 73, 6183-6196.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28705704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28705704"><span>Effects of Preoperative Simulation on Minimally Invasive Hybrid Lumbar Interbody Fusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rieger, Bernhard; Jiang, Hongzhen; Reinshagen, Clemens; Molcanyi, Marek; Zivcak, Jozef; Grönemeyer, Dietrich; Bosche, Bert; Schackert, Gabriele; Ruess, Daniel</p> <p>2017-10-01</p> <p>The main focus of this study was to evaluate how preoperative simulation affects the surgical work flow, radiation exposure, and outcome of minimally invasive hybrid lumbar interbody fusion (MIS-HLIF). A total of 132 patients who underwent single-level MIS-HLIF were enrolled in a cohort study design. Dose area product was analyzed in addition to surgical data. Once preoperative simulation was established, 66 cases (SIM cohort) were compared with 66 patients who had previously undergone MIS-HLIF without preoperative simulation (NO-SIM cohort). Dose area product was reduced considerably in the SIM cohort (320 cGy·cm 2 NO-SIM cohort: 470 cGy·cm 2 ; P < 0.01). Surgical time was shorter for the SIM cohort (155 minutes; NO-SIM cohort, 182 minutes; P < 0.05). SIM cohort had a better outcome in Numeric Rating Scale back at 6 months follow-up compared with the NO-SIM cohort (P < 0.05). Preoperative simulation reduced radiation exposure and resulted in less back pain at the 6 months follow-up time point. Preoperative simulation provided guidance in determining the correct cage height. Outcome controls enabled the surgeon to improve the procedure and the software algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608450-radiation-damage-limits-xpcs-studies-protein-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608450-radiation-damage-limits-xpcs-studies-protein-dynamics"><span>Radiation damage limits to XPCS studies of protein dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vodnala, Preeti, E-mail: preeti.vodnala@gmail.com; Karunaratne, Nuwan; Lurio, Laurence</p> <p>2016-07-27</p> <p>The limitations to x-ray photon correlation spectroscopy (XPCS) imposed by radiation damage have been evaluated for suspensions of alpha crystallin. We find that the threshold for radiation damage to the measured protein diffusion rate is significantly lower than the threshold for damage to the protein structure. We provide damage thresholds beyond which the measured diffusion coeffcients have been modified using both XPCS and dynamic light scattering (DLS).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........75N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........75N"><span>Quantitative computational infrared imaging of buoyant diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newale, Ashish S.</p> <p></p> <p>Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16450314','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16450314"><span>Diabetes insipidus due to herpes encephalitis in a patient with diffuse large cell lymphoma. A case report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scheinpflug, K; Schalk, E; Reschke, K; Franke, A; Mohren, M</p> <p>2006-01-01</p> <p>The major causes of central diabetes insipidus are neoplastic or infiltrative lesions of the hypothalamus or pituitary, severe head injuries and pituitary or hypothalamic surgery. Central diabetes insipidus caused by viral infections has been rarely reported in immunosuppressed patients, such as those with acquired immunodeficiency syndrome or Cushing's syndrome. We report the case of a 48-year-old woman suffering from diffuse large cell lymphoma, who developed hypotonic polyuria, hypernatriaemia and somnolence after the first course of chemotherapy with CHOEP and rituximab. Diabetes insipidus was diagnosed by low urine osmolarity and an undetectable vasopressin concentration. MRI revealed no pituitary abnormalities but encephalitis, and lumbar punction confirmed herpes zoster infection. To the best of our knowledge this is the first description of central diabetes insipidus in a lymphoma patient caused by an opportunistic CNS-infection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21396181-measurement-modeling-solar-irradiance-components-horizontal-tilted-planes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21396181-measurement-modeling-solar-irradiance-components-horizontal-tilted-planes"><span>Measurement and modeling of solar irradiance components on horizontal and tilted planes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Padovan, Andrea; Col, Davide del</p> <p>2010-12-15</p> <p>In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980218879','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980218879"><span>An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, Arvind</p> <p>1995-01-01</p> <p>The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this goal was made during this project, identifying the experimental conditions for which radiative extinction occurs for various fuels requires further study. Details concerning this research which are discussed in published articles are included in the appendices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43B2722C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43B2722C"><span>Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.</p> <p>2017-12-01</p> <p>Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.477..195W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.477..195W"><span>A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willett, Chelsea D.; Fox, Matthew; Shuster, David L.</p> <p>2017-11-01</p> <p>Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its influence on He diffusivity. In cases such as basement rocks in Grand Canyon and the Canadian Shield, (U-Th)/He ages predicted from the ADAM can differ by hundreds of Ma from those predicted by other models for a given thermal path involving extended residence between ∼40-80 °C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASTP.146..194S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASTP.146..194S"><span>Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco</p> <p>2016-08-01</p> <p>A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25500262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25500262"><span>Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H</p> <p>2015-05-01</p> <p>The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26895194','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26895194"><span>Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre</p> <p>2016-08-01</p> <p>The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24252032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24252032"><span>Prevalence, incidence and progression of lumbar spondylosis by gender and age strata.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muraki, Shigeyuki; Yoshimura, Noriko; Akune, Toru; Tanaka, Sakae; Takahashi, Ikuno; Fujiwara, Saeko</p> <p>2014-07-01</p> <p>To identify the prevalence, incidence and progression of radiographic lumbar spondylosis (LS). From the Adult Health Study conducted by the Radiation Effects Research Foundation, 1,204 participants aged 44-85 years who had lumbar spine radiographs in 1990-1992 were reexamined in 1998-2000 (mean 7.9-year interval). The radiographic severity of LS was determined by Kellgren/Lawrence (KL) grading. In the overall population, the prevalence of radiographic KL ≥ 2 and ≥ 3 LS was 52.9% and 23.6%, respectively. KL ≥ 2 LS was more prevalent in men, whereas KL ≥ 3 LS was more prevalent in women. During the 8-year follow-up, the incidence of KL ≥ 2 LS in men and women was 65.5% and 46.6%, that of KL ≥ 3 LS was 27.3% and 29.5%, that of progressive LS was 31.3% and 34.0%, and multilevel LS was 44.9% and 33.4%, respectively. Body-mass index was a risk factor for both KL ≥ 2 and KL ≥ 3 LS, after adjusting for age and sex. The present longitudinal study revealed the prevalence, incidence and progression of radiographic LS. Prevalence and incidence of KL ≥ 2 LS was higher in men than women, while, those of KL ≥ 3 were similar between men and women.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050005&hterms=systems+diffuse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsystems%2Bdiffuse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050005&hterms=systems+diffuse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsystems%2Bdiffuse"><span>Computation of diffuse sky irradiance from multidirectional radiance measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.</p> <p>1987-01-01</p> <p>Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960004069','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960004069"><span>Theoretical and experimental research in space photovoltaics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Faur, Mircea; Faur, Maria</p> <p>1995-01-01</p> <p>Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27755196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27755196"><span>Limbal Stem Cell Preservation During Proton Beam Irradiation for Diffuse Iris Melanoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Arun D; Dupps, William J; Biscotti, Charles V; Suh, John H; Lathrop, Kira L; Nairn, John P; Shih, Helen</p> <p>2017-01-01</p> <p>To report the outcome after limbal stem cell preservation during proton beam irradiation for diffuse iris melanoma. This is a single-case report of diffuse iris melanoma that was managed with proton beam radiation (53 Gy), wherein preemptively harvested superior and inferior limbal stem cells before radiation were replaced after irradiation. Regeneration of the palisades of Vogt and the limbal stem cells was documented by an optical coherence tomography-based imaging protocol. At 24 months after radiation therapy, best-corrected visual acuity was 20/25. The cornea was clear without evidence of limbal stem cell dysfunction. Clinical examination (including gonioscopy and ultrasound biomicroscopy [UBM]) was indicative of local control, and systemic surveillance was negative for metastatic disease. At posttransplant (21 months), there were more palisade structures visible in both anterior and posterior regions of the superior and inferior limbus, and the linear presentation of the inferior palisades appears to have regenerated. Diffuse iris melanoma can be managed successfully with proton beam radiation while preserving corneal limbal stem cells by harvesting them before radiation and then replacing them after irradiation. Regeneration of the palisades of Vogt could be documented by an optical coherence tomography-based imaging protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770067738&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770067738&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara"><span>SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval from 10 to 90 deg in both hemispheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.</p> <p>1977-01-01</p> <p>An analysis of all the second Small Astronomy Satellite (SAS-2) gamma-ray data for galactic latitudes higher than 10 deg in both hemispheres has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C1 + C2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic steep spectral component which extrapolates back well to the low-energy (less than 10 MeV) diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999APS..DPP.HI103B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999APS..DPP.HI103B"><span>Diffusive, Supersonic X-ray Transport in Foam Cylinders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Back, Christina A.</p> <p>1999-11-01</p> <p>Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in a series of laboratory experiments on low density foams. This work is of interest for radiation transport in basic science and astrophysics. The Marshak radiation wave transport is studied for both low and high Z foam materials and for different length foams in a novel hohlraum geometry that allows direct comparisons with 2-dimensional analytic models and code simulations. The radiation wave is created by a ~ 80 eV near blackbody 12-ns long drive or a ~ 200 eV 1.2-2.4 ns long drive generated by laser-heated Au hohlraums. The targets are SiO2 and Ta2O5 aerogel foams of varying lengths which span 10 to 50 mg/cc densities. Clean signatures of radiation breakout were observed by radially resolved face-on transmission measurements of the radiation flux at a photon energy of 250 eV or 550 eV. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. note number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4170231','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4170231"><span>Biological Effects of Space Radiation and Development of Effective Countermeasures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kennedy, Ann R.</p> <p>2014-01-01</p> <p>As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014LSSR....1...10K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014LSSR....1...10K"><span>Biological effects of space radiation and development of effective countermeasures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, Ann R.</p> <p>2014-04-01</p> <p>As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1714785M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1714785M"><span>Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.</p> <p>2017-12-01</p> <p>Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29786254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29786254"><span>[Clinical application of accurate placement of lumbar pedicle screws using three-dimensional printing navigational templates under Quadrant system].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xuanhuang; Yu, Zhengxi; Wu, Changfu; Li, Xing; Chen, Xu; Zhang, Guodong; Zheng, Zugao; Lin, Haibin</p> <p>2017-02-01</p> <p>To explore the feasibility and the effectiveness of the accurate placement of lumbar pedicle screws using three-dimensional (3D) printing navigational templates in Quadrant minimally invasive system. The L 1-5 spines of 12 adult cadavers were scanned using CT. The 3D models of the lumbar spines were established. The screw trajectory was designed to pass through the central axis of the pedicle by using Mimics software. The navigational template was designed and 3D-printed according to the bony surface where the soft tissues could be removed. The placed screws were scanned using CT to create the 3D model again after operation. The 3D models of the designed trajectory and the placed screws were registered to evaluate the placed screws coincidence rate. Between November 2014 and November 2015, 31 patients with lumbar instability accepted surgery assisted with 3D-printing navigation module under Quadrant minimally invasive system. There were 14 males and 17 females, aged from 42 to 60 years, with an average of 45.2 years. The disease duration was 6-13 months (mean, 8.8 months). Single segment was involved in 15 cases, two segments in 13 cases, and three segments in 3 cases. Preoperative visual analogue scale (VAS) was 7.59±1.04; Oswestry disability index (ODI) was 76.21±5.82; and the Japanese Orthopaedic Association (JOA) score was 9.21±1.64. A total of 120 screws were placed in 12 cadavers specimens. The coincidence rate of placed screw was 100%. A total of 162 screws were implanted in 31 patients. The operation time was 65-147 minutes (mean, 102.23 minutes); the intraoperative blood loss was 50-116 mL (mean, 78.20 mL); and the intraoperative radiation exposure time was 8-54 seconds (mean, 42 seconds). At 3-7 days after operation, CT showed that the coincidence rate of the placed screws was 98.15% (159/162). At 4 weeks after operation, VAS, ODI, and JOA score were 2.24±0.80, 29.17±2.50, and 23.43±1.14 respectively, showing significant differences when compared with preoperative ones ( t =14.842, P =0.006; t =36.927, P =0.002; t =-36.031, P =0.001). Thirty-one patients were followed up 8-24 months (mean, 18.7 months). All incision healed by first intention, and no complication occurred. During the follow-up, X-ray film and CT showed that pedicle screw was accurately placed without loosening or breakage, and with good fusion of intervertebral bone graft. 3D-printing navigational templates in Quadrant minimally invasive system can help lumbar surgery gain minimal invasion, less radiation, and accurate placement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1233250','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1233250"><span>A reappraisal of the anatomy of the human lumbar erector spinae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bogduk, N</p> <p>1980-01-01</p> <p>In the lumbar region the longissimus thoracis and iliocostalis lumborum are separated by the erector spinae aponeurosis and its ventral reflection--the lumbar intermuscular aponeurosis. Lumbar fibres of the longissimus arise from the ilium and the lumbar intermuscular aponeurosis and insert into the accessory processes and proximal ends of the transverse processes of the lumbar vertebrae. Lumbar fibres of iliocostalis insert into the costal elements of the first four lumbar vertebrae. The lumbar insertions of these muscles are homologous to their thoracic insertions. The lumbar intermuscular aponeurosis is homologous to the lumbar intermuscular septum in the dog, cat and monkey. The details of attachment of the lumbar fibres of the erector spinae and of the lumbar intermuscular aponeurosis should be taken into account in biomechanical analyses of the lumbar vertebral column. Images Fig. 1(cont.) Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7216917</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040053549','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040053549"><span>Radiant Extinction Of Gaseous Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.</p> <p>2003-01-01</p> <p>The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.7897P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.7897P"><span>A method for optimizing the cosine response of solar UV diffusers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki</p> <p>2013-07-01</p> <p>Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25803221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25803221"><span>Proximal Junctional Failure After Long-Segment Instrumentation for Degenerative Lumbar Kyphosis With Ankylosing Spinal Disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ikegami, Daisuke; Matsuoka, Takashi; Miyoshi, Yuji; Murata, Yoichi; Aoki, Yasuaki</p> <p>2015-06-15</p> <p>Case report. We report a case of proximal junctional failure at the ankylosed, but not the mobile, junction after segmental instrumented fusion for degenerative lumbar kyphosis with ankylosing spinal disorder. Proximal junctional failure (PJF) and proximal junctional kyphosis (PJK) are important complications that occur subsequent to long-segment instrumentation for correction of adult spinal deformity. Thus far, most studies have focused on the mobile junction as a site at which PJK/PJF can occur, and little is known about the relationship between PJK/PJF and ankylosing spinal disorders such as diffuse idiopathic skeletal hyperostosis. The patient was an 82-year-old female with degenerative lumbar kyphosis. She had abnormal confluent hyperostosis in the anterior longitudinal ligaments from Th5 to Th10. The patient was treated operatively with spinal instrumented fusion from Th10 to the sacrum. Four weeks subsequent to initial surgery, the patient developed progressive lower extremity paresis caused by the uppermost instrumented vertebrae fracture (Th10) and adjacent subluxation (Th9). Extension of fusion to Th5 with decompression at Th9-Th10 was performed. However, the patient showed no improvement in neurological function. PJF can occur at the ankylosing site above the uppermost instrumented vertebrae after long-segment instrumentation for adult spinal deformity. PJF in the ankylosed spine may cause severe fracture instability and cord deficit. The ankylosed spine should be integrated into the objective determination of materials contributing to the appropriate selection of fusion levels. 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28655085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28655085"><span>[Effects of robot-assisted minimally invasive transforaminal lumbar interbody fusion and traditional open surgery in the treatment of lumbar spondylolisthesis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cui, G Y; Tian, W; He, D; Xing, Y G; Liu, B; Yuan, Q; Wang, Y Q; Sun, Y Q</p> <p>2017-07-01</p> <p>Objective: To compare the clinical effects of robot-assisted minimally invasive transforaminal lumbar interbody fusion (TLIF) and traditional open TLIF in the treatment of lumbar spondylolisthesis. Methods: A total of 41 patients with lumbar spondylolisthesis accepted surgical treatment in Department of Spinal Surgery of Beijing Jishuitan Hospital From July 2015 to April 2016 were retrospectively analyzed. There were 16 cases accepted robot-assisted minimally invasive TLIF and 25 accepted traditional open TLIF. The operation time, X-ray radiation exposure time, perioperative bleeding, drainage volume, time of hospitalization, time for pain relief, time for ambulatory recovery, visual analogue scale (VAS), Oswestry disability index (ODI) and complications were compared. T test and χ(2) were used to analyze data. Results: There were no significant difference in gender, age, numbers, degrees, pre-operative VAS and ODI in spondylolisthesis (all P >0.05). Compared with traditional open TLIF group, the robot-assisted minimally invasive TLIF group had less perioperative bleeding ((187.5±18.4) ml vs . (332.1±23.5) ml), less drainage volume ((103.1±15.6) ml vs . (261.3±19.8) ml), shorter hospitalization ((7.8±1.9) days vs . (10.0±1.6) days), shorter time for pain relief ((2.8±1.0) days vs . (5.2±1.1) days), shorter time for ambulatory recovery ((1.7±0.9) days vs . (2.9±1.3) days) and less VAS of the third day postoperatively (2.2±0.9 vs . 4.2±2.4) ( t =2.762-16.738, all P <0.05), but need more operation time ((151.3±12.3) minutes vs . (102.2±7.1) minutes) and more X-ray radiation exposure ((26.1±3.3) seconds vs . (5.5±2.1) seconds) ( t =6.125, 15.168, both P <0.01). In both groups ODI was significantly lower in final follow-up than that of the pre-operation ( t =12.215, 14.036, P <0.01). Intervertebral disc height of the final follow-up in both groups were significantly larger than that of the preoperation (robot-assisted minimally invasive TLIF group: (11.8 ± 2.8) mm vs . (7.5 ± 1.9) mm, traditional open TLIF group: (12.7 ± 2.5) mm vs . (7.9±2.0) mm), and so was the lumbar lordosis angle (robot-assisted minimally invasive TLIF group: (48.7±9.2)° vs . (39.6±7.9)°, traditional open TLIF group: (50.1±10.8)° vs . (41.4±8.8)°), the lordosis angle of the slippage segment (robot-assisted minimally invasive TLIF group: (18.7±5.6)° vs . (10.9±3.8)°, traditional open TLIF group: (17.6±6.1)° vs .(8.7±3.2)°) ( t =4.128-16.738, all P <0.01). Slippage rate of the final follow-up in both groups were significantly smaller than those of the pre-operation (robot-assisted minimally invasive TLIF group: (5.3±2.3) % vs . (27.8±7.2) %, traditional open TLIF group: (6.6±2.8) % vs . (29.1±9.5) %) ( t =11.410, 18.504, both P <0.01). There was no difference of the upper data between two groups ( t =0.106-1.227, P >0.05). The results of the post-operative CT showed that the pedicle screws in the robot-assisted minimally invasive TLIF group were more precisely placed than traditional open TLIF group (χ(2)=4.247, P =0.039). The mean follow-up time was 8 months (ranging from 3 to 12 months). There were no significant difference in outcomes between the two groups (χ(2)=0.366, P =0.545). Conclusions: In the treatment of lumbar spondylolisthesis, Robot-assisted minimally invasive TLIF can lead to less perioperative bleeding, less post-operative pain, and quicker recovery than traditional open TLIF surgery, but it needs more operation time and radiation exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020089549','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020089549"><span>P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kang, Kab S.</p> <p>2002-01-01</p> <p>The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015799','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015799"><span>Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plante, Ianik; Cucinotta, Francis A.</p> <p>2011-01-01</p> <p>The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860050746&hterms=pi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860050746&hterms=pi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpi"><span>Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dermer, C. D.</p> <p>1986-01-01</p> <p>Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497482','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497482"><span>Analytic expressions for ULF wave radiation belt radial diffusion coefficients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K</p> <p>2014-01-01</p> <p>We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26993414','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26993414"><span>Bone mineral density loss in thoracic and lumbar vertebrae following radiation for abdominal cancers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Randy L; Jung, Brian C; Manzano, Wilfred; Sehgal, Varun; Klempner, Samuel J; Lee, Steve P; Ramsinghani, Nilam S; Lall, Chandana</p> <p>2016-03-01</p> <p>To investigate the relationship between abdominal chemoradiation (CRT) for locally advanced cancers and bone mineral density (BMD) reduction in the vertebral spine. Data from 272 patients who underwent abdominal radiation therapy from January 1997 to May 2015 were retrospectively reviewed. Forty-two patients received computed tomography (CT) scans of the abdomen prior to initiation and at least twice after radiation therapy. Bone attenuation (in Hounsfield unit) (HU) measurements were collected for each vertebral level from T7 to L5 using sagittal CT images. Radiation point dose was obtained at each mid-vertebral body from the radiation treatment plan. Percent change in bone attenuation (Δ%HU) between baseline and post-radiation therapy were computed for each vertebral body. The Δ%HU was compared against radiation dose using Pearson's linear correlation. Abdominal radiotherapy caused significant reduction in vertebral BMD as measured by HU. Patients who received only chemotherapy did not show changes in their BMD in this study. The Δ%HU was significantly correlated with the radiation point dose to the vertebral body (R=-0.472, P<0.001) within 4-8 months following RT. The same relationship persisted in subsequent follow up scans 9 months following RT (R=-0.578, P<0.001). Based on the result of linear regression, 5 Gy, 15 Gy, 25 Gy, 35 Gy, and 45 Gy caused 21.7%, 31.1%, 40.5%, 49.9%, and 59.3% decrease in HU following RT, respectively. Our generalized linear model showed that pre-RT HU had a positive effect (β=0.830) on determining post-RT HU, while number of months post RT (β=-0.213) and radiation point dose (β=-1.475) had a negative effect. A comparison of the predicted versus actual HU showed significant correlation (R=0.883, P<0.001) with the slope of the best linear fit=0.81. Our model's predicted HU were within ±20 HU of the actual value in 53% of cases, 70% of the predictions were within ±30 HU, 81% were within ±40 HU, and 90% were within ±50 HU of the actual post-RT HU. Four of 42 patients were found to have vertebral body compression fractures in the field of radiation. Patients who receive abdominal chemoradiation develop significant BMD loss in the thoracic and lumbar vertebrae. Treatment-related BMD loss may contribute to the development of vertebral compression fractures. A predictive model for post-CRT BMD changes may inform bone protective strategies in patients planned for abdominal CRT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29047906','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29047906"><span>Transfer matrix method for four-flux radiative transfer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini</p> <p>2017-07-20</p> <p>We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22551277-repetitively-pulsed-uv-radiation-source-based-run-away-electron-preionised-diffuse-discharge-nitrogen','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22551277-repetitively-pulsed-uv-radiation-source-based-run-away-electron-preionised-diffuse-discharge-nitrogen"><span>Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baksht, E Kh; Burachenko, A G; Lomaev, M I</p> <p>2015-04-30</p> <p>An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of themore » plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/163226-solar-energy-potential-united-arab-emirates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/163226-solar-energy-potential-united-arab-emirates"><span>Solar energy potential in the United Arab Emirates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khalil, A.; Alnajjar, A.</p> <p>1995-12-31</p> <p>In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analyzed on hourly, daily and monthly basis. Experimental data is compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data of daily diffuse to totalmore » radiation ratio is compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%. The measured ratio of hourly to daily insolation is in excellent agreement with the model of Hottel which is expressed as a function of the clearness index, hour and the sunset hour angles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25093628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25093628"><span>MRI quantification of diffusion and perfusion in bone marrow by intravoxel incoherent motion (IVIM) and non-negative least square (NNLS) analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marchand, A J; Hitti, E; Monge, F; Saint-Jalmes, H; Guillin, R; Duvauferrier, R; Gambarota, G</p> <p>2014-11-01</p> <p>To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg-Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data. MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction. The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC=0.60±0.09 (10(-3) mm(2)/s), D*=28±9 (10(-3) mm2/s) and perfusion fraction=14%±6%. The values obtained by the LM bi-exponential fit were: ADC=0.45±0.27 (10(-3) mm2/s), D*=63±145 (10(-3) mm2/s) and perfusion fraction=27%±17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis. The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430025-characterization-supersonic-radiation-diffusion-waves','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430025-characterization-supersonic-radiation-diffusion-waves"><span>Characterization of supersonic radiation diffusion waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moore, Alastair S.; Guymer, Thomas M.; Morton, John; ...</p> <p>2015-02-27</p> <p>Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989QuEle..19..225A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989QuEle..19..225A"><span>INTEGRATED AND FIBER OPTICS: Unidirectional coupling of radiation out of a composite dielectric waveguide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Avrutskiĭ, I. A.; Sychugov, V. A.; Tishchenko, A. V.; Svakhin, A. S.</p> <p>1989-02-01</p> <p>An analysis is made of the emission of light from a composite system representing a thin film on the surface of a corrugated diffused waveguide. Expressions are obtained for the radiative light losses in this waveguide. There is no emission of light into the substrate for certain relationships between the amplitudes and phases of the corrugations at the interfaces between the film and the adjoining medium and between the film and the waveguide. Numerical estimates of the losses are obtained for a case of practical importance, which is a corrugated diffused waveguide in glass with a film of Nb2O5 on the surface. A report is given of an experiment in which a grating was formed for coupling radiation out of a composite Cs+-diffused waveguide coated by a film of Nb2O5, which was capable of preferential (80%) emission of radiation into air, and in the presence of an immersion liquid ensured practically unidirectional coupling out of radiation into air.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......180A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......180A"><span>Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agrawal, Gautam</p> <p></p> <p>A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1430025','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1430025"><span>Characterization of supersonic radiation diffusion waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, Alastair S.; Guymer, Thomas M.; Morton, John</p> <p></p> <p>Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.972a2001V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.972a2001V"><span>Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma</p> <p>2018-02-01</p> <p>Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21950627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21950627"><span>The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kudish, Avraham I; Harari, Marco; Evseev, Efim G</p> <p>2011-10-01</p> <p>The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB radiation does penetrate this supposedly 'protective or comfort zone'. As a result, it is imperative to either apply sunscreen or cover up the exposed body surfaces even when under such shading devices. © 2011 John Wiley & Sons A/S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810054679&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231074','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810054679&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231074"><span>Effects of the specular Orbiter forward radiators on a typical Spacelab payload thermal environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, L. D.; Humphries, W. R.; Littles, J. W.</p> <p>1981-01-01</p> <p>Orbiter radiators, having a specular reflection, must be considered when determining the design environment for payloads which can view the forward deployed radiators. Unlike most surfaces on the Orbiter, which reflect energy diffusely, the radiators are covered with a highly specular silverized Teflon material, with high emissivity, and have a concave contour, producing a local concentration of reflected energy towards the region of angle incidence. The combined effects of radiator specularity and geometry were analyzed using the Thermal Radiation Analysis System (TRASYS II), a specialized ray trace program, and a generalized Monte-Carlo-based thermal radiation program. Data given for a 0 deg payload inclination angle at orbital noon at 3.454 m indicate that the maximum total flux and average flux can increase 173% and 63%, respectively, when compared to diffuse radiators.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477..816L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477..816L"><span>Radiation- and pair-loaded shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyutikov, Maxim</p> <p>2018-06-01</p> <p>We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29429801','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29429801"><span>Short Diffusion Time Diffusion-Weighted Imaging With Oscillating Gradient Preparation as an Early Magnetic Resonance Imaging Biomarker for Radiation Therapy Response Monitoring in Glioblastoma: A Preclinical Feasibility Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bongers, Andre; Hau, Eric; Shen, Han</p> <p>2018-01-04</p> <p>To investigate a novel alternative diffusion-weighted imaging (DWI) approach using oscillating gradients preparation (OGSE) to obtain much shorter effective diffusion times (Δ eff ) for tumor response monitoring by apparent diffusion coefficient (ADC) mapping in a glioblastoma mouse model. Twenty-four BALB/c nude mice inoculated with U87 glioblastoma cells were randomized into a control group and an irradiation group, which underwent a 15-day fractioned radiation therapy (RT) course with 2 Gy/d. Therapy response was assessed by mapping of ADCs at 6 time points using an in-house implementation of a cos-OGSE DWI sequence with Δ eff  = 1.25 ms and compared with a standard pulsed gradient DWI protocol (PGSE) with typical clinical diffusion time Δ eff  = 18 ms. Longitudinal ADC changes in tumor and contralateral white matter (WM) were statistically assessed using repeated-measures analysis of variance and post hoc (Sidak) testing. On short Δ eff OGSE maps tumor ADC was generally 30%-50% higher than in surrounding WM. Areas correlated well with histology. Tumor identification was generally more difficult on PGSE maps owing to nonsignificant WM/tumor contrast. During RT, OGSE maps also showed significant tumor ADC increase (approximately 15%) in response to radiation, consistently seen after 14-Gy RT dose. The clinical reference (PGSE) showed lower sensitivity to radiation changes, and no significant response across the radiation group and time course could be detected. Our short Δ eff DWI method using OGSE better reflected histologically defined tumor areas and enabled more consistent and earlier detection of microstructural radiation changes than conventional methods. Oscillating gradients preparation offers significant potential as a robust microstructural RT response biomarker, potentially helping to shift important therapy decisions to earlier stages in the RT time course. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25668208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25668208"><span>Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cruse, Michael J; Kucharik, Christopher J; Norman, John M</p> <p>2015-01-01</p> <p>Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4323262','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4323262"><span>Using a Simple Apparatus to Measure Direct and Diffuse Photosynthetically Active Radiation at Remote Locations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cruse, Michael J.; Kucharik, Christopher J.; Norman, John M.</p> <p>2015-01-01</p> <p>Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support ecological research via a relatively inexpensive method to collect continuous measurements of total, direct beam and diffuse PAR in remote locations. PMID:25668208</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013120','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013120"><span>A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plante, Ianik; Wu, Honglu</p> <p>2014-01-01</p> <p>Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740035611&hterms=baxter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbaxter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740035611&hterms=baxter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbaxter"><span>The electron diffusion coefficient in Jupiter's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.</p> <p>1974-01-01</p> <p>A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6850099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6850099"><span>[Dynamics of morphological changes in the spinal cord following exposure to non-ionizing microwave radiation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belokrinitskiĭ, V S</p> <p>1983-05-01</p> <p>The structure of different portions (cervical, thoracic, lumbar, sacral and coccygeal) of the spinal cord were studied in the experiments on 50 animals with the use of the Nissl, Zimmermann, Cajal and other methods on days 1, 10, 20 and 30 after exposure to non-ionizing microwave radiation (NMI). Single exposure to NMI (wave length 12.6 cm, intensity 400-500 mW/cm2) for one hour (cats) or four hours (dogs) produces a severe distress of glial neurones and cells, which is marked by the appearance of dystrophic processes along the entire spinal cord. The disease progresses, leading to abnormalities of motor and other physiological functions of the body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1329908-simulation-radiation-driven-fission-gas-diffusion-uo2-tho2-nbsp-puo2','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1329908-simulation-radiation-driven-fission-gas-diffusion-uo2-tho2-nbsp-puo2"><span>Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...</p> <p>2016-12-01</p> <p>Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21492461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21492461"><span>Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Sheng; Chang, Shan; Zhang, Yuan-zhi; Ding, Zi-hai; Xu, Xin Ming; Xu, Yong-qing</p> <p>2011-04-14</p> <p>Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3101158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3101158"><span>Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery. PMID:21492461</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910926L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910926L"><span>Modeling the influence of the BRDF characteristics of vegetation on the retrieval of solar-induced chlorophyll fluorescence under different illumination conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xinjie; Liu, Liangyun</p> <p>2017-04-01</p> <p>The Fraunhofer Line Discrimination (FLD) principle is the main approach used for the retrieval of solar-induced chlorophyll fluorescence (SIF). The basic assumption of the FLD principle is that the apparent reflectance spectra without SIF in-filling are smooth in the region of the absorption bands. However, in fact, this assumption is not valid due to the so-called "direct radiation in-filling" effect caused by the non-linear contribution of direct and diffuse radiation at the oxygen absorption bands, which are widely used for ground-based SIF retrieval. In this study, we first analyzed the physical mechanism of the direct radiation in-filling effect on the oxygen absorption bands and found that the bias in the SIF retrieval caused by the direct radiation in-filling effect at the O2-A band was less than 20% based on the use of a simulated dataset. Secondly, we established a simple correction model of the direct radiation in-filling effect. We found that the direct radiation in-filling effect at the O2-A band was directly proportional to the difference between the reflectance of the direct and diffuse radiation, and that the coefficient of proportionality was well correlated with the diffuse-to-global radiation ratio in the form of a quadratic function. The coefficient of determination (R-squared) for this correlation was 0.97. Finally, the model was validated using both simulated and field datasets. The validation results show that the bias in the SIF retrieval caused by the direct radiation in-filling effect can be efficiently corrected using the model proposed in this paper. This study thus provides a possible approach to estimating and correcting for the direct radiation-infilling effect using prior knowledge of the BRDF characteristics of direct and diffuse radiation for specific targets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.745c2028S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.745c2028S"><span>The effect of soot modeling on thermal radiation in buoyant turbulent diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snegirev, A.; Kokovina, E.; Tsoy, A.; Harris, J.; Wu, T.</p> <p>2016-09-01</p> <p>Radiative impact of buoyant turbulent diffusion flames is the driving force in fire development. Radiation emission and re-absorption is controlled by gaseous combustion products, mainly CO2 and H2O, and by soot. Relative contribution of gas and soot radiation depends on the fuel sooting propensity and on soot distribution in the flame. Soot modeling approaches incorporated in big commercial codes were developed and calibrated for momentum-dominated jet flames, and these approaches must be re-evaluated when applied to the buoyant flames occurring in fires. The purpose of this work is to evaluate the effect of the soot models available in ANSYS FLUENT on the predictions of the radiative fluxes produced by the buoyant turbulent diffusion flames with considerably different soot yields. By means of large eddy simulations, we assess capability of the Moss-Brooks soot formation model combined with two soot oxidation submodels to predict methane- and heptane-fuelled fires, for which radiative flux measurements are available in the literature. We demonstrate that the soot oxidation models could be equally important as soot formation ones to predict the soot yield in the overfire region. Contribution of soot in the radiation emission by the flame is also examined, and predicted radiative fluxes are compared to published experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23677933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23677933"><span>Cavernous sinus syndrome due to osteochondromatosis in a cat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perazzi, Anna; Bernardini, Marco; Mandara, Maria T; De Benedictis, Giulia M; De Strobel, Francesca; Zotti, Alessandro</p> <p>2013-12-01</p> <p>A 1-year-old sexually intact male Korat cat was referred for ophthalmological consultation due to anisocoria. Mydriasis with external ophthalmoplegia and absence of pupillary light responses in the right eye and nasofacial hypalgesia were seen. Cavernous sinus syndrome (CSS) was suspected. Bilateral deformities of the jaw and phalangeal bones, severe spinal pain and abnormal conformation of the lumbar spine were also present. Radiographic examination revealed several mineralised masses in the appendicular and axial skeleton, indicative of multiple cartilaginous exostoses. For further investigation of the CSS-related neurological deficits, the cat underwent computed tomography (CT) examination of the skull. CT images revealed a non-vascularised, calcified, amorphous mass originating from the right lateral skull base and superimposing on the sella turcica. Based on the severity of diffuse lesions and owing to the clinical signs of extreme pain, the cat was euthanased. A diffuse skeletal and intracranial osteochondromatosis was diagnosed histologically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060051747','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060051747"><span>Comparison of the Radiative Two-Flux and Diffusion Approximations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spuckler, Charles M.</p> <p>2006-01-01</p> <p>Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21470870-renormalisation-diffusion-asymptotics-problem-reflection-narrow-optical-beam-from-biological-medium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21470870-renormalisation-diffusion-asymptotics-problem-reflection-narrow-optical-beam-from-biological-medium"><span>On the renormalisation of the diffusion asymptotics in the problem of reflection of a narrow optical beam from a biological medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Appanov, A Yu; Barabanenkov, Yu N</p> <p>2005-12-31</p> <p>An analytic hybrid method is considered for solving the stationary radiation transfer equation in the problem on reflection of a narrow laser beam from biological media such as the 2% aqueous solution of intralipid and erythrocyte suspension with the volume concentration (hematocrit) H=0.41. The method is based on the reciprocity of the Green function in the radiation transfer theory and on the iteration solution of the integral equation for this function. As a result, the ray intensity is represented as a sum of two terms. The first of them describes the contribution of finite-order scattering to the intensity of amore » beam diffusely reflected from the medium. The second term contains the explicit analytic expression for a spatially distributed effective source of diffuse radiation emerging from the deep layers of the medium to the surface. This approach substantially improves the diffusion approximation for the problem under study and allows one to obtain the uniform asymptotics of the reflection coefficient at the specified interval of distances between the radiation source and detector on the medium surface with the relative error within {+-}6% for the 2% intralipid emulsion and erythrocyte suspension (H=0.41). (radiation scattering)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FoPh...47..851B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FoPh...47..851B"><span>The Diffuse Light of the Universe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonnet-Bidaud, Jean-Marc</p> <p>2017-06-01</p> <p>In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main 'pilar' of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930011002','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930011002"><span>An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay</p> <p>1993-01-01</p> <p>In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1428A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1428A"><span>Relativistic theory of particles in a scattering flow III: photon transport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Achterberg, A.; Norman, C. A.</p> <p>2018-06-01</p> <p>We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840021249&hterms=MSD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMSD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840021249&hterms=MSD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMSD"><span>Radiation tolerance of low resistivity, high voltage silicon solar cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weizer, V. G.; Weinberg, I.; Swartz, C. K.</p> <p>1984-01-01</p> <p>The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeCoA..73..183S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeCoA..73..183S"><span>The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shuster, David L.; Farley, Kenneth A.</p> <p>2009-01-01</p> <p>Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage. Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy ( E a) and the frequency factor ( D o/ a2) of diffusion and yielded a higher He closure temperature ( T c) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in E a and ln( D o/a 2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites. To investigate the potential consequences of annealing of radiation damage, samples of Durango apatite were heated in vacuum to temperatures up to 550 °C for between 1 and 350 h. After this treatment the samples were step-heated using the remaining natural 4He as the diffusant. At temperatures above 290 °C a systematic change in T c was observed, with values becoming lower with increasing temperature and time. For example, reduction of T c from the starting value of 71 to ˜52 °C occurred in 1 h at 375 °C or 10 h at 330 °C. The observed variations in T c are strongly correlated with the fission track length reduction predicted from the initial holding time and temperature. Furthermore, like the neutron irradiated apatites, these samples plot on the same E a - ln( D o/ a2) array as natural samples, suggesting that damage annealing is simply undoing the consequences of damage accumulation in terms of He diffusivity. Taken together these data provide unequivocal evidence that at these levels, radiation damage acts to retard He diffusion in apatite, and that thermal annealing reverses the process. The data provide support for the previously described radiation damage trapping kinetic model of Shuster et al. (2006) and can be used to define a model which fully accommodates damage production and annealing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850043077&hterms=design+concept+principles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddesign%2Bconcept%2Bprinciples','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850043077&hterms=design+concept+principles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddesign%2Bconcept%2Bprinciples"><span>Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, D. C.</p> <p>1983-01-01</p> <p>The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25677418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25677418"><span>The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Boyi; Ning, Xiaopeng</p> <p>2015-01-01</p> <p>Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27340529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27340529"><span>Assessment of Lumbar Lordosis and Lumbar Core Strength in Information Technology Professionals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehta, Roma Satish; Nagrale, Sanket; Dabadghav, Rachana; Rairikar, Savita; Shayam, Ashok; Sancheti, Parag</p> <p>2016-06-01</p> <p>Observational study. To correlate lumbar lordosis and lumbar core strength in information technology (IT) professionals. IT professionals have to work for long hours in a sitting position, which can affect lumbar lordosis and lumbar core strength. Flexicurve was used to assess the lumbar lordosis, and pressure biofeedback was used to assess the lumbar core strength in the IT professionals. All subjects, both male and female, with and without complaint of low back pain and working for two or more years were included, and subjects with a history of spinal surgery or spinal deformity were excluded from the study. Analysis was done using Pearson's correlation. For the IT workers, no correlation was seen between lumbar lordosis and lumbar core strength (r=-0.04); however, a weak negative correlation was seen in IT people who complained of pain (r=-0.12), while there was no correlation of lumbar lordosis and lumbar core in IT people who had no complains of pain (r=0.007). The study shows that there is no correlation of lumbar lordosis and lumbar core strength in IT professionals, but a weak negative correlation was seen in IT people who complained of pain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010074026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010074026"><span>Characteristics of Non-Premixed Turbulent Flames in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.</p> <p>2001-01-01</p> <p>This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5839599','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5839599"><span>Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goodkin, Olivia; Altmann, Daniel R.; Jenkins, Thomas M.; Miszkiel, Katherine; Mirigliani, Alessia; Fini, Camilla; Gandini Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga; Toosy, Ahmed T.</p> <p>2016-01-01</p> <p>Abstract In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T 1 -weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients’ optic radiations decreased ( P = 0.018) and radial diffusivity increased ( P = 0.002) over 1 year following optic neuritis, whereas optic radiation measures were unchanged in controls. Also, smaller cross-sectional areas of affected optic nerves at 3 months post-optic neuritis predicted lower fractional anisotropy and higher radial diffusivity at 1 year ( P = 0.007) in the optic radiations, whereas none of the inflammatory measures of the optic nerve predicted changes in optic radiations. Finally, greater Gd-enhanced lesion length at baseline and greater optic nerve proton density-lesion length at 1 year were associated with worse visual function at 1 year ( P = 0.034 for both). Neither the cross-sectional area of the affected optic nerve after optic neuritis nor the damage in optic radiations was associated with 1-year visual outcome. Our longitudinal study shows that, after optic neuritis, there is progressive damage to the optic radiations, greater in patients with early residual optic nerve atrophy, even after adjusting for optic radiation lesions. These findings provide evidence for trans-synaptic degeneration. PMID:26912640</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4117467','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4117467"><span>Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly</p> <p>2014-01-01</p> <p>Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A23E3296S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A23E3296S"><span>Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, X.; Cao, C.</p> <p>2014-12-01</p> <p>The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25077946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25077946"><span>Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tax, Chantal M W; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly</p> <p>2014-01-01</p> <p>Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009NIMPB.267..795D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009NIMPB.267..795D"><span>Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.</p> <p>2009-03-01</p> <p>Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26072227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26072227"><span>[Assessment of the surgeon radiation exposure during a minimally invasive TLIF: Comparison between fluoroscopy and O-arm system].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grelat, M; Zairi, F; Quidet, M; Marinho, P; Allaoui, M; Assaker, R</p> <p>2015-08-01</p> <p>Transforaminal lumbar interbody fusion with a minimally invasive approach (MIS TLIF) has become a very popular technique in the treatment of degenerative diseases of the lumbar spine, as it allows a decrease in muscle iatrogenic. However, iterative radiological controls inherent to this technique are responsible for a significant increase in exposure to ionizing radiation for the surgeon. New techniques for radiological guidance (O-arm navigation-assisted) would overcome this drawback, but this remains unproven. To analyze the exposure of the surgeon to intraoperative X-ray during a MIS TLIF under fluoroscopy and under O-arm navigation-assisted. This prospective study was conducted at the University Hospital of Lille from February to May 2013. Twelve patients underwent a MIS TLIF for the treatment of low-grade spondylolisthesis; six under standard fluoroscopy (group 1) and six under O-arm system (group 2). Passive dosimeters (rings and glasses) and active dosimeters for thorax were used to measure the radiation exposure of the surgeon. For group 1, the average time of fluoroscopy was 3.718 minutes (3.13-4.56) while no radioscopy was perform on group 2. For the first group, the average exposure dose was 12 μSv (5-20 μSv) on the thorax, 1168 μSv (510-2790 μSv) on the main hand and 179 μSv (103-486 μSv) on the lens. The exposure dose was measured zero on the second group. The maximum recommended doses can be reached, mainly for the lens. In addition to the radioprotection measures, O-arm navigation systems are safe alternatives to significantly reduce surgeon exposure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3161193','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3161193"><span>Small artery syndrome in women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caes, F; Cham, B; Van den Brande, P; Welch, W</p> <p>1985-08-01</p> <p>During the past four years, 106 women underwent aortography and peripheral runoff studies for peripheral vascular disease. Eleven patients presented with "small vessels" and were selected for this study. They were significantly younger than the rest of the group (a mean age of 52 versus 66 years). A clear history of claudication was elicited in all patients. Rest pain was present in four patients. Most patients were small in stature but not obese. Weak or absent femoral and distal pulses and abdominal or femoral bruits were common. Angiography demonstrated a narrow infrarenal aorta, narrow iliac and common femoral arteries and a straight course of iliac arteries. Atherosclerotic lesions involved mainly the aortoiliac segment, but were confined to the superficial femoral artery in two patients. Reconstruction was achieved by endarterectomy or transluminal angioplasty in segmental aortoiliac disease and aortobifemoral or aortobi-iliac graft in diffuse disease. Femorpopliteal or iliopopliteal graft or lumbar sympathectomy was performed in patients with significant femoral disease. In one patient, an acutely occluded femoral segment was replaced by a venous interposition graft. Two patients were treated conservatively. There were no operative deaths. Nine patients were markedly improved at follow-up examination. Graft thrombosis occurred in one patient with combined aortobi-iliac and iliopopliteal graft. The high incidence of single bifurcating lumbar arteries at the fourth and fifth lumbar vertebrae supports the hypothesis that aortic hypoplasia may result from embryonic overfusion of the dorsal aortas. Lipid abnormalities existed in 54 per cent of the patients. All women were heavy smokers and 73 per cent had a positive family history of cardiovascular disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000086194&hterms=molecular+electronics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmolecular%2Belectronics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000086194&hterms=molecular+electronics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmolecular%2Belectronics"><span>Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neufeld, David A.; Spaans, Marco</p> <p>1996-01-01</p> <p>We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21668750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21668750"><span>A randomized, placebo-controlled trial of repetitive spinal magnetic stimulation in lumbosacral spondylotic pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lo, Yew L; Fook-Chong, Stephanie; Huerto, Antonio P; George, Jane M</p> <p>2011-07-01</p> <p>Lumbar spondylosis is a degenerative disorder of the spine, whereby pain is a prominent feature that poses therapeutic challenges even after surgical intervention. There are no randomized, placebo-controlled studies utilizing repetitive spinal magnetic stimulation (SMS) in pain associated with lumbar spondylosis. In this study, we utilize SMS technique for patients with this condition in a pilot clinical trial. We randomized 20 patients into SMS treatment or placebo arms. All patients must have clinical and radiological evidence of lumbar spondylosis. Patients should present with pain in the lumbar region, localized or radiating down the lower limbs in a radicular distribution. SMS was delivered with a Medtronic R30 repetitive magnetic stimulator (Medtronic Corporation, Skovlunde, Denmark) connected to a C-B60 figure of eight coil capable of delivering a maximum output of 2 Tesla per pulse. The coil measured 90 mm in each wing and was centered over the surface landmark corresponding to the cauda equina region. The coil was placed flat over the back with the handle pointing cranially. Each patient on active treatment received 200 trains of five pulses delivered at 10 Hz, at an interval of 5 seconds between each train. "Sham" SMS was delivered with the coil angled vertically and one of the wing edges in contact with the stimulation point. All patients tolerated the procedure well and no side effects of SMS were reported. In the treatment arm, SMS had resulted in significant pain reduction immediately and at Day 4 after treatment (P < 0.05). In the placebo arm, however, no significant pain reduction was seen immediately and at Day 4 after SMS. SMS in the treatment arm had resulted in mean pain reduction of 62.3% postprocedure and 17.4% at Day 4. The placebo arm only achieved pain reduction of 6.1% postprocedure and 4.5% at Day 4. This is the first study to show that a single session of SMS resulted in significant improvement of pain associated with lumbar spondylosis in a randomized, double-blind, placebo-controlled setting. The novel findings support the potential of this technique for future studies pertaining to neuropathic pain. Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21491659-renal-shielding-dosimetry-patients-severe-systemic-sclerosis-receiving-immunoablation-total-body-irradiation-scleroderma-cyclophosphamide-transplantation-trial','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21491659-renal-shielding-dosimetry-patients-severe-systemic-sclerosis-receiving-immunoablation-total-body-irradiation-scleroderma-cyclophosphamide-transplantation-trial"><span>Renal Shielding and Dosimetry for Patients With Severe Systemic Sclerosis Receiving Immunoablation With Total Body Irradiation in the Scleroderma: Cyclophosphamide or Transplantation Trial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Craciunescu, Oana I., E-mail: oana.craciunescu@duke.ed; Steffey, Beverly A.; Kelsey, Chris R.</p> <p>2011-03-15</p> <p>Purpose: To describe renal shielding techniques and dosimetry in delivering total body irradiation (TBI) to patients with severe systemic sclerosis (SSc) enrolled in a hematopoietic stem cell transplant protocol. Methods and Materials: The Scleroderma: Cyclophosphamide or Transplantation (SCOT) protocol uses a lymphoablative preparative regimen including 800 cGy TBI delivered in two 200-cGy fractions twice a day before CD34{sup +} selected autologous hematopoietic stem cell transplantation. Lung and kidney doses are limited to 200 cGy to protect organs damaged by SSc. Kidney block proximity to the spinal cord was investigated, and guidelines were developed for acceptable lumbar area TBI dosing. Informationmore » about kidney size and the organ shifts from supine to standing positions were recorded using diagnostic ultrasound (US). Minimum distance between the kidney blocks (dkB) and the lumbar spine region dose was recorded, and in vivo dosimetry was performed at several locations to determine the radiation doses delivered. Results: Eleven patients were treated at our center with an anteroposterior (AP)/posteroanterior (PA) TBI technique. A 10% to 20% dose inhomogeneity in the lumbar spine region was achieved with a minimum kidney block separation of 4 to 5 cm. The average lumbar spine dose was 179.6 {+-} 18.1 cGy, with an average dkB of 5.0 {+-} 1.0 cm. Kidney block shield design was accomplished using a combination of US and noncontrast computerized tomography (CT) or CT imaging alone. The renal US revealed a wide range of kidney displacement from upright to supine positions. Overall, the average in vivo dose for the kidney prescription point was 193.4 {+-} 5.1 cGy. Conclusions: The dose to the kidneys can be attenuated while maintaining a 10% to 20% dose inhomogeneity in the lumbar spine area. Kidneys were localized more accurately using both US and CT imaging. With this technique, renal function has been preserved, and the study continues to enroll patients.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005598','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005598"><span>The spectral energy distribution of the scattered light from dark clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mattila, Kalevi; Schnur, G. F. O.</p> <p>1989-01-01</p> <p>A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...601A..47B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...601A..47B"><span>Confinement of the solar tachocline by a cyclic dynamo magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul</p> <p>2017-05-01</p> <p>Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25464590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25464590"><span>[Radiological study on the n-HA/PA66 cage used in the transforaminal lumbar interbody fusion].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sang, Pei-ming; Zhang, Ming; Chen, Bin-hui; Cai, Chang; Gu, Shi-rong; Zhou, Min</p> <p>2014-08-01</p> <p>To explore the effects of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage on recovering and maintaining lumbar curvature, lumbar heights and fusion rate when used in the transforaminal lumbar interbody fusion. From February to July 2012, 50 patients with degenerative lumbar disease(lumbar disc herniation in 32 cases and lumbar spondylolisthesis in 18 cases) were treated with transforaminal lumbar interbody fusion using the n-HA/PA66 cage, and their preoperative and postoperative clinical outcomes were analyzed. The patients were followed up for 2, 4, 6 and 8 months after operation, during which the CR and CT film of lumbar vertebra were checked to get relative height of vertebral space, Taillard index,index of lumbar spinal curvature,angle of segmental and full lumbar lordosis. The data were analyzed respectively with pair t-test, analysis of variance or LSD-t-test. All the patients were followed up, and the duraion ranged from 8 to 13 months, with a mean of 11.32 months. There were significant differences in relative height of vertebral space, Taillard index, index of lumbar spinal curvature, angle of segmental and full lumbar lordosis after surgery, but there were no significant differences in different periods after operation. The fusion time of lumbar ranged from 4 to 8 months. The n-HA/PA66 cage can recover and maintain lumbar normal stability with higher rate of fusion and less complications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21282057-novel-murine-model-localized-radiation-necrosis-its-characterization-using-advanced-magnetic-resonance-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21282057-novel-murine-model-localized-radiation-necrosis-its-characterization-using-advanced-magnetic-resonance-imaging"><span>A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jost, Sarah C.; Hope, Andrew; Kiehl, Erich</p> <p></p> <p>Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressivemore » radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 {mu}m{sup 2}/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 {mu}m{sup 2}/ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21560382-crash-block-adaptive-mesh-code-radiative-shock-hydrodynamics-implementation-verification','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21560382-crash-block-adaptive-mesh-code-radiative-shock-hydrodynamics-implementation-verification"><span>CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van der Holst, B.; Toth, G.; Sokolov, I. V.</p> <p></p> <p>We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.7615Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.7615Z"><span>Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.</p> <p>2014-09-01</p> <p>A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24392339','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24392339"><span>Magnetic resonance diffusion tensor imaging of optic nerve and optic radiation in healthy adults at 3T.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Hong-Hong; Wang, Dong; Zhang, Qiu-Juan; Bai, Zhi-Lan; He, Ping</p> <p>2013-01-01</p> <p>To investigate the diffusion characteristics of water of optic nerve and optic radiation in healthy adults and its related factors by diffusion tensor imaging (DTI) at 3T. A total of 107 healthy volunteers performed head conventional MRI and bilateral optic nerve and optic radiation DTI. The primary data of DTI was processed by post-processing software of DTI studio 2.3, obtaining fractional anisotropy value, mean diffusivity value, principal engine value, orthogonal engine value by measuring, and analyzed by the SPSS13.0 statistical software. The bilateral optic nerve and optic radiation fibers presented green color in directional encoded color (DEC) maps and presented high signal in fractional anisotropy (FA) maps. The FA value of the left optic nerve was 0.598±0.069 and the right was 0.593±0.065; the mean diffusivity (MD) value of the left optic nerve was (1.324±0.349)×10(-3)mm(2)/s and the right was (1.312±0.350)×10(-3)mm(2)/s; the principal engine value (λ‖) of the left optic nerve was (2.297±0.522)×10(-3)mm(2)/s and the right was (2.277±0.526)×10(-3)mm(2)/s; the orthogonal engine value (λ⊥) of the left optic nerve was (0.838±0.285)×10(-3)mm(2)/s and the right was (0.830±0.280)×10(-3)mm(2)/s; the FA value of the left optic radiation was 0.636±0.057 and the right was 0.628±0.056; the mean diffusivity (MD) value of the left optic radiation was (0.907±0.103)×10(-3)mm(2)/s and the right was (0.889±0.125)×10(-3)mm(2)/s; the principal eigenvalue (λ‖) of the left optic radiation was (1.655±0.210)×10(-3)mm(2)/s and the right was (1.614±0.171)×10(-3)mm(2)/s; the orthogonal enginvalue (λ⊥) of the left optic radiation was (0.531±0.103)×10(-3)mm(2)/s and the right was (0.524±0.152)×10(-3)mm(2)/s. There was no obvious difference between the FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve (P>0.05) and no obvious difference between male and female group. The FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve had no obvious correlations to the age. DTI is sensitive to the optic nerve and radiation and the relevant DTI parameters of the optic nerve and radiation are established preliminarily in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1345943-nonrelativistic-grey-transport-radiative-shock-solutions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1345943-nonrelativistic-grey-transport-radiative-shock-solutions"><span>Nonrelativistic grey S n -transport radiative-shock solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.</p> <p>2017-06-01</p> <p>We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1345943','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1345943"><span>Nonrelativistic grey S n -transport radiative-shock solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.</p> <p></p> <p>We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/971787','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/971787"><span>Numerical Tests and Properties of Waves in Radiating Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, B M; Klein, R I</p> <p>2009-09-03</p> <p>We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CNSNS..57..290C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CNSNS..57..290C"><span>Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz</p> <p>2018-04-01</p> <p>The paper is concerned with a problem of diffraction type. The study starts with equations of complex (radiative and conductive) heat transfer in a multicomponent domain with Fresnel matching conditions at the interfaces. Applying the diffusion, P1, approximation yields a pair of coupled nonlinear PDEs describing the radiation intensity and temperature for each component of the domain. Matching conditions for these PDEs, imposed at the interfaces between the domain components, are derived. The unique solvability of the obtained problem is proven, and numerical experiments are conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18762590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18762590"><span>Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Versace, Amelia; Almeida, Jorge R C; Hassel, Stefanie; Walsh, Nicholas D; Novelli, Massimiliano; Klein, Crystal R; Kupfer, David J; Phillips, Mary L</p> <p>2008-09-01</p> <p>Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Cross-sectional, case-control, whole-brain DTI using TBSS. University research institute. Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Subjects with BD vs controls had significantly greater FA (t > 3.0, P <or= .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <or= .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023732"><span>Solar radiation on Mars: Update 1991</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Appelbaum, Joseph; Landis, Geoffrey A.</p> <p>1991-01-01</p> <p>Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017909','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017909"><span>Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.</p> <p>2007-01-01</p> <p>Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1214695V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1214695V"><span>The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veroustraete, Frank</p> <p>2010-05-01</p> <p>Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA508506','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA508506"><span>Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>pelvis phantom was also imaged, consisting of a partial skeleton ranging from the L1 lumbar vertebra through the mid femur, embedded in lucite formed...been applied in the pelvis phantom scan to see the correction effects for a more realistic case, and the results are displayed in Fig. 5. 10 33 (a) (b...c) Figure 5: Transverse slice images of the reconstructed pelvis phantom scanned with Cu1-filter are displayed; (a) No correction, (b) scatter</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983SPIE..370..133A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983SPIE..370..133A"><span>Holographic Control Of Radial Distribution Of Myelinized Nervous Fiber Refractive Index In Vitality State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonov I., P.; Goroshkov A., V.; Kalyunov V., N.; Markhvida I., V.; Rubanov A., S.; Tanin L., V.</p> <p>1983-12-01</p> <p>The role of investigation of peripheral vervous fibers in bitality state is of great importance when elucidating the mechanism of a stimulant low-energy laser radiation influence which is widely applicable, for example, in practice for curing lumbar osteochondros-is (1), trigeminal verve radiculitis, and in developing the processes of transmission and processing of the information required for sustaining organism homeostasis. Using both electrophysiologic and holographic methods simultaneously can increase total information and authenticity of these investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25433254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25433254"><span>Lumbar lordosis in female collegiate dancers and gymnasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ambegaonkar, Jatin P; Caswell, Amanda M; Kenworthy, Kristen L; Cortes, Nelson; Caswell, Shane V</p> <p>2014-12-01</p> <p>Postural deviations can predispose an individual to increased injury risk. Specifically, lumbar deviations are related to increased low back pain and injury. Dancers and gymnasts are anecdotally suggested to have exaggerated lumbar lordosis and subsequently may be at increased risk of lumbar pathologies. Our objective was to examine lumbar lordosis levels in dancers and gymnasts. We examined lumbar lordosis in 47 healthy collegiate females (17 dancers, 29 gymnasts; mean age 20.2 ± 1.6 yrs) using 2-dimensional sagittal plane photographs and the Watson MacDonncha Posture Analysis instrument. Participants' lordosis levels were cross-tabulated and a Mann-Whitney U-test compared lumbar lordosis between groups (p<0.05). Most participants (89.4%, n=42) exhibited either marked (dancers 50%, n=9; gymnasts 62.1%, n=18; combined 57.4%, n=27) or moderate (dancers 27.8%, n=5; gymnasts 34.5%, n=10; combined 31.9%, n=15) lumbar lordosis deviations. The distribution of lordosis was similar across groups (p=0.22). Most dancers and gymnasts had moderate or marked lumbar lordosis. The extreme ranges of motion required during dancing and gymnastics may contribute to the participants' high lumbar lordosis. Instructors should be aware that there may be links between repetitive hyperextension activities and lumbar lordosis levels in dancers and gymnasts. Thus, they should proactively examine lumbar lordosis in their dancers and gymnasts. How much age of training onset, regimens, survivor bias, or other factors influence lumbar lordosis requires study. Longitudinal studies are also needed to determine if lumbar lordosis levels influence lumbar injury incidence in dancers and gymnasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1952b0083C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1952b0083C"><span>Optimization and development of solar power system under diffused sunlight condition in rural areas with supercapacitor integration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.</p> <p>2018-04-01</p> <p>The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM52A..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM52A..04W"><span>Application of New Chorus Wave Model from Van Allen Probe Observations in Earth's Radiation Belt Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.</p> <p>2017-12-01</p> <p>In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408249-conditions-supersonic-bent-marshak-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408249-conditions-supersonic-bent-marshak-waves"><span>Conditions for supersonic bent Marshak waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Qiang, E-mail: xuqiangxu@pku.edu.cn; Ren, Xiao-dong; Li, Jing</p> <p></p> <p>Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when √(ε)x{sub f}/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when √(ε)x{sub f}/L≫1, and can be expressed as M>4(1+ε/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region themore » supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds it in low temperature region. Taking SiO{sub 2} and the Au, for example, these supersonic regions are shown numerically.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22230804-time-independent-hybrid-enrichment-finite-element-solution-transient-conductionradiation-diffusive-grey-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22230804-time-independent-hybrid-enrichment-finite-element-solution-transient-conductionradiation-diffusive-grey-media"><span>Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon</p> <p>2013-10-15</p> <p>We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701169','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701169"><span>The Use of Lumbar Spine Magnetic Resonance Imaging in Eastern China: Appropriateness and Related Factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Liedao; Wang, Xuanwei; Lin, Xiangjin; Wang, Yue</p> <p>2016-01-01</p> <p>Back pain is common and costly. While a general scene of back pain related practice in China remains unknown, there are signs of excessive use of lumbar spine magnetic resonance (MR). We retrospectively studied 3107 lumbar spine MRIs in Eastern China to investigate the appropriateness of lumbar spine MR use. Simple back pain is the most common chief complaint for ordering a lumbar MR study. Only 41.3% of lumbar spine MR studies identified some findings that may have potential clinical significance. Normal lumbar spine is the most common diagnosis (32.7%), followed by lumbar disc bulging and lumbar disc herniation. Walk difficulties, back injury and referred leg pain as chief complaints were associated with greater chance of detecting potentially clinically positive lumbar MR image findings, as compare with simple back pain. There was no difference in positive rates among orthopedic surgeon and specialists of other disciplines. Lumbar spine MR imaging was generally overused in Eastern China by various specialists, particularly at health assessment centers. For appropriate use of lumbar spine MR, orthopedic surgeons are no better than physicians of other disciplines. Professional training and clinical guidelines are needed to facilitate evidence-based back pain practice in China. PMID:26731106</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021009','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021009"><span>Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, R.; Spuckler, C. M.</p> <p>1992-01-01</p> <p>The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates. The interfaces were optically smooth; the resulting specular reflections were computed from the Fresnel reflection laws. This provides a somewhat different behavior than for diffuse interfaces. A similar application was for heating that occurs in a window of a re-entry vehicle (Fowle et al., 1969). A number of recent papers (Rokhsaz and Dougherty, 1989; Ping and Lallemand, 1989; Crosbie and Shieh, 1990) further examined the effects of Fresnel boundary reflections and nonunity refractive index. Other examples of analyses of both steady and transient heat transfer to single or multiple plane layers (Amlin and Korpela, 1979; Tarshis et al., 1969) have used diffuse assumptions at the interfaces as in the present study</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29327605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29327605"><span>Does change in isolated lumbar extensor muscle function correlate with good clinical outcome? A secondary analysis of data on change in isolated lumbar extension strength, pain, and disability in chronic low back pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steele, James; Fisher, James; Perrin, Craig; Conway, Rebecca; Bruce-Low, Stewart; Smith, Dave</p> <p>2018-01-12</p> <p>Secondary analysis of data from studies utilising isolated lumbar extension exercise interventions for correlations among changes in isolated lumbar extension strength, pain, and disability. Studies reporting isolated lumbar extension strength changes were examined for inclusion criteria including: (1) participants with chronic low back pain, (2) intervention ≥ four weeks including isolated lumbar extension exercise, (3) outcome measures including isolated lumbar extension strength, pain (Visual Analogue Scale), and disability (Oswestry Disability Index). Six studies encompassing 281 participants were included. Correlations among change in isolated lumbar extension strength, pain, and disability. Participants were grouped as "met" or "not met" based on minimal clinically important changes and between groups comparisons conducted. Isolated lumbar extension strength and Visual Analogue Scale pooled analysis showed significant weak to moderate correlations (r = -0.391 to -0.539, all p < 0.001). Isolated lumbar extension strength and Oswestry Disability Index pooled analysis showed significant weak correlations (r = -0.349 to -0.470, all p < 0.001). For pain and disability, isolated lumbar extension strength changes were greater for those "met" compared with those "not met" (p < 0.001-0.008). Improvements in isolated lumbar extension strength may be related to positive and meaningful clinical outcomes. As many other performance outcomes and clinical outcomes are not related, isolated lumbar extension strength change may be a mechanism of action affecting symptom improvement. Implications for Rehabilitation Chronic low back pain is often associated with deconditioning of the lumbar extensor musculature. Isolated lumbar extension exercise has been shown to condition this musculature and also reduce pain and disability. This study shows significant correlations between increases in isolated lumbar extension strength and reductions in pain and disability. Strengthening of the lumbar extensor musculature could be considered an important target for exercise interventions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997GeoRL..24.1343S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997GeoRL..24.1343S"><span>A quiescent state of 3 to 8 MeV radiation belt electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.</p> <p></p> <p>During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27980979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27980979"><span>Local Versus Long-Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic-Inorganic Lead Halide Perovskites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vrućinić, Milan; Matthiesen, Clemens; Sadhanala, Aditya; Divitini, Giorgio; Cacovich, Stefania; Dutton, Sian E; Ducati, Caterina; Atatüre, Mete; Snaith, Henry; Friend, Richard H; Sirringhaus, Henning; Deschler, Felix</p> <p>2015-09-01</p> <p>Radiative recombination in thin films of the archetypical, high-performing perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 shows localized regions of increased emission with dimensions ≈500 nm. Maps of the spectral emission line shape show narrower emission lines in high emission regions, which can be attributed to increased order. Excited states do not diffuse out of high emission regions before they decay, but are decoupled from nearby regions, either by slow diffusion rates or energetic barriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13A0485G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13A0485G"><span>Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.</p> <p>2017-12-01</p> <p>Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support the initial findings of Baughman et al. (2017, Tectonics), and suggest that further research into the radiation damage effect on He diffusion in titanite could yield a comprehensive damage-diffusivity model for the titanite (U-Th)/He thermochronometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24994830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24994830"><span>Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T</p> <p>2014-01-01</p> <p>Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750017760&hterms=big+bang+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWhat%2Bbig%2Bbang%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750017760&hterms=big+bang+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWhat%2Bbig%2Bbang%2Btheory"><span>The origin of the diffuse background gamma radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stecker, F. W.; Puget, J. L.</p> <p>1974-01-01</p> <p>Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20951626-distinction-between-recurrent-glioma-radiation-injury-using-magnetic-resonance-spectroscopy-combination-diffusion-weighted-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20951626-distinction-between-recurrent-glioma-radiation-injury-using-magnetic-resonance-spectroscopy-combination-diffusion-weighted-imaging"><span>Distinction Between Recurrent Glioma and Radiation Injury Using Magnetic Resonance Spectroscopy in Combination With Diffusion-Weighted Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zeng, Q.-S.; Li, C.-F.; Liu Hong</p> <p>2007-05-01</p> <p>Purpose: The aim of this study was to explore the diagnostic effectiveness of magnetic resonance (MR) spectroscopy with diffusion-weighted imaging on the evaluation of the recurrent contrast-enhancing areas at the site of treated gliomas. Methods and Materials: In 55 patients who had new contrast-enhancing lesions in the vicinity of the previously resected and irradiated high-grade gliomas, two-dimensional MR spectroscopy and diffusion-weighted imaging were performed. Spectral data for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid (Lip), and lactate (Lac) were analyzed in conjunction with the apparent diffusion coefficient (ADC) in all patients. Diagnosis of these lesions was assigned by means ofmore » follow-up or histopathology. Results: The Cho/NAA and Cho/Cr ratios were significantly higher in recurrent tumor than in regions of radiation injury (p < 0.01). The ADC value and ADC ratios (ADC of contrast-enhancing lesion to matching structure in the contralateral hemisphere) were significantly higher in radiation injury regions than in recurrent tumor (p < 0.01). With MR spectroscopic data, two variables (Cho/NAA and Cho/Cr ratios) were shown to differentiate recurrent glioma from radiation injury, and 85.5% of total subjects were correctly classified into groups. However, with discriminant analysis of MR spectroscopy imaging plus diffusion-weighted imaging, three variables (Cho/NAA, Cho/Cr, and ADC ratio) were identified and 96.4% of total subjects were correctly classified. There was a significant difference between the diagnostic accuracy of the two discriminant analyses (Chi-square = 3.96, p = 0.046). Conclusion: Using discriminant analysis, this study found that MR spectroscopy in combination with ADC ratio, rather than ADC value, can improve the ability to differentiate recurrent glioma and radiation injury.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121a5111L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121a5111L"><span>In situ TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.</p> <p>2017-01-01</p> <p>Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM21B2521T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM21B2521T"><span>Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, W.; Cunningham, G.; Li, X.; Chen, Y.</p> <p>2015-12-01</p> <p>During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22043985-absorption-scattering-laser-radiation-diffusion-flame-aviation-kerosene','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22043985-absorption-scattering-laser-radiation-diffusion-flame-aviation-kerosene"><span>Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gvozdev, S V; Glova, A F; Dubrovskii, V Yu</p> <p>2012-04-30</p> <p>The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beammore » axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012QuEle..42..350G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012QuEle..42..350G"><span>Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.</p> <p>2012-04-01</p> <p>The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960008444','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960008444"><span>Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ku, Jerry C.; Tong, LI; Greenberg, Paul S.</p> <p>1995-01-01</p> <p>Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395644','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395644"><span>Compact Models for Defect Diffusivity in Semiconductor Alloys.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wright, Alan F.; Modine, Normand A.; Lee, Stephen R.</p> <p></p> <p>Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers tomore » optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3997631','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3997631"><span>The Associations Between Physical Therapy and Long-Term Outcomes for Individuals with Lumbar Spinal Stenosis in the SPORT study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fritz, Julie M.; Lurie, Jon D.; Zhao, Wenyan; Whitman, Julie M.; Delitto, Anthony; Brennan, Gerard P.; Weinstein, James N.</p> <p>2013-01-01</p> <p>Background/Context A period of non-surgical management is advocated prior to surgical treatment for most patients with lumbar spinal stenosis. Currently, little evidence is available to define optimal non-surgical management. Physical therapy is often used, however its use and effectiveness relative to other non-surgical strategies has not been adequately explored. Purpose Describe the utilization of physical therapy and other non-surgical interventions by patients with lumbar spinal stenosis and examine the relationship between physical therapy and long-term prognosis. Study Design Secondary analysis of the Spine Patient Outcomes Research Trial (SPORT) combining data from randomized and observational studies. Setting 13 spine clinics in 11 states in the United States. Patient Sample Patients with lumbar spinal stenosis receiving non-surgical management including those who did or did not receive physical therapy within 6 weeks of enrollment. Outcome Measures Primary outcome measures included cross-over to surgery, the bodily pain and physical function scales changes from the Survey Short Form 36 (SF-36), and the modified Oswestry Disability Index. Secondary outcome measures were patient satisfaction and the Sciatica Bothersomeness Index. Methods Baseline characteristics and rates of cross-over to surgery were compared between patients who did or did not receive physical therapy. Baseline factors predictive of receiving physical therapy were examined with logistic regression. Mixed effects models were used to compare outcomes between groups at 3 and 6 months, and 1 year after enrollment adjusted for baseline severity and patient characteristics. Results Physical therapy was used in the first 6 weeks by 90 of 244 patients (37%) and was predicted by the absence of radiating pain and being single instead of married. Physical therapy was associated with a reduced likelihood of cross-over to surgery after 1 year (21% vs 33%, p=0.045), and greater reductions on the SF-36 physical functioning scale after 6 months (mean difference =6.0, 95% CI: 0.2, 11.7) and 1 year (mean difference =6.5, 95% CI: 0.6, 12.4). There were no differences in bodily pain or Oswestry scores across time. Conclusion Many patients with lumbar spinal stenosis pursuing conservative management receive physical therapy. Using physical therapy was associated with reduced likelihood of patients receiving surgery within 1 year. Results for other outcomes were mixed with no differences in several measures. Further research is needed to examine the effectiveness of physical therapy relative to other non-surgical management strategies for patients with lumbar spinal stenosis. PMID:24373681</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RaPC...96...92M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RaPC...96...92M"><span>A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.</p> <p>2014-03-01</p> <p>We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900004864','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900004864"><span>The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ressell, M. Ted; Turner, Michael S.</p> <p>1989-01-01</p> <p>The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ClinicalTrials.gov/ct2/show/study/NCT01922076','CLINICALTRIALS'); return false;" href="https://ClinicalTrials.gov/ct2/show/study/NCT01922076"><span>WEE1 Inhibitor AZD1775 and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.clinicaltrials.gov/ct/screen/SimpleSearch">ClinicalTrials.gov</a></p> <p></p> <p>2018-06-11</p> <p>Anaplastic Astrocytoma; Anaplastic Oligoastrocytoma; Diffuse Intrinsic Pontine Glioma; Diffuse Midline Glioma, H3 K27M-Mutant; Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175458','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175458"><span>Holographic illuminator for synchrotron-based projection lithography systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Naulleau, Patrick P.</p> <p>2005-08-09</p> <p>The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA218049','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA218049"><span>Military Aircrew Seating: a Human Factors Engineering Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-12-01</p> <p>deformation of lumbar motion segments can be reduced by using lumbar support to increase lumbar spine lordosis . 3. Disc pressure can be reduced by using...increase in lumbar lordosis (curve of the lumbar spine), which placed them in a position which closer approximated that of balanced muscle relaxation... lordosis and curvature length. This flattening of the lumbar spine tends to stretch the overlying nerve root, and increases nerve root irritation and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4430994','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4430994"><span>Lumbar Disc Screening Using Back Pain Questionnaires: Oswestry Low Back Pain Score, Aberdeen Low Back Pain Scale, and Acute Low Back Pain Screening Questionnaire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Do Yeon; Oh, Chang Hyun; Park, Hyung Chun; Park, Chong Oon</p> <p>2012-01-01</p> <p>Objective To evaluate the usefulness of back pain questionnaires for lumbar disc screening among Korean young males. Methods We carried out a survey for lumbar disc screening through back pain questionnaires among the volunteers with or without back pain. Three types of back pain questionnaire (Oswestry Low Back Pain Score, Aberdeen Low Back Pain Scale, and Acute Low Back Pain Screeing Questionnaire) were randomly assigned to the examinees. The authors reviewed lumbar imaging studies (simple lumbar radiographs, lumbar computed tomography, and magnetic resolutional images), and the severity of lumbar disc herniation was categorized according to the guidelines issued by the Korean military directorate. We calculated the relationship between the back pain questionnaire scores and the severity of lumbar disc herniation. Results The scores of back pain questionnaires increased according to the severity of lumbar disc herniation. But, the range of scores was very vague, so it is less predictable to detect lumbar disc herniation using only back pain questionnaires. The sensitivity between the back pain questionnaires and the presence of lumbar disc herniation was low (16-64%). Conclusion Screening of lumbar disc herniation using only back pain questionnaires has limited value. PMID:25983807</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29061449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29061449"><span>Influence of Lumbar Lordosis on the Outcome of Decompression Surgery for Lumbar Canal Stenosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Han Soo</p> <p>2018-01-01</p> <p>Although sagittal spinal balance plays an important role in spinal deformity surgery, its role in decompression surgery for lumbar canal stenosis is not well understood. To investigate the hypothesis that sagittal spinal balance also plays a role in decompression surgery for lumbar canal stenosis, a prospective cohort study analyzing the correlation between preoperative lumbar lordosis and outcome was performed. A cohort of 85 consecutive patients who underwent decompression for lumbar canal stenosis during the period 2007-2011 was analyzed. Standing lumbar x-rays and 36-item short form health survey questionnaires were obtained before and up to 2 years after surgery. Correlations between lumbar lordosis and 2 parameters of the 36-item short form health survey (average physical score and bodily pain score) were statistically analyzed using linear mixed effects models. There was a significant correlation between preoperative lumbar lordosis and the 2 outcome parameters at postoperative, 6-month, 1-year, and 2-year time points. A 10° increase of lumbar lordosis was associated with a 5-point improvement in average physical scores. This correlation was not present in preoperative scores. This study showed that preoperative lumbar lordosis significantly influences the outcome of decompression surgery on lumbar canal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010066768','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010066768"><span>Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rhatigan, Jennifer L.</p> <p>2001-01-01</p> <p>This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAP...118m5709W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAP...118m5709W"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.</p> <p>2015-10-01</p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26168047','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26168047"><span>Quantitative Evaluation of Rabbit Brain Injury after Cerebral Hemisphere Radiation Exposure Using Generalized q-Sampling Imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Chao-Yu; Tyan, Yeu-Sheng; Kuo, Li-Wei; Wu, Changwei W; Weng, Jun-Cheng</p> <p>2015-01-01</p> <p>Radiation therapy is widely used for the treatment of brain tumors and may result in cellular, vascular and axonal injury and further behavioral deficits. The non-invasive longitudinal imaging assessment of brain injury caused by radiation therapy is important for determining patient prognoses. Several rodent studies have been performed using magnetic resonance imaging (MRI), but further studies in rabbits and large mammals with advanced magnetic resonance (MR) techniques are needed. Previously, we used diffusion tensor imaging (DTI) to evaluate radiation-induced rabbit brain injury. However, DTI is unable to resolve the complicated neural structure changes that are frequently observed during brain injury after radiation exposure. Generalized q-sampling imaging (GQI) is a more accurate and sophisticated diffusion MR approach that can extract additional information about the altered diffusion environments. Therefore, herein, a longitudinal study was performed that used GQI indices, including generalized fractional anisotropy (GFA), quantitative anisotropy (QA), and the isotropic value (ISO) of the orientation distribution function and DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD) over a period of approximately half a year to observe long-term, radiation-induced changes in the different brain compartments of a rabbit model after a hemi-brain single dose (30 Gy) radiation exposure. We revealed that in the external capsule, the GFA right to left (R/L) ratio showed similar trends as the FA R/L ratio, but no clear trends in the remaining three brain compartments. Both the QA and ISO R/L ratios showed similar trends in the all four different compartments during the acute to early delayed post-irradiation phase, which could be explained and reflected the histopathological changes of the complicated dynamic interactions among astrogliosis, demyelination and vasogenic edema. We suggest that GQI is a promising non-invasive technique and as compared with DTI, it has better potential ability in detecting and monitoring the pathophysiological cascades in acute to early delayed radiation-induced brain injury by using clinical MR scanners.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8273M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8273M"><span>Impact of Changes in Diffuse Radiation on the Global Land Carbon Sink, 1901-2100</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P. M.</p> <p>2009-04-01</p> <p>Recent observational and theoretical studies have shown that changes in surface radiation that lead to increasing diffuse surface irradiance, enhance plant photosynthesis (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Solar radiation reaching the land surface has changed over the industrial era due to aerosols emitted from volcanoes and various anthropogenic sources (Kvalevag and Myhre, 2007). Such changes in total surface radiation are accompanied by changes in direct and diffuse surface solar radiation. Current global climate-carbon models do include the effects of changes in total surface radiation on the land biosphere but neglect the positive effects of increasing diffuse fraction on plant photosynthesis. In this study we estimate for the first time, the impact of variations in diffuse fraction on the land carbon sink using a global model (Mercado et al., 2007) modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We use meteorological forcing from the Climate Research Unit Data set. Additionally short wave and photosynthetic active radiation are reconstructed from the Hadley centre climate model, which accounts for the scattering and absorption of light by tropospheric and stratospheric aerosols and change in cloud properties due to indirect aerosol effects. References Gu L.H., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. & Boden T.A. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038. M. M. Kvalevag and G. Myhre, J. Clim. 20, 4874 (2007). Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology, 59, 553-565. Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K.J., Holben B., Matsui T., Meyers T., Oechel W.C., Pielke R.A., Wells R., Wilson K. & Xue Y.K. (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31. Oliveira P.H.F., Artaxo P., Pires C., De Lucca S., Procopio A., Holben B., Schafer J., Cardoso L.F., Wofsy S.C. & Rocha H.R. (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus Series B-Chemical and Physical Meteorology, 59, 338-349. Roderick M.L., Farquhar G.D., Berry S.L. & Noble I.R. (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21-30.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20443318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20443318"><span>[Pain control by continuous infusion of morphine using subarachnoid catheter access to the port--a report of a home death case].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawagoe, Koh; Matsuura, Shinobu</p> <p>2008-12-01</p> <p>This is a case of a 50s male with cecal cancer suffering from severe pain caused by osteolytic metastasis to the lumbar vertebra, right iliac bone, and the head of the right femur. The pain was palliated by continuous infusion of morphine using a subarachnoid catheter that had access to the subcutaneous "Port". The maximum dose of morphine used a day was 384 mg, which corresponded to 57,600 mg/day of oral morphine. Sixty eight days after the start of home hospice care, the patient died at home because of diffuse peritonitis caused by intestinal rupture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1436S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1436S"><span>Discrete diffusion Lyman α radiative transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš</p> <p>2018-06-01</p> <p>Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26257363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26257363"><span>Trends of the sunshine duration and diffuse radiation percentage on sunny days in urban agglomerations of China during 1960-2005.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fu, Chuanbo; Dan, Li; Chen, Youlong; Tang, Jiaxiang</p> <p>2015-08-01</p> <p>The long-term observational data of sunshine duration (SD) and diffuse radiation percentage (defined as diffuse solar radiation/total solar radiation, DRP) on sunny days during 1960-2005 were analyzed in 7 urban agglomerations and the whole of China. The results show that the sunny sunshine duration (SSD) has decreased significantly except at a few stations over northwestern China in the past 46 years. An obvious decrease of the SSD is found in eastern China, with the trend coefficients lower than -0.8. Accompanied by the SSD decline, the sunny diffuse radiation percentage (SDRP) in most stations shows obvious increasing trends during the 46 years. The averaged SDRP over China has increased 2.33% per decade, while the averaged SSD shows a decrease of -0.13 hr/day per decade. The correlation coefficient between SDRP and SSD is -0.88. SSD decreased over urban agglomerations (small to large city clusters) in the past 46 years, especially in large cities and medium cities, due to the strong anthropogenic activities and air pollution represented by aerosol option depth (AOD) and tropospheric column NO2 (TroNO2). On the regional scale, SSD has an opposite trend from SDRP during 1960 to 2005, and the variation trends of regional mean values of SSD and SDRP in southeastern China are more pronounced than those in northwestern China. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMMR54A..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMMR54A..08J"><span>Diffusion studies with synchrotron Mössbauer spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, J. M.</p> <p>2011-12-01</p> <p>Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9786E..0GT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9786E..0GT"><span>Clinical workflow for spinal curvature measurement with portable ultrasound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor</p> <p>2016-03-01</p> <p>PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1226207','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1226207"><span>An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.</p> <p>2015-02-01</p> <p>Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26896337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26896337"><span>The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas</p> <p>2016-10-01</p> <p>Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25979223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25979223"><span>Passive lumbar tissue loading during trunk bending at three speeds: An in vivo study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ning, Xiaopeng; Nussbaum, Maury A</p> <p>2015-08-01</p> <p>Low back disorders are closely related with the magnitude of mechanical loading on human spine. However, spinal loading contributed by the lumbar passive tissues is still not well understood. In this study, the effect of motion speed on lumbar passive moment output was investigated. In addition, the increase of lumbar passive moment during trunk bending was modeled. Twelve volunteers performed trunk-bending motions at three different speeds. Trunk kinematics and muscle activities were collected and used to estimate instantaneous spinal loading and the corresponding lumbar passive moment. The lumbar passive moments at different ranges of trunk motion were compared at different speed levels and the relationship between lumbar passive moment lumbar flexion was modeled. A non-linear, two-stage pattern of increase in lumbar passive moment was evident during trunk flexion. However, the effect of motion speed was not significant on lumbar passive moments or any of the model parameters. As reported previously, distinct lumbar ligaments may begin to generate tension at differing extents of trunk flexion, and this could be the cause of the observed two-stage increasing pattern of lumbar passive moment. The current results also suggest that changes in tissue strain rate may not have a significant impact on the total passive moment output at the relatively slow trunk motions examined here. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26981162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26981162"><span>Weightlifter Lumbar Physiology Health Influence Factor Analysis of Sports Medicine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xiangyang</p> <p>2015-01-01</p> <p>Chinese women's weightlifting project has been in the advanced world level, suggests that the Chinese coaches and athletes have many successful experience in the weight lifting training. Little weight lifting belongs to high-risk sports, however, to the lumbar spine injury, some young good athletes often due to lumbar trauma had to retire, and the national investment and athletes toil is regret things. This article from the perspective of sports medicine, weightlifting athletes training situation analysis and put forward Suggestions, aimed at avoiding lumbar injury, guarantee the health of athletes. In this paper, first of all to 50 professional women's weightlifting athletes doing investigation, found that 82% of the athletes suffer from lumbar disease symptoms, the reason is mainly composed of lumbar strain, intensity is too large, motion error caused by three factors. From the Angle of sports medicine and combined with the characteristics of the structure of human body skeleton athletes lumbar structural mechanics analysis, find out the lumbar force's two biggest technical movement, study, and regulate the action standard, so as to minimize lumbar force, for athletes to contribute to the health of the lumbar spine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770003386','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770003386"><span>The diffusion approximation. An application to radiative transfer in clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arduini, R. F.; Barkstrom, B. R.</p> <p>1976-01-01</p> <p>It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70093925','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70093925"><span>Looking skyward to study ecosystem carbon dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dye, Dennis G.</p> <p>2012-01-01</p> <p>Between May and October 2011 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, conducted a field campaign at the ARM Southern Great Plains site in north central Oklahoma to evaluate a new instrument for quantitative image-based monitoring of sky conditions and solar radiation. The High Dynamic Range All-Sky Imaging System (HDR-ASIS) was developed by USGS to support studies of cloud- and aerosol-induced variability in the geometric properties of solar radiation (the sky radiance distribution) and its effects on photosynthesis and uptake of carbon dioxide (CO2) by terrestrial ecosystems. Under a clean, cloudless atmosphere when the Sun is above the horizon, most of the solar radiation reaching an area of the Earth's surface is concentrated in a beam coming directly from the Sun; a relatively small proportion arrives as diffuse radiation from the rest of the sky. Clouds and atmospheric aerosols cause increased scattering of the beam radiation, which increases the proportion of diffuse radiation at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960049717','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960049717"><span>An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wichman, Indrek S.</p> <p>1993-01-01</p> <p>The objective of this work is to investigate the radiation-induced rich extinction limits for diffusion flames. Radiative extinction is caused by the formation of particulates (e.g., soot) that drain chemical energy from the flame. We examine (mu)g conditions because there is a strong reason to believe that radiation-induced rich-limit extinction is not possible under normal-gravity conditions. In normal- g, the hot particulates formed in the fuel-rich flames are swept upward by buoyancy, out of the flame to the region above it, where their influence on the flame is negligible. However, in (mu)g the particulates remain in the flame vicinity, creating a strong energy sink that can, under suitable conditions, cause flame extinction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761778','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761778"><span>Lumbar Corsets Can Decrease Lumbar Motion in Golf Swing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji</p> <p>2013-01-01</p> <p>Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key points Rotational and extension forces on the lumbar spine may cause golf-related low back pain Wearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity. Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine. PMID:24149729</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24149729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24149729"><span>Lumbar corsets can decrease lumbar motion in golf swing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji</p> <p>2013-01-01</p> <p>Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key pointsRotational and extension forces on the lumbar spine may cause golf-related low back painWearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity.Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9557584','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9557584"><span>An empirical study of preferred settings for lumbar support on adjustable office chairs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coleman, N; Hull, B P; Ellitt, G</p> <p>1998-04-01</p> <p>The preferred settings for lumbar support height and depth of 43 male and 80 female office workers were investigated. All subjects were equipped with identical modern office chairs with foam-padded backrests adjustable in both height and depth. Measurements of lumbar support settings were recorded in the workplace, outside of working hours, on four different occasions, over a 5 week period. Preferred lumbar support height and depth settings extended to both extremes of the adjustment range. The mean preferred height setting was 190 mm above the compressed seat surface. The mean depth setting (horizontal distance from front of seat to lumbar support point) was 387 mm. A regression model examining the effects of standing height, Body Mass Index (BMI) and gender on mean preferred lumbar support height showed a significant relationship between preferred height and BMI. Higher lumbar supports were chosen by subjects with greater BMIs. Gender and standing height were not associated with preferred lumbar support height settings. Preferred lumbar support depth was not significantly associated with standing height, gender or BMI. Older subjects were more likely to readjust their lumbar support from a disrupted position than younger subjects, indicating that older users are more sensitive to the position of their lumbar support. Subjects who reported recent back pain or discomfort that they believed to be associated with their chair or office work were found to set their lumbar support significantly closer to the front of the seat, probably to ensure greater support for their back. Based on the evidence that a high proportion of users do make adjustments to the height and depth of their lumbar support, and the finding that different groups of users, with different physical characteristics, adjust the position of their lumbar support in distinct and predictable ways, the researchers conclude that office chairs with traditional padded fixed-height lumbar supports are unlikely to provide a comfortable or appropriate seat for the wide range of potential users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1432624-neoclassical-diffusion-radiation-belt-electrons-across-very-low-shells','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1432624-neoclassical-diffusion-radiation-belt-electrons-across-very-low-shells"><span>Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois</p> <p></p> <p>In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1432624-neoclassical-diffusion-radiation-belt-electrons-across-very-low-shells','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1432624-neoclassical-diffusion-radiation-belt-electrons-across-very-low-shells"><span>Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...</p> <p>2018-03-30</p> <p>In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2884C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2884C"><span>Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael</p> <p>2018-04-01</p> <p>In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26943164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26943164"><span>Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida</p> <p>2016-07-01</p> <p>The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22355902-su-comparative-study-robotic-linac-based-stereotactitc-body-radiation-therapy-lumbar-spinal-tumors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22355902-su-comparative-study-robotic-linac-based-stereotactitc-body-radiation-therapy-lumbar-spinal-tumors"><span>SU-E-T-355: A Comparative Study of Robotic and Linac-Based Stereotactitc Body Radiation Therapy for Lumbar Spinal Tumors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bossart, E; Monterroso, M; Couto, M</p> <p></p> <p>Purpose: Dosimetrically compare CyberKnife (CK) and linac-based (LB) stereotactic body radiotherapy (SBRT) plans for lumbar spine. Methods: Ten patient plans with lumbar spine tumors treated with CK were selected and retrospectively optimized using three techniques: CK, volumetric modulated arc (VMAT, three arcs), and 9-field-intensity modulated radiotherapy (IMRT). For the LB plans, the target volume was expanded by 1mm to accommodate additional uncertainty in patient positioning. All plans were optimized to a prescription dose of 27Gy in 3 fractions covering 90% of the PTV. If the dose constraints to the cauda equina (cauda) were not met, the prescription dose was loweredmore » to 24Gy. Parameters evaluated included Paddick Conformity-Index (CI) and Gradient-Index (GI). A two-tailed paired t-test was used to establish statistically significant differences in cauda doses. Results: Target volumes for LB plans were on average 38% larger. In terms of the indices, the closer the index values to unity the steeper the dose falloff and the higher the dose conformity to the target. The results showed that LB plans were in general statistically superior to CK plans. The IMRT plan showed the best average gradient index of 2.995, with VMAT and CK GI values of 3.699 and 5.476, respectively. Similarly, the same trend occurs with the average CI results: 0.821, 0.814, and 0.758, corresponding to IMRT, VMAT, and CK. Notably, in one CK plan the target dose was reduced to 24Gy to meet cauda constraints. Additionally, there was a statistically significant dose difference for the cauda between the CK and LB plans. Conclusion: This study demonstrates that LB plans for lumbar spine SBRT can be as effective or even better than CK plans. Despite the expansion of the target volume, the LB plans did not demonstrate dosimetric inferiority. The LB plans Resultin 2-to-3 fold decrease of treatment time.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821265','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821265"><span>Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stave, Elise A.; Hooper, Stephen R.; Woolley, Donald P.; Chang, Suk Ki; Chen, Steven D.</p> <p>2016-01-01</p> <p>Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiate subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4–17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiate subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize and shift dimensions and imaging metrics in hypothesized corona radiate subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across four attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions. PMID:28090797</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070010443','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070010443"><span>Effects of Lewis Number on Temperatures of Spherical Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.</p> <p>2007-01-01</p> <p>Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22480304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22480304"><span>Pain in the three spinal regions: the same disorder? Data from a population-based sample of 34,902 Danish adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leboeuf-Yde, Charlotte; Fejer, René; Nielsen, Jan; Kyvik, Kirsten O; Hartvigsen, Jan</p> <p>2012-04-05</p> <p>Studies of back pain are typically based on the assumption that symptoms from different parts of the spine are distinctive entities. Recently, however, the assumption that back pain is a site-specific disorder has been challenged, suggesting that localized back pain should be seen as part of a general musculoskeletal syndrome. To describe and compare the patterns of reporting of pain and consequences of pain in the three spinal regions. In all, 34,902 (74%) twin individuals representative of the general Danish population, aged 20 to 71, participated in a cross-sectional nation-wide survey. Identical questions from the Standardised Nordic Questionnaire for each of the three spinal regions were used for lumbar, mid-back and neck pain respectively: Pain past year, pain ever, radiating pain, and consequences of back pain (care-seeking, reduced physical activities, sick-leave, change of work/work duties and disability pension). The relative prevalence estimates of these variables were compared for the three spinal regions. The relative proportions of individuals with pain ever, who also reported to have had pain in the past year varied between 75% and 80%, for the three spinal regions. The proportions of individuals with pain in the past year and for various pain durations were also very similar. Regardless if pain was reported in the lumbar, thoracic or cervical regions, the proportions of individuals reporting radiating pain were equally large. The relative number of consequences was the same across the spinal regions, as were the relative proportions of each these consequences. However, low back pain resulted more often in some kind of consequence compared to the consequences of pain in the neck and mid back. Back pain and its consequences share many characteristics and may, at least in a general population, be regarded as the same condition regardless of where the pain happens to manifest itself. However, because some exceptions were noted for the lumbar spine, separate entities for a smaller group of individuals with back pain cannot be ruled out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23115992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23115992"><span>[Finite element analysis of lumbar pelvic and proximal femur model with simulate lumbar rotatory manipulation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Hua; Xiong, Chang-Yuan; Han, Guo-Wu</p> <p>2012-07-01</p> <p>To study the changes of displacement and stress in the model of lumbar pelvic and proximal femur during lumbar rotatory manipulation. The date of lumbar pelvic and proximal femur CT scan by Mimics 10.01 software was established a lumbar pelvic and proximal femur geometric model, then the model was modified with Geomagic 9, at last the modified model was imported into hypermesh 10 and meshed with tetrahedron, at the same time,add disc and ligaments. According to the principle of lumbar rotatory manipulation,the lumbar rotatory manipulation were decomposed. The mechanical parameters assigned into the three-dimensional finite element model. The changes of displacement and stress in the model of lunbar pelvic and proximal femur under the four conditions were calculated with Abaqus model of Hypermesh 10. 1) Under the same condition,the displacement order of lumbar was L1>L2>L3>L5 L5, anterior column > middle column > posterior column. 2) Under the different conditions, the displacement order of lumbar,case 3>case 1>case 4>case 2. 3) Under the same conditions, the displacement order of lumbar inter-vertebral disc from L1,2 to L5S1 was L1,2>L2,3>L3,4>L4,5>L5S1, as for the same inter-vertebral disc, the order was: second quadrant>third quadrant>first quadrant>fourth quadrant. 4) Under the different conditions,the displacement order of the inter-vertebral disc was L1,2>L2,3>L3,4>L4,5>L5S1, but to same inter-vertebral disc: case 3>case 4>case 1 >case 2. 5) There were apparent displacement and stress concentration in pelvis and hip during the manipulation. 1) The principles of lumbar rotation manipulation closely related to the relative displacement caused by rotation of various parts of lumbar pelvic and proximal femur model; 2) During the process of lumbar rotatory manipulation, the angle of lateral bending and flexion can not be randomly increased; 3) During the process of lumbar rotatory manipulation, all the conditions of lumbar pelvic and proximal femur must be considered to determine indications and contraindications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP010562','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP010562"><span>Degenerative Changes of the Spine of Pilots of the RNLAF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-08-01</p> <p>views of the spine taken in standing 7-3 Table 2 Classification of disorders Disorder Levels General: Osteo-arthrosis / Spondylosis / Arthrosis...Deformans Cervical, thoracic, lumbar Scoliosis Cervical, thoracic, lumbar Abnormal alignment Cervical, lumbar Scheuermann’s disease / Enchondrosis Thoracic... lumbar Specific: Degenerative changes in the intervertebral disc / Discopathy Cervical, thoracic, lumbar Presence of Osteophyte’s / Osteophytic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12637476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12637476"><span>Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas</p> <p>2003-03-15</p> <p>To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810043458&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231076','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810043458&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231076"><span>Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barbosa, D. D.</p> <p>1981-01-01</p> <p>The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/ency/article/007350.htm','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/ency/article/007350.htm"><span>Lumbar spine CT scan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26524940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26524940"><span>Pain intensity attenuates movement control of the lumbar spine in low back pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bauer, C M; Rast, F M; Ernst, M J; Oetiker, S; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M</p> <p>2015-12-01</p> <p>Pain intensity attenuates muscular activity, proprioception, and tactile acuity, with consequent changes of joint kinematics. People suffering from low back pain (LBP) frequently show movement control impairments of the lumbar spine in sagittal plane. This cross-sectional, observational study investigated if the intensity of LBP attenuates lumbar movement control. The hypothesis was that lumbar movement control becomes more limited with increased pain intensity. The effect of LBP intensity, measured with a numeric rating scale (NRS), on lumbar movement control was tested using three movement control tests. The lumbar range of motion (ROM), the ratio of lumbar and hip ROM as indicators of direction specific movement control, and the recurrence and determinism of repetitive lumbar movement patterns were assessed in ninety-four persons suffering from LBP of different intensity and measured with an inertial measurement unit system. Generalized linear models were fitted for each outcome. Lumbar ROM (+ 0.03°, p = 0.24) and ratio of lumbar and hip ROM (0.01, p = 0.84) were unaffected by LBP intensity. Each one point increase on the NRS resulted in a decrease of recurrence and determinism of lumbar movement patterns (-3.11 to -0.06, p ⩽ 0.05). Our results indicate changes in movement control in people suffering from LBP. Whether decreased recurrence and determinism of lumbar movement patterns are intensifiers of LBP intensity or a consequence thereof should be addressed in a future prospective study. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28690018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28690018"><span>Adaptations of lumbar biomechanics after four weeks of running training with minimalist footwear and technique guidance: Implications for running-related lower back pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Szu-Ping; Bailey, Joshua P; Smith, Jo Armour; Barton, Stephanie; Brown, David; Joyce, Talia</p> <p>2018-01-01</p> <p>To investigate the changes in lumbar kinematic and paraspinal muscle activation before, during, and after a 4-week minimalist running training. Prospective cohort study. University research laboratory. Seventeen habitually shod recreational runners who run 10-50 km per week. During stance phases of running, sagittal lumbar kinematics was recorded using an electrogoniometer, and activities of the lumbar paraspinal muscles were assessed by electromyography. Runners were asked to run at a prescribed speed (3.1 m/s) and a self-selected speed. For the 3.1 m/s running speed, significant differences were found in the calculated mean lumbar posture (p = 0.001) during the stance phase, including a more extended lumbar posture after minimalist running training. A significant reduction in the contralateral lumbar paraspinal muscle activation was also observed (p = 0.039). For the preferred running speed, similar findings of a more extended lumbar posture (p = 0.002) and a reduction in contralateral lumbar paraspinal muscle activation (p = 0.047) were observed. A 4-week minimalist running training program produced significant changes in lumbar biomechanics during running. Specifically, runners adopted a more extended lumbar posture and reduced lumbar paraspinal muscle activation. These findings may have clinical implications for treating individuals with running-related lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22572302-asymptotic-analysis-discrete-schemes-non-equilibrium-radiation-diffusion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22572302-asymptotic-analysis-discrete-schemes-non-equilibrium-radiation-diffusion"><span>Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun</p> <p></p> <p>Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772759','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772759"><span>Weightlifter Lumbar Physiology Health Influence Factor Analysis of Sports Medicine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Xiangyang</p> <p>2015-01-01</p> <p>Chinese women's weightlifting project has been in the advanced world level, suggests that the Chinese coaches and athletes have many successful experience in the weight lifting training. Little weight lifting belongs to high-risk sports, however, to the lumbar spine injury, some young good athletes often due to lumbar trauma had to retire, and the national investment and athletes toil is regret things. This article from the perspective of sports medicine, weightlifting athletes training situation analysis and put forward Suggestions, aimed at avoiding lumbar injury, guarantee the health of athletes. In this paper, first of all to 50 professional women's weightlifting athletes doing investigation, found that 82% of the athletes suffer from lumbar disease symptoms, the reason is mainly composed of lumbar strain, intensity is too large, motion error caused by three factors. From the Angle of sports medicine and combined with the characteristics of the structure of human body skeleton athletes lumbar structural mechanics analysis, find out the lumbar force's two biggest technical movement, study, and regulate the action standard, so as to minimize lumbar force, for athletes to contribute to the health of the lumbar spine. PMID:26981162</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28434542','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28434542"><span>The Neandertal vertebral column 2: The lumbar spine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gómez-Olivencia, Asier; Arlegi, Mikel; Barash, Alon; Stock, Jay T; Been, Ella</p> <p>2017-05-01</p> <p>Here we provide the most extensive metric and morphological analysis performed to date on the Neandertal lumbar spine. Neandertal lumbar vertebrae show differences from modern humans in both the vertebral body and in the neural arch, although not all Neandertal lumbar vertebrae differ from modern humans in the same way. Differences in the vertebral foramen are restricted to the lowermost lumbar vertebrae (L4 and L5), differences in the orientation of the upper articular facets appear in the uppermost lumbar vertebrae (probably in L1 and L2-L3), and differences in the horizontal angle of the transverse process appear in L2-L4. Neandertals, when compared to modern humans, show a smaller degree of lumbar lordosis. Based on a still limited fossil sample, early hominins (australopiths and Homo erectus) had a lumbar lordosis that was similar to but below the mean of modern humans. Here, we hypothesize that from this ancestral degree of lumbar lordosis, the Neandertal lineage decreased their lumbar lordosis and Homo sapiens slightly increased theirs. From a postural point of view, the lower degree of lordosis is related to a more vertical position of the sacrum, which is also positioned more ventrally with respect to the dorsal end of the pelvis. This results in a spino-pelvic alignment that, though different from modern humans, maintained an economic postural equilibrium. Some features, such as a lower degree of lumbar lordosis, were already present in the middle Pleistocene populations ancestral to Neandertals. However, these middle Pleistocene populations do not show the full suite of Neandertal lumbar morphologies, which probably means that the characteristic features of the Neandertal lumbar spine did not arise all at once. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29201827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29201827"><span>Lumbar Scoliosis in Patients With Breast Cancer: Prevalence and Relationship With Breast Cancer Treatment, Age, Bone Mineral Density, and Body Mass Index.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jung, Sangeun; Kim, Mee Gang; Lee, Jong In</p> <p>2017-10-01</p> <p>To identify the prevalence of lumbar scoliosis in breast cancer patients and to investigate the potential risk factors of lumbar scoliosis. A retrospective chart review was performed in breast cancer patients aged more than 40 years who underwent dual energy X-ray absorptiometry (DEXA) scanning between January 2014 and December 2014. We divided the patients into control and experimental groups in order to investigate the influence of breast cancer treatment. The curvature of the lumbar spine was measured by using the Cobb method on a DEXA scan. Scoliosis was defined by the presence of a curvature 10° or larger. The variables, including age, bone mineral density (BMD), body mass index (BMI), and breast cancer treatments, were also obtained from the medical chart. Prevalence of lumbar scoliosis was evaluated, and it was compared between the two groups. The relationships between lumbar scoliosis and these variables were also investigated. Lumbar scoliosis was present in 16 out of our 652 breast cancer patients. There was no difference in the prevalence of lumbar scoliosis between the control group (7/316) and the experimental group (9/336) (p=0.70). According to the logistic regression analysis, lumbar scoliosis had no significant association with operation, chemotherapy, hormone therapy, BMI, and BMD (p>0.05). However, age showed a significant relationship with prevalence of lumbar scoliosis (p<0.001; odds ratio, 1.11; 95% confidence interval, 1.054-1.170). Prevalence of lumbar scoliosis in patients with breast cancer was 2.45%. Lumbar scoliosis had no association with breast cancer treatments, BMD, and BMI. Age was the only factor related to the prevalence of lumbar scoliosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24785474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24785474"><span>Etiology of lumbar lordosis and its pathophysiology: a review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P</p> <p>2014-05-01</p> <p>The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25863793','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25863793"><span>Simulation-based educational curriculum for fluoroscopically guided lumbar puncture improves operator confidence and reduces patient dose.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faulkner, Austin R; Bourgeois, Austin C; Bradley, Yong C; Hudson, Kathleen B; Heidel, R Eric; Pasciak, Alexander S</p> <p>2015-05-01</p> <p>Fluoroscopically guided lumbar puncture (FGLP) is a commonly performed procedure with increased success rates relative to bedside technique. However, FGLP also exposes both patient and staff to ionizing radiation. The purpose of this study was to determine if the use of a simulation-based FGLP training program using an original, inexpensive lumbar spine phantom could improve operator confidence and efficiency, while also reducing patient dose. A didactic and simulation-based FGLP curriculum was designed, including a 1-hour lecture and hands-on training with a lumbar spine phantom prototype developed at our institution. Six incoming post-graduate year 2 (PGY-2) radiology residents completed a short survey before taking the course, and each resident practiced 20 simulated FGLPs using the phantom before their first clinical procedure. Data from the 114 lumbar punctures (LPs) performed by the six trained residents (prospective cohort) were compared to data from 514 LPs performed by 17 residents who did not receive simulation-based training (retrospective cohort). Fluoroscopy time (FT), FGLP success rate, and indication were compared. There was a statistically significant reduction in average FT for the 114 procedures performed by the prospective study cohort compared to the 514 procedures performed by the retrospective cohort. This held true for all procedures in aggregate, LPs for myelography, and all procedures performed for a diagnostic indication. Aggregate FT for the prospective group (0.87 ± 0.68 minutes) was significantly lower compared to the retrospective group (1.09 ± 0.65 minutes) and resulted in a 25% reduction in average FT (P = .002). There was no statistically significant difference in the number of failed FGLPs between the two groups. Our simulation-based FGLP curriculum resulted in improved operator confidence and reduced FT. These changes suggest that resident procedure efficiency was improved, whereas patient dose was reduced. The FGLP training program was implemented by radiology residents and required a minimal investment of time and resources. The LP spine phantom used during training was inexpensive, durable, and effective. In addition, the phantom is compatible with multiple modalities including fluoroscopy, computed tomography, and ultrasound and could be easily adapted to other applications such as facet injections or joint arthrograms. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3315863','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3315863"><span>Chiropractic management of a patient with lumbar spine pain due to synovial cyst: a case report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cox, James M.</p> <p>2012-01-01</p> <p>Introduction The purpose of this study is to report the findings resulting from chiropractic care using flexion distraction spinal manipulation for a patient with low back and radicular pain due to spinal stenosis caused by a synovial cyst. Case Report A 75-year-old man presented with low back pain radiating to the right anterior thigh and down the left posterior leg of 3 years' duration. Physical and imaging examinations showed a synovial cyst–induced spinal stenosis at the right L3-L4 level and bilateral L4-L5 spinal stenosis. Intervention and Outcomes Flexion distraction spinal manipulation and physiological therapeutics were applied at the levels of stenosis. After 4 visits, the patient noted total absence of the right and left lower extremity pain and no adverse reaction to treatment. After 3 months of treatment and 16 visits, his low back and buttock pain were minimal; and he had no leg pain. Conclusion Lumbar synovial cyst and stenosis–generated low back and radicular pain was 80% relieved in a 75-year-old man following Cox flexion distraction spinal manipulation. PMID:22942836</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RaPC..139..157P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RaPC..139..157P"><span>Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plante, Ianik; Devroye, Luc</p> <p>2017-10-01</p> <p>Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........93K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........93K"><span>Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ko, Hyunseok</p> <p></p> <p>Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........47J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........47J"><span>Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Hao</p> <p></p> <p>Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17948176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17948176"><span>Lumbar elastance and resistance to CSF outflow correlated to patency of the cranial subarachnoid space and clinical outcome of endoscopic third ventriculostomy in obstructive hydrocephalus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bech-Azeddine, R; Nielsen, O A; Løgager, V B; Juhler, M</p> <p>2007-08-01</p> <p>The purpose of the present study was to elucidate the value of the lumbar and intraventricular infusion tests in the selection of patients with obstructive hydrocephalus (OH) for endoscopic third ventriculostomy (ETV), and whether the presence of a diminished cranial subarachnoid space was a source of error in the interpretation of the results. In 32 consecutive adult patients (15 M, 17 F, mean age: 46 years) with possible treatment-requiring OH, the resistance to cerebrospinal fluid (CSF) outflow (Rout) and elastance was measured with a lumbar infusion test. Eleven of the patients underwent an additional intraventricular infusion test. An ETV was subsequently performed in 20 patients, of whom 11 presented with idiopathic aqueductal stenosis and 9 with other various causes of OH. The presence of a diminished cranial SAS correlated significantly with increased lumbar elastance, but not with lumbar Rout. However, distinctly increased Rout values (>24 mmHg/mL/min, n=4) were only measured in the presence of a diminished cranial SAS. No significant correlation was demonstrated between the clinical outcome of ETV and lumbar elastance or lumbar Rout, although seven out of the eight improving patients with aqueductal stenosis presented normal lumbar Rout values. In patients undergoing both a lumbar and an intraventricular infusion test and improving after ETV (n=6), lumbar elastance was significantly increased compared to the intraventricular elastance. A diminished cranial SAS correlates with increased lumbar elastance and may explain the highly increased lumbar Rout values, possibly by impeding the bulk flow from the infusion. The majority of patients improving after ETV and presenting a normal sized cranial SAS presented normal lumbar Rout values. Supplementing the lumbar infusion test with an intraventricular test may help in predicting the outcome of ETV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA127340','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA127340"><span>A Study of Low Level Laser Retinal Damage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-03-15</p> <p>Diffusions Multiples Internes" Rev Opt 244 1, (1945) 31. Hochheimer, B. F. "Radiation Pattern for A Diffuse Wall Cavity, Nonuniform in Temperature and...Radiation" LAIR Report #31 42. Armington, J. C. The Electroretinogram Academic Press, New York 1974 43. Vos, J.J., Munnik, A.A. and Boogaard, J...Carter M and Talsma, D.M. "Retinal Alterations Produced by Low Level Gallium Arsenide Laser Exposure" LAIR Report #38, Feb., 1977 APPLIED PHYWSICS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31D2200D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31D2200D"><span>A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.</p> <p>2017-12-01</p> <p>A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22492794-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22492794-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.</p> <p></p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1409995','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1409995"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.</p> <p></p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409995-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409995-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...</p> <p>2015-10-06</p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvB..87k5202S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvB..87k5202S"><span>Radiation-enhanced self- and boron diffusion in germanium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, S.; Bracht, H.; Klug, J. N.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Bougeard, D.; Haller, E. E.</p> <p>2013-03-01</p> <p>We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘C and 720 ∘C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction and the interstitialcy and dissociative diffusion mechanisms. The numerical simulations ascertain concentrations of Ge interstitials and B-interstitial pairs that deviate by several orders of magnitude from their thermal equilibrium values. The dominance of self-interstitial related defects under irradiation leads to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and formation enthalpy of BI that are compared with recent results of atomistic calculations. The behavior of self- and B diffusion in Ge under concurrent annealing and irradiation is strongly affected by the property of the Ge surface to hinder the annihilation of self-interstitials. The limited annihilation efficiency of the Ge surface can be caused by donor-type surface states favored under vacuum annealing, but the physical origin remains unsolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23745277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23745277"><span>[Feasibility and accuracy of ultrasound-guided methodology in the examination of lumbar spine facet joints].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui</p> <p>2013-03-01</p> <p>To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22224474-differences-brainstem-fiber-tract-response-radiation-longitudinal-diffusion-tensor-imaging-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22224474-differences-brainstem-fiber-tract-response-radiation-longitudinal-diffusion-tensor-imaging-study"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Li, Yimei</p> <p></p> <p>Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transversemore » pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950014104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950014104"><span>Radiation effects on p+n InP junctions grown by MOCVD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Messenger, Scott R.; Walters, Robert J.; Panunto, M. J.; Summers, Geoffrey P.</p> <p>1994-01-01</p> <p>The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22465611-asymptotic-preserving-unified-gas-kinetic-scheme-gray-radiative-transfer-equations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22465611-asymptotic-preserving-unified-gas-kinetic-scheme-gray-radiative-transfer-equations"><span>An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk</p> <p></p> <p>The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19267555','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19267555"><span>Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K</p> <p>2009-03-01</p> <p>Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110010215','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110010215"><span>Recent Developments in the Radiation Belt Environment Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, M.-C.; Glocer, A.; Zheng, Q.; Horne, R. B.; Meredith, N. P.; Albert, J. M.; Nagai, T.</p> <p>2010-01-01</p> <p>The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied.Weare able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...52a2105Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...52a2105Z"><span>Determining light requirements of groundcover plants from subtropical natural forest using hemispherical photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yi; Zhong, Yonglin; Xu, Mingfeng; Su, Zhiyao</p> <p>2017-01-01</p> <p>In order to determine light requirements of indigenous groundcover plants for potential use in urban landscaping, we conducted a plant census in Yinpingshan Nature Reserve, Dongguan, China, and measured canopy structure and understory light regimes using hemispherical photography. We found that canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation exhibited highly significant spatial heterogeneity. Species composition and diversity of groundcover plants were highly dependent on canopy structure and understory light condition. Greater diversity and more stems of groundcover plants were associated with greater canopy openness and understory radiation in most cases. Highly significant differences in species composition were detected along canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation gradients, respectively. We also detected indicator species for specific understory light regimes, which will provide useful information when applying such species in urban greening under various light environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638415','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638415"><span>Lumbar spinal canal MRI diameter is smaller in herniated disc cauda equina syndrome patients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kruit, Mark C.; Peul, Wilco C.; Vleggeert-Lankamp, Carmen L. A.</p> <p>2017-01-01</p> <p>Introduction Correlation between magnetic resonance imaging (MRI) and clinical features in cauda equina syndrome (CES) is unknown; nor is known whether there are differences in MRI spinal canal size between lumbar herniated disc patients with CES versus lumbar herniated discs patients without CES, operated for sciatica. The aims of this study are 1) evaluating the association of MRI features with clinical presentation and outcome of CES and 2) comparing lumbar spinal canal diameters of lumbar herniated disc patients with CES versus lumbar herniated disc patients without CES, operated because of sciatica. Methods MRIs of CES patients were assessed for the following features: level of disc lesion, type (uni- or bilateral) and severity of caudal compression. Pre- and postoperative clinical features (micturition dysfunction, defecation dysfunction, altered sensation of the saddle area) were retrieved from the medical files. In addition, anteroposterior (AP) lumbar spinal canal diameters of CES patients were measured at MRI. AP diameters of lumbar herniated disc patients without CES, operated for sciatica, were measured for comparison. Results 48 CES patients were included. At MRI, bilateral compression was seen in 82%; complete caudal compression in 29%. MRI features were not associated with clinical presentation nor outcome. AP diameter was measured for 26 CES patients and for 31 lumbar herniated disc patients without CES, operated for sciatica. Comparison displayed a significant smaller AP diameter of the lumbar spinal canal in CES patients (largest p = 0.002). Compared to average diameters in literature, diameters of CES patients were significantly more often below average than that of the sciatica patients (largest p = 0.021). Conclusion This is the first study demonstrating differences in lumbar spinal canal size between lumbar herniated disc patients with CES and lumbar herniated disc patients without CES, operated for sciatica. This finding might imply that lumbar herniated disc patients with a relative small lumbar spinal canal might need to be approached differently in managing complaints of herniated disc. Since the number of studied patients is relatively small, further research should be conducted before clinical consequences are considered. PMID:29023556</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13G0318I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13G0318I"><span>Cloud Induced Enhancement of Ground Level Solar Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inman, R.; Chu, Y.; Coimbra, C.</p> <p>2013-12-01</p> <p>Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25451860','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25451860"><span>Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil</p> <p>2014-12-01</p> <p>Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27905911','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27905911"><span>Prevalence of lumbar spondylosis and its association with low back pain among community-dwelling Japanese women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsujimoto, Ritsu; Abe, Yasuyo; Arima, Kazuhiko; Nishimura, Takayuki; Tomita, Masato; Yonekura, Akihiko; Miyamoto, Takashi; Matsubayashi, Shohei; Tanaka, Natsumi; Aoyagi, Kiyoshi; Osaki, Makoto</p> <p>2016-12-01</p> <p>Lumbar spondylosis is more prevalent among the middle-aged and elderly, but few population-based studies have been conducted, especially in Japan. The purpose of this study was to explore the prevalence of lumbar spondylosis and its associations with low back pain among community-dwelling Japanese women. Lateral radiographs of the lumbar spine were obtained from 490 Japanese women ≥ 40 years old, and scored for lumbar spondylosis using the Kellgren-Lawrence (KL) grade at lumbar intervertebral level from L1/2 to L5/S1. Height and weight were measured, and body mass index (BMI) was calculated. Low back pain in subjects was assessed using a self-administered questionnaire. Stiffness index (bone mass) was measured at the calcaneal bone using quantitative ultrasound. Prevalence of radiographic lumbar spondylosis for KL ≥ 2, KL ≥ 3 and low back pain were 76.7%, 38.8% and 20.0%, respectively. Age was positively associated with radiographic lumbar spondylosis (KL = 2, KL ≥ 3) and low back pain. Greater BMI was associated with lumbar spondylosis with KL = 2, but not with KL ≥ 3. Stiffness index was associated with neither radiographic lumbar spondylosis nor low back pain. Multiple logistic regression analysis identified radiographic lumbar spondylosis (KL ≥ 3) at L3/4, L4/5 and L5/S1 was associated with low back pain, independent of age, BMI and stiffness index. Severe lumbar spondylosis at the middle or lower level may contribute to low back pain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27065498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27065498"><span>Computing diffuse fraction of global horizontal solar radiation: A model comparison.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dervishi, Sokol; Mahdavi, Ardeshir</p> <p>2012-06-01</p> <p>For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A11E0200L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A11E0200L"><span>Direct-to-diffuse UV Solar Irradiance Ratio for a UV rotating Shadowband Spectroradiometer and a UV Multi-filter Rotating Shadowband Radiometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.</p> <p>2008-12-01</p> <p>. Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740018154','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740018154"><span>The origin of the diffuse background gamma-radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stecker, F. W.; Puget, J. L.</p> <p>1974-01-01</p> <p>Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1327182-object-kinetic-monte-carlo-simulations-radiation-damage-bulk-tungsten','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1327182-object-kinetic-monte-carlo-simulations-radiation-damage-bulk-tungsten"><span>OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.</p> <p>2015-09-22</p> <p>We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864483','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864483"><span>Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.</p> <p>2011-01-01</p> <p>Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7482017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7482017"><span>Morphometric study of the lumbar spinal canal in the Korean population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, H M; Kim, N H; Kim, H J; Chung, I H</p> <p>1995-08-01</p> <p>The anatomic dimensions of the vertebral body and spinal canal of the lumbar spine were analyzed in Koreans. To determine the normal dimension of the lumbar spinal canal in Koreans, to determine whether there are any racial differences in the morphometry of the lumbar spinal canal, and to provide criteria for diagnosing spinal stenosis in the Far Eastern Asian. Some radiologic and anatomic studies have been conducted regarding the size of the lumbar spinal canal of whites and blacks in western and African countries. One-thousand-eight-hundred measurements were performed on the transverse and sagittal diameters of vertebral bodies and spinal canals using complete sets of 90 lumbar vertebrae. The mean mid-sagittal diameter of the lumbar spinal canal in the Korean population was less than that measured in white and African populations, but there was no significant differences between the Korean, white, and African populations regarding the transverse diameter of the lumbar spinal canal. The mid-sagittal diameter of the lumbar spinal canal is narrowest in the Far Eastern Asian population; the radiologic criteria of spinal stenosis should be reconsidered for these people.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IJBm...50...75G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IJBm...50...75G"><span>UV hazard on a summer's day under Mediterranean conditions, and the protective role of a beach umbrella</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grifoni, D.; Carreras, G.; Sabatini, F.; Zipoli, G.</p> <p>2005-11-01</p> <p>Mediterranean beaches are very crowded during summer and, because of the high values of solar UV radiation, the potential risk for human health is relevant. In this study, all-day measurements of biologically effective global and diffuse UV radiation for skin (UVBEeryt) and eye (UVBEpker, UVBEpconj, UVBEcat) disorders were carried out on differently tilted surfaces on a summer’s day on a Mediterranean beach. The role played by beach umbrellas in protection from excessive sun exposure was also investigated. Erythema, photokeratitis and cataract seem to require almost the same exposure time to reach the risk threshold dose. Under full sunlight, the highest global and diffuse UV values are reached on surfaces normally oriented towards sunlight and on horizontal surfaces, respectively. Over vertical surfaces, at this northern hemisphere site, global and diffuse UV radiation reaches maxima values in the south-facing direction around noon, while maxima values are reached early in the morning and late in the afternoon over surfaces facing east and west, respectively. The quality of the beach umbrella’s protection (efficiency in blocking solar UV radiation) varies with surface orientation; the highest efficiency for our specific site and geometrical conditions occurs over horizontal surfaces, with efficiency being least over vertical surfaces when incident radiation values are still relevant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993isdr.symp....5H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993isdr.symp....5H"><span>Response of GaAs charge storage devices to transient ionizing radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.</p> <p></p> <p>Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1344950-simulating-synchrotron-radiation-accelerators-including-diffuse-specular-reflections','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1344950-simulating-synchrotron-radiation-accelerators-including-diffuse-specular-reflections"><span>Simulating synchrotron radiation in accelerators including diffuse and specular reflections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dugan, G.; Sagan, D.</p> <p>2017-02-24</p> <p>An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4417729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4417729"><span>Long-Term Pulmonary Function in Survivors of Childhood Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Armenian, Saro H.; Landier, Wendy; Francisco, Liton; Herrera, Claudia; Mills, George; Siyahian, Aida; Supab, Natt; Wilson, Karla; Wolfson, Julie A.; Horak, David; Bhatia, Smita</p> <p>2015-01-01</p> <p>Purpose This study was undertaken to determine the magnitude of pulmonary dysfunction in childhood cancer survivors when compared with healthy controls and the extent (and predictors) of decline over time. Patients and Methods Survivors underwent baseline (t1) pulmonary function tests, followed by a second comprehensive evaluation (t2) after a median of 5 years (range, 1.0 to 10.3 years). Survivors were also compared with age- and sex-matched healthy controls at t2. Results Median age at cancer diagnosis was 16.5 years (range, 0.2 to 21.9 years), and time from diagnosis to t2 was 17.1 years (range, 6.3 to 40.1 years). Compared with odds for healthy controls, the odds of restrictive defects were increased 6.5-fold (odds ratio [OR], 6.5; 95% CI, 1.5 to 28.4; P < .01), and the odds of diffusion abnormalities were increased 5.2-fold (OR, 5.2; 95% CI, 1.8 to 15.5; P < .01). Among survivors, age younger than 16 years at diagnosis (OR, 3.0; 95% CI, 1.2 to 7.8; P = .02) and exposure to more than 20 Gy chest radiation (OR, 5.6; 95% CI, 1.5 to 21.0; P = .02, referent, no chest radiation) were associated with restrictive defects. Female sex (OR, 3.9; 95% CI, 1.7 to 9.5; P < .01) and chest radiation dose (referent: no chest radiation; ≤ 20 Gy: OR, 6.4; 95% CI, 1.7 to 24.4; P < .01; > 20 Gy: OR, 11.3; 95% CI, 2.6 to 49.5; P < .01) were associated with diffusion abnormalities. Among survivors with normal pulmonary function tests at t1, females and survivors treated with more than 20 Gy chest radiation demonstrated decline in diffusion function over time. Conclusion Childhood cancer survivors exposed to pulmonary-toxic therapy are significantly more likely to have restrictive and diffusion defects when compared with healthy controls. Diffusion capacity declines with time after exposure to pulmonary-toxic therapy, particularly among females and survivors treated with high-dose chest radiation. These individuals could benefit from subsequent monitoring. PMID:25847925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..498..362D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..498..362D"><span>Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.</p> <p>2018-01-01</p> <p>Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA372199','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA372199"><span>Current Aeromedical Issues in Rotary Wing Operations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1999-08-01</p> <p>normal lumbar lordosis (19). The spine losses the normal curve, the vertebral bodies tend to be closer together in front, and an increase in...a dorsally curved lumbar spine to the lumbar lordosis of his erect posture (Fig 1). From that transition comes his propensity to low back pain...flexibility of the lumbar spine relies upon the elasticity of the intervertebral discs. Fig 1. Change in lumbar lordosis with erect posture The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23928280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23928280"><span>Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan</p> <p>2013-12-01</p> <p>The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11518113H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11518113H"><span>Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.</p> <p>2010-09-01</p> <p>A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800012924','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800012924"><span>A study of the effect on a typical orbiter payload thermal environment resulting from specular reflections from the forward orbiter radiators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humphries, R.; Turner, L.; Littles, J. W.</p> <p>1979-01-01</p> <p>The orbiter radiator external coating is highly specular silverized Teflon. Solar energy specularly reflected from these radiators on a typical payload which, when deployed, extends above the payload bay envelope was studied. The flux levels are compared assuming both diffuse and specular radiators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29659316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29659316"><span>Longitudinal changes in gray matter regions after cranial radiation and comparative analysis with whole body radiation: a DTI study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Watve, Apurva; Gupta, Mamta; Khushu, Subash; Rana, Poonam</p> <p>2018-06-01</p> <p>Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25271198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25271198"><span>The effects of an exercise with a stick on the lumbar spine and hip movement patterns during forward bending in patients with lumbar flexion syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop</p> <p>2015-01-01</p> <p>Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19653483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19653483"><span>Repeatability, reproducibility, and validity of a new method for characterizing lumbar support in automotive seating.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kolich, Mike</p> <p>2009-04-01</p> <p>This article describes a new and more repeatable, reproducible, and valid test method for characterizing lumbar support in automotive seating. Lumbar support is important because it affects occupant accommodation and perceptions of seat comfort. Assessing only the lumbar mechanism--particularly in terms of travel--is inadequate because it does not consider the effects of trim and foam. The Society of Automotive Engineers' next-generation H-Point machine and associated loading protocol were used as the basis for the new test. The method was found to satisfy minimum gage repeatability and reproducibility requirements. Validity was demonstrated through a regression model that revealed 93.9% of the variance in subjective ratings of poor uncomfortable lumbar support can be explained by two objective indicators: (1) lumbar support prominence in the full-off position and (2) effective travel. The method can be used to differentiate between seats offering two-way adjustable lumbar support. The best two-way adjustable lumbar seat systems are those that couple little to no lumbar support in the starting or off position (i.e., they are nonintrusive) with a considerable amount of effective or perceptible travel. The automotive industry has long needed a way to address the fact that consumers want more lumbar support than their seats currently supply. This contribution offers a method to objectify an important aspect of automotive seating comfort-namely, lumbar support. This should help human factors professionals produce, but not necessarily guarantee, better consumer ratings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1242964','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1242964"><span>Ag Transport Through Non-Irradiated and Irradiated SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Szlufarska, Izabela; Morgan, Dane; Blanchard, James</p> <p></p> <p>Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differencesmore » in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1095145-adaptive-implicit-non-equilibrium-radiation-diffusion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1095145-adaptive-implicit-non-equilibrium-radiation-diffusion"><span>Adaptive Implicit Non-Equilibrium Radiation Diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Philip, Bobby; Wang, Zhen; Berrill, Mark A</p> <p>2013-01-01</p> <p>We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2605454','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2605454"><span>Regional differences in lumbar spinal posture and the influence of low back pain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne</p> <p>2008-01-01</p> <p>Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23568253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23568253"><span>Analysis of risk factors for loss of lumbar lordosis in patients who had surgical treatment with segmental instrumentation for adolescent idiopathic scoliosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trobisch, Per D; Samdani, Amer F; Betz, Randal R; Bastrom, Tracey; Pahys, Joshua M; Cahill, Patrick J</p> <p>2013-06-01</p> <p>Iatrogenic flattening of lumbar lordosis in patients with adolescent idiopathic scoliosis (AIS) was a major downside of first generation instrumentation. Current instrumentation systems allow a three-dimensional scoliosis correction, but flattening of lumbar lordosis remains a significant problem which is associated with decreased health-related quality of life. This study sought to identify risk factors for loss of lumbar lordosis in patients who had surgical correction of AIS with the use of segmental instrumentation. Patients were included if they had surgical correction for AIS with segmental pedicle screw instrumentation Lenke type 1 or 2 and if they had a minimum follow-up of 24 months. Two groups were created, based on the average loss of lumbar lordosis. The two groups were then compared and multivariate analysis was performed to identify parameters that correlated to loss of lumbar lordosis. Four hundred and seventeen patients were analyzed for this study. The average loss of lumbar lordosis at 24 months follow-up was an increase of 10° lordosis for group 1 and a decrease of 15° for group 2. Risk factors for loss of lumbar lordosis included a high preoperative lumbar lordosis, surgical decrease of thoracic kyphosis, and the particular operating surgeon. The lowest instrumented vertebra or spinopelvic parameters were two of many parameters that did not seem to influence loss of lumbar lordosis. This study identified important risk factors for decrease of lumbar lordosis in patients who had surgical treatment for AIS with segmental pedicle screw instrumentation, including a high preoperative lumbar lordosis, surgical decrease of thoracic kyphosis, and factors attributable to a particular operating surgeon that were not quantified in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH33C2247T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH33C2247T"><span>From Low Altitude to High Altitude: Assimilating SAMPEX Data in Global Radiation Belt Models by Quantifying Precipitation and Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.</p> <p>2012-12-01</p> <p>Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM. This new implementation of SAMPEX data will greatly augment the data coverage of DREAM and contribute to the global specification of the radiation belt environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760004518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760004518"><span>Bidirectional plant canopy reflection models derived from the radiation transfer equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beeth, D. R.</p> <p>1975-01-01</p> <p>A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850n0001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850n0001A"><span>Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abouhashish, Mohamed</p> <p>2017-06-01</p> <p>The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5039869','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5039869"><span>Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Phan, Kevin; Malham, Greg; Seex, Kevin; Rao, Prashanth J.</p> <p>2015-01-01</p> <p>Degenerative disc and facet joint disease of the lumbar spine is common in the ageing population, and is one of the most frequent causes of disability. Lumbar spondylosis may result in mechanical back pain, radicular and claudicant symptoms, reduced mobility and poor quality of life. Surgical interbody fusion of degenerative levels is an effective treatment option to stabilize the painful motion segment, and may provide indirect decompression of the neural elements, restore lordosis and correct deformity. The surgical options for interbody fusion of the lumbar spine include: posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), minimally invasive transforaminal lumbar interbody fusion (MI-TLIF), oblique lumbar interbody fusion/anterior to psoas (OLIF/ATP), lateral lumbar interbody fusion (LLIF) and anterior lumbar interbody fusion (ALIF). The indications may include: discogenic/facetogenic low back pain, neurogenic claudication, radiculopathy due to foraminal stenosis, lumbar degenerative spinal deformity including symptomatic spondylolisthesis and degenerative scoliosis. In general, traditional posterior approaches are frequently used with acceptable fusion rates and low complication rates, however they are limited by thecal sac and nerve root retraction, along with iatrogenic injury to the paraspinal musculature and disruption of the posterior tension band. Minimally invasive (MIS) posterior approaches have evolved in an attempt to reduce approach related complications. Anterior approaches avoid the spinal canal, cauda equina and nerve roots, however have issues with approach related abdominal and vascular complications. In addition, lateral and OLIF techniques have potential risks to the lumbar plexus and psoas muscle. The present study aims firstly to comprehensively review the available literature and evidence for different lumbar interbody fusion (LIF) techniques. Secondly, we propose a set of recommendations and guidelines for the indications for interbody fusion options. Thirdly, this article provides a description of each approach, and illustrates the potential benefits and disadvantages of each technique with reference to indication and spine level performed. PMID:27683674</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19179923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19179923"><span>Influence of lumbar lordosis restoration on thoracic curve and sagittal position in lumbar degenerative kyphosis patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jang, Jee-Soo; Lee, Sang-Ho; Min, Jun-Hong; Maeng, Dae Hyeon</p> <p>2009-02-01</p> <p>A retrospective study. To determine postsurgical correlations between thoracic and lumbar sagittal curves in lumbar degenerative kyphosis (LDK) and to determine predictability of spontaneous correction of thoracic curve and sacral angle after surgical restoration of lumbar lordosis and fusion. To our knowledge, there are only a limited number of articles about the relationship between thoracic and lumbar curve in sagittal thoracic compensated LDK. Retrospective review of 53 consecutive patients treated with combined anterior and posterior spinal arthrodesis. We included patients with sagittal thoracic compensated LDK caused by sagittal imbalance in this study. Total lumbar lordosis, thoracic kyphosis, sacral slope, and C7 plumb line were measured on the pre- and postoperative whole spine lateral views. Postoperative changes in thoracic kyphosis, sacral slope, and C7 plumb line according to the surgical lumbar lordosis restoration were measured and evaluated. The mean preoperative sagittal imbalance by plumb line was 78.3 mm (+/-76.5); this improved to 13.6 mm (+/-25) after surgery (P < 0.0001). Mean lumbar lordosis was 9.4 degrees (+/-19.2) before surgery and increased to 38.4 degrees (+/-13.1) at follow-up (P < 0.0001). Mean thoracic kyphosis was 1.1 degrees (+/-12.7) before surgery and increased to 17.6 degrees (+/-12.2) at follow-up (P < 0.0001). Significant preoperative correlations existed between kyphosis and lordosis (r = 0.772, P < 0.0001) and between lordosis and sacral slope (r = 0.785, P < 0.0001). Postoperative lumbar lordosis is correlated to thoracic kyphosis increase (r = 0.620, P < 0.0001). Postoperative lumbar lordosis is correlated to sacral slope increase (r = 0.722, P < 0.0001). Reciprocal relationship exists between lumbar lordosis and thoracic kyphosis in sagittal thoracic compensated LDK. Surgical restoration of lumbar lordosis for LDK brings about high level of statistical correlation to thoracic kyphosis improvement. At the same time, the reciprocal relationship is maintained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23897540','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23897540"><span>Simple prediction method of lumbar lordosis for planning of lumbar corrective surgery: radiological analysis in a Korean population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Chong Suh; Chung, Sung Soo; Park, Se Jun; Kim, Dong Min; Shin, Seong Kee</p> <p>2014-01-01</p> <p>This study aimed at deriving a lordosis predictive equation using the pelvic incidence and to establish a simple prediction method of lumbar lordosis for planning lumbar corrective surgery in Asians. Eighty-six asymptomatic volunteers were enrolled in the study. The maximal lumbar lordosis (MLL), lower lumbar lordosis (LLL), pelvic incidence (PI), and sacral slope (SS) were measured. The correlations between the parameters were analyzed using Pearson correlation analysis. Predictive equations of lumbar lordosis through simple regression analysis of the parameters and simple predictive values of lumbar lordosis using PI were derived. The PI strongly correlated with the SS (r = 0.78), and a strong correlation was found between the SS and LLL (r = 0.89), and between the SS and MLL (r = 0.83). Based on these correlations, the predictive equations of lumbar lordosis were found (SS = 0.80 + 0.74 PI (r = 0.78, R (2) = 0.61), LLL = 5.20 + 0.87 SS (r = 0.89, R (2) = 0.80), MLL = 17.41 + 0.96 SS (r = 0.83, R (2) = 0.68). When PI was between 30° to 35°, 40° to 50° and 55° to 60°, the equations predicted that MLL would be PI + 10°, PI + 5° and PI, and LLL would be PI - 5°, PI - 10° and PI - 15°, respectively. This simple calculation method can provide a more appropriate and simpler prediction of lumbar lordosis for Asian populations. The prediction of lumbar lordosis should be used as a reference for surgeons planning to restore the lumbar lordosis in lumbar corrective surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5624381','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5624381"><span>Comparison Perioperative Factors During Minimally Invasive Pre-Psoas Lateral Interbody Fusion of the Lumbar Spine Using Either Navigation or Conventional Fluoroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yue-Hui; White, Ian; Potts, Eric; Mobasser, Jean-Pierre</p> <p>2017-01-01</p> <p>Study Design: Retrospective clinical study. Objectives: The aim of this study was to compare intraoperative conditions and clinical results of patients undergoing pre-psoas oblique lateral interbody fusion (OLIF) using navigation or conventional fluoroscopy (C-ARM) techniques. Methods: Forty-two patients (22 patients by navigation and 20 by fluoroscopy) underwent the OLIF procedure at 2 medical centers, and records were reviewed. Clinical data was collected and compared between the 2 groups. Patients were followed-up with a range of 6 to 24 months. Results: There were no significant differences on demographic data between groups. The navigation group had zero radiation exposure (RE) to the surgeon and radiation time compared to the C-ARM group, with total RE of 44.59 ± 26.65 mGy and radiation time of 88.30 ± 58.28 seconds (P < .05). The RE to the patient was significantly lower in the O-ARM group (9.38 mGy) compared to the C-ARM group (44.59 ± 26.65 mGy). Operating room time was slightly longer in the navigation group (2.49 ± 1.35 hours) compared to the C-ARM group (2.30 ± 1.17 hours; P > .05), although not statistically significant. No differences were found in estimated blood loss, length of hospitalization, surgery-related complications, and outcome scores with an average of 8-month follow-up. Conclusions: Compared with C-ARM techniques, using navigation can eliminate RE to surgeon and decrease RE to the patient, and it had no significant effect on operating time, estimated blood loss, length of hospitalization, or perioperative complications in the patients with OLIF procedure. This study shows that navigation is a safe alternative to fluoroscopy during the OLIF procedure in the treatment of degenerative lumbar conditions. PMID:28989845</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2000357','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2000357"><span>Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Filler, Aaron G.</p> <p>2007-01-01</p> <p>Background Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale. Methodology/Principal Findings This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)–quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)–frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)–duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)–emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)–inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems. Conclusion/Significance Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new “hominiform” clade and suggests a homeotic origin for the human upright body plan. PMID:17925867</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43A2697P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43A2697P"><span>Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pham, K. H.; Tu, W.; Xiang, Z.</p> <p>2017-12-01</p> <p>Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790059921&hterms=1072&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231072','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790059921&hterms=1072&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231072"><span>Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing. II - Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, M. D.</p> <p>1979-01-01</p> <p>A hemispherical radiometer has been used to obtain spectrally narrow-band measurements of the downward hemispheric diffuse and total (global) flux densities at varying solar zenith angles on 14 days over Tucson. Data are presented which illustrate the effects of temporally varying atmospheric conditions as well as clear stable conditions on the ratio of the diffuse to direct solar radiation at the earth's surface. The ground albedo and the effective imaginary term of the complex refractive index of atmospheric particulates are derived from the diffuse-direct ratio measurements on seven clear stable days at two wavelengths using the statistical procedure described by King and Herman (1979). Results indicate that the downwelling diffuse radiation field in the midvisible region in Tucson can be adequately described by Mie scattering theory if the ground albedo is 0.279 + or - 0.100 and the index of absorption is 0.0306 + or - 0.0082.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22622269-asymptotic-preserving-stochastic-galerkin-method-radiative-heat-transfer-equations-random-inputs-diffusive-scalings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22622269-asymptotic-preserving-stochastic-galerkin-method-radiative-heat-transfer-equations-random-inputs-diffusive-scalings"><span>An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jin, Shi, E-mail: sjin@wisc.edu; Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240; Lu, Hanqing, E-mail: hanqing@math.wisc.edu</p> <p>2017-04-01</p> <p>In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (inmore » the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900064715&hterms=uv+visible&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Duv%2Bvisible','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900064715&hterms=uv+visible&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Duv%2Bvisible"><span>Observations of the diffuse near-UV radiation field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.</p> <p>1990-01-01</p> <p>The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26825789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26825789"><span>Preservation or Restoration of Segmental and Regional Spinal Lordosis Using Minimally Invasive Interbody Fusion Techniques in Degenerative Lumbar Conditions: A Literature Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uribe, Juan S; Myhre, Sue Lynn; Youssef, Jim A</p> <p>2016-04-01</p> <p>A literature review. The purpose of this study was to review lumbar segmental and regional alignment changes following treatment with a variety of minimally invasive surgery (MIS) interbody fusion procedures for short-segment, degenerative conditions. An increasing number of lumbar fusions are being performed with minimally invasive exposures, despite a perception that minimally invasive lumbar interbody fusion procedures are unable to affect segmental and regional lordosis. Through a MEDLINE and Google Scholar search, a total of 23 articles were identified that reported alignment following minimally invasive lumbar fusion for degenerative (nondeformity) lumbar spinal conditions to examine aggregate changes in postoperative alignment. Of the 23 studies identified, 28 study cohorts were included in the analysis. Procedural cohorts included MIS ALIF (two), extreme lateral interbody fusion (XLIF) (16), and MIS posterior/transforaminal lumbar interbody fusion (P/TLIF) (11). Across 19 study cohorts and 720 patients, weighted average of lumbar lordosis preoperatively for all procedures was 43.5° (range 28.4°-52.5°) and increased 3.4° (9%) (range -2° to 7.4°) postoperatively (P < 0.001). Segmental lordosis increased, on average, by 4° from a weighted average of 8.3° preoperatively (range -0.8° to 15.8°) to 11.2° at postoperative time points (range -0.2° to 22.8°) (P < 0.001) in 1182 patient from 24 study cohorts. Simple linear regression revealed a significant relationship between preoperative lumbar lordosis and change in lumbar lordosis (r = 0.413; P = 0.003), wherein lower preoperative lumbar lordosis predicted a greater increase in postoperative lumbar lordosis. Significant gains in both weighted average lumbar lordosis and segmental lordosis were seen following MIS interbody fusion. None of the segmental lordosis cohorts and only two of the 19 lumbar lordosis cohorts showed decreases in lordosis postoperatively. These results suggest that MIS approaches are able to impact regional and local segmental alignment and that preoperative patient factors can impact the extent of correction gained (preserving vs. restoring alignment). 4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1289358','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1289358"><span>The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Szoke, A.; Brooks, E. D.</p> <p>2016-07-12</p> <p>We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization canmore » remedy it.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17068524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17068524"><span>Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parretta, Antonio; Privato, Carlo; Nenna, Giuseppe; Antonini, Andrea; Stefancich, Marco</p> <p>2006-10-20</p> <p>Methods for evaluating the light intensity distribution on receivers of concentrated solar radiation systems are described. They are based on the use of Lambertian diffusers in place of the illuminated receiver and on the acquisition of the scattered light, in reflection or transmission mode, by a CCD camera. The spatial distribution of intensity radiation is then numerically derived from the recorded images via a proprietary code. The details of the method are presented and a short survey of the main applications of the method in the photovoltaic and thermal solar energy conversion field is proposed. Methods for investigating the Lambertian character of commercial diffusers are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26656074','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26656074"><span>DOSE COEFFICIENTS FOR LIVER CHEMOEMBOLISATION PROCEDURES USING MONTE CARLO CODE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karavasilis, E; Dimitriadis, A; Gonis, H; Pappas, P; Georgiou, E; Yakoumakis, E</p> <p>2016-12-01</p> <p>The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (H T ) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy -1 m -2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28674974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28674974"><span>Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Detsky, Jay S; Keith, Julia; Conklin, John; Symons, Sean; Myrehaug, Sten; Sahgal, Arjun; Heyn, Chinthaka C; Soliman, Hany</p> <p>2017-09-01</p> <p>Radiation necrosis is a serious potential adverse event of stereotactic radiosurgery that cannot be reliably differentiated from recurrent tumor using conventional imaging techniques. Intravoxel incoherent motion (IVIM) is a magnetic resonance imaging (MRI) based method that uses a diffusion-weighted sequence to estimate quantitative perfusion and diffusion parameters. This study evaluated the IVIM-derived apparent diffusion coefficient (ADC) and perfusion fraction (f), and compared the results to the gold standard histopathological-defined outcomes of radiation necrosis or recurrent tumor. Nine patients with ten lesions were included in this study; all lesions exhibited radiographic progression after stereotactic radiosurgery for brain metastases that subsequently underwent surgical resection due to uncertainty regarding the presence of radiation necrosis versus recurrent tumor. Pre-surgical IVIM was performed to obtain f and ADC values and the results were compared to histopathology. Five lesions exhibited pathological radiation necrosis and five had predominantly recurrent tumor. The IVIM perfusion fraction reliably differentiated tumor recurrence from radiation necrosis (f mean  = 10.1 ± 0.7 vs. 8.3 ± 1.2, p = 0.02; cutoff value of 9.0 yielding a sensitivity/specificity of 100%/80%) while the ADC did not distinguish between the two (ADC mean  = 1.1 ± 0.2 vs. 1.2 ± 0.4, p = 0.6). IVIM shows promise in differentiating recurrent tumor from radiation necrosis for brain metastases treated with radiosurgery, but needs to be validated in a larger cohort.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8188M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8188M"><span>Effects of solar dimming and brightening on the terrestrial carbon sink</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P. M.</p> <p>2009-04-01</p> <p>Plant photosynthesis increases with solar radiation. Recent studies have shown that photosynthesis is more efficient under diffuse light conditions (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Changes in cloud cover and atmospheric aerosol loadings from either volcanic and anthropogenic sources, modify the total radiation reaching the surface and the fraction of this radiation which is diffuse, with uncertain overall effects on plant productivity and the global land carbon sink. A decrease in total solar radiation (Liepert, 2002, Stanhill and Cohen, 2001, Wild et al., 2005) has been observed at the Earth surface over the 1950-1990 period, called solar dimming. Such dimming gradually started to transform into brightening in some regions of the world since the late 1980s (Wild et al. 2005). The effect of these changes in total solar radiation and associated changes in diffuse radiation and diffuse fraction on the land biosphere has not yet been accounted for in global carbon cycle simulations because such models lack the mechanism that includes the diffuse irradiance effects on photosynthesis In this study we estimate the total impact of variations in clouds and atmospheric aerosols on the land carbon sink using a global land carbon cycle model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis (Mercado et al., 2007) during the global dimming and brightening period. References Gu L.H., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. & Boden T.A. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038. Liepert B.G. (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. 29, 1421. Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology, 59, 553-565. Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K.J., Holben B., Matsui T., Meyers T., Oechel W.C., Pielke R.A., Wells R., Wilson K. & Xue Y.K. (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31. Oliveira P.H.F., Artaxo P., Pires C., De Lucca S., Procopio A., Holben B., Schafer J., Cardoso L.F., Wofsy S.C. & Rocha H.R. (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus Series B-Chemical and Physical Meteorology, 59, 338-349. Roderick M.L., Farquhar G.D., Berry S.L. & Noble I.R. (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21-30. Stanhill G. & Cohen S. (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. 107, 255-278. Wild M., Gilgen H., Roesch A., Ohmura A., Long C.N., Dutton E.G., Forgan B., Kallis A., Russak V. & Tsvetkov A. (2005) From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308, 847-850.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26234078','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26234078"><span>[THE ALTERNATIVE MODEL IN TRAINING FOR OPERATION MANAGEMENT ON LUMBAR SPINE].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zakondyrin, D E</p> <p>2015-01-01</p> <p>The authors proposed to use a lumbar part of calf carcass as a new biological model for training of basic practical skills in order to perform the neurosurgical operative interventions on the spine. The proximity of anatomico-surgical parameters of given model and human cavader lumbar spine was estimated. The study proved the possibility of use of lumbar part of calf carcass for training techniques of transpedicular fixation and microdiskectomy in lumbar part.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA497818','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA497818"><span>Journal of Special Operations Medicine, Volume 4, Edition 2, Spring 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-01-01</p> <p>tilted pelvis in position. The slight lumbar lordosis apparent in most people either nearly or completely disappears in these individuals. The units...flexors force the lumbar spine to shorten (by creating a lumbar lordosis ) to bring the thorax back where it belongs. A shortened psoas generally pulls the...quadrupeds and has implications for upper lumbar support as well as lower lumbar lordosis . The route of the psoas is not a direct one; it passes</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830033434&hterms=mahan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmahan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830033434&hterms=mahan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmahan"><span>Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mahan, J. R.; Eskin, L. D.</p> <p>1981-01-01</p> <p>A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007916','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007916"><span>Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.</p> <p>2014-01-01</p> <p>The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820032928&hterms=exchange+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexchange%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820032928&hterms=exchange+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexchange%2Btheory"><span>Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spjeldvik, W. N.</p> <p>1981-01-01</p> <p>Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960007886&hterms=InP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DInP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960007886&hterms=InP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DInP"><span>Diffusion lengths in irradiated N/P InP-on-Si solar cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.</p> <p>1995-01-01</p> <p>Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCoPh.297..515P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCoPh.297..515P"><span>On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plante, Ianik; Devroye, Luc</p> <p>2015-09-01</p> <p>Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=50693&Lab=ORD&keyword=flavonoid&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=50693&Lab=ORD&keyword=flavonoid&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PLANT PROTECTIVE RESPONSE TO ENHANCED UV-B RADIATION UNDER FIELD CONDITIONS: LEAF OPTICAL PROPERTIES AND PHOTOSYNTHESIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Plants of Vicia faba were grown in the field during early to midsummer while receiving two levels of supplemental UV-B radiation. Light-saturated photosynthesis and stomatal diffusive conductance of intact leaves did not show any indications of UV-radiation damage. Supplemental U...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25138232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25138232"><span>Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M</p> <p>2015-09-01</p> <p>To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738870','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738870"><span>Riding position and lumbar spine angle in recreational cyclists: A pilot study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>SCHULZ, SAMANTHA J.; GORDON, SUSAN J.</p> <p>2010-01-01</p> <p>This pilot study investigated the reliability of an inclinometer to assess lumbar spine angle in three different cycling positions, and explored the relationship between lumbar spine angle and riding position, anthropometry, bike measures and low back pain (LBP). Cyclists were recruited from two cycle clubs. Anthropometric variables and bike setup were measured before participants’ bikes were secured in a wind trainer. Cyclists then adopted three positions for riding, upright on the handlebars, on the brake levers and on the drops, according to a random allocation. The angle of the lumbar spine was measured; using an inclinometer, at zero minutes and after cyclists had completed 10 minutes of cycling. Intra-measurer reliability for inclinometer use to measure lumbar spine angle in each position was excellent (ICC=0.97). The angle of the lumbar spine changed significantly over 10 minutes in the brake position (p=0.004). Lumbar spine angle at 10 minutes was significantly different between the brake and drop positions (p=0.018, p<0.05), and between upright and drop positions (p=0.012, p<0.05). Lumbar spine angle was not related to anthropometric measures. The change in lumbar spine angle varied from one degree of extension to 12 degrees of flexion, with increased flexion occurring in 95% of trials. An inclinometer has excellent intra-measurer reliability to measure lumbar spine angle in cycling positions. Future research with a sample of 72 or more participants is required to determine if there is a significant relationship between LBP and lumbar spine angle in different cycling positions. PMID:27182345</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402604-radiation-belt-electron-acceleration-during-march-geomagnetic-storm-observations-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402604-radiation-belt-electron-acceleration-during-march-geomagnetic-storm-observations-simulations"><span>Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, W.; Ma, Q.; Thorne, R. M.; ...</p> <p>2016-06-10</p> <p>Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970027479','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970027479"><span>Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenberg, Paul S.; Ku, Jerry C.</p> <p>1997-01-01</p> <p>The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402604','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402604"><span>Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, W.; Ma, Q.; Thorne, R. M.</p> <p></p> <p>Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810057515&hterms=systems+diffuse&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystems%2Bdiffuse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810057515&hterms=systems+diffuse&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystems%2Bdiffuse"><span>A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luther, M. R.</p> <p>1981-01-01</p> <p>The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASAJ..112.2240T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASAJ..112.2240T"><span>Radiation pressure of standing waves on liquid columns and small diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.</p> <p>2002-11-01</p> <p>The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B21C0388M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B21C0388M"><span>Effects of Solar Dimming and Brightening on the Terrestrial Carbon Sink</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercado, L. M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Cox, P. M.</p> <p>2008-12-01</p> <p>A decrease in total solar radiation (Liepert, 2002, Stanhill and Cohen, 2001, Wild et al., 2005) has been observed at the earth surface over the 1950-1990 period, called solar dimming. Such dimming gradually started to transform into brightening in some regions of the world since the late 1980s (Wild et al. 2005). Both dimming and brightening are likely to be linked to an increase and decrease in cloud cover and scattering and absorption of light by tropospheric and stratospheric aerosols respectively (Kvalevag and Myhre, 2007). Theoretical and observational studies have shown that plant photosynthesis of forest and crop ecosystems is more efficient under diffuse light conditions (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). However, this effect has not yet been accounted for in global carbon cycle simulations because such models lack the mechanism that includes the diffuse irradiance effects on photosynthesis. The aim of this study is to estimate the impact of changes in radiation during the 1900-2100 period on land productivity and carbon storage. We use an offline version of the land surface scheme of the Hadley centre model (Mercado et al., 2007) which has been modified to account for variations of direct and diffuse radiation on sunlit and shaded canopy photosynthesis. Additionally, we use short wave and photosynthetic active radiation fields reconstructed from the Hadley centre climate model which takes into account the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the simulation of the land carbon cycle through the dimming-brightening periods, and diagnose the impact that changes in diffuse radiation had on the land carbon sink. We also discuss the implications of these results for the future land carbon-sink, under likely changes in the atmospheric aerosol loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4093160-occupational-radiation-exposure-experience-paducah-gaseous-diffusion-plant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4093160-occupational-radiation-exposure-experience-paducah-gaseous-diffusion-plant"><span>Occupational radiation exposure experience: Paducah Gaseous Diffusion Plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baker, R.C.</p> <p>1975-01-01</p> <p>The potential for significant uranium exposure in gaseous diffusion plants is very low. The potential for significant radiation exposure in uranium hexafluoride manufacturing is very real. Exposures can be controlled to low levels only through the cooperation and commitment of facility management and operating personnel. Exposure control can be adequately monitored by a combination of air analyses, urinalyses, and measurements of internal deposition as obtained by the IVRML. A program based on control of air-borne uranium exposure has maintained the internal dose of the Paducah Gaseous Diffusion Plant workman to less than one-half the RPG dose to the lung (15more » rem/year) and probably to less than one-fourth that dose. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8642W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8642W"><span>Modeling radiation belt dynamics using a 3-D layer method code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.</p> <p>2017-08-01</p> <p>A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4433995','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4433995"><span>Association between mean platelet volume and bone mineral density in patients with ankylosing spondylitis and diagnostic value of diffusion-weighted magnetic resonance imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Resorlu, Hatice; Resorlu, Mustafa; Gokmen, Ferhat; Akbal, Ayla; Adam, Gurhan; Komurcu, Erkam; Goksel, Ferdi; Guven, Mustafa; Aras, Adem Bozkurt; Sariyildirim, Abdullah; Cevizci, Sibel</p> <p>2015-01-01</p> <p>[Purpose] The aim this study was to assess the relation between bone mineral density (BMD) and mean platelet volume (MPV) in ankylosing spondylitis (AS) patients, and evaluate the diagnostic role of the diffusion-weighted magnetic resonance imaging (MRI). [Subjects and Methods] Fifty patients diagnosed with AS were divided into two groups on the basis of BMD, a normal group (n=30) and an osteopenic (n=20) group. [Results] Duration of disease in the group with a normal BMD was 10.3±7.0 years, while it was 16.7±12.2 years in the osteopenia group. MPV was high in the osteopenia group, while no significant differences were observed between the groups in terms of apparent diffusion coefficient (ADC) and platelet distribution width (PDW). There was a positive correlation between MPV and duration of disease. Correlations between ADC value and the lumbar T score, femoral neck T score, and duration of disease were insignificant. A negative correlation was observed between BMD and disease duration. [Conclusion] Diffusion-weighted imaging provides valuable results in osteoporosis but is not a suitable technique for evaluating BMD in patients with AS because of the local and systemic inflammatory effects in the musculoskeletal system. The common pathophysiology of atherosclerosis and osteoporosis plays an important role in the negative correlation observed between MPV and BMD in patients with AS. PMID:25995574</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9279907','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9279907"><span>Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pedersen, T V; Olsen, D R; Skretting, A</p> <p>1997-08-01</p> <p>A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1200613-bounce-mlt-averaged-diffusion-coefficients-physics-based-magnetic-field-geometry-obtained-from-ram-scb-march-storm','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1200613-bounce-mlt-averaged-diffusion-coefficients-physics-based-magnetic-field-geometry-obtained-from-ram-scb-march-storm"><span>Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...</p> <p>2015-04-01</p> <p>Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1200613','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1200613"><span>Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca</p> <p></p> <p>Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010QuEle..40..746V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010QuEle..40..746V"><span>LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS Fibreoptic diffuse-light irradiators of biological tissues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.</p> <p>2010-10-01</p> <p>We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27069363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27069363"><span>Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark</p> <p>2016-01-01</p> <p>Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......124L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......124L"><span>Computational Investigation of Soot and Radiation in Turbulent Reacting Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lalit, Harshad</p> <p></p> <p>This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of scalars from the LES are used in conjunction with the radiation heat transfer equation and a narrow band radiation model to compute time dependent and time averaged images of infrared radiation intensity in spectral bands corresponding to molecular radiation from gas phase carbon dioxide and soot particles exclusively. While qualitative and quantitative comparisons with measured images in the CO2 radiation band show that the flame structure is correctly computed, images computed in the soot radiation band illustrate that the soot volume fraction is under predicted by the computations. The effect of the soot model and cause of under prediction is investigated further by correcting the soot volume fraction using an empirical state relationship. By comparing default simulations with computations using the state relation, it is shown that while the soot model under-estimates the soot concentration, it correctly computes the intermittency of soot in the flame. The study of sooting flames is extended further by performing a parametric analysis of physical and numerical parameters that affect soot formation and transport in two laboratory scale turbulent sooting flames, one fueled by natural gas and the other by ethylene. The study is focused on investigating the effect of molecular diffusion of species, dilution of fuel with hydrogen gas and the effect of chemical reaction mechanism on the soot concentration in the flame. The effect of species Lewis numbers on soot evolution and transport is investigated by carrying out simulations, first with the default equal diffusivity (ED) assumption and then by incorporating a differential diffusion (DD) model. Computations using the DD model over-estimate the concentration of the soot precursor and soot oxidizer species, leading to inconsistencies in the estimate of the soot concentration. The linear differential diffusion (LDD) model, reported previously to consistently model differential diffusion effects is implemented to correct the over prediction effect of the DD model. It is shown that the effect of species Lewis number on soot evolution is a secondary phenomenon and that soot is primarily transported by advection of the fluid in a turbulent flame. The effect of hydrogen dilution on the soot formation and transport process is also studied. It is noted that the decay of soot volume fraction and flame length with hydrogen addition follows trends observed in laminar sooting flame measurements. While hydrogen enhances mixing shown by the laminar flamelet solutions, the mixing effect does not significantly contribute to differential molecular diffusion effects in the soot nucleation regions downstream of the flame and has a negligible effect on soot transport. The sensitivity of computations of soot volume fraction towards the chemical reaction mechanism is shown. It is concluded that modeling reaction pathways of C3 and C4 species that lead up to Polycyclic Aromatic Hydrocarbon (PAH) molecule formation is paramount for accurate predictions of soot in the flame. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3417883','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3417883"><span>AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rapp, Steven M; Miller, Larry E; Block, Jon E</p> <p>2011-01-01</p> <p>Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4–S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date. PMID:22915939</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22915939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22915939"><span>AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rapp, Steven M; Miller, Larry E; Block, Jon E</p> <p>2011-01-01</p> <p>Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27349468','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27349468"><span>Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phan, Kevin; Maharaj, Monish; Assem, Yusuf; Mobbs, Ralph J</p> <p>2016-09-01</p> <p>Lumbar interbody fusion represents an effective surgical intervention for patients with lumbar degenerative diseases, spondylolisthesis, disc herniation, pseudoarthrosis and spinal deformities. Traditionally, conventional open anterior lumbar interbody fusion and posterior/transforaminal lumbar interbody fusion techniques have been employed with excellent results, but each with their own advantages and caveats. Most recently, the antero-oblique trajectory has been introduced, providing yet another corridor to access the lumbar spine. Termed the oblique lumbar interbody fusion, this approach accesses the spine between the anterior vessels and psoas muscles, avoiding both sets of structures to allow efficient clearance of the disc space and application of a large interbody device to afford distraction for foraminal decompression and endplate preparation for rapid and thorough fusion. This review aims to summarize the early clinical results and complications of this new technique and discusses potential future directions of research. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29161614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29161614"><span>Changes of lumbar posture and tissue loading during static trunk bending.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alessa, Faisal; Ning, Xiaopeng</p> <p>2018-02-01</p> <p>Static trunk bending is an occupational risk factor for lower back pain (LBP). When assessing relative short duration trunk bending tasks, existing studies mostly assumed unchanged spine biomechanical responses during task performance. The purpose of the current study was to assess the biomechanical changes of lumbar spine during the performance of relatively short duration, sustained trunk bending tasks. Fifteen participants performed 40-s static trunk bending tasks in two different trunk angles (30° or 60°) with two different hand load levels (0 or 6.8 kg). Results of the current study revealed significantly increased lumbar flexion and lumbar passive moment during the 40 s of trunk bending. Significantly reduced lumbar and abdominal muscle activities were also observed in most conditions. These findings suggest that, during the performance of short duration, static trunk bending tasks, a shift of loading from lumbar active tissues to passive tissues occurs naturally. This mechanism is beneficial in reducing the accumulation of lumbar muscle fatigue; however, lumbar passive tissue creep could be introduced due to prolonged or repetitive exposure. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23208900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23208900"><span>A practical laboratory study simulating the percutaneous lumbar transforaminal epidural injection: training model in fresh cadaveric sheep spine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suslu, Husnu</p> <p>2012-01-01</p> <p>Laboratory training models are essential for developing and refining treatment skills before the clinical application of surgical and invasive procedures. A simple simulation model is needed for young trainees to learn how to handle instruments, and to perform safe lumbar transforaminal epidural injections. Our aim is to present a model of a fresh cadaveric sheep lumbar spine that simulates the lumbar transforaminal epidural injection. The material consists of a 2-year-old fresh cadaveric sheep spine. A 4-step approach was designed for lumbar transforaminal epidural injection under C-arm scopy. For the lumbar transforaminal epidural injection, the fluoroscope was adjusted to get a proper oblique view while the material was stabilized in a prone position. The procedure then begin, using the C-arm guidance scopy. The model simulates well the steps of standard lumbar transforaminal epidural injections in the human spine. The cadaveric sheep spine represents a good method for training and it simulates fluoroscopic lumbar transforaminal epidural steroid injection procedures performed in the human spine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21576722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21576722"><span>Kinematic perturbation in the flexion-extension axis for two lumbar rigs during a high impact jump task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Portus, Marc R; Lloyd, David G; Elliott, Bruce C; Trama, Neil L</p> <p>2011-05-01</p> <p>The measurement of lumbar spine motion is an important step for injury prevention research during complex and high impact activities, such as cricket fast bowling or javelin throwing. This study examined the performance of two designs of a lumbar rig, previously used in gait research, during a controlled high impact bench jump task. An 8-camera retro-reflective motion analysis system was used to track the lumbar rig. Eleven athletes completed the task wearing the two different lumbar rig designs. Flexion extension data were analyzed using a fast Fourier transformation to assess the signal power of these data during the impact phase of the jump. The lumbar rig featuring an increased and pliable base of support recorded moderately less signal power through the 0-60 Hz spectrum, with statistically less magnitudes at the 0-5 Hz (p = .039), 5-10 Hz (p = .005) and 10-20 Hz (p = .006) frequency bins. A lumbar rig of this design would seem likely to provide less noisy lumbar motion data during high impact tasks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29567652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29567652"><span>Transforaminal Lumbar Puncture: An Alternative Technique in Patients with Challenging Access.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nascene, D R; Ozutemiz, C; Estby, H; McKinney, A M; Rykken, J B</p> <p>2018-05-01</p> <p>Interlaminar lumbar puncture and cervical puncture may not be ideal in all circumstances. Recently, we have used a transforaminal approach in selected situations. Between May 2016 and December 2017, twenty-six transforaminal lumbar punctures were performed in 9 patients (25 CT-guided, 1 fluoroscopy-guided). Seven had spinal muscular atrophy and were referred for intrathecal nusinersen administration. In 2, CT myelography was performed via transforaminal lumbar puncture. The lumbar posterior elements were completely fused in 8, and there was an overlying abscess in 1. The L1-2 level was used in 2; the L2-3 level, in 10; the L3-4 level, in 12; and the L4-5 level, in 2 procedures. Post-lumbar puncture headache was observed on 4 occasions, which resolved without blood patching. One patient felt heat and pain at the injection site that resolved spontaneously within hours. One patient had radicular pain that resolved with conservative treatment. Transforaminal lumbar puncture may become an effective alternative to classic interlaminar lumbar puncture or cervical puncture. © 2018 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24151527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24151527"><span>The robotic lumbar spine: dynamics and feedback linearization control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karadogan, Ernur; Williams, Robert L</p> <p>2013-01-01</p> <p>The robotic lumbar spine (RLS) is a 15 degree-of-freedom, fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The design incorporates five active lumbar vertebrae and the sacrum, with dimensions of an average adult human spine. It is actuated by 20 cables connected to electric motors. Every vertebra is connected to the neighboring vertebrae by spherical joints. Medical schools can benefit from a tool, system, or method that will help instructors train students and assess their tactile proficiency throughout their education. The robotic lumbar spine has the potential to satisfy these needs in palpatory diagnosis. Medical students will be given the opportunity to examine their own patient that can be programmed with many dysfunctions related to the lumbar spine before they start their professional lives as doctors. The robotic lumbar spine can be used to teach and test medical students in their capacity to be able to recognize normal and abnormal movement patterns of the human lumbar spine under flexion-extension, lateral bending, and axial torsion. This paper presents the dynamics and nonlinear control of the RLS. A new approach to solve for positive and nonzero cable tensions that are also continuous in time is introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22578717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22578717"><span>Quadratus lumborum asymmetry and lumbar spine injury in cricket fast bowlers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kountouris, Alex; Portus, Marc; Cook, Jill</p> <p>2012-09-01</p> <p>Previous studies have demonstrated quadratus lumborum asymmetry in cricket fast bowlers, but there has been conflicting evidence regarding the relationship to lumbar spine injury, particularly vertebral bone stress injuries. This study investigated the relationship between quadratus lumborum asymmetry and lumbar spine injury in adolescent cricket fast bowlers. The study was a prospective cohort design. Magnetic resonance imaging of 38 adolescent cricket fast bowlers was completed prior to a cricket season, and the cross sectional area of the quadratus lumborum muscle was measured at each lumbar spinal level. The bowlers were followed through the cricket season and those that reported lumbar spine injuries were investigated and classified as either having a soft tissue injury or a bone stress injury. The pre-season cross sectional area of quadratus lumborum was associated with injury status at the conclusion of the cricket season. Twenty-one percent of the cohort developed lumbar bone stress injuries during the cricket season. There was no significant relationship between lumbar spine injury and quadratus lumborum cross sectional area. A high incidence of lumbar bone stress injuries was demonstrated in adolescent fast bowlers. Unlike previous research that demonstrated a link between lumbar spine bone stress injuries and quadratus lumborum cross-sectional area, no such relationship was found. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27849497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27849497"><span>Effect of Lumbar Progressive Resistance Exercise on Lumbar Muscular Strength and Core Muscular Endurance in Soldiers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mayer, John M; Childs, John D; Neilson, Brett D; Chen, Henian; Koppenhaver, Shane L; Quillen, William S</p> <p>2016-11-01</p> <p>Low back pain is common, costly, and disabling for active duty military personnel and veterans. The evidence is unclear on which management approaches are most effective. The purpose of this study was to assess the effectiveness of lumbar extensor high-intensity progressive resistance exercise (HIPRE) training versus control on improving lumbar extension muscular strength and core muscular endurance in soldiers. A randomized controlled trial was conducted with active duty U.S. Army Soldiers (n = 582) in combat medic training at Fort Sam Houston, Texas. Soldiers were randomized by platoon to receive the experimental intervention (lumbar extensor HIPRE training, n = 298) or control intervention (core stabilization exercise training, n = 284) at one set, one time per week, for 11 weeks. Lumbar extension muscular strength and core muscular endurance were assessed before and after the intervention period. At 11-week follow-up, lumbar extension muscular strength was 9.7% greater (p = 0.001) for HIPRE compared with control. No improvements in core muscular endurance were observed for HIPRE or control. Lumbar extensor HIPRE training is effective to improve isometric lumbar extension muscular strength in U.S. Army Soldiers. Research is needed to explore the clinical relevance of these gains. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11181208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11181208"><span>[Lumbar canal stenosis in achondroplasia. Prevention and correction of lumbosacral lordosis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gómez Prat, A; García Ollé, L; Ginebreda Martí, I; Gairí Tahull, J; Vilarrubias Guillamet, J</p> <p>2001-02-01</p> <p>To determine through the measurement of different angles the correction of lumbar hyperlordosis after bilateral femoral lengthening using the Icatme technique and to assess the absence of neurological symptomatology secondary to stenosis of the lumbar canal after femoral lengthening. Thirty-four patients with achondroplasia were studied. Mean age was 22.3 years. The patients underwent femoral lengthening using the Icatme technique. X rays of the lateral rachis taken before and after lengthening were used to measure a series of angles. The lumbar lordosis angle, Sez's angle and the L5S1 angle decreased while the lumbosacral angle, Jungham's angle and the sacrum angle increased, leading to correction of lumbar hyperlordosis, verticalization of the sacrum and improvement in thoracolumbar and lumbosacral inflection. Values were similar to the standard for individuals without achondroplasia. Femoral lengthening using the Icatme technique in achondroplastics modifies the statics of the lumbar spine, making them similar to those of nonachondroplastics. The procedure corrects lumbar hyperlordosis and prevents the appearance of neurological symptomatology due to stenosis of the lumbar canal. The incidence of neurological complications due to stenosis of the lumbar canal in achondroplastics who have undergone femoral lengthening is low compared with that of achondroplastics of the same age and sex who have not undergone this procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25904349','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25904349"><span>Lumbar subcutaneous edema and degenerative spinal disease in patients with low back pain: a retrospective MRI study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quattrocchi, C C; Giona, A; Di Martino, A; Gaudino, F; Mallio, C A; Errante, Y; Occhicone, F; Vitali, M A; Zobel, B B; Denaro, V</p> <p>2015-08-01</p> <p>This study was designed to determine the association between LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, BMI, radiculopathy and bone marrow edema at conventional lumbar spine MR imaging. This is a retrospective radiological study; 441 consecutive patients with low back pain (224 men and 217 women; mean age 57.3 years; mean BMI 26) underwent conventional lumbar MRI using a 1.5-T magnet (Avanto, Siemens). Lumbar MR images were reviewed by consensus for the presence of LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, radiculopathy and bone marrow edema. Descriptive statistics and association studies were conducted using STATA software 11.0. Association studies have been performed using linear univariate regression analysis and multivariate regression analysis, considering LSE as response variable. The overall prevalence of LSE was 40%; spondylolisthesis (p = 0.01), facet arthropathy (p < 0.001), BMI (p = 0.008) and lumbar canal stenosis (p < 0.001) were included in the multivariate regression model, whereas bone marrow edema, radiculopathy and age were not. LSE is highly associated with spondylolisthesis, facet arthropathy and BMI, suggesting underestimation of its clinical impact as an integral component in chronic lumbar back pain. Longitudinal simultaneous X-ray/MRI studies should be conducted to test the relationship of LSE with lumbar spinal instability and low back pain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014113"><span>Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plante, Ianik; Cucinotta, Francis A.</p> <p>2011-01-01</p> <p>Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23739147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23739147"><span>Lumbar interspinous bursitis in active polymyalgia rheumatica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salvarani, Carlo; Barozzi, Libero; Boiardi, Luigi; Pipitone, Nicolò; Bajocchi, Gian Luigi; Macchioni, Pier Luigi; Catanoso, Mariagrazia; Pazzola, Giulia; Valentino, Massimo; De Luca, Carlo; Hunder, Gene G</p> <p>2013-01-01</p> <p>To evaluate the inflammatory involvement of lumbar interspinous bursae in patients with polymyalgia rheumatica (PMR) using magnetic resonance imaging (MRI). Ten consecutive, untreated new patients with PMR and pain in the shoulder and pelvic girdles were investigated. Seven patients with spondyloarthritis (4 with psoriatic spondyloarthrits, one with entheropatic spondyloarthritis, and 2 with ankylosing spondylitis) as well as 2 patients with spinal osteoarthritis and 2 patients with rheumatoid arthritis with lumbar pain served as controls. MRI of lumbar spine was performed in all PMR patients and controls. Nine patients (5 PMR patients and 4 controls) also had MRI of the thoracic spine. MRI evidence of interspinous lumbar bursitis was found in 9/10 patients with PMR and in 5/11 controls. A moderate to marked (grade ≥2 on a semiquantitative 0-3 scale) lumbar bursitis occurred significantly more frequently in patients with PMR than in control patients (60% vs. 9%, p=0.020). In most of the patients and controls lumbar bursitis was found at the L3-L5 interspaces. Only 2 patients had bursitis at a different level (one patient had widespread lumbar bursitis, and one control at L2-L4). No interspinous bursitis was demonstrated by MRI of the thoracic spine in patients and controls. Inflammation of lumbar bursae may be responsible for the low back pain reported by patients with PMR. The prominent inflammatory involvement of bursae including those of the lumbar spine supports the hypothesis that PMR may be a disorder affecting predominantly extra-articular synovial structures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25387143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25387143"><span>Diffuse idiopathic skeletal hyperostosis association with thoracic spine kyphosis: a cross-sectional study for the Health Aging and Body Composition Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nardo, Lorenzo; Lane, Nancy E; Parimi, Neeta; Cawthon, Peggy M; Fan, Bo; Shepherd, John; Cauley, Jane; Zucker-Levin, Audrey; Murphy, Rachel A; Katzman, Wendy B</p> <p>2014-11-15</p> <p>A descriptive study of the association between diffuse idiopathic skeletal hyperostosis (DISH) and kyphosis. To investigate the association of DISH with Cobb angle of kyphosis in a large cohort of older subjects from the Health Aging and Body Composition Study. DISH and thoracic kyphosis are well-defined radiographical findings in spines of older individuals. Characteristics of DISH (ossifications between vertebral segments) reflect changes of spine anatomy and physiology that may be associated with Cobb angle of kyphosis. Using data from 1172 subjects aged 70 to 79 years, we measured DISH and Cobb angle of kyphosis from computed tomographic lateral scout scans. Characteristics of participants with and without DISH were assessed using the χ² and t tests. Association between DISH and Cobb angle was analyzed using linear regression. Cobb angle and DISH relationship was assessed at different spine levels (thoracic and lumbar). DISH was identified on computed tomographic scout scan in 152 subjects with 101 cases in only the thoracic spine and 51 in both thoracic and lumbar spine segments. The mean Cobb angle of kyphosis in the analytic sample was 31.3° (standard deviation = 11.2). The presence of DISH was associated with a greater Cobb angle of 9.1° and 95% confidence interval (95% CI) (5.6-12.6) among African Americans and a Cobb angle of 2.9° and 95% CI (0.5-5.2) among Caucasians compared with those with no DISH. DISH in the thoracic spine alone was associated with a greater Cobb angle of 10.6° and 95% CI (6.5-14.7) in African Americans and a Cobb angle of 3.8° and 95% CI (1.0-6.5) in Caucasians compared with those with no DISH. DISH is associated with greater Cobb angle of kyphosis, especially when present in the thoracic spine alone. The association of DISH with Cobb angle is stronger within the African American population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29700619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29700619"><span>Analysis of radiological parameters associated with decreased fractional anisotropy values on diffusion tensor imaging in patients with lumbar spinal stenosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan</p> <p>2018-04-26</p> <p>Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24041917','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24041917"><span>Spontaneous regression of posterior epidural migrated lumbar disc fragments: case series.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tarukado, Kiyoshi; Ikuta, Ko; Fukutoku, Yoshiaki; Tono, Osamu; Doi, Toshio</p> <p>2015-06-01</p> <p>Posterior epidural migrated lumbar disc fragments is an extremely rare disorder. Surgical treatment was performed in all reported cases. To the best of our knowledge, there are no reported cases of the use of conservative treatment for posterior epidural migrated lumbar disc fragments. To report the possibility of a spontaneous regression of posterior epidural migrated lumbar disc fragments. Case series. Four patients with posterior epidural migrated lumbar disc fragments were treated at Karatsu Red Cross Hospital between April 2008 and August 2010. Spontaneous regression of the posterior epidural migrated lumbar disc fragments with relief of symptoms was observed on magnetic resonance imaging (MRI) in three cases. Another patient underwent surgical treatment. The present and previously reported cases of posterior epidural migrated lumbar disc fragments were analyzed with respect to patient age, imaging features on MRI, the level of the lesion, clinical symptoms, treatment, and outcomes. Conservative treatment was successful, and spontaneous lesion regression was seen on MRI with symptom relief in three cases. Although posterior epidural migrated lumbar disc fragment cases are generally treated surgically, the condition can regress spontaneously over time, as do sequestrated disc fragments. Spontaneous regression of lumbar disc herniations is a widely accepted observation at present. Posterior epidural migrated lumbar disc fragments fall under the sequestrated type of disc herniation. In fact, the course of treatment for posterior epidural migrated lumbar disc fragments should be determined based on the symptoms and examination findings, as in cases of ordinary herniation. However, providing early surgical treatment is important if the patient has acute cauda equina syndrome or the neurologic symptoms worsen over time. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22470097-chemoembolization-hepatocellular-carcinoma-supplied-lumbar-artery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22470097-chemoembolization-hepatocellular-carcinoma-supplied-lumbar-artery"><span>Chemoembolization for Hepatocellular Carcinoma Supplied by a Lumbar Artery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Han Myun, E-mail: seoul49@naver.com; Kim, Hyo-Cheol, E-mail: angiointervention@gmail.com; Woo, Sungmin, E-mail: j-crew7@hotmail.com</p> <p></p> <p>PurposeTo describe the radiologic findings and imaging response of hepatocellular carcinoma (HCC) supplied by the lumbar artery.MethodsBetween April 2004 and December 2012, we encountered HCC supplied by a lumbar artery in 21 patients. Two investigators retrospectively reviewed clinical and radiological findings of HCC supplied by the lumbar artery using computed tomography (CT) scans and digital subtraction angiograms.ResultsPatients had received 1–27 sessions of previous chemoembolization procedures (mean 7.7 sessions, median 4 sessions). Mean tumor size was 5.3 cm. The locations of HCC supplied by lumbar artery were the bare area (n = 14, 67 %) and segment VI (n = 7, 33 %). Tumor-feeding arteries arose from themore » main lumbar artery (n = 7), proximal anterior division (n = 4), and distal anterior division (n = 14). In 20 patients, selective chemoembolization through the tumor-feeding arteries of the lumbar artery was achieved. In 1 patient, nonselective embolization at the main lumbar artery was performed. There was no complication such as skin necrosis or paralysis. On the first follow-up enhanced CT scan, target tumors fed by the lumbar artery showed complete response (n = 6), partial response (n = 4), stable disease (n = 3), and progressive disease (n = 8), but overall tumor response was partial response (n = 1) and progressive disease (n = 20).ConclusionWhen HCC is located in the inferior tip or bare area of the liver, a lumbar artery may supply the tumor. Although selective chemoembolization via the tumor-feeding vessel of the lumbar artery can be achieved in most cases, overall tumor response is commonly unfavorable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21142457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21142457"><span>Return to golf after spine surgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abla, Adib A; Maroon, Joseph C; Lochhead, Richard; Sonntag, Volker K H; Maroon, Adara; Field, Melvin</p> <p>2011-01-01</p> <p>no published evidence indicates when patients can resume golfing after spine surgery. The objective of this study is to provide data from surveys sent to spine surgeons. a survey of North American Spine Society members was undertaken querying the suggested timing of return to golf. Of 1000 spine surgeons surveyed, 523 responded (52.3%). The timing of recommended return to golf and the reasons were questioned for college/professional athletes and avid and recreational golfers of both sexes. Responses were tallied for lumbar laminectomy, lumbar microdiscectomy, lumbar fusion, and anterior cervical discectomy with fusion. the most common recommended time for return to golf was 4-8 weeks after lumbar laminectomy and lumbar microdiscectomy, 2-3 months after anterior cervical fusion, and 6 months after lumbar fusion. The results showed a statistically significant increase in the recommended time to resume golf after lumbar fusion than after cervical fusion in all patients (p < 0.01). The same holds true for the return to play after cervical fusion compared with either lumbar laminectomy or lumbar microdiscectomy for all golfer types (p < 0.01). There was a statistically significant shorter recommended time for professional and college golfers compared with noncompetitive golfers after lumbar fusion (p < 0.01), anterior cervical discectomy and fusion (p < 0.01), and lumbar microdiscectomy (p < 0.01). the return to golf after spine surgery depends on many variables, including the general well-being of patients in terms of pain control and comfort when golfing. This survey serves as a guide that can assist medical practitioners in telling patients the average times recommended by surgeons across North America regarding return to golf after spine surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JKPS...62..684K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JKPS...62..684K"><span>Correlations between the MR Diffusion-weighted Image (DWI) and the bone mineral density (BMD) as a function of the soft tissue thickness-focus on phantom and patient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon</p> <p>2013-02-01</p> <p>In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation with the BMD and that the SNR and the ADC decreased as the T-score in the DWI went down.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3974054','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3974054"><span>The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Background The sagittal alignment of the spine changes depending on body posture and degenerative changes. This study aimed to observe changes in sagittal alignment of the lumbar spine with different positions (standing, supine, and various sitting postures) and to verify the effect of aging on lumbar sagittal alignment. Methods Whole-spine lateral radiographs were obtained for young volunteers (25.4 ± 2.3 years) and elderly volunteers (66.7 ± 1.7 years). Radiographs were obtained in standing, supine, and sitting (30°, 60°, and 90°) positions respectively. We compared the radiological changes in the lordotic and segmental angles in different body positions and at different ages. Upper and lower lumbar lordosis were defined according to differences in anatomical sagittal mobility and kinematic behavior. Results Lumbar lordosis was greater in a standing position (52.79° and 53.90° in young and old groups, respectively) and tended to decrease as position changed from supine to sitting. Compared with the younger group, the older group showed significantly more lumbar lordosis in supine and 60° and 90° sitting positions (P = 0.043, 0.002, 0.011). Upper lumbar lordosis in the younger group changed dynamically in all changed positions compared with the old group (P = 0.019). Lower lumbar lordosis showed a decreasing pattern in both age groups, significantly changing as position changed from 30° to 60° (P = 0.007, 0.007). Conclusions Lumbar lordosis decreases as position changes from standing to 90°sitting. The upper lumbar spine is more flexible in individuals in their twenties compared to those in their sixties. Changes in lumbar lordosis were concentrated in the lower lumbar region in the older group in sitting positions. PMID:24571953</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24286531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24286531"><span>Prospective assessment of concomitant lumbar and chronic subdural hematoma: is migration from the intracranial space involved in their manifestation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kokubo, Rinko; Kim, Kyongsong; Mishina, Masahiro; Isu, Toyohiko; Kobayashi, Shiro; Yoshida, Daizo; Morita, Akio</p> <p>2014-02-01</p> <p>Spinal subdural hematomas (SDHs) are rare and some are concomitant with intracranial SDH. Their pathogenesis and etiology remain to be elucidated although their migration from the intracranial space has been suggested. The authors postulated that if migration plays a major role, patients with intracranial SDH may harbor asymptomatic lumbar SDH. The authors performed a prospective study on the incidence of spinal SDH in patients with intracranial SDH to determine whether migration is a key factor in their concomitance. The authors evaluated lumbar MR images obtained in 168 patients (125 males, 43 females, mean age 75.6 years) with intracranial chronic SDH to identify cases of concomitant lumbar SDH. In all cases, the lumbar MRI studies were performed within the 1st week after surgical irrigation of the intracranial SDH. Of the 168 patients, 2 (1.2%) harbored a concomitant lumbar SDH; both had a history of trauma to both the head and the hip and/or lumbar area. One was an 83-year-old man with prostate cancer and myelodysplastic syndrome who suffered trauma to his head and lumbar area in a fall from his bed. The other was a 70-year-old man who had hit his head and lumbar area in a fall. Neither patient manifested neurological deficits and their hematomas disappeared under observation. None of the patients with concomitant lumbar SDH had sustained head trauma only, indicating that trauma to the hip or lumbar region is significantly related to the concomitance of SDH (p < 0.05). As the incidence of concomitant lumbar and intracranial chronic SDH is rare and both patients in this study had sustained a direct impact to the head and hips, the authors suggest that the major mechanism underlying their concomitant SDH was double trauma. Another possible explanation is hemorrhagic diathesis and low CSF syndrome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013459','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013459"><span>Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven</p> <p>2011-01-01</p> <p>Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (<10 MeV) protons in the inner belt region. Either the source of these lower energy protons is also neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional sources of protons via ionization and charge exchange from breakup of water molecules. But one must then account somehow for local acceleration to the observed keV-MeV energies, since moon sweeping and E-ring absorption would remove protons diffusing inward from the middle magnetosphere. Although the main rings block further inward diffusion from the inner radiation belts, the exospheric neutron-decay source, combined with much slower diffusion of protons relative to electrons, may produce an innermost radiation belt in the gap between the upper atmosphere and the D-ring. This innermost belt will first be explored in-situ during the final proximal orbits of the Cassini mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24559803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24559803"><span>Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E</p> <p>2014-03-01</p> <p>Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ of 0·93 (0·81-1·00). No adverse events after administration of ferumoxytol were recorded. Ferumoxytol-enhanced whole-body diffusion-weighted MRI could be an alternative to (18)F-FDG PET/CT for staging of children and young adults with cancer that is free of ionising radiation. This new imaging test might help to prevent long-term side-effects from radiographic staging procedures. Thrasher Research Fund and Clinical Health Research Institute at Stanford University. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663473-effect-radiation-chromospheric-magnetic-reconnection-reactive-collisional-multi-fluid-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663473-effect-radiation-chromospheric-magnetic-reconnection-reactive-collisional-multi-fluid-simulations"><span>Effect of Radiation on Chromospheric Magnetic Reconnection: Reactive and Collisional Multi-fluid Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alvarez Laguna, A.; Poedts, S.; Lani, A.</p> <p></p> <p>We study magnetic reconnection under chromospheric conditions in five different ionization levels from 0.5% to 50% using a self-consistent two-fluid (ions + neutrals) model that accounts for compressibility, collisional effects, chemical inequilibrium, and anisotropic heat conduction. Results with and without radiation are compared, using two models for the radiative losses: an optically thin radiation loss function, and an approximation of the radiative losses of a plasma with photospheric abundances. The results without radiation show that reconnection occurs faster for the weakly ionized cases as a result of the effect of ambipolar diffusion and fast recombination. The tearing mode instability appearsmore » earlier in the low ionized cases and grows rapidly. We find that radiative losses have a stronger effect than was found in previous results as the cooling changes the plasma pressure and the concentration of ions inside the current sheet. This affects the ambipolar diffusion and the chemical equilibrium, resulting in thin current sheets and enhanced reconnection. The results quantify this complex nonlinear interaction by showing that a strong cooling produces faster reconnections than have been found in models without radiation. The results accounting for radiation show timescales and outflows comparable to spicules and chromospheric jets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930070466&hterms=refractive+index&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefractive%2Bindex','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930070466&hterms=refractive+index&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefractive%2Bindex"><span>Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, R.; Spuckler, C. M.</p> <p>1993-01-01</p> <p>A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, expressions provide the temperature distribution and heat flow for a diffusing medium with a continually varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950011007','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950011007"><span>Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Henry, Richard C.</p> <p>1994-01-01</p> <p>Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021010"><span>Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, R.; Spuckler, C. M.</p> <p>1993-01-01</p> <p>A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930046127&hterms=transfer+slab&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtransfer%2Bslab','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930046127&hterms=transfer+slab&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtransfer%2Bslab"><span>Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk</p> <p>1993-01-01</p> <p>Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790053795&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790053795&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara"><span>Galactic plane gamma-radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.</p> <p>1979-01-01</p> <p>Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192123','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192123"><span>DARTFire Sees Microgravity Fires in a New Light--Large Data Base of Images Obtained</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olson, Sandra L.; Hegde, Uday; Altenkirch, Robert A.; Bhatacharjee, Subrata</p> <p>1999-01-01</p> <p>The recently completed DARTFire sounding rocket microgravity combustion experiment launched a new era in the imaging of flames in microgravity. DARTFire stands for "Diffusive and Radiative Transport in Fires," which perfectly describes the two primary variables--diffusive flow and radiation effects--that were studied in the four launches of this program (June 1996 to September 1997). During each launch, two experiments, which were conducted simultaneously during the 6 min of microgravity, obtained results as the rocket briefly exited the Earth s atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPB.365..163G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPB.365..163G"><span>Modeling of radiation damage recovery in particle detectors based on GaN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaubas, E.; Ceponis, T.; Pavlov, J.</p> <p>2015-12-01</p> <p>The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhSS...59.2313Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhSS...59.2313Z"><span>Laser-induced generation of surface periodic structures in media with nonlinear diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.</p> <p>2017-12-01</p> <p>A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JInst...7.4004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JInst...7.4004S"><span>An active pixel sensor to detect diffused X-ray during Interventional Radiology procedure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servoli, L.; Battisti, D.; Biasini, M.; Checcucci, B.; Conti, E.; Di Lorenzo, R.; Esposito, A.; Fanò, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.</p> <p>2012-04-01</p> <p>Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation due to diffused X-ray radiation. The authors propose a novel approach to monitor on line staff during their interventions by using a device based on an Active Pixel Sensor developed for tracking applications. Two different photodiode configurations have been tested in standard Interventional Radiology working conditions. Both options have demonstrated the capability to measure the photon flux and the energy flux to a sufficient degree of uncertainty.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol7/pdf/CFR-2010-title49-vol7-sec572-115.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol7/pdf/CFR-2010-title49-vol7-sec572-115.pdf"><span>49 CFR 572.115 - Lumbar spine and pelvis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol7/pdf/CFR-2014-title49-vol7-sec572-115.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol7/pdf/CFR-2014-title49-vol7-sec572-115.pdf"><span>49 CFR 572.115 - Lumbar spine and pelvis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 49 Transportation 7 2014-10-01 2014-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol7/pdf/CFR-2011-title49-vol7-sec572-115.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol7/pdf/CFR-2011-title49-vol7-sec572-115.pdf"><span>49 CFR 572.115 - Lumbar spine and pelvis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... 49 Transportation 7 2011-10-01 2011-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol7/pdf/CFR-2012-title49-vol7-sec572-115.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol7/pdf/CFR-2012-title49-vol7-sec572-115.pdf"><span>49 CFR 572.115 - Lumbar spine and pelvis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 49 Transportation 7 2012-10-01 2012-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol7/pdf/CFR-2013-title49-vol7-sec572-115.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol7/pdf/CFR-2013-title49-vol7-sec572-115.pdf"><span>49 CFR 572.115 - Lumbar spine and pelvis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 49 Transportation 7 2013-10-01 2013-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM52A..09M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM52A..09M"><span>Diffusive transport of several hundred keV electrons in the Earth's slot region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.</p> <p>2017-12-01</p> <p>We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12210235M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12210235M"><span>Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.</p> <p>2017-10-01</p> <p>We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860212','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860212"><span>Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel</p> <p>2016-01-01</p> <p>We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33F0303D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33F0303D"><span>A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.</p> <p>2016-12-01</p> <p>We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.1969S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.1969S"><span>Inward diffusion and loss of radiation belt protons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.</p> <p>2016-03-01</p> <p>Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045393&hterms=rhenium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drhenium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045393&hterms=rhenium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drhenium"><span>Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.</p> <p>1992-01-01</p> <p>Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015QuEle..45..582G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015QuEle..45..582G"><span>Propagation of intense laser radiation through a diffusion flame of burning oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.</p> <p>2015-06-01</p> <p>We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 103 to 1.2 × 106 W cm-2) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960049882','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960049882"><span>An experimental and theoretical study of radiative extinction of diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wichman, Indrek S.; Atreya, A.</p> <p>1994-01-01</p> <p>Our work was primarily theoretical and numerical. We investigated the simplified modeling of heat losses in diffusion flames, then we 'ramped up' the level of complexity in each successive study until the final chapter discussed the general problem of soot/flame interaction. With regard to the specific objective of studying radiative extinction, we conclude that in the steady case a self-extinguishing zero-g flame is unlikely to occur. The soot volume fractions are too small. On the other hand, our work does provide rational means for assessing the mixture of chemical energy release and radiative heat release. It also provides clues for suitable 'tailoring' this balance. Thus heat fluxes to surrounding surfaces can be substantially increased by exploiting and modifying its sooting capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1259809','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1259809"><span>Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xie, Yu; Sengupta, Manajit</p> <p>2016-06-01</p> <p>Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1344216-diagnosing-model-errors-simulation-solar-radiation-inclined-surfaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1344216-diagnosing-model-errors-simulation-solar-radiation-inclined-surfaces"><span>Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xie, Yu; Sengupta, Manajit</p> <p>2016-11-21</p> <p>Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840013224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840013224"><span>Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strelkov, S. A.; Sushkevich, T. A.</p> <p>1983-01-01</p> <p>Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18350030','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18350030"><span>Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Z; Kumar, S</p> <p>2000-08-20</p> <p>An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6700806-central-nervous-system-complications-non-hodgkin-lymphoma-potential-role-prophylactic-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6700806-central-nervous-system-complications-non-hodgkin-lymphoma-potential-role-prophylactic-therapy"><span>Central nervous system complications of non-Hodgkin's lymphoma. The potential role for prophylactic therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Young, R.C.; Howser, D.M.; Anderson, T.</p> <p>1979-03-01</p> <p>In 38 patients with non-Hodgkin's lymphoma, involvement of the central nervous system (CNS) by malignant lymphoma developed during an eight year period. All patients had lymphomatous meningitis; clinical involvement of the spinal nerves or cranial nerves suggested the diagnosis. Spinal fluid was abnormal in 97% of the patients although a positive cytology could be documented in only 67% by lumbar puncture. The histology in 82% of the patients was diffuse. Involvement of the CNS in nodular lymphoma was uncommon (3%), and the histology in virtually all of these patients had converted to diffuse. At the time of diagnosis of CNSmore » disease, 95% of the patients had other evidence of advanced disease; 66% had bone marrow involvement. In only 18% of the patients did CNS disease develop while they werin clinical remission. Eighty-five percent of the patients treated with whole brain irradiation and intrathecal chemotherapy had a good clinical response. Knowledge of these risk factors permits definition of a group of patients who may benefit from CNS prophylaxis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1429602-assessment-uncertainty-numerical-simulation-solar-irradiance-over-inclined-pv-panels-new-algorithms-using-measurements-modeling-tools','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1429602-assessment-uncertainty-numerical-simulation-solar-irradiance-over-inclined-pv-panels-new-algorithms-using-measurements-modeling-tools"><span>Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xie, Yu; Sengupta, Manajit; Dooraghi, Mike</p> <p></p> <p>Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1429602-assessment-uncertainty-numerical-simulation-solar-irradiance-over-inclined-pv-panels-new-algorithms-using-measurements-modeling-tools','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1429602-assessment-uncertainty-numerical-simulation-solar-irradiance-over-inclined-pv-panels-new-algorithms-using-measurements-modeling-tools"><span>Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xie, Yu; Sengupta, Manajit; Dooraghi, Mike</p> <p>2018-03-20</p> <p>Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41D..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41D..02O"><span>VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.</p> <p>2017-12-01</p> <p>We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........40K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........40K"><span>On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keenan, Brett D.</p> <p></p> <p>Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JVST...20..174L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JVST...20..174L"><span>Ti diffusion in ion prebombarded MgO(100). I. A model for quantitative analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, M.; Lupu, C.; Styve, V. J.; Lee, S. M.; Rabalais, J. W.</p> <p>2002-01-01</p> <p>Enhancement of Ti diffusion in MgO(100) prebombarded with 7 keV Ar+ has been observed. Diffusion was induced by annealing to 1000 °C following the prebombardment and Ti evaporation. Such a sample geometry and experimental procedure alleviates the continuous provision of freely mobile defects introduced by ion irradiation during annealing for diffusion, making diffusion proceed in a non-steady-state condition. Diffusion penetration profiles were obtained by using secondary ion mass spectrometry depth profiling techniques. A model that includes a depth-dependent diffusion coefficient was proposed, which successfully explains the observed non-steady-state radiation enhanced diffusion. The diffusion coefficients are of the order of 10-20 m2/s and are enhanced due to the defect structure inflected by the Ar+ prebombardment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17983845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17983845"><span>Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S</p> <p>2009-01-01</p> <p>Quadruped animal models have been validated and used as biomechanical models for the lumbar spine. The biomechanics of the cat lumbar spine has not been well characterized, even though it is a common model used in neuromechanical studies. Compare the physiological ranges of motion and determine torque-limits for cat and human lumbar spine specimens during physiological motions. Biomechanics study. Cat and human lumbar spine specimens. Intervertebral angle (IVA), joint moment, yield point, torque-limit, and correlation coefficients. Cat (L2-sacrum) and human (T12-sacrum) lumbar spine specimens were mechanically tested to failure during displacement-controlled extension (E), lateral bending (LB), and axial rotation (AR). Single trials consisted of 10 cycles (10mm/s or 5 degrees /s) to a target displacement where the magnitude of the target displacement was increased for subsequent trials until failure occurred. Whole-lumbar stiffness, torque at yield point, and joint stiffness were determined. Scaling relationships were established using equations analogous to those that describe the load response of elliptically shaped beams. IVA magnitudes for cat and human lumbar spines were similar during physiological motions. Human whole-lumbar and joint stiffness magnitudes were significantly greater than those for cat spine specimens (p<.05). Torque-limits were also greater for humans compared with cats. Scaling relationships with high correlation (R(2) greater than 0.77) were established during later LB and AR. The current study defined "physiological ranges of movement" for human and cat lumbar spine specimens during displacement-controlled testing, and should be observed in future biomechanical studies conducted under displacement control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27857634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27857634"><span>A Narrative Review of Lumbar Fusion Surgery With Relevance to Chiropractic Practice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daniels, Clinton J; Wakefield, Pamela J; Bub, Glenn A; Toombs, James D</p> <p>2016-12-01</p> <p>The purpose of this narrative review was to describe the most common spinal fusion surgical procedures, address the clinical indications for lumbar fusion in degeneration cases, identify potential complications, and discuss their relevance to chiropractic management of patients after surgical fusion. The PubMed database was searched from the beginning of the record through March 31, 2015, for English language articles related to lumbar fusion or arthrodesis or both and their incidence, procedures, complications, and postoperative chiropractic cases. Articles were retrieved and evaluated for relevance. The bibliographies of selected articles were also reviewed. The most typical lumbar fusion procedures are posterior lumbar interbody fusion, anterior lumbar interbody fusion, transforaminal interbody fusion, and lateral lumbar interbody fusion. Fair level evidence supports lumbar fusion procedures for degenerative spondylolisthesis with instability and for intractable low back pain that has failed conservative care. Complications and development of chronic pain after surgery is common, and these patients frequently present to chiropractic physicians. Several reports describe the potential benefit of chiropractic management with spinal manipulation, flexion-distraction manipulation, and manipulation under anesthesia for postfusion low back pain. There are no published experimental studies related specifically to chiropractic care of postfusion low back pain. This article describes the indications for fusion, common surgical practice, potential complications, and relevant published chiropractic literature. This review includes 10 cases that showed positive benefits from chiropractic manipulation, flexion-distraction, and/or manipulation under anesthesia for postfusion lumbar pain. Chiropractic care may have a role in helping patients in pain who have undergone lumbar fusion surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3863659','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3863659"><span>Lumbar Disc Degenerative Disease: Disc Degeneration Symptoms and Magnetic Resonance Image Findings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Saleem, Shafaq; Rehmani, Muhammad Asim Khan; Raees, Aisha; Alvi, Arsalan Ahmad; Ashraf, Junaid</p> <p>2013-01-01</p> <p>Study Design Cross sectional and observational. Purpose To evaluate the different aspects of lumbar disc degenerative disc disease and relate them with magnetic resonance image (MRI) findings and symptoms. Overview of Literature Lumbar disc degenerative disease has now been proven as the most common cause of low back pain throughout the world. It may present as disc herniation, lumbar spinal stenosis, facet joint arthropathy or any combination. Presenting symptoms of lumbar disc degeneration are lower back pain and sciatica which may be aggravated by standing, walking, bending, straining and coughing. Methods This study was conducted from January 2012 to June 2012. Study was conducted on the diagnosed patients of lumbar disc degeneration. Diagnostic criteria were based upon abnormal findings in MRI. Patients with prior back surgery, spine fractures, sacroiliac arthritis, metabolic bone disease, spinal infection, rheumatoid arthritis, active malignancy, and pregnancy were excluded. Results During the targeted months, 163 patients of lumbar disc degeneration with mean age of 43.92±11.76 years, came into Neurosurgery department. Disc degeneration was most commonly present at the level of L4/L5 105 (64.4%).Commonest types of disc degeneration were disc herniation 109 (66.9%) and lumbar spinal stenosis 37 (22.7%). Spondylolisthesis was commonly present at L5/S1 10 (6.1%) and associated mostly with lumbar spinal stenosis 7 (18.9%). Conclusions Results reported the frequent occurrence of lumbar disc degenerative disease in advance age. Research efforts should endeavor to reduce risk factors and improve the quality of life. PMID:24353850</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16319739','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16319739"><span>Symptomatic and asymptomatic movement coordination of the lumbar spine and hip during an everyday activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W</p> <p>2005-12-01</p> <p>This experimental study analyzed the movements of the lumbar spine and hip while putting on a sock. To examine differences in kinematics and coordination of the lumbar and hip movements in subjects with and without subacute low back pain. There is no information on the coordination of movements of lumbar spine and hips during activities of daily living such as putting on a sock. The effect of low back pain, with or without nerve root signs, is unknown. A real-time three-dimensional electromagnetic tracking device was used to measure movements of the lumbar spine and hips in 60 subacute low back pain subjects with or without straight leg raise (SLR) signs and 20 asymptomatic subjects. Movement coordination between the two regions was examined by cross-correlation. Mobility was significantly reduced in back pain subjects. Symptomatic subjects compensated for limited motion through various strategies, but in all cases the contribution of the lumbar spine relative to that of the hip was significantly reduced. The lumbar spine-hip joint coordination was substantially altered in back pain subjects, in particular, when putting on a sock on the side with positive SLR sign. Changes in the lumbar and hip kinematics when putting on a sock were related to back pain and limitation in SLR. Low back pain will affect lumbar-hip coordination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920029448&hterms=radiation+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dradiation%2Belectromagnetic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920029448&hterms=radiation+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dradiation%2Belectromagnetic"><span>Simulation of whistler waves excited in the presence of a cold plasma cloud - Implications for the CRRES mission. [Combined Release and Radiation Effects Satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.</p> <p>1991-01-01</p> <p>A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ACPD....8..781T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ACPD....8..781T"><span>Utilising shade to optimize UV exposure for vitamin D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, D. J.; Parisi, A. V.</p> <p>2008-01-01</p> <p>Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ACP.....8.2841T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ACP.....8.2841T"><span>Utilising shade to optimize UV exposure for vitamin D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, D. J.; Parisi, A. V.</p> <p>2008-06-01</p> <p>Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645224-interventional-radiology-management-ruptured-lumbar-artery-pseudoaneurysm-after-cryoablation-vertebroplasty-lumbar-metastasis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645224-interventional-radiology-management-ruptured-lumbar-artery-pseudoaneurysm-after-cryoablation-vertebroplasty-lumbar-metastasis"><span>Interventional Radiology Management of a Ruptured Lumbar Artery Pseudoaneurysm after Cryoablation and Vertebroplasty of a Lumbar Metastasis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Giordano, Aldo Victor; Arrigoni, Francesco, E-mail: arrigoni.francesco@gmail.com; Bruno, Federico</p> <p></p> <p>We describe the management of a complication (a lumbar artery pseudoaneurysm and its rupture) after combined procedure (cryoablation and vertebroplasty) on a lumbar (L2) metastasis from renal cell carcinoma. Review of the literature is also presented with discussion about the measures to be taken to prevent these types of complications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA218283','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA218283"><span>A Human Factors Engineering Approach to the Development and Dynamic Evaluation of a Prototype Aircrew Seat for Military Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-12-01</p> <p>using lumbar support to increase lumbar spine lordosis . 3. Disc pressure can be reduced by using armrests to support the arms. Pressure Points and...area and spine curvature length. This equated to an increase in lumbar lordosis (curve of the lumbar spine), which placed them in a position which</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4869850','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4869850"><span>The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yue, James J; Garcia, Rolando; Miller, Larry E</p> <p>2016-01-01</p> <p>Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26862610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26862610"><span>RELIABILITY AND VALIDITY OF SUBJECTIVE ASSESSMENT OF LUMBAR LORDOSIS IN CONVENTIONAL RADIOGRAPHY.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruhinda, E; Byanyima, R K; Mugerwa, H</p> <p>2014-10-01</p> <p>Reliability and validity studies of different lumbar curvature analysis and measurement techniques have been documented however there is limited literature on the reliability and validity of subjective visual analysis. Radiological assessment of lumbar lordotic curve aids in early diagnosis of conditions even before neurologic changes set in. To ascertain the level of reliability and validity of subjective assessment of lumbar lordosis in conventional radiography. A blinded, repeated-measures diagnostic test was carried out on lumbar spine x-ray radiographs. Radiology Department at Joint Clinical Research Centre (JCRC), Mengo-Kampala-Uganda. Seventy (70) lateral lumbar x-ray films were used for this study and were obtained from the archive of JCRC radiology department at Butikiro house, Mengo-Kampala. Poor observer agreement, both inter- and intra-observer, with kappa values of 0.16 was found. Inter-observer agreement was poorer than intra-observer agreement. Kappa values significantly rose when the lumbar lordosis was clustered into four categories without grading each abnormality. The results confirm that subjective assessment of lumbar lordosis has low reliability and validity. Film quality has limited influence on the observer reliability. This study further shows that fewer scale categories of lordosis abnormalities produce better observer reliability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22317361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22317361"><span>Does team lifting increase the variability in peak lumbar compression in ironworkers?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W</p> <p>2012-01-01</p> <p>Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24799366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24799366"><span>Lumbar puncture opening pressure is not a reliable measure of intracranial pressure in children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cartwright, Cathy; Igbaseimokumo, Usiakimi</p> <p>2015-02-01</p> <p>There is very little data correlating lumbar puncture pressures to formal intracranial pressure monitoring despite the widespread use of both procedures. The hypothesis was that lumbar puncture is a single-point measurement and hence it may not be a reliable evaluation of intracranial pressure. The study was therefore carried out to compare lumbar puncture opening pressures with the Camino bolt intracranial pressure monitor in children. Twelve children with a mean age of 8.5 years who had both lumbar puncture and intracranial pressure monitoring were analyzed. The mean lumbar puncture opening pressure was 22.4 mm Hg versus a mean Camino bolt intracranial pressure of 7.8 mm Hg (P < .0001). Lumbar puncture therefore significantly overestimates the intracranial pressure in children. There were no complications from the intracranial pressure monitoring, and the procedure changed the treatment of all 12 children avoiding invasive operative procedures in most of the patients. © The Author(s) 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24453656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24453656"><span>Relationship between lumbar changes and modifications in the plantar arch in women with low back pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borges, Cláudia Dos Santos; Fernandes, Luciane Fernanda Rodrigues Martinho; Bertoncello, Dernival</p> <p>2013-05-01</p> <p>: Evaluate the probable relationship among plantar arch, lumbar curvature, and low back pain. : Fifteen healthy women were assessed taking in account personal data and anthropometric measurements, photopodoscopic evaluation of the plantar arch, and biophotogrammetric postural analysis of the patient (both using the SAPO software), as well as evaluation of lumbar pain using a Visual Analog Scale (VAS). The average age of the participants was 30.45 (±6.25) years. : Of the feet evaluated, there were six individuals with flat feet, five with high arch, and four with normal feet. All reported algic syndrome in the lumbar spine, with the highest VAS values for the volunteers with high arch. Correlation was observed between the plantar arch and the angle of the lumbar spine (r = -0.71, p = 0.004) CONCLUSION: High arch was correlated with more intense algic syndrome, while there was moderate positive correlation between flat foot and increased lumbar curvature, and between high arch and lumbar correction. Level of Evidence IV. Case Series .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23721459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23721459"><span>Lumbar herniation following extended autologous latissimus dorsi breast reconstruction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fraser, Sheila Margaret; Fatayer, Hiba; Achuthan, Rajgopal</p> <p>2013-05-30</p> <p>Reconstructive breast surgery is now recognized to be an important part of the treatment for breast cancer. Surgical reconstruction options consist of implants, autologous tissue transfer or a combination of the two. The latissimus dorsi flap is a pedicled musculocutaneous flap and is an established method of autologous breast reconstruction.Lumbar hernias are an unusual type of hernia, the majority occurring after surgery or trauma in this area. The reported incidence of a lumbar hernia subsequent to a latissimus dorsi reconstruction is very low. We present the unusual case of lumbar herniation after an extended autologous latissimus dorsi flap for breast reconstruction following a mastectomy. The lumbar hernia was confirmed on CT scanning and the patient underwent an open mesh repair of the hernia through the previous latissimus dorsi scar. Lumbar hernias are a rare complication that can occur following latissimus dorsi breast reconstruction. It should be considered in all patients presenting with persistent pain or swelling in the lumbar region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41D..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41D..01L"><span>Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.</p> <p>2017-12-01</p> <p>Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/982559-aerosols-influence-radiation-partitioning-savanna-productivity-northern-australia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/982559-aerosols-influence-radiation-partitioning-savanna-productivity-northern-australia"><span>Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kanniah, K. D.; Beringer, J.; Tapper, N. J.</p> <p>2010-05-01</p> <p>We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptakemore » under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28574940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28574940"><span>Management of Lumbar Conditions in the Elite Athlete.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Wellington K; Jenkins, Tyler James</p> <p>2017-07-01</p> <p>Lumbar disk herniation, degenerative disk disease, and spondylolysis are the most prevalent lumbar conditions that result in missed playing time. Lumbar disk herniation has a good prognosis. After recovery from injury, professional athletes return to play 82% of the time. Surgical management of lumbar disk herniation has been shown to be a viable option in athletes in whom nonsurgical measures have failed. Degenerative disk disease is predominately genetic but may be accelerated in athletes secondary to increased physiologic loading. Nonsurgical management is the standard of care for lumbar degenerative disk disease in the elite athlete. Spondylolysis is more common in adolescent athletes with back pain than in adult athletes. Nonsurgical management of spondylolysis is typically successful. However, if surgery is required, fusion or direct pars repair can allow the patient to return to sports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29690712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29690712"><span>[Biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qian, J; Yu, S S; Liu, J J; Chen, L; Jing, J H</p> <p>2018-04-03</p> <p>Objective: To analyze the biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy using the finite element method. Methods: Three healthy adult males (aged 35.6 to 42.3 years) without spinal diseases were enrolled in this study and 3D-CT scans were carried out to obtain the parameters of lumbar spine. Mimics software was applied to build a 3D finite element model of lumbar spine. Graded resections (1/4, 2/4, 3/4 and 4/4) of the left superior articular process of L(5) were done via percutaneous transforaminal endoscopic lumbar discectomy. Then, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine were recorded after simulating the normal flexion and extension, lateral flexion and rotation of the lumbar spine model during different resections. The data were compared among groups with analysis of variance. Results: Comparing with the normal group, after 1/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets showed significant differences during left lateral flexion and rotation of lumbar spine ( q =8.823, 8.248, both P <0.05); and the pressure of L(4/5) intervertebral disc also changed significantly during extension and right rotation of lumbar spine ( q =6.918, 6.438, both P <0.05); the motion of lumbar spine showed obvious differences during right lateral flexion and rotation ( q =6.845, 7.772, 13.58, all P <0.05). Comparing with the normal group, after 2/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets presented significant differences during all conditions ( q =5.670-17.830, all P <0.05); the pressure of L(4/5) intervertebral disc changed significantly during flexion, extension, lateral flexion and right rotation ( q =5.260, 17.150, 5.727, 8.890, 15.660, all P <0.05); the motion of lumbar spine also existed differences during extension, lateral flexion and rotation ( q =9.106, 5.431, 12.060, 11.160, 17.260, all P <0.05). However, after 3/4 resections, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine presented differences during all conditions when compared with those in normal group ( q =6.303-25.48, all P <0.05). After 4/4 resections, the pressure of the L(4/5) right facets and the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine showed significant differences during all conditions when compared with those in normal group ( q =8.065-45.70, all P <0.05). Conclusions: The biomechanics and the stability of lumbar spine changed partly after 1/4 resection of the superior articular process and obviously after more than 2/4 is resected. The superior articular process should be paid more attention during foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3296542','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3296542"><span>Modeling boundary measurements of scattered light using the corrected diffusion approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.</p> <p>2012-01-01</p> <p>We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.cancer.gov/types/brain/research/children-lenalidomide-radiation','NCI'); return false;" href="https://www.cancer.gov/types/brain/research/children-lenalidomide-radiation"><span>Lenalidomide and Radiation for Children with Brain Cancers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.cancer.gov">Cancer.gov</a></p> <p></p> <p></p> <p>n this trial, patients up to age 18 who are newly diagnosed with diffuse intrinsic pontine gliomas (DIPG) or who have other incompletely resected high-grade gliomas will undergo radiation therapy and receive oral lenalidomide, followed by lenalidomide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JQSRT.120...52D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JQSRT.120...52D"><span>Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demarco, R.; Nmira, F.; Consalvi, J. L.</p> <p>2013-05-01</p> <p>The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK) model can be then substituted for the SNBCK with a reduction in CPU time by a factor of about 20 in the latter case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494309"><span>Thoracic and lumbar spine responses in high-speed rear sled tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Viano, David C; Parenteau, Chantal S; Burnett, Roger</p> <p>2018-07-04</p> <p>This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats. The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap-shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics. The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had -1,696 N anterior lumbar shear force and -205.2 Nm extension moment. There was -1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had -500 N shear force and -49.7 Nm extension moment. There was -839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy. The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPCS...92...64A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPCS...92...64A"><span>The influence of radiation-induced vacancy on the formation of thin-film of compound layer during a reactive diffusion process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akintunde, S. O.; Selyshchev, P. A.</p> <p>2016-05-01</p> <p>A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JNuM..458..361H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JNuM..458..361H"><span>An intermetallic forming steel under radiation for nuclear applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.</p> <p>2015-03-01</p> <p>In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29666969','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29666969"><span>Three case reports of radiation-induced glioblastoma after complete remission of acute lymphoblastic leukemia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kajitani, Takumi; Kanamori, Masayuki; Saito, Ryuta; Watanabe, Yuko; Suzuki, Hiroyoshi; Watanabe, Mika; Kure, Shigeo; Tominaga, Teiji</p> <p>2018-04-01</p> <p>Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24304872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24304872"><span>Body mass evolution and diversification within horses (family Equidae).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shoemaker, Lauren; Clauset, Aaron</p> <p>2014-02-01</p> <p>Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60-fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary 'diffusion', can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity-driven and diffusion-driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone. © 2013 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880000934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880000934"><span>Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halyo, Nesim; Taylor, Deborah B.</p> <p>1987-01-01</p> <p>An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMNG21A0409B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMNG21A0409B"><span>Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in Shortwave Radiative Transfer: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.</p> <p>2001-12-01</p> <p>Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state-of-the-art observations that offer compelling empirical support for the Lévy/anomalous diffusion model in atmospheric radiation: (1) high-resolution spectroscopy of differential absorption in the O2 A-band from ground; (2) temporal transient records of lightning strokes transmitted through clouds to a sensitive detector in space; and (3) the Gamma-distributions of optical depths derived from Landsat cloud scenes at 30-m resolution. We will then introduce a rigorous analytical formulation of Lévy/anomalous transport through finite media based on fractional derivatives and Sonin calculus. A remarkable result from this new theoretical development is an extremal property of the α = 1+ case (divergent mean-free-path), as is observed in the cloudy atmosphere. Finally, we will discuss the implications of anomalous transport theory for bulk 3D effects on the current enhanced absorption problem as well as its role as the basis of a next-generation GCM radiation parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19690277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19690277"><span>An anatomical study of the transversus abdominis plane block: location of the lumbar triangle of Petit and adjacent nerves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jankovic, Zorica B; du Feu, Frances M; McConnell, Patricia</p> <p>2009-09-01</p> <p>The transversus abdominis plane (TAP) block is a new technique for providing analgesia to the anterior abdominal wall. Most previous studies have used the lumbar triangle of Petit as a landmark for the block. In this cadaveric study, we determined the exact position and size of the lumbar triangle of Petit and identified the nerves affected by the TAP block. The position of the lumbar triangle of Petit was assessed unilaterally in 26 cadaveric specimens relative to reliably palpable surface landmarks. In addition, a series of dissections were performed to explore the course of the nerves blocked by the TAP. The mean distance from the midaxillary line along the iliac crest to the center of the base of the lumbar triangle of Petit at the level of the subcutaneous tissue and over the skin surface was 6.9 cm (range, 4.5-9.2 cm) and 9.3 cm (range, 4-15.1 cm), respectively. The center of the lumbar triangle of Petit was 1.4 cm above the iliac crest. The depth of the TAP at the lumbar triangle of Petit position was 0.5-4 cm and at the midaxillary line it was 0.5-2 cm. The average size of the lumbar triangle of Petit was 2.3 cm x 3.3 cm x 2.2 cm, with an average area of 3.63 +/- 1.93 cm2. The three cadaveric specimens we explored showed the nerves blocked by TAP passed lateral to the triangle. An incidental finding was that in 66% of specimens the lumbar triangle of Petit contained small branches of the subcostal artery. The lumbar triangles of Petit found in the specimens in this study were more posterior than the literature suggests. The position of the lumbar triangle of Petit varies largely and the size is relatively small. The relevant nerves to be blocked had not entered the TAP in the specimens in this study at the point of the lumbar triangle of Petit. At the midaxillary line, however, all the nerves were in the TAP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28723757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28723757"><span>Comprehensive comparing percutaneous endoscopic lumbar discectomy with posterior lumbar internal fixation for treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis: A retrospective case-control study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Yapeng; Zhang, Wei; Qie, Suhui; Zhang, Nan; Ding, Wenyuan; Shen, Yong</p> <p>2017-07-01</p> <p>The study was to comprehensively compare the postoperative outcome and imaging parameter characters in a short/middle period between the percutaneous endoscopic lumbar discectomy (PELD) and the internal fixation of bone graft fusion (the most common form is posterior lumbar interbody fusion [PLIF]) for the treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis after a previous lumbar internal fixation surgery.In this retrospective case-control study, we collected the medical records from 11 patients who received PELD operation (defined as PELD group) for and from 13 patients who received the internal fixation of bone graft fusion of lumbar posterior vertebral lamina decompression (defined as control group) for the treatment of the lumbar disc prolapse combined with stable retrolisthesis at Department of Spine Surgery, the Third Hospital of Hebei Medical University (Shijiazhuang, China) from May 2010 to December 2015. The operation time, the bleeding volume of perioperation, and the rehabilitation days of postoperation were compared between 2 groups. Before and after surgery at different time points, ODI, VAS index, and imaging parameters (including Taillard index, inter-vertebral height, sagittal dislocation, and forward bending angle of lumbar vertebrae) were compared.The average operation time, the blooding volume, and the rehabilitation days of postoperation were significantly less in PELD than in control group. The ODI and VAS index in PELD group showed a significantly immediate improving on the same day after the surgery. However, Taillard index, intervertebral height, sagittal dislocation in control group showed an immediate improving after surgery, but no changes in PELD group till 12-month after surgery. The forward bending angle of lumbar vertebrae was significantly increased and decreased in PELD and in control group, respectively.PELD operation was superior in terms of operation time, bleeding volume, recovery period, and financial support, if compared with lumbar internal fixation operation. Radiographic parameters reflect lumber structure changes, which could be observed immediately after surgery in both methods; however, the recoveries on nerve function and pain relief required a longer time, especially after PLIF operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17138195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17138195"><span>Influence of needle position on lumbar segmental nerve root block selectivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H</p> <p>2006-01-01</p> <p>In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27423195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27423195"><span>An Outcome and Cost Analysis Comparing Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Intraoperative Fluoroscopy versus Computed Tomography-Guided Navigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khanna, Ryan; McDevitt, Joseph L; Abecassis, Zachary A; Smith, Zachary A; Koski, Tyler R; Fessler, Richard G; Dahdaleh, Nader S</p> <p>2016-10-01</p> <p>Minimally invasive transforaminal lumbar interbody fusion (TLIF) has undergone significant evolution since its conception as a fusion technique to treat lumbar spondylosis. Minimally invasive TLIF is commonly performed using intraoperative two-dimensional fluoroscopic x-rays. However, intraoperative computed tomography (CT)-based navigation during minimally invasive TLIF is gaining popularity for improvements in visualizing anatomy and reducing intraoperative radiation to surgeons and operating room staff. This is the first study to compare clinical outcomes and cost between these 2 imaging techniques during minimally invasive TILF. For comparison, 28 patients who underwent single-level minimally invasive TLIF using fluoroscopy were matched to 28 patients undergoing single-level minimally invasive TLIF using CT navigation based on race, sex, age, smoking status, payer type, and medical comorbidities (Charlson Comorbidity Index). The minimum follow-up time was 6 months. The 2 groups were compared in regard to clinical outcomes and hospital reimbursement from the payer perspective. Average surgery time, anesthesia time, and hospital length of stay were similar for both groups, but average estimated blood loss was lower in the fluoroscopy group compared with the CT navigation group (154 mL vs. 262 mL; P = 0.016). Oswestry Disability Index, back visual analog scale, and leg visual analog scale scores similarly improved in both groups (P > 0.05) at 6-month follow-up. Cost analysis showed that average hospital payments were similar in the fluoroscopy versus the CT navigation groups ($32,347 vs. $32,656; P = 0.925) as well as payments for the operating room (P = 0.868). Single minimally invasive TLIF performed with fluoroscopy versus CT navigation showed similar clinical outcomes and cost at 6 months. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29232114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29232114"><span>Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael</p> <p>2018-01-11</p> <p>The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14634732','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14634732"><span>[Precision of navigation-assisted surgery of the thoracic and lumbar spine].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arand, M; Schempf, M; Hebold, D; Teller, S; Kinzl, L; Gebhard, F</p> <p>2003-11-01</p> <p>The goal of these studies was to evaluate the accuracy of in vivo and in vitro application of CT- and C-arm-based navigation at the thoracic and lumbar spine. With CT based navigation, 82 pedicle screws were consecutively inserted, 53 into the thoracic and 29 into the lumbar spine. Seven (13%) perforations were detected at the thoracic spine and two (7%) at the lumbar spine. Additionally, minor perforations below the thread depth were seen in six (11%) thoracic and in two (7%) lumbar instrumentation. With C-arm-based navigation, 74 screws were consecutively placed into 38 thoracic and 36 lumbar pedicles. Perforations were noted in ten (26%) thoracic and four (11%) lumbar implants. Minor perforations were observed in another nine (24%) thoracic and ten (28%) lumbar pedicles. The observer-independent and standardized in vitro study based on a transpedicular 3.2-mm drill hole aiming a 4-mm steel ball in a plastic bone model showed pedicle perforations of the drill canal only in thoracic vertebrae, 1 of 15 in CT-based and 3 of 15 in C-arm navigation. The quantitative calculation of the smallest distance between the central line through the drill canal and the center of the steel ball resulted in 1.4 mm (0.5-4.8 mm) for the CT-based navigation at the thoracic spine and in 1.8 mm (0.5-3 mm) at the lumbar spine. For the C-arm based navigation the distance was 2.6 mm (0.9-4.8 mm) for the thoracic spine and 2 mm (1.2-3 mm) for the lumbar spine. In our opinion, the clinical results of the comparative accuracy of CT- and C-arm-based navigation in the present study showed moderate advantages of the CT-based technique in the thoracic spine, whereas CT- and C-arm based navigation had comparable perforation rates at the lumbar pedicle. The results of the experimental study correlated with the clinical data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24825154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24825154"><span>The high prevalence of symptomatic degenerative lumbar osteoarthritis in Chinese adults: a population-based study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Wei; Lv, Yanwei; Liu, Yajun; Xiao, Bin; Han, Xiao</p> <p>2014-07-15</p> <p>A population-based study. To study the prevalence and features of symptomatic degenerative lumbar osteoarthritis in adults. Lumbar osteoarthritis adversely affects individuals and is a heavy burden. There are limited data on the prevalence of lumbar osteoarthritis. A representative, multistage sample of adults was collected. Symptomatic degenerative lumbar osteoarthritis was diagnosed by clinical symptoms, physical examinations, and imaging examinations. Personal information was obtained by face-to-face interview. Information included the place of residence, age, sex, income, type of medical insurance, education level, body mass index, habits of smoking and drinking, type of work, working posture, duration of the same working posture during the day, mode of transportation, exposure to vibration, and daily amount of sleep. Crude and adjusted prevalence was calculated. The features of populations were analyzed by multivariable logistic regression in total and subgroup populations. The study included 3859 adults. The crude and adjusted prevalence of lumbar osteoarthritis was 9.02% and 8.90%, respectively. There was no significant difference in the prevalence of lumbar osteoarthritis between urban, suburban, and rural populations (7.66%, 9.97%, and 9.44%) (P = 0.100). The prevalence of lumbar osteoarthritis was higher in females (10.05%) than in males (9.1%, P = 0.021). The prevalence of lumbar osteoarthritis increased with increasing age. Obese people (body mass index >28 kg/m), those engaged in physical work, those who maintained the same work posture for 1 to 1.9 hours per day, those who were exposed to vibration during daily work, and those who got less than 7 hours of sleep per day had a higher prevalence. These features differed by subgroup. This study established epidemiological baseline data for degenerative lumbar osteoarthritis in adults, especially for people younger than 45 years. Lumbar osteoarthritis is epidemic in Beijing and will become a more severe problem in aging society. Different populations have different features that require targeted interventions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24825157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24825157"><span>The morphometric study of l3-L4 and L4-L5 lumbar spine in Asian population using magnetic resonance imaging: feasibility analysis for transpsoas lumbar interbody fusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yusof, Mohd Imran; Nadarajan, Eswaran; Abdullah, Mohd Shafie</p> <p>2014-06-15</p> <p>Cross-sectional study on the measurement of relevant magnetic resonance imaging parameters in 100 patients presented for lumbar spine assessment. To determine anatomical position of lumbar plexus and major blood vessels in relation to vertebral body and anterior edge of psoas muscle at L3-L4 and L4-L5 and to define the safe working zone for transpsoas approach for lumbar fusion. Lateral transpsoas lumbar interbody fusion has been shown to be safe and provides alternative for lumbar fusion. However, proximity of neurovascular structures may not allow a safe passage for this procedure in the Asian population. Relevant parameters were measured from axial magnetic resonance images and analyzed, including the psoas muscle and vertebrae endplate diameters, lumbar plexus and psoas muscle distance, lumbar plexus and vertebra body distance, and vena cava to the anterior vertebrae body diameters. The mean anteroposterior diameters of the right and left psoas muscle ranged from 44.0 to 58.6 mm and 44.8 to 54.0 mm, respectively. The mean anteroposterior diameters of vertebra endplate of L3, L4, and L5 were 38.2 mm, 39.3 mm, and 41.4 mm, respectively. The mean distance of posterior border of vena cava from the vertebra body was 4.5 mm at L3-L4 and 14.1 mm at L4-L5. L3-L4 fusion is feasible at both sides in both sexes; however, at L4-L5 level, the procedure is feasible only on the left side. The safe working zone for transpsoas approach to lumbar spine is significantly narrower at L4-L5 in both sexes. Anterior edge of psoas muscle can be used as a reliable guide to locate lumbar plexus within psoas muscle. N/A.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>