Science.gov

Sample records for diffuser vertical ventilation

  1. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  2. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  3. The role of diffusion in natural displacement ventilation

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Flynn, Morris

    2009-11-01

    The classic natural displacement ventilation model of Linden et al. (1990) predicts the formation of a two layer stratification when a single thermal plume is introduced into a room with vents at floor and ceiling level. The model assumes that molecular diffusion plays no role in the development of the rooms ambient stratification as such diffusion is a slow process and the plume entrainment field will act to thin the interface between the warm upper layer and cool lower layer. The prediction of a sharp interface has been confirmed by small scale salt bath experiments. However, full scale measurements and CFD simulations at larger scale indicate that the interface between the two layers is not sharp but smeared out over a finite thickness. We present two simple models for predicting the thickness of the interface as a function of the room height, floor area and vent area as well as the plume buoyancy flux and the thermal diffusivity of the fluid. The interface increases in thickness with increasing room floor area and decreasing plume strength. Our model is compared to interface thickness measurements based on CFD simulations and salt bath models and is shown to agree both phenomenologically and numerically. [4pt] Linden, Lane-Serf, & Smeed, (1990) `Emptying filling boxes, the fluid mechanics of natural ventilation' J. Fluid Mech. 212 pp. 309--335.

  4. Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean

    NASA Astrophysics Data System (ADS)

    Zervakis, Vassilis; Krasakopoulou, Evangelia; Georgopoulos, Dimitris; Souvermezoglou, Ekaterini

    2003-01-01

    Ventilation of the deep basins of the North Aegean Sea takes place during relatively scarce events of massive dense water formation in that region. In the time intervals between such events, the bottom waters of each sub-basin are excluded from interaction with other water masses through advection or isopycnal mixing and the only process that changes their properties is diapycnal mixing with overlying waters. In this work we utilize a simple one-dimensional model in order to estimate the vertical eddy diffusion coefficient Kρ based on the observed rate of change of density and stratification. Vertical diffusivity is estimated for each of three sub-basins of the North Aegean, one of convex shape of the seabed and the other two of concave topography. It is noteworthy that the convex sub-basin exhibited much higher vertical diffusivity than the two concave sub-basins, a fact consistent with theoretical predictions that internal-wave-induced mixing is higher over the former shape of seabed. Furthermore, the estimates of Kρ are exploited in computing the vertical transport of dissolved oxygen through diffusion and the rate of oxygen consumption by decaying organic matter. The different levels of the estimated diffusion and oxygen consumption rates testify to the dynamical and biogeochemical characteristics of each basin.

  5. Vertical diffusivity of the Western Arctic Ocean halocline

    NASA Astrophysics Data System (ADS)

    Shaw, William J.; Stanton, Timothy P.

    2014-08-01

    A nearly year-long series of upper ocean temperature, conductivity, and temperature microstructure profiles were collected from an ice camp drifting in the Beaufort Gyre as part of the 1997-1998 Surface Heat Budget of the Arctic Experiment (SHEBA). Geographically, the record includes portions over the deep Canada Basin and the steep bathymetry of the Chukchi Borderlands region. Hydrographically, the record includes "cool," Pacific-origin haloclines, which contain a variety of subsurface temperature maxima, and cold haloclines typical of the Eurasian Basins. We present estimates of the vertical turbulent diffusivity derived from the dissipation rate of thermal variance and calculations of the associated vertical heat fluxes. We find that vertical diffusion proceeds at molecular rates in the deep basins and away from topographic features. While still relatively small, diffusivity is enhanced by 1 order of magnitude near and above the Chukchi Borderlands. The enhanced diffusivity is correlated to an increase in water column strain variance above the Borderlands, providing a linkage between bathymetry, internal wave activity and turbulence. The Chukchi Borderlands play a significant role in heat transport in the Western Arctic. They are a pathway for horizontal heat transport and a hot spot for vertical heat transport. Vertical fluxes make a substantial contribution to the energy balance of the sea ice cover in this region. Heat fluxes between the halocline and underlying Atlantic Water are shown to be small and lacking vertical connection near surface waters.

  6. Evaluation of the vertical turbulent diffusion coefficient of industrial emissions

    NASA Astrophysics Data System (ADS)

    Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.

    2015-07-01

    A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.

  7. Vertical diffusion processes in the Eastern Mediterranean - Black Sea System

    NASA Astrophysics Data System (ADS)

    Kioroglou, Sotiris; Tragou, Elina; Zervakis, Vassilis; Georgopoulos, Dimitris; Herut, Barak; Gertman, Isaak; Kovacevic, Vedrana; Özsoy, Emin; Tutsak, Ersin

    2014-07-01

    The identification and examination of ‘complete' potential density overturns in CTD profiles, within the framework of SESAME project, are employed to assess vertical eddy diffusivities, mostly in the top 100 m of the water column, for a broad area covering the East Mediterranean, the Turkish Straits and the Black Sea. The implementation of this method shows that, mixing induced by mechanical turbulence is enhanced in frontal areas, in the proximity of straits and inside anticyclones; furthermore, that mechanical turbulence is insignificant, down to the scale of CTD resolution, within areas of double diffusive staircases, encountered in deep layers of the water column. Consequently, only laminar theories about double diffusion are applied for assessing diffusivities therein. Susceptibility to different types of double diffusion seems to be related to the interaction of different types of water masses.

  8. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2007-05-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  9. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2008-02-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  10. A Vertical Diffusion Scheme to estimate the atmospheric rectifier effect

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Liu, Jane; Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander

    2004-02-01

    The magnitude and spatial distribution of the carbon sink in the extratropical Northern Hemisphere remain uncertain in spite of much progress made in recent decades. Vertical CO2 diffusion in the planetary boundary layer (PBL) is an integral part of atmospheric CO2 transport and is important in understanding the global CO2 distribution pattern, in particular, the rectifier effect on the distribution [Keeling et al., 1989; Denning et al., 1995]. Attempts to constrain carbon fluxes using surface measurements and inversion models are limited by large uncertainties in this effect governed by different processes. In this study, we developed a Vertical Diffusion Scheme (VDS) to investigate the vertical CO2 transport in the PBL and to evaluate CO2 vertical rectification. The VDS was driven by the net ecosystem carbon flux and the surface sensible heat flux, simulated using the Boreal Ecosystem Productivity Simulator (BEPS) and a land surface scheme. The VDS model was validated against half-hourly CO2 concentration measurements at 20 m and 40 m heights above a boreal forest, at Fraserdale (49°52'29.9''N, 81°34'12.3''W), Ontario, Canada. The amplitude and phase of the diurnal/seasonal cycles of simulated CO2 concentration during the growing season agreed closely with the measurements (linear correlation coefficient (R) equals 0.81). Simulated vertical and temporal distribution patterns of CO2 concentration were comparable to those measured at the North Carolina tower. The rectifier effect, in terms of an annual-mean vertical gradient of CO2 concentration in the atmosphere that decreases from the surface to the top of PBL, was found at Fraserdale to be about 3.56 ppmv. Positive covariance between the seasonal cycles of plant growth and PBL vertical diffusion was responsible for about 75% of the effect, and the rest was caused by covariance between their diurnal cycles. The rectifier effect exhibited strong seasonal variations, and the contribution from the diurnal cycle

  11. Vertical eddy diffusion coefficient from the LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Viswanadham, Y. (Principal Investigator); Torsani, J. A.

    1982-01-01

    Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.

  12. Diffuse persistent pulmonary interstitial emphysema secondary to mechanical ventilation in bronchiolitis.

    PubMed

    Toledo Del Castillo, Blanca; Gordillo, Isabel; Rubio García, Elena; Fernández Lafever, Sarah Nicole; Gonzalez Cortés, Rafael; Urbano Villaescusa, Javier; López González, Jorge; Solana García, María José; López-Herce Cid, Jesús

    2016-11-03

    Persistent interstitial pulmonary emphysema (PIE) is a rare disease and it is even more uncommon in full-term infants, like our patient. When conservative management is not successful, surgical treatment should be considered. In our case, ECMO support was iniciated to keep the patient ventilated in order to allow the lung to heal using lung protection strategies. We report an 18-day-old male infant with bronchiolitis that required mechanical ventilation with high positive airway pressures due to severe respiratory insufficiency. Chest X-rays and computed tomography scan revealed a severely hyperinflated left lung with extensive destructive changes and multiple small bullae. These findings were consistent with diffuse persistent interstitial emphysema (PIE), probably due to mechanical ventilation. The patient required high frequency oscillatory ventilation, inotropic support and continuous renal replacement therapy. He eventually suffered a cardiac arrest that required cardiopulmonary resuscitation and ECMO during 5 days with progressive clinical improvement and normalization of the X-ray. We present a patient with diffuse persistent interstitial emphysema who, despite an unfavorable evolution with different mechanical ventilation strategies, had a good response after ECMO assistance.

  13. Ventilation.

    PubMed

    Turner, W A; Bearg, D W; Brennan, T

    1995-01-01

    This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.

  14. Prediction of the diffuse-field transmission loss of interior natural-ventilation openings and silencers.

    PubMed

    Bibby, Chris; Hodgson, Murray

    2017-01-01

    The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.

  15. Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV

    NASA Technical Reports Server (NTRS)

    Straus, John; Lewis, John F.

    2011-01-01

    The Ansys CFX CFD modeling tool was used to support the design efforts of the ventilation system for the Orion CEV. CFD modeling was used to establish the flow field within the cabin for several supply configurations. A mesh and turbulence model sensitivity study was performed before the design studies. Results were post-processed for comparison with performance requirements. Most configurations employed straight vaned diffusers to direct and throw the flow. To manage the size of the models, the diffuser vanes were not resolved. Instead, a momentum model was employed to account for the effect of the diffusers. The momentum model was tested against a separate, vane-resolved side study. Results are presented for a single diffuser configuration for a low supply flow case.

  16. Heat convection in a vertical channel: Plumes versus turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Gibert, M.; Pabiou, H.; Tisserand, J.-C.; Gertjerenken, B.; Castaing, B.; Chillà, F.

    2009-03-01

    Following a previous study [Gibert et al., Phys. Rev. Lett. 96, 084501 (2006)], convective heat transfer in a vertical channel of moderate dimensions follows purely inertial laws. It would be therefore a good model for convective flows of stars and ocean. Here we report new measurements on this system. We use an intrinsic length in the definition of the characteristic Rayleigh and Reynolds numbers. We explicit the relation between this intrinsic length and the thermal correlation length. Using particle imaging velocimetry, we show that the flow undergoes irregular reversals. We measure the average velocity profiles and the Reynolds stress tensor components. The momentum flux toward the vertical walls seems negligible compared to the shear turbulent stress. A mixing length theory seems adequate to describe the horizontal turbulent heat and momentum fluxes, but fails for the vertical ones. We propose a naive model for vertical heat transport inspired by the Knudsen regime in gases.

  17. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  18. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  19. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  20. Intense ventilation of the Black Sea pycnocline due to vertical turbulent exchange in the Rim Current area

    NASA Astrophysics Data System (ADS)

    Ostrovskii, Alexander G.; Zatsepin, Andrey G.

    2016-10-01

    This paper presents new observational data, which indicate that deep ventilation events in the aerobic zone extending across the upper part of the permanent pycnocline may occur sporadically in the Rim Current area, even during relatively warm seasons, when the seasonal thermocline is still notable. The strongest observed event of this type occurred on November 2014 off the continental shelf break near Gelendzhik Bay. Vertical profiles of dissolved oxygen were accurately measured using an SBE 52-MP Conductivity, Temperature, Depth (CTD) probe equipped with a fast-response SBE 43F oxygen sensor mounted on a moored Aqualog automatic mobile profiler. The analysis of the profiling data from October 6 through December 16, 2014, from depths between 35 m and 215 m revealed an anomaly on November 6-7. The dissolved oxygen exceeded the background levels by more than 0.2 ml/l (8.9 μM) at the 14.9-15.7 kg/m3 isopycnals in the pycnocline and reached approximately 1 ml/l (44.66 μM) for short periods. The peak absolute value of the dissolved oxygen reached an exceptionally high value of approximately 0.3 ml/l (13.4 μM) at the 15.9 kg/m3 isopycnal. The ventilation event increased the temperature by 0.2 °C at depths of 120-160 m. The simultaneous observations of both the thermohaline stratification and the ocean currents suggest that the ventilation event was associated with the sinking of pycnocline waters in the near-bottom Ekman layer along the continental slope and intense vertical turbulent exchange in the Rim Current area near the continental slope. The ventilation of the pycnocline when the overlaying upper ocean is stably stratified sharply differs from the convection reaching the Cold Intermediate Layer during extensive cooling of the sea surface. Indications of such ventilation events were also found in the Aqualog mooring data archive from 2012.

  1. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    PubMed Central

    Guerra, Carlos

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. PMID:28144565

  2. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders.

    PubMed

    Szmyt, Wojciech; Guerra, Carlos; Utke, Ivo

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  3. Evaluation of the vertical diffusion coefficients from ERA-40 with 222Rn simulations

    NASA Astrophysics Data System (ADS)

    Olivié, D. J. L.; van Velthoven, P. F. J.; Beljaars, A. C. M.

    2004-08-01

    Boundary layer turbulence has a profound influence on the distribution of tracers with sources or sinks at the surface. The 40-year ERA-40 meteorological data set of the European Centre for Medium-range Weather Forecasts contains archived vertical diffusion coefficients. We evaluated the use of these archived diffusion coefficients instead of off-line diagnosed coefficients based on other meteorological parameters archived during ERA-40 by investigation of the effect on the distribution of the radioactive tracer 222Rn in the chemistry transport model TM3. In total four different sets of vertical diffusion coefficients are compared: (i) 3-hourly vertical diffusion coefficients archived during the ERA-40 project, (ii) 3-hourly off-line diagnosed coefficients from a non-local scheme based on Holtslag and Boville (1993), Vogelezang and Holtslag (1996), and Beljaars and Viterbo (1999), (iii) 6-hourly coefficients archived during the ERA-40 project, and (iv) 6-hourly off-line diagnosed coefficients based on a local scheme described in Louis (1979) and Louis et al. (1982). The diffusion scheme to diagnose the coefficients off-line in (ii) is similar to the diffusion scheme used during the ERA-40 project (i and iii). The archived diffusion coefficients from the ERA-40 project which are time-averaged cause stronger mixing than the instantaneous off-line diagnosed diffusion coefficients. This can be partially attributed to the effect of instantaneous versus time-averaged coefficients, as well as to differences in the diffusion schemes. The 3-hourly off-line diagnosis of diffusion coefficients can reproduce quite well the 3-hourly archived diffusion coefficients. Boundary layer heights are also available for the sets (ii) and (iii). Both were found to be in reasonable agreement with observations of the boundary layer height from Cabauw in the Netherlands and from the FIFE-campaign in the United States. Simulations of 222Rn with the TM3 model using these four sets of vertical

  4. Deep Pacific ventilation ages during the last deglaciation: Evaluating the influence of diffusive mixing and source region reservoir age

    NASA Astrophysics Data System (ADS)

    Lund, David C.

    2013-11-01

    Enhanced ventilation of the deep ocean during the last deglaciation may have caused the rise in atmospheric carbon dioxide that drove Earth's climate from a glacial to interglacial state. Recent results based on the projection age method, however, suggest the ventilation rate of the deep Pacific slowed during the deglaciation, opposite the expected pattern (Lund et al., 2011). Because the projection age method does not account for tracer diffusion (Adkins and Boyle, 1997) it can yield spurious results and therefore requires validation with alternative techniques. Here ventilation ages are determined using the transit-time equilibration-time distribution (TTD-ETD) method which explicitly accounts for diffusive mixing in the ocean interior (DeVries and Primeau, 2010). The overall time history of deep Pacific TTD-ETD and projection ages is very similar; both show a 1000-yr increase in ventilation age during Heinrich Stadial 1 (HS1; 14.5-17.5 kyr BP) and a 500-yr increase during the Younger Dryas (YD). The similarity is due in part to the use of projection age error estimates that take into account uncertainty in both calendar age and benthic 14C age. Centennial-scale offsets between the TTD-ETD and projection ages are due primarily to the different approaches used to estimate surface ocean radiocarbon content. Both the TTD-ETD and projection age results imply that the ventilation rate of the deep Pacific decreased during the deglaciation, opposite the pattern expected if Southern Ocean upwelling and enhanced meridional overturning drove outgassing of CO2 from the abyss. Variations in surface water reservoir age could cause an apparent shift in deep Pacific ventilation age but existing proxy records from the Southern Ocean appear to be inconsistent with such a driver.

  5. A diffusive model for halo width growth during vertical displacement events

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.; Humphreys, D. A.

    2011-07-01

    The electromagnetic loads produced by halo currents during vertical displacement events (VDEs) impose stringent requirements on the strength of ITER in-vessel components. A predictive understanding of halo current evolution is essential for ensuring the robust design of these components. A significant factor determining that evolution is the plasma resistance, which is a function of three quantities: the resistivities of the core and halo regions, and the halo region width. A diffusive model of halo width growth during VDEs has been developed, which provides one part of a physics basis for predictive halo current simulations. The diffusive model was motivated by DIII-D observations that VDEs with cold post-thermal quench plasma and a current decay time much faster than the vertical motion (type I VDE) possess much wider halo region widths than warmer plasma VDEs, where the current decay is much slower than the vertical motion (type II). A 2D finite element code is used to model the diffusion of toroidal halo current during selected type I and type II DIII-D VDEs. The model assumes a core plasma region within the last closed flux surface (LCFS) diffusing current into a halo plasma filling the vessel outside the LCFS. LCFS motion and plasma temperature are prescribed from experimental observations. The halo width evolution produced by this model compares favourably with experimental measurements of type I and type II toroidal halo current width evolution.

  6. Numerical investigation of sensitivity of the Black Sea mixed layer to vertical turbulent diffusion processes

    NASA Astrophysics Data System (ADS)

    Kvaratskhelia, Diana; Demetrashvili, Demuri

    2015-04-01

    The upper mixed-layer of seas and oceans is one of the important water areas, the thermodynamic state of which defines many important physical, chemical or biological processes in the sea- atmosphere environment. The same can be note concerning the Black Sea turbulent mixed layer, which represents the object of our investigation. It is well known that the depth of the mixed layer is generaly determined by measurements of water properties: temperature and sigma-t (density) but here the depth of the mixed layer and its variability are investigated by using of the basin-scale numerical model of the Black Sea dynamics of M. Nodia Institute of Geophysics (BSM-IG, Tbilisi, Georgia). The main object of this study is to investigate the Black Sea upper mixed-layer generation and its evolution in connection with the nonstationarity atmospheric circulation and thermohaline action in the inner-annual time scale. Besides, how the temperature and salinity fields of the Black Sea upper layer are substantially reacted by the vertical diffusion coefficient are the centre of our attention. Therefore, the coefficient of vertical turbulent diffusion for heat and salt are tested as constant equal to 10 cm2s-1 and it was parameterized by modified Oboukhov's formula. The results of the numerical investigations show that: in wintertime for any choosing of this vertical diffusion coefficient the intense wind-driven turbulence promotes mixing aproximetly till 16-26 m in deep layers of the Black Sea. Except for that, cold fluxes through the surface and precipitation-evapuration system play aditionally role on the mixed layer forming as well. During the transitive spring season (in difference from the cold season), when the depth of the mixed layer is aproxometly 2-4 m., the role of vertical turbulent viscosity insignificantly grows. In the warm season (summer), when the mixed layer does not observe in the upper layer of the Black Sea, the role of the vertical diffusion coefficient is more

  7. Scaling of the strength of the meridional overturning with vertical diffusivity in an idealized global geometry

    NASA Astrophysics Data System (ADS)

    den Toom, Matthijs; Dijkstra, Henk A.

    2010-12-01

    An important expression of the non-linear character of the ocean's meridional overturning circulation (MOC) is the scaling of its amplitude with the magnitude of the vertical mixing coefficient (diffusivity) of heat and salt. This paper extends recent work that indicated that the Atlantic and Pacific MOC exhibit different scaling behaviour. An idealized two-basin model configuration is used to study the meridional overturning circulation under restoring boundary conditions. In particular, the effects of wind forcing and the choice of the parametrization of lateral mixing are examined. Without wind, the scaling is similar in the two basins and consistent with theoretical predictions, provided that the diffusivity is small enough. Towards higher diffusivities the scaling of the overturning diverges. With non-zero wind, the sensitivity is strongly determined by the choice of the lateral mixing scheme. In case of traditional horizontal diffusion, the scaling behaviour is asymmetric due to spurious diapycnal mixing. With the Gent-McWilliams parametrization, the scaling is symmetric for the lower range of diffusivities, where results agree partly with theoretical scaling relations. In all cases considered, the pycnocline depth has the same sensitivity to diffusivity in both basins, implying that there is no universally valid relation between overturning strength and pycnocline depth.

  8. Scaling of the strength of the meridional overturning with vertical diffusivity in an idealized global geometry

    NASA Astrophysics Data System (ADS)

    den Toom, Matthijs; Dijkstra, Henk A.

    2011-03-01

    An important expression of the non-linear character of the ocean's meridional overturning circulation (MOC) is the scaling of its amplitude with the magnitude of the vertical mixing coefficient (diffusivity) of heat and salt. This paper extends recent work that indicated that the Atlantic and Pacific MOC exhibit different scaling behaviour. An idealized two-basin model configuration is used to study the meridional overturning circulation under restoring boundary conditions. In particular, the effects of wind forcing and the choice of the parametrization of lateral mixing are examined. Without wind, the scaling is similar in the two basins and consistent with theoretical predictions, provided that the diffusivity is small enough. Towards higher diffusivities the scaling of the overturning diverges. With non-zero wind, the sensitivity is strongly determined by the choice of the lateral mixing scheme. In case of traditional horizontal diffusion, the scaling behaviour is asymmetric due to spurious diapycnal mixing. With the Gent-McWilliams parametrization, the scaling is symmetric for the lower range of diffusivities, where results agree partly with theoretical scaling relations. In all cases considered, the pycnocline depth has the same sensitivity to diffusivity in both basins, implying that there is no universally valid relation between overturning strength and pycnocline depth.

  9. Gravity induced diffusive mixing between fluids of different densities in a vertical tube

    NASA Astrophysics Data System (ADS)

    Lefaucheur, E.; Souche, M.; Salin, D.; Hulin, J. P.; Allouche, M.; Daccord, G.; Hinch, E. J.

    2000-11-01

    Gravity induced mixing is studied experimentally between two fluids of different densities initially separated in an unstable configuration inside a transparent vertical tube (4m height, 20 mm diameter). Spatiotemporal diagrams of the concentration profile along the tube are realized optically. For large density contrasts (Δ ρ = 10-40%), the mixing zone displays an erf like concentration profile with a width increasing diffusively as √t. The corresponding diffusion coefficient D is of order 10-4m^2/s (10^5 times larger than molecular diffusion) and varies slowly with the Δ ρ. This "diffusive mixing" is due to random tubulent motions in the mixing zone over distances of the order of the diameter and with velocities of a few cm/s. At lower contrasts Δ ρ = 0.05-1% and long times, the concentration profile remains diffusive at all distances, with D strongly increasing at low Δ ρ. At short times, Rayleigh-Tayor like fingers develop and get unstable : the concentration profile is diffusive only at short distances and terminates by a sharp front of roughly constant convection velocity.

  10. Validation of Thorpe-scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region

    NASA Astrophysics Data System (ADS)

    Park, Y.-H.; Lee, J.-H.; Durand, I.; Hong, C.-S.

    2014-12-01

    The Thorpe scale is an energy-containing vertical overturning scale of large eddies associated with shear-generated turbulence. This study investigates indirect estimates of vertical diffusivities from the Thorpe scale method in the polar front region east of the Kerguelen Islands based on fine-scale density profiles gathered during the 2011 KEOPS2 (KErguelen Ocean and Plateau compared Study 2) cruise. These diffusivities are validated in comparison with diffusivities estimated from the turbulence dissipation rate directly measured via a TurboMAP (Turbulence ocean Microstructure Acquisition Profiler) microstructure profiler. The results are sensitive to the choice of the diffusivity parameterization and the overturn ratio Ro, and the optimal results have been obtained from the parameterization by Shih et al. (2005) and the Ro = 0.25 criterion, rather than the parameterization by Osborn (1980) and the Ro = 0.2 criterion originally suggested by Gargett and Garner (2008). The Thorpe-scale-derived diffusivities in the KEOPS2 region show a high degree of spatial variability, ranging from a canonical value of O(10-5) m2 s-1 in the Winter Water layer and in the area immediately north of the polar front to a high value of O(10-4) m2 s-1 in the seasonal thermocline between the surface mixed layer and the Winter Water. The latter high diffusivities are found especially over the shallow plateau southeast of the Kerguelen Islands and along the polar front that is attached to the escarpment northeast of the islands. The interaction of strong frontal flow with prominent bottom topography likely causes the observed elevated mixing rates.

  11. Usefulness of open lung biopsy in mechanically ventilated patients with undiagnosed diffuse pulmonary infiltrates: influence of comorbidities and organ dysfunction

    PubMed Central

    Lim, Seong Yong; Suh, Gee Young; Choi, Jae Chol; Koh, Won Jung; Lim, Si Young; Han, Joungho; Lee, Kyung Soo; Shim, Young Mog; Chung, Man Pyo; Kim, Hojoong; Kwon, O Jung

    2007-01-01

    Background The purpose of this study was to evaluate the clinical usefulness of open lung biopsy (OLB) in patients undergoing mechanical ventilation for diffuse pulmonary infiltrates of unknown etiology. Methods This was a 10-year retrospective study in a 10-bed medical intensive care unit. The medical records of 36 ventilator-dependent patients who underwent OLB for the diagnosis of unknown pulmonary infiltrates from 1994 to 2004 were reviewed retrospectively. Data analyzed included demographic data, Charlson age–comorbidity score, number of organ dysfunctions, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, Sequential Organ Failure Assessment (SOFA) score, ventilation variables, and radiological patterns. Diagnostic yield, effect on subsequent treatment changes, and complications of OLB were also assessed. Results A specific clinico-pathologic diagnosis was obtained for 31 patients (86%). The most common diagnoses were interstitial pneumonia (n = 17, including 8 acute interstitial pneumonia) and viral pneumonia (n = 4). Therapeutic modifications were made in 64% of patients. Patients who received OLB less than 1 week after initiation of mechanical ventilation were more likely to survive (63% versus 11%; P = 0.018). There were no major complications associated with the procedure. Factors independently associated with survival were the Charlson age-comorbidity score, number of organ dysfunction and the PaO2/FiO2 ratio on the day of the OLB. Conclusion OLB can provide a specific diagnosis in many ventilator-dependent patients with undiagnosed pulmonary infiltrate. Early OLB seems to be useful in critically ill patients with isolated respiratory failure. PMID:17725820

  12. The Vertical Structure of Diffuse Ionized Gas in Galactic Spiral Arms

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Haffner, L. Matthew; Benjamin, Robert A.

    2017-01-01

    The Wisconsin H-Alpha Mapper provides the most sensitive velocity resolved observations of diffuse Hα, [S II] λ6716, and [N II] λ6584 emission in the Galaxy, tracing the warm (~8000K) ionized component of the interstellar medium. The vertical extent of this diffuse gas can directly impact the midplane pressure, influencing cold molecular clouds and star formation in the disk. Here, we analyze the vertical structure of the warm ionized medium around multiple spiral arm components of the Galaxy. Diffuse halo emission is isolated using longitude varying velocity channels guided by CO emission tracing cold molecular gas in the disk. We find exponential electron density squared (or emission measure) scale heights and analyze its behavior as a function of Galactocentric radius and the presence of cold molecular clouds and star forming regions in the disk. Statistical analysis of the behavior of [S II]/Hα and [N II]/Hα line ratios along some of these spiral arms disentangle the complex physical conditions of the warm ionized gas as a function of height and in-situ electron density. Some spiral arm sections, in particular the far Carina arm, have significantly larger (>3x) scale heights than previously studied arms that tend to increase as a function of Galactocentric radius.

  13. Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Tarvainen, L.; Wallin, G.

    2016-12-01

    The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.

  14. Transport of magnetic flux and the vertical structure of accretion discs - I. Uniform diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Guilet, Jérôme; Ogilvie, Gordon I.

    2012-08-01

    Standard models of accretion discs study the transport of mass on a viscous time-scale but do not consider the transport of magnetic flux. The evolution of a large-scale poloidal magnetic field is, however, an important problem because of its role in the launching of jets and winds and in determining the intensity of turbulence. As a consequence, the transport of poloidal magnetic flux should be considered on an equal basis to the transport of mass. In this paper, we develop a formalism to study such a transport of mass and magnetic flux in a thin accretion disc. The governing equations are derived by performing an asymptotic expansion in the limit of a thin disc, in the regime where the magnetic field is dominated by its vertical component. Turbulent viscosity and resistivity are included, with an arbitrary vertical profile that can be adjusted to mimic the vertical structure of the turbulence. At a given radius and time, the rates of transport of mass and magnetic flux are determined by a one-dimensional problem in the vertical direction, in which the radial gradients of various quantities appear as source terms. We solve this problem to obtain the transport rates and the vertical structure of the disc. This paper is then restricted to the idealized case of uniform diffusion coefficients, while a companion paper will study more realistic vertical profiles of these coefficients. We show the advection of weak magnetic fields to be significantly faster than the advection of mass, contrary to what a crude vertical averaging might suggest. This results from the larger radial velocities away from the mid-plane, which barely affect the mass accretion owing to the low density in these regions but do affect the advection of magnetic flux. Possible consequences of this larger accretion velocity include a potentially interesting time dependence with the magnetic flux distribution evolving faster than the mass distribution. If the disc is not too thin, this fast advection

  15. Flow reversal of fully developed double diffusive mixed convection in a vertical channel

    NASA Astrophysics Data System (ADS)

    Makhatar, Nur Asiah Mohd; Saleh, Habibis; Hashim, Ishak

    2015-10-01

    The mixed convection flow within a vertical channel having internal heat generation at a rate proportional to a power of the temperature difference is considered. The analysis is concerning the studies of occurrence of flow reversal and the effects of three dimensionless parameters, identified as the internal heat parameter (G), a mixed convection parameter (λ) and the exponent (p) in the local heating term on the fully developed double diffusive mixed convection flow in a vertical channel. The governing equations are solved numerically via MAPLE. It was found that flow reversal occurs with larger values of internal heat parameter and mixed convection parameter, but smaller values of local-heating exponent. They also show that, unlike the internal heat parameter and the local-heating exponent, the mixed convection parameter do not give any significant effect on the temperature.

  16. Comparative modeling of vertical and planar organic phototransistors with 2D drift-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.

    2016-05-01

    Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.

  17. Modeling exposure close to air pollution sources in naturally ventilated residences: association of turbulent diffusion coefficient with air change rate.

    PubMed

    Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M

    2011-05-01

    For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.

  18. Tailored Transport through Vertically Aligned Carbon Nanofibre Membranes; Controlled Synthesis, Modelling, and Passive Diffusion Experiments

    SciTech Connect

    Fowlkes, Jason Davidson; Fletcher, Benjamin L; Hullander, Eric D; Klein, Kate L; Hensley, Dale K; Melechko, Anatoli Vasilievich; Simpson, Michael L; Doktycz, Mitchel John

    2005-01-01

    The ability to control the permeability of a synthetic membrane structure formed by a spatially stochastic forest of vertically aligned carbon nanofibres is demonstrated. Control of membrane pore size and morphology was achieved by varying the thickness of a uniform, conformal coating of SiO2 on the nanofibre surfaces. Characterization of passive diffusion using fluorescence microscopy and labelled latex beads confirms the ability to alter membrane permeability. Further, statistically reproducible transport regimes are predicted for the spatially stochastic membrane as a function of the nanofibre diameter by a Monte Carlo simulation technique. Realizing predictable nanoscale behaviour in a microscopically random, statistical structure is essential for applications requiring controlled, species specific transport.

  19. A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model.

    PubMed

    Larson, Judd; Kumar, Sendhil; Gale, S Adrian; Jain, Pradeep; Townsend, Timothy

    2012-03-01

    The measurement of vertical gas diffusivity and permeability of compacted municipal solid waste (MSW) using an analytical gas flow and transport model was evaluated. A series of pressure transducers were buried in a MSW landfill and in situ pressures were modelled using an algorithm that predicts soil-gas pressures based on field-measured barometric pressure data and vertical diffusivity. The vertical gas diffusivity that represented the best-fit of the measured pressures was estimated at 20 locations and ranged from 0.002 to 0.052 m2 s(-1). The vertical gas permeability ranged from 3.3 × 10(-14) to 4.5 × 10(-12) m2 for the upper-most 3 to 6 m of compacted MSW. The shortfalls of applying this method to landfill conditions are also discussed.

  20. Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV (DRAFT)

    NASA Technical Reports Server (NTRS)

    Straus, John; Ball, Tyler; OHara, William; Barido, Richard

    2011-01-01

    Computational Fluid Dynamics (CFD) is used to model the flow field in the Orion CEV cabin. The CFD model employs a momentum model used to account for the effect of supply grilles on the supply flow. The momentum model is modified to account for non-uniform velocity profiles at the approach of the supply grille. The modified momentum model is validated against a detailed vane-resolved model before inclusion into the Orion CEV cabin model. Results for this comparison, as well as that of a single ventilation configuration are presented.

  1. Vertical and horizontal eddy diffusivities and oxygen dissipation rate in the subtropical Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Kawabe, Masaki

    2008-03-01

    A method to estimate vertical and horizontal eddy diffusivities KV and KH was devised with the steady conservation equations of potential temperature and salinity on an isopycnal surface, which approximates a neutral surface. Using this method, which presents the advantage of not having to estimate vertical velocity, the diffusivities at A0 (33°N), B0 (29°N), C0 (25°N), and D0 (21°N) along 165°E in the subtropical Northwest Pacific were estimated with conductivity-temperature-depth profiler (CTD) data. The values of KV at A0 and B0 are characterized by marked vertical changes with the maximum at a depth of 2000-2500 m; they are approximately 0.3 cm 2 s -1 at depths of several hundred meters, increase to 1.1-1.2 at 2000 and 2500 m, and decrease to 0.03 and less than approximately 0.1 at depths greater than 4000 m. The decrease of KV with increasing depth was noted in the deep layer at C0. On the other hand, KV is relatively constant at 0.97-1.1 cm 2 s -1 in the intermediate layer at C0 and is approximately 1.1 at full depth at D0. The large KV at D0 is probably due to the generation and reflection of internal gravity waves at the Mid-Pacific Seamounts. The vertical changes indicate that KV depends on the Brunt-Väisälä frequency N, and this dependence on N shows the characteristics of wave field that causes turbulence. The value of KV in the intermediate layer (typically 500-2000 m) is proportional to N-1.0 at A0 and B0 because of internal gravity waves that are in a narrow band with nearly a single frequency. The intermediate-layer KV at C0 and the full-depth KV at D0 are little dependent on N because of internal gravity waves that are in a multi-wave field described by the Garrett-Munk spectrum. The value of KV in the deep layer (2250-4000 m) at A0, B0, and C0 is proportional to nearly N4.1 because of internal Rossby waves. The difference in waves causing turbulence between the intermediate and deep layers may produce the difference in the N-dependence of

  2. Ocean Turbulence. Paper 2; One-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.

  3. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  4. Concurrent particle diffusion and sedimentation measurements using two-dimensional tracking in a vertical sample arrangement

    NASA Astrophysics Data System (ADS)

    Haiden, Christoph; Wopelka, Thomas; Jech, Martin; Keplinger, Franz; Vellekoop, Michael J.

    2016-02-01

    This letter reports a method for simultaneous tracking of Brownian motion and superimposed sedimentation movement of multiple micro- and nanoparticles in liquid. Simple two-dimensional particle tracking can be employed because the thin liquid sample film is arranged vertically and viewed from the side with a dark field video microscopy setup. Therefore, both diffusion and sedimentation can be used for particle size calculation, allowing analyses over a wide range of sizes and mass densities. To validate the method, size distributions of reference particles with known density and diameters ranging from 100 nm to 6 μm were determined. Brownian motion for size calculation is useful for sufficiently small particles, whereas sedimentation can only be applied if there is significant settling motion superimposed on Brownian motion (which requires large diameters and/or densities). Within a certain range, both principles are suitable for size measurements. As a consequence, this method can be used to determine the size and density of unknown particles in a single measurement step, provided that they exhibit both sedimentation and diffusive motion.

  5. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    DTIC Science & Technology

    2013-03-01

    transport through thermohaline staircases in the Arctic region. Results revealed that vertical fluxes exceeded those of extant “four-thirds flux...vertical heat flux, thermohaline staircase 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...DNS) were conducted to assess the vertical heat transport through thermohaline staircases in the Arctic region. Results revealed that vertical

  6. Vertical Distributions of Pulmonary Diffusing Capacity and Capillary Blood Flow in Man

    PubMed Central

    Michaelson, Edward D.; Sackner, Marvin A.; Johnson, Robert L.

    1973-01-01

    In six normal upright subjects, a 100 mol bolus—composed of equal parts of neon, carbon monoxide, and acetylene (Ne, CO, and C2H2)—was inspired from either residual volume (RV) or functional residual capacity (FRC) during a slow inspiration from RV to total lung capacity (TLC). After breath holding and subsequent collection of the exhalate, diffusing capacity and pulmonary capillary blood flow per liter of lung volume (DL/VA and Q̇C/VA) were calculated from the rates of CO and C2H2 disappearances relative to Ne. The means: DL/VA = 5.26 ml/min × mm Hg per liter (bolus at RV), 6.54 ml/min × mm Hg per liter (at FRC); Q̇C/VA 0.537 liters/minute per liter (bolus at RV), 0.992 liters/minute per liter (at FRC). Similar maneuvers using Xenon-133 confirmed that, during inspiration, more of the bolus goes to the upper zone if introduced at RV and more to the lower, if at FRC. A lung model has been constructed which describes how DL/VA and Q̇C/VA must be distributed to satisfy the experimental data. According to this model, there is a steep gradient of Q̇C/VA, increasing from apex to base, similar to that previously determined by other techniques—and also a gradient in the same direction, although not as steep, for DL/VA. This more uniform distribution of DL/VA compared with Q̇C/VA indicates a vertical unevenness of diffusing capacity with respect to blood flow (DL/Q̇C). However, the relative degree of vertical unevenness of DL/VA compared with Q̇C/VA can account only in part for previous observations attributed to the inhomogeneity of DL/VA and Q̇C/VA. Thus, a more generalized unevennes of these ratios must exist throughout the lung, independent of gravitation. Images PMID:4683876

  7. Comparison of three vertical diffusion schemes in the SARMAP air quality model with integrated process rate analysis method and continuous process composition and source receptor methodology

    NASA Astrophysics Data System (ADS)

    Wang, Zion Shay

    The purpose of this research is to explain how three different vertical diffusion schemes in the SARMAP Air Quality Model (SAQM) affect simulation results. Vertical diffusion describes turbulent mixing of species in the vertical direction. The three vertical diffusion schemes used here are the K-theory, the asymmetrical convective mixing, and the turbulent transilient theory. I have also implemented the Integrated Process Rate Analysis method (IPRAM) and the Continuous Process Composition and Source Receptor (CPCSR) methodology into SAQM to explain the origins of the differences among these three vertical diffusion schemes for the August 3-6, 1990 ozone episode in the San Joaquin Valley, CA. I show that the use of different vertical diffusion schemes has a major impact on model predictions. Vertical diffusion redistributes the species mixing ratios in the vertical and thus affects advection in the horizontal, as well as the vertical direction. Eventually, the chemistry in each grid cell was impacted by the different species mixing ratio that resulted from the differences in transport. The results also show that the two non-local methods (turbulent transilient and asymmetrical convective methods) are more vertically diffusive than the local K- theory. The asymmetrical convective model caused most vertical diffusion and the semi-implicit K-theory caused least vertical diffusion. A three-dimensional analysis is necessary to determine the area that influenced ozone mixing ratio at a particular region. Due to the nonlinear nature of ozone formation, it is insufficient to only examine species mixing ratios. All model processes need to be examined to provide a full explanation of the model's results. My IPRAM results revealed that the mass correction and ozone deposition processes were sometimes the dominate processes in the model's predictions. This had not been previously understood in the model's evaluation. My results suggest that the CPCSR methodology is very useful

  8. Vertical-type chiroptical spectrophotometer (I): instrumentation and application to diffuse reflectance circular dichroism measurement.

    PubMed

    Harada, Takunori; Hayakawa, Hiroshi; Kuroda, Reiko

    2008-07-01

    We have designed and built a novel universal chiroptical spectrophotometer (UCS-2: J-800KCMF), which can carry out in situ chirality measurement of solid samples without any pretreatment, in the UV-vis region and with high relative efficiency. The instrument was designed to carry out transmittance and diffuse reflectance (DR) circular dichroism (CD) measurements simultaneously, thus housing two photomultipliers. It has a unique feature that light impinges on samples vertically so that loose powders can be measured by placing them on a flat sample holder in an integrating sphere. As is our first universal chiroptical spectrophotometer, UCS-1, two lock-in amplifiers are installed to remove artifact signals arising from macroscopic anisotropies which are unique to solid samples. High performance was achieved by theoretically analyzing and experimentally proven the effect of the photoelastic modulator position on the CD base line shifts, and by selecting high-quality optical and electric components. Measurement of microcrystallines of both enantiomers of ammonium camphorsulfonate by the DRCD mode gave reasonable results.

  9. Vertical-type chiroptical spectrophotometer (I): Instrumentation and application to diffuse reflectance circular dichroism measurement

    NASA Astrophysics Data System (ADS)

    Harada, Takunori; Hayakawa, Hiroshi; Kuroda, Reiko

    2008-07-01

    We have designed and built a novel universal chiroptical spectrophotometer (UCS-2: J-800KCMF), which can carry out in situ chirality measurement of solid samples without any pretreatment, in the UV-vis region and with high relative efficiency. The instrument was designed to carry out transmittance and diffuse reflectance (DR) circular dichroism (CD) measurements simultaneously, thus housing two photomultipliers. It has a unique feature that light impinges on samples vertically so that loose powders can be measured by placing them on a flat sample holder in an integrating sphere. As is our first universal chiroptical spectrophotometer, UCS-1, two lock-in amplifiers are installed to remove artifact signals arising from macroscopic anisotropies which are unique to solid samples. High performance was achieved by theoretically analyzing and experimentally proven the effect of the photoelastic modulator position on the CD base line shifts, and by selecting high-quality optical and electric components. Measurement of microcrystallines of both enantiomers of ammonium camphorsulfonate by the DRCD mode gave reasonable results.

  10. Comparison of in vitro release rates of acyclovir from cream formulations using vertical diffusion cells.

    PubMed

    Nallagundla, Sumalatha; Patnala, Srinivas; Kanfer, Isadore

    2014-08-01

    Acyclovir, indicated in the treatment of herpes labialis ("cold sores"), is formulated as semisolid topical dosage forms and marketed in numerous countries. Since the formulations of the various acyclovir products may differ from country to country, this study was undertaken to compare the in vitro release of acyclovir from various generic cream products available on the South African and Indian markets using the respective brand/innovator product as the reference product. The in vitro studies were carried out using vertical diffusion cells with a diffusional surface area of 1.767 cm(2) and various commercially available membranes. Normal saline was used as receptor fluid and the temperature maintained at 32 ± 0.5°C. The in vitro release comparisons were based on the recommendations described in the US Food and Drug Administration Draft Guidance for acyclovir ointment and the SUPAC-SS Guidance for non-sterile semisolid dosage forms. The release rates (slope) of the test (T) and the relevant reference product (R) were monitored and compared. The comparative release of acyclovir from the various generic formulations compared with the reference product was found to be within the limits of 75-133.33% with a 90% confidence interval. These experiments indicate that the generic acyclovir cream formulations exhibited release rates that were comparable to the innovator product and could be considered to be bioequivalent.

  11. [Therapeutic application of collateral ventilation in diffuse pulmonary emphysema: study protocol presentation].

    PubMed

    Saad, Roberto; Dorgan Neto, Vicente; Botter, Marcio; Stirbulov, Roberto; Rivaben, Jorge; Gonçalves, Roberto

    2008-06-01

    We present a protocol to test a new surgical procedure for the treatment of patients with diffuse lung emphysema who, after having received the golden standard treatment (pulmonary rehabilitation), continue to present respiratory failure with disabling dyspnea. Ten patients with severe lung hyperinflation will be evaluated. The method proposed is designed to create alternative expiratory passages for air trapped in the emphysematous lung by draining the lung parenchyma, thereby establishing communication between the alveoli and the external environment. The ten patients selected will be required to meet the inclusion criteria and to give written informed consent. Those ten patients will be included in the study pending the approval of the Ethics in Research Committee of the São Paulo Santa Casa School of Medicine, São Paulo, Brazil. The protocol we will employ in order to evaluate the proposed procedure is feasible and will show whether debilitated patients suffering from diffuse pulmonary emphysema can benefit from this procedure, which could represent an alternative to lung transplant or lung volume reduction surgery, the only options currently available.

  12. A novel method for estimating vertical eddy diffusivities using diurnal signals with application to western Long Island Sound

    NASA Astrophysics Data System (ADS)

    McCardell, Grant; O'Donnell, James

    2009-06-01

    We present an approach that allows the estimation of vertical eddy diffusivity coefficients from buoy measurements made at two or more depths. By measuring the attenuation and phase lag of a scalar signal generated periodically at the surface as it propagates downwards, the vertical eddy diffusivity coefficients can be calculated as Kv = ωΔz2/2ln 2(α 2/α 1), where α 2/α 1 is the ratio of the real amplitudes at frequency ω at the two depths separated by Δ z = z2 - z1; as KV = ωΔ z2/ 2φ2, where φ is the phase lag at the frequency ω; or as Kv = iωΔ z2/ln 2( U2/ U1), where U2/ U1 is the ratio of the complex signal amplitudes at the two depths. The method requires that horizontal fluxes be small at the ω frequency and that the signal-to-noise ratios at the two depths allow the determination of the amplitude and phase of ω. Application of this method to summertime 2004 western Long Island Sound oxygen and temperature buoy measurements at two depths provides a time-series of two-day average vertical eddy diffusivity estimates. Using these eddy diffusivities in conjunction with measured vertical concentration gradients, we obtain a time-series of vertical transport rates for oxygen and heat and estimate mean downward fluxes for June and July as 150-260 mMol m - 2 day - 1 and 100-400 W m - 2 respectively. These estimates are of a similar magnitude to sub-pycnocline O 2 and heat demands of 240 ± 200 mMol m - 2 day - 1 and 180 ± 60 W m - 2 that we infer from simple budgets, implying that vertical transport is significant to both budgets. The eddy coefficients obtained from the independent O 2 and temperature measurements have a 68% correlation, and the O 2 flux estimates show a correlation of 41% to measured rates of change in bottom dissolved oxygen levels. Our results indicate that extended time-series of eddy diffusivity coefficients can be obtained from in situ buoy measurements and the method shows promise as a way to constrain the vertical transport

  13. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  14. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  15. Sensitivity of Urban Airshed Model (UAM-IV) calculated air pollutant concentrations to the vertical diffusion parameterization during convective meteorological situations

    SciTech Connect

    Nowacki, P.; Samson, P.J.; Sillman, S.

    1996-10-01

    It is shown that Urban Airshed Model (UAM-IV) calculated air pollutant concentrations during photochemical smog episodes in Atlanta, Georgia, depend strongly on the numerical parameterization of the daytime vertical diffusivity. Results found suggest that vertical mixing is overestimated by the UAM-IV during unstable daytime conditions, as calculated vertical diffusivity values exceed measured and comparable literature values. Although deviations between measured and UAM-IV calculated air pollutant concentrations may only in part be due the UAM-IV diffusivity parameterization, results indicate the large error potential in vertical diffusivity parameterization. Easily implemented enhancements to UAM-IV algorithms are proposed, thus improving UAM-IV modeling performance during unstable stratification. 38 refs., 14 figs., 1 tab.

  16. Nondestructive measurement of thermal contact resistance for the power vertical double-diffused metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Li, Rui; Guo, Chun-Sheng; Feng, Shi-Wei; Shi, Lei; Zhu, Hui; Wang, Lin

    2015-07-01

    To obtain thermal contact resistance (TCR) between the vertical double-diffused metal-oxide-semiconductor (VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results. Project supported by the National Natural Science Foundation of China (Grant No. 61204081).

  17. Ocean Turbulence. Paper 3; Two-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.

    1999-01-01

    In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point

  18. Vertical excitation profile in diffusion injected multi-quantum well light emitting diode structure

    NASA Astrophysics Data System (ADS)

    Riuttanen, L.; Kivisaari, P.; Svensk, O.; Vasara, T.; Myllys, P.; Oksanen, J.; Suihkonen, S.

    2015-03-01

    Due to their potential to improve the performance of light-emitting diodes (LEDs), novel device structures based on nanowires, surface plasmons, and large-area high-power devices have received increasing amount of interest. These structures are almost exclusively based on the double hetero junction (DHJ) structure, that has remained essentially unchanged for decades. In this work we study a III-nitride diffusion injected light-emitting diode (DILED), in which the active region is located outside the pn-junction and the excitation of the active region is based on bipolar diffusion of charge carriers. This unorthodox approach removes the need of placing the active region in the conventional current path and thus enabling carrier injection in device structures, which would be challenging to realize with the conventional DHJ design. The structure studied in this work is has 3 indium gallium nitride / gallium nitride (InGaN/GaN) quantum wells (QWs) under a GaN pn-junction. The QWs are grown at diferent growth temperatures for obtaining distinctive luminescence peaks. This allows to obtain knowledge on the carrier diffusion in the structure. When the device is biased, all QWs emit light indicating a significant diffusion current into the QW stack.

  19. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    SciTech Connect

    Turkulets, Yury; Silber, Amir; Ripp, Alexander; Sokolovsky, Mark; Shalish, Ilan

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model the process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.

  20. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  1. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    PubMed

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level.

  2. Anaesthesia ventilators

    PubMed Central

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  3. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    PubMed Central

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-01-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088

  4. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  5. The effect of vertical advection and diffusion on nutrient supply to the euphotic zone: a model study of the Iceland-Faeroes Front

    NASA Astrophysics Data System (ADS)

    Popova, E.; Srokosz, M.

    2006-12-01

    This paper examines the effect of vertical advection and vertical diffusion on the supply of nutrients to the euphotic zone. This is done using a high resolution coupled biological-physical model, that has previously been used to reproduce in situ and satellite observations of physical and biological variability at the Iceland Faeroes Front (IFF). Oligotrophic conditions are imposed in the model in order to examine the vertical flux of nutrients.The results show that, while instantaneous vertical advective fluxes of nutrients can be much larger than vertical diffusive ones, over a period of days the latter act consistently to supply nutrients to the euphotic zone. In contrast, the spatially and temporally varying nature of the vertical velocity field means that there is no consistent vertical advective flux of nutrients. This suggests that for real "messy" complex flows, such as the one modelled here, ageostrophic vertical velocities induced by eddies and frontal meanders may not play as important a role in supplying nutrient to the euphotic zone, and in enhancing biological production there, as has previously been thought.

  6. Vertically Bounded Double Diffusive Convection in the Finger Regime: Comparing No-Slip versus Free-Slip Boundary Conditions.

    PubMed

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2016-10-28

    Vertically bounded fingering double diffusive convection is numerically investigated, focusing on the influences of different velocity boundary conditions, i.e., the no-slip condition, which is inevitable in the lab-scale experimental researches, and the free-slip condition, which is an approximation for the interfaces in many natural environments, such as the oceans. For both boundary conditions the flow is dominated by fingers and the global responses follow the same scaling laws, with enhanced prefactors for the free-slip cases. Therefore, the laboratory experiments with the no-slip boundaries serve as a good model for the finger layers in the ocean. Moreover, in the free-slip case, although the tangential shear stress is eliminated at the boundaries, the local dissipation rate in the near-wall region may exceed the value found in the no-slip cases, which is caused by the stronger vertical motions of horizontally focused fingers and sheet structures near the free-slip boundaries. This counterintuitive result might be relevant for properly estimating and modeling the mixing and entrainment phenomena at free surfaces and interfaces widespread in oceans and geophysical flows.

  7. Measurement and modeling of gate–drain capacitance of silicon carbide vertical double-diffused MOSFET

    NASA Astrophysics Data System (ADS)

    Shintani, Michihiro; Nakamura, Yohei; Hiromoto, Masayuki; Hikihara, Takashi; Sato, Takashi

    2017-04-01

    Silicon carbide (SiC) is considered as one of the key materials to realizing device operations in high-temperature, high-frequency, and high-power applications. When designing circuits in such applications, an accurate simulation model for SiC power MOSFETs is important. Among others, the gate–drain capacitance, C gd, is particularly important in building the SiC MOSFET model because the capacitance significantly affects switching behavior of the device. In this paper, a C gd model, which is based on a unified representation of surface potential, is proposed for enhancing the accuracy of circuit simulations. By considering the operation of vertical power SiC MOSFETs, the proposed capacitance model correctly accounts for the capacitance modulation effect due to the channel that is formed when the gate voltage is higher than the drain voltage. In addition, a C gd measurement method is also proposed in order to characterize C gd in a wider voltage range. Through experiments using a commercial SiC power MOSFET, it is demonstrated that the proposed model successfully approximates the capacitance in a wide range of bias voltages without stitching separate equations. It is also demonstrated that the proposed model is twice as accurate as the conventional one.

  8. Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    Since the early forties, one-point turbulence closure models have been the canonical tools used to describe turbulent flows in many fields. In geophysics, Mellor and Yamada applied such models using the 1980 state-of-the art. Since then, no improvements were introduced to alleviate two major difficulties: 1) closure of the pressure correlations, which affects the correct determination of the critical Richardson number Ri(sub cr) above which turbulent mixing is no longer possible and 2) the need to express the non-local third-order moments (TOM) in terms of lower order moments rather than via the down-gradient approximation as done thus far, since the latter seriously underestimates the TOMs. Since 1) and 2) are still being dealt with adjustable parameters which weaken the credibility of the models, alternative models, not based on turbulence modeling, have been suggested. The aim of this paper is to show that new information, partly derived from the newest 2-point closure model discussed, can be used to solve these shortcomings. The new one-point closure model, which in its simplest form is algebraic and thus simple to implement, is first shown to reproduce a variety of data. Then, it is used in a Ocean-General Circulation Model (O-GCM) where it reproduces well a large variety of ocean data. While phenomenological models are specifically tuned to ocean turbulence, the present model is not. It is first tested against laboratory data on stably stratified flows and then used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality, etc. One important feature that naturally comes out of the new model is that the predicted Richardson critical value Ri(sub cr) is Ri (sub cr approx. = 1) in agreement with both Large Eddy Simulations (LES) and empirical evidence while all previous models predicted Ri (sub cr approx. = 0.2) which led to a considerable

  9. Assisted Ventilation.

    PubMed

    Dries, David J

    2016-01-01

    Controlled Mechanical Ventilation may be essential in the setting of severe respiratory failure but consequences to the patient including increased use of sedation and neuromuscular blockade may contribute to delirium, atelectasis, and diaphragm dysfunction. Assisted ventilation allows spontaneous breathing activity to restore physiological displacement of the diaphragm and recruit better perfused lung regions. Pressure Support Ventilation is the most frequently used mode of assisted mechanical ventilation. However, this mode continues to provide a monotonous pattern of support for respiration which is normally a dynamic process. Noisy Pressure Support Ventilation where tidal volume is varied randomly by the ventilator may improve ventilation and perfusion matching but the degree of support is still determined by the ventilator. Two more recent modes of ventilation, Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist (NAVA), allow patient determination of the pattern and depth of ventilation. Proposed advantages of Proportional Assist Ventilation and NAVA include decrease in patient ventilator asynchrony and improved adaptation of ventilator support to changing patient demand. Work of breathing can be normalized with these modes as well. To date, however, a clear pattern of clinical benefit has not been demonstrated. Existing challenges for both of the newer assist modes include monitoring patients with dynamic hyperinflation (auto-positive end expiratory pressure), obstructive lung disease, and air leaks in the ventilator system. NAVA is dependent on consistent transduction of diaphragm activity by an electrode system placed in the esophagus. Longevity of effective support with this technique is unclear.

  10. EFFECT OF FLOW CHARACTERISTICS ON DO DISTRIBUTION IN A FULL SCALE OXIDATION DITCH WITH DIFFUSED AERATION AND VERTICAL FLOW BOOSTERS

    NASA Astrophysics Data System (ADS)

    Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi

    The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.

  11. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends.

    PubMed

    Campoy-Quiles, Mariano; Ferenczi, Toby; Agostinelli, Tiziano; Etchegoin, Pablo G; Kim, Youngkyoo; Anthopoulos, Thomas D; Stavrinou, Paul N; Bradley, Donal D C; Nelson, Jenny

    2008-02-01

    Control of blend morphology at the microscopic scale is critical for optimizing the power conversion efficiency of plastic solar cells based on blends of conjugated polymer with fullerene derivatives. In the case of bulk heterojunctions of regioregular poly(3-hexylthiophene) (P3HT) and a soluble fullerene derivative ([6,6]-phenyl C61-butyric acid methyl ester, PCBM), both blend morphology and photovoltaic device performance are influenced by various treatments, including choice of solvent, rate of drying, thermal annealing and vapour annealing. Although the protocols differ significantly, the maximum power conversion efficiency values reported for the various techniques are comparable (4-5%). In this paper, we demonstrate that these techniques all lead to a common arrangement of the components, which consists of a vertically and laterally phase-separated blend of crystalline P3HT and PCBM. We propose a morphology evolution that consists of an initial crystallization of P3HT chains, followed by diffusion of PCBM molecules to nucleation sites, at which aggregates of PCBM then grow.

  12. Diagnostic potential of open lung biopsy in mechanically ventilated patients with diffuse pulmonary infiltrates of unclear aetiology.

    PubMed

    Depuydt, O E; Daeze, C; Benoit, D; Praet, M; Vermassen, E; Decruyenaere, M

    2013-09-01

    Acute respiratory failure with bilateral pulmonary infiltrates is a clinical problem with a wide differential diagnosis. We evaluated whether open lung biopsy offered a diagnosis and therapeutic guidance in cases of unclear diagnosis after non-invasive tests. For this purpose, we reviewed 60 cases of open lung biopsy performed between 2002 and 2009 in patients with acute respiratory failure and bilateral infiltrates at the intensive care unit of Ghent University Hospital. Pathological diagnosis was classified as specific or non-specific and its contribution to therapy and decision-making was evaluated by a panel of three intensive care unit physicians. We found that a specific pathological diagnosis was present in 39 open lung biopsy patients (65%; 95% confidence interval 52 to 76%): idiopathic interstitial pneumonia in 24 patients, malignancy in four patients, pulmonary infectious disease in nine patients, and a combination of specific diagnoses in two patients. Open lung biopsy contributed to patient management in 53 cases (88%) as it led to the initiation, modification or discontinuation of therapeutic drugs in 36, and contributed to the decision to continue or withdraw ventilator support in 17. Complications of open lung biopsy were noted in 14 patients (23%). We conclude that open lung biopsy was a useful diagnostic intervention in of a selected group of patients with acute respiratory failure and bilateral infiltrates of unclear clinical diagnosis, as it offered a specific diagnosis in 65%.

  13. A numerical study of primary production related to vertical turbulent diffusion with special reference to vertical motions of the phytoplankton cells in nutrient and light fields

    NASA Astrophysics Data System (ADS)

    Zakardjian, Bruno; Prieur, Louis

    1994-08-01

    Assuming stationary physical processes, in particular the light field and turbulent activity [ K( z)], we described steady-state and convergent solutions obtained from a simple time-dependent vertical model of phytoplankton dynamics. Simulations included vertical turbulent motions experienced by the cells in the light and nutrient fields. Parallel simulations made with a classical formulation of phytoplankton growth, i.e., neglecting vertical turbulent motions, are discussed. From two typical situations of stratification in the Western Mediterranean, we identified two distinct systems of new production, as the consequence of Low (LTR) and High Turbulent Regime (HTR) in the photic zone respectively. Data from the Prolig-II (1985) and Almofront-I (1991) cruises supported the LTR system of new production. The results of the second part of the Mediprod-I (1969) cruise show several patterns that specifically appeared in the HTR simulation. Regenerated production was not influenced by the turbulent activity situation. In natural conditions, regenerated production depends on the specific phytoplankton-grazers system that develops according to the level of new production; such ecological dynamics were not considered in our model. Differences with the reference model changed the relationships between the vertical distributions of biomass and new production. Particularly, the HTR simulation led to distinct vertical distribution of biomass and new production. Such a pattern did not occur with the reference model. Although the vertical turbulent motions affected both the level and vertical distribution of new production, a significant effect on the depth-integrated production finally depends on how the phytoplankton biomass interacts with its environmental conditions. It is shown that the minimum of K( z) in the euphotic zone determined the system of new production, whereas its values below the euphotic zone scaled the production and biomass levels. The two distinct systems of

  14. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  15. Source term evaluation for postulated UF{sub 6} release accidents in gaseous diffusion plants -- Summer ventilation mode (non-seismic cases)

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1996-12-30

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.

  16. Thermal radiation effect on mixed convection heat and mass transfer of a non-Newtonian fluid over a vertical surface embedded in a porous medium in the presence of thermal diffusion and diffusion-thermo effects

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. A. A.; Megahed, A. M.

    2013-01-01

    Thermal radiation, thermal diffusion, and diffusion-thermo effects on heat and mass transfer by mixed convection of non-Newtonian power-law fluids over a vertical permeable surface embedded in a saturated porous medium are investigated. The governing equations describing the problem are non-dimensionalized and transformed into a non-similar form. The transformed equations are solved by using the local non-similarity method combined with the shooting technique. The effects of the physical parameters of the problem on the fluid temperature and concentration are illustrated graphically and analyzed. Also, the effects of the pertinent parameters on the local Nusselt number and the local Sherwood number are presented.

  17. Performance improvements of the vertical, double-diffused power metal-oxide-silicon field-effect transistor

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua

    An n-channel power vertical double-diffused metal-oxide-silicon field-effect transistor (VDMOSFET) with a new atomic-lattice-layout (ALL) has been designed and fabricated. The performance of the VDMOSFET with the ALL has been studied experimentally and comprehensively for the first time. The experimental results with the ALL are compared with the square (SQ), hexagonal (HEX) and stripe (STR) layouts for different applications. For high-frequency applications of VDMOSFET, the ALL is superior to the HEX and inferior to the STR. The optimum specific on-resistance and input capacitance product (Rsb{ON,SP} × Csb{iss,SP}) and optimum specific on-resistance and output capacitance product (Rsb{ON,SP} × Csb{oss,SP}) for the ALL are 44% and 36% lower than the HEX, and 10% and 13% higher than the STR, respectively. The ALL offers superior performance compared to the SQ for applications involving smart power feedback control using integrated current sensor. For a typical sense resistance of 100 Omega, the sense current drops 44% of its value at 0 Omega for the SQ, but only 11% for the ALL. For high-voltage and high-current applications, such as voltage-controlled current source, one observes that the ALL enters into quasi-saturation region at lower gate voltage (Vsb{G}). Typically, quasi-saturation occurs at Vsb{G} of 3V above the threshold voltage (Vsb{T}) for ALL, whereas this voltage is 5 and 6V for the STR and HEX, respectively. Minority carrier lifetime control by proton implantation has been successfully employed to improve the VDMOSFET built-in diode switching performance for the first time. A sevenfold reduction in reverse recovery charge has been achieved with a proton energy of 2.5 MeV and dose of 3 × 10sp{11}/cmsp2. The impact of proton implantation on diode forward voltage and the VDMOSFET characteristics, such as Vsb{T}, leakage current and on-resistance, has been found negligible. Proton implantation has also been found to significantly improve the device

  18. Upwelling Rates and Vertical Diffusivities Determined During the 2013 US GEOTRACES Eastern Tropical Pacific Zonal Transect: Results from 7Be Analysis

    NASA Astrophysics Data System (ADS)

    Kadko, D. C.

    2014-12-01

    Upwelling is an important physical process affecting biogeochemical cycling within the global ocean. Direct measurements are difficult because of the relatively small velocities involved, and must therefore be inferred by indirect methods such as those provided by tracer observations. Measurements of the cosmogenic radioisotope 7Be (half-life = 53.3 d) were used to derive upwelling rates and upper thermocline vertical diffusivities during the 2013 US GEOTRACES Eastern Tropical Pacific Zonal Transect. In the eastern, upwelling zone of this transect, the 7Be activity in the mixed layer varied between low values of 63 dpm/m3 in areas with the coldest sea surface temperatures (SSTs) to values of 190 dpm/m3 associated with warm SSTs. The 7Be inventory in the coldest water was only 5,150 dpm/m2 while that in the warmer water was 19,000 dpm/m2. The decrease in mixed layer 7Be with decrease in temperature occurs as 7Be ''dead'', cold water is upwelled from below. The deficit of the 7Be inventory relative to the non-upwelling stations provides a measure of the upwelling rate. For the eastern-most station with the lowest SST (17.6 deg C) an upwelling rate of 2.56 m/d was derived. Towards the west, as SST increased, derived upwelling rates decreased. At SST of 20.9 deg C, upwelling was zero. With knowledge of upwelling rates, 7Be and temperature profiles were used to constrain vertical diffusivity within the upper thermocline. Diffusivities derived from 7Be profiles were approximately twice that derived from temperature, likely reflecting the difference in vertical resolution of these measurements. Diffusivities derived from temperature were on the order of 1-4 x 10-4 m2/s. These parameters will be applied to profiles of nutrients and trace elements to derive fluxes of these species into the mixed layer.

  19. Demand Controlled Ventilation and Classroom Ventilation

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  20. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... not apply to closed ventilation systems for motors or generators, diffuser fans for refrigerated... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  1. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not apply to closed ventilation systems for motors or generators, diffuser fans for refrigerated... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  2. Time-decay Memristive Behavior and diffusive dynamics in one forget process operated by a 3D vertical Pt/Ta2O5-x/W device.

    PubMed

    Wang, Qi; He, Deyan

    2017-04-11

    A time-decay resistive switching memory using a 3D vertical Pt/Ta2O5-x/W device architecture is demonstrated, in which horizontal W electrodes were fabricated, and vertical Pt electrodes was formed at the sidewall after oxide was deposited. Unlike conventional resistive switching, which usually form a conductive filament connect two electrodes, a weak conductive filament was formed from bottom electrode W to near top electrode Pt. The memory can be recovered with a time scale when the electrical stimulation is removed. However, different decay behaviors were observed in one decay curve, including rapid decay and slow decay processes. This can be a good simulation of different stages of forgetting. By a combination of the current decay fitting and the conductive analysis, the rapid decay and slow decay processes correspond to ion diffusion and electron detrapping, respectively.

  3. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    PubMed Central

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  4. Lie symmetry analysis of a double-diffusive free convective slip flow with a convective boundary condition past a radiating vertical surface embedded in a porous medium

    NASA Astrophysics Data System (ADS)

    Afify, A. A.; Uddin, Md. J.

    2016-09-01

    A numerical study of a steady two-dimensional double-diffusive free convection boundary layer flow over a vertical surface embedded in a porous medium with slip flow and convective boundary conditions, heat generation/absorption, and solar radiation effects is performed. A scaling group of transformations is used to obtain the governing boundary layer equations and the boundary conditions. The transformed equations are then solved by the fourth- and fifth-order Runge-Kutta-Fehlberg numerical method with Maple 13. The results for the velocity, temperature, and concentration profiles, as well as the skin friction coefficient, the Nusselt number, and the Sherwood number are presented and discussed.

  5. Double-diffusive mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled by a nanofluid

    NASA Astrophysics Data System (ADS)

    Yasin, Mohd Hafizi Mat; Ishak, Anuar

    2016-11-01

    The objective of this study is to investigate the effects of mass suction on double diffusive mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled by a nanofluid using Buongiorno's model. The appropriate similarity transformation is used to reduce the partial differential equations into a system of ordinary differential equation, which is then solved numerically using a shooting method. The effects of mass suction parameter on the flow field and heat transfer characteristics are presented and discussed.

  6. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  7. Mechanical Ventilation

    MedlinePlus

    ... cared for in a hospital’s intensive care unit (ICU). People who need a ventilator for a longer time may be in a regular unit of a hospital, a rehabilitation facility, or cared for at home. Why are ...

  8. Combined Influence of Thermal Diffusion and Diffusion Thermo on Unsteady MHD Free Convective Fluid Flow Past an Infinite Vertical Porous Plate in Presence of Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Srinivasa Raju, Rallabandi

    2016-10-01

    The present investigation is concerned with the effects of thermal diffusion (Soret) and diffusion thermo (Dufour) on an unsteady MHD free convective flow with heat and mass transfer of an electrically conducting fluid in the presence of chemical reaction. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The problem is governed by coupled non-linear partial differential equations with appropriate boundary conditions. A finite element numerical solution is developed to solve the resulting well-posed two-point boundary value problem. The present numerical results are compared with available data and are found in an excellent agreement. The expressions for velocity, temperature and concentration fields are obtained. With the aid of these, the expressions for the coefficient of skin-friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are derived. Finally the effects of various physical parameters of the flow quantities are studied with the help of graphs and tables.

  9. 46 CFR 78.47-53 - Automatic ventilation dampers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Automatic ventilation dampers. 78.47-53 Section 78.47-53... Fire and Emergency Equipment, Etc. § 78.47-53 Automatic ventilation dampers. (a) The manual operating positions for automatic fire dampers in ventilation ducts passing through main vertical zone bulkheads shall...

  10. 46 CFR 78.47-53 - Automatic ventilation dampers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Automatic ventilation dampers. 78.47-53 Section 78.47-53... Fire and Emergency Equipment, Etc. § 78.47-53 Automatic ventilation dampers. (a) The manual operating positions for automatic fire dampers in ventilation ducts passing through main vertical zone bulkheads shall...

  11. 46 CFR 78.47-53 - Automatic ventilation dampers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Automatic ventilation dampers. 78.47-53 Section 78.47-53... Fire and Emergency Equipment, Etc. § 78.47-53 Automatic ventilation dampers. (a) The manual operating positions for automatic fire dampers in ventilation ducts passing through main vertical zone bulkheads shall...

  12. 46 CFR 78.47-53 - Automatic ventilation dampers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Automatic ventilation dampers. 78.47-53 Section 78.47-53... Fire and Emergency Equipment, Etc. § 78.47-53 Automatic ventilation dampers. (a) The manual operating positions for automatic fire dampers in ventilation ducts passing through main vertical zone bulkheads shall...

  13. 46 CFR 78.47-53 - Automatic ventilation dampers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Automatic ventilation dampers. 78.47-53 Section 78.47-53... Fire and Emergency Equipment, Etc. § 78.47-53 Automatic ventilation dampers. (a) The manual operating positions for automatic fire dampers in ventilation ducts passing through main vertical zone bulkheads shall...

  14. Liquid ventilation

    PubMed Central

    Sarkar, Suman; Paswan, Anil; Prakas, S.

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported. PMID:25886321

  15. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  16. [Mechanical ventilator].

    PubMed

    Kimura, Akio; Hashimoto, S

    2009-07-01

    The development of the computer technology brought reform in the field of medical equipment. Originally the mechanical ventilator was an instrument only as for running by pressure and the tool that let you breathe. However, it has a function to assist a measurement (tidal volume, peek pressure, etc.) and to wean from a ventilator. There is a case to use a mechanical ventilator for after a chest surgical operation. After the operation without the complication, it seems that there is not the special administration. However, special respiratory management is necessary in case of chronic respiratory failure and acute lung injury, acute respiratory distress syndrome. Therefore I introduce a method to use a respirator after an operation in our institution.

  17. Nasal ventilation.

    PubMed Central

    Simonds, A. K.

    1998-01-01

    Nasal intermittent positive pressure ventilation is likely to have an increasing role in the management of acute ventilatory failure, weaning, and chronic ventilatory problems. Further improvements in ventilator and mask design will be seen. Appropriate application is likely to reduce both mortality and admissions to intensive care, while domiciliary use can improve life expectancy and/or quality of life in chronic ventilatory disorders. As with any new technique, enthusiasm should not outweigh clear outcome information, and possible new indications should always be subject to careful assessment. Images Figure 2 PMID:9799887

  18. Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition

    PubMed Central

    Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360

  19. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    PubMed

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  20. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  1. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  2. Hydrodynamic and thermal slip effect on double-diffusive free convective boundary layer flow of a nanofluid past a flat vertical plate in the moving free stream.

    PubMed

    Khan, Waqar A; Uddin, Md Jashim; Ismail, A I Md

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters.

  3. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    PubMed Central

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-01-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371

  4. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser.

    PubMed

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-17

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  5. [Modalities of mechanical ventilation].

    PubMed

    Subirana, M; Bazan, P

    2000-01-01

    Mechanical ventilation improves the symptoms and reduces complications of acute respiratory failure. Recent advances in microprocessor technology have increased the sophistication of mechanical ventilators, thus leading to new ventilation modalities. This article describes the ventilation modalities available, grouping them as conventional, alternative and new modalities. Conventional ventilation includes the most widely used modalities, alternative ventilation includes less frequently used modalities, and new ventilation modalities include recently introduced options that are available on the latest-generation mechanical ventilators.

  6. Ventilator waveforms.

    PubMed

    Mellema, Matthew S

    2013-08-01

    Ventilator waveforms are graphic representations of changes in pressure, flow, and volume within a ventilator circuit. The changes in these parameters over time may be displayed individually (scalars) or plotted one against another (pressure-volume and flow-volume loops). There are 6 basic shapes of scalar waveforms, but only 3 are functionally distinct (square, ramp, and sine). The pressure scalar is a particularly valuable tool when constant flow (e.g., volume control) modes are employed and an inspiratory pause is added. In this setting, inspection of the pressure waveform can allow determination of static, quasistatic, and dynamic compliance, as well as relative changes in airway resistance. Inspection of the pressure waveform can also help to identify many important aspects of patient drug responses, dyssynchrony, and air trapping (auto positive end-expiratory pressure [auto-PEEP]). Depending on the ventilation mode employed, the shape of the flow waveform may be set by the ventilator operator or may be dependent on patient effort and lung mechanics. Decelerating flow patterns have several important advantages when this option is available. Inspection of flow waveforms is crucial in the recognition of dyssynchrony, setting optimal inspiratory times, evaluating responses to bronchodilators, and the recognition of auto-PEEP. The volume waveform often contains somewhat less useful information than the other 2 scalars, but plays a crucial role in the identification of leaks in the circuit. Pressure-volume loops are particularly useful in setting PEEP and peak inspiratory pressure ranges. Inspection of these loops also often helps in the evaluation of lung mechanics, in the identification of circuit leaks, and in the assessment of patient triggering effort. Flow-volume loops are extremely useful in the identification of leaks and excessive airway secretions as well as alterations in airway resistance. Lastly, serial waveform inspection is crucial to the

  7. Steady MHD free convection heat and mass transfer flow about a vertical porous surface with thermal diffusion and induced magnetic field

    NASA Astrophysics Data System (ADS)

    Touhid Hossain, M. M.; Afruz-Zaman, Md.; Rahman, Fouzia; Hossain, M. Arif

    2013-09-01

    In this study the thermal diffusion effect on the steady laminar free convection flow and heat transfer of viscous incompressible MHD electrically conducting fluid above a vertical porous surface is considered under the influence of an induced magnetic field. The governing non-dimensional equations relevant to the problem, containing the partial differential equations, are transformed by usual similarity transformations into a system of coupled non-linear ordinary differential equations and will be solved analytically by using the perturbation technique. On introducing the non-dimensional concept and applying Boussinesq's approximation, the solutions for velocity field, temperature distribution and induced magnetic field to the second order approximations are obtained for large suction with different selected values of the established dimensionless parameters. The influences of these various establish parameters on the velocity and temperature fields and on the induced magnetic fields are exhibited under certain assumptions and are studied graphically in the present analysis. It is observed that the effects of thermal-diffusion and large suction have great importance on the velocity, temperature and induced magnetic fields and mass concentration for several fluids considered, so that their effects should be taken into account with other useful parameters associated. It is also found that the dimensionless Prandtl number, Grashof number, Modified Grashof number and magnetic parameter have an appreciable influence on the concerned independent variables.

  8. Averaging Horizontal-to-Vertical (H/V) Spectral Ratios of Earthquake Motions for Velocity Inversions Based on Diffuse Field Theory for Plane Waves

    NASA Astrophysics Data System (ADS)

    Matsushima, S.; Sanchez-Sesma, F. J.; Kawase, H.

    2010-12-01

    In this work we explore the application of diffuse field concepts to analyze strong motion records at a site in which site effects can be described using a one dimensional (1D) model. For this case we derived a corollary of Claerbout (1968) result for 1D layered medium. We found that the imaginary part of Green function at the free surface is proportional to the square of the absolute value of the corresponding transfer function for a plane, vertically incident wave with unit amplitude. Average strong ground motion in a "sufficiently" flat layered site will be statistically equivalent. We may conceive the illumination as produced by incident plane waves. They represent the most important part of earthquake ground motions. Their associated motions, being multiple scattered, are formed of waves that sample significant portions of the considered area. This is a distinctive feature of earthquake motions, for which the excited domain is large, basically from the source to the receiver. For a set of incoming plane waves (of P, SV, and SH types) with varying azimuths and incidence angles we assume that the ground motion will be spatially homogeneous in a statistical sense. In other words, the average of normalized ground motion spectral densities will depend only on depth. Therefore, we can apply a 1D description of wave propagation for a diffuse (average) field of ground motions. To prove the above hypothesis for H/V ratios of earthquake ground motions, we first show a comparison of averaged synthetics of 1D underground structures with a corresponding simple theoretical prediction from 1D transfer functions. After summing up a few hundreds of synthetics with different angles of incidences, azimuths, and polarizations, we can obtain identical H/V ratios that the simple theory of diffuse field predicts. Then we show several examples of H/V ratios for actual seismic motions observed in Japan. We found that the earthquake H/V ratios are quite stable (and converging rapidly

  9. Ventilation Model and Analysis Report

    SciTech Connect

    V. Chipman

    2003-07-18

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

  10. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Lu, Feiyu; Liu, Zhengyu; Liu, Yun; Zhang, Shaoqing; Jacob, Robert

    2016-08-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  11. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo

    2017-06-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  12. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  13. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices

    PubMed Central

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152

  14. Lake Superior Ventilation and Dissolved Oxygen Cycle

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Tokos, K.; Gregory, C.

    2016-02-01

    Lake Superior is one of the largest lakes in world yet its circulation, especially in the interior, is not well understood. Ventilation rate of the lake interior is key to determining the vertical distribution and fate of natural and anthropogenic tracers. In this study, we utilize "age" and "dye" tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation. We find that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturn following a very cold winter does not completely ventilate the interior. Also, dissolved oxygen in Lake Superior is not a good proxy of ventilation age, as expected from oceanography, because the lake is so strongly physically dominated.

  15. Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer

    NASA Astrophysics Data System (ADS)

    Da, Ma; Xiao-Rong, Luo; Jie, Wei; Qiao, Tan; Kun, Zhou; Jun-Feng, Wu

    2016-04-01

    A new ultra-low specific on-resistance (R on,sp) vertical double diffusion metal-oxide-semiconductor field-effect transistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the R on,sp but also makes the R on,sp almost independent of the n-pillar doping concentration (N n). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the N n, and further reduces the R on,sp. Especially, the two PN junctions within the trench gate support a high gate-drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the R on,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV). Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079) and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2014Z006).

  16. Cross diffusion and MHD effects on a high order chemically reactive micropolar fluid of naturally convective heat and mass transfer past through an infinite vertical porous medium with a constant heat sink

    NASA Astrophysics Data System (ADS)

    Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.

    2017-06-01

    High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.

  17. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  18. The Maximum Drop-Height of a Droplet in a Vertical Countercurrent Water-Air Heat and Moisture Exchange Tower Attached to a Main Fan Diffuser in a Coal Mine

    NASA Astrophysics Data System (ADS)

    Chen, S.; Cui, H.; Wang, H.; Zhao, J.

    2014-10-01

    A vertical countercurrent water-air heat and moisture exchange tower attached to a main fan diffuser is designed. To reduce water loss blown away by the airflow from the exchange tower, the forces acting on droplets are analysed. Droplet motion may be classified under four conditions: (1) downward initial acceleration; (2) upward initial acceleration; (3) droplet blown away by airflow; (4) droplet suspension. With droplet break-up neglected, a general equation for the maximum droplet drop-height is presented and numerical calculations are performed. Equations for the maximum drop-height under Conditions 3 and 4 are deduced, and the equation for Condition 3 is applied to an engineering case study. The effect of air velocity on the maximum drop-height is more significant than that of other factors. The conclusions provide a novel approach to optimizing the design of vertical countercurrent water-air heat and moisture exchange towers attached to main fan diffusers.

  19. VENTILATION NEEDS DURING CONSTRUCTION

    SciTech Connect

    C.R. Gorrell

    1998-07-23

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

  20. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  1. Variable mechanical ventilation.

    PubMed

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  2. Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing

    NASA Astrophysics Data System (ADS)

    Goosse, H.; Deleersnijder, E.; Fichefet, T.; England, M. H.

    1999-06-01

    Three numerical experiments have been carried out with a global coupled ice-ocean model to investigate its sensitivity to the treatment of vertical mixing in the upper ocean. In the first experiment, a widely used fixed profile of vertical diffusivity and viscosity is imposed, with large values in the upper 50 m to crudely represent wind-driven mixing. In the second experiment, the eddy coefficients are functions of the Richardson number, and, in the third case, a relatively sophisticated parameterization, based on the turbulence closure scheme of Mellor and Yamada version 2.5, is introduced. We monitor the way the different mixing schemes affect the simulated ocean ventilation, water mass properties, and sea ice distributions. CFC uptake is also diagnosed in the model experiments. The simulation of the mixed layer depth is improved in the experiment which includes the sophisticated turbulence closure scheme. This results in a good representation of the upper ocean thermohaline structure and in heat exchange with the atmosphere within the range of current estimates. However, the error in heat flux in the experiment with simple fixed vertical mixing coefficients can be as high as 50 W m-2 in zonal mean during summer. Using CFC tracers allows us to demonstrate that the ventilation of the deep ocean is not significantly influenced by the parameterization of vertical mixing in the upper ocean. The only exception is the Southern Ocean. There, the ventilation is too strong in all three experiments. However, modifications of the vertical diffusivity and, surprisingly, the vertical viscosity significantly affect the stability of the water column in this region through their influence on upper ocean salinity, resulting in a more realistic Southern Ocean circulation. The turbulence scheme also results in an improved simulation of Antarctic sea ice coverage. This is due to to a better simulation of the mixed layer depth and thus of heat exchanges between ice and ocean. The

  3. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    SciTech Connect

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-03-01

    In chamber experiments, we investigated the effectiveness of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air at the mannequin's face) ranged from 1.4 to 2.7, which is higher than typically reported for commercially available task ventilation or displacement ventilation systems.

  4. Effects of source conditions, vertical diffusivity and spatial resolution of wind data on simulation results based on the tephra-tracking model PUFF: a case study from the Kirishima 2011 eruption

    NASA Astrophysics Data System (ADS)

    Kiyosugi, K.; Koyaguchi, T.

    2012-12-01

    Understanding how pyroclasts disperse from volcanic plumes is a fundamental problem of volcanology to reconstruct eruption conditions from tephra fallout deposits. Tephra dispersion is not only a scientifically interesting but also socially and economically important problem (e.g., the air traffic disruption caused by the 2010 Eyjafjallaokull volcano eruption). PUFF is a tephra-tracking model developed by the University of Alaska for the use of aviation service alert. In this model, position vector of each particle at a time step is calculated with Lagrangian formulation using local wind velocity and terminal gravitational fallout vector at one time step before; diffusivity due to turbulent behavior is simulated by a random walk formulation. We applied this model to the sub-Plinian phase of the Kirishima 2011 eruption to test the effects of simulation parameters on the features of tephra dispersion and fallout deposits in the field. We systematically investigated the effects of two parameters of PUFF model to tephra dispersion: vertical diffusivity and spatial resolution of wind data. Our results show that, as the value of vertical diffusivity increases, the distribution of settled particles on the ground surface becomes a more elongated shape in the wind direction. This effect is more remarkable for finer particles. These results indicate that the simulation results of the diffusion advection models in general depend on the assumed vertical diffusivity and the spatial resolution of wind data as well as on the source condition (e.g., the release levels of particles and grain size distribution). During the 2011 Kirishima eruption, a sub-Plinian eruption plume of 8 km high was observed by weather radars. The plume extended southeastward around the vent (~60 km), and traveled in the higher altitudes eastward (about 900 km from the vent). The simulation results of PUFF reconstructed these qualitative features observed in the satellite images and the deposits near the

  5. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    PubMed

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  6. Home Ventilator Guide

    MedlinePlus

    ... are for negative pressure ventilators currently on the markets. There is no “standard” form for specifications. American ... specifications are for bilevel ventilators currently on the markets. There is no “standard” form for specifications. American ...

  7. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  8. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  9. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  10. Weight-correction of carbon dioxide diffusion coefficient (DCO2 ) reduces its inter-individual variability and improves its correlation with blood carbon dioxide levels in neonates receiving high-frequency oscillatory ventilation.

    PubMed

    Belteki, Gusztav; Lin, Benjamin; Morley, Colin J

    2017-10-01

    Carbon-dioxide elimination during high-frequency oscillatory ventilation (HFOV) is thought to be proportional to the carbon dioxide diffusion coefficient (DCO2 ) which is calculated as frequency x (tidal volume)(2) . DCO2 can be used to as an indicator of CO2 elimination but values obtained in different patients cannot be directly compared. To analyze the relationship between DCO2 , the weight-corrected DCO2 (DCO2 corr) and blood gas PCO2 values obtained from infants receiving HFOV. DCO2 data were obtained from 14 infants at 1/s sampling rate and the mean DCO2 was determined over 10 min periods preceding the time of the blood gas. DCO2 corr was calculated by dividing the DCO2 by the square of the body weight in kg. Weight-correction significantly reduced the inter-individual variability of DCO2 . When data from all the babies were combined, standard DCO2 showed no correlation with PCO2 but DCO2 corr showed a weak but statistically significant inverse correlation. The correlation was better when the endotracheal leak was <10%. There was significant inverse but weaker correlation between the HFOV tidal volume (VThf) and the PCO2 . In any baby, DCO2 corr >50 mL(2) /sec/kg(2) or VThf > 2.5 mL/kg was rarely needed to avoid hypercapnia. Weight-correction of DCO2 values improved its comparability between patients. Weight-corrected DCO2 correlated better with PCO2 than uncorrected DCO2 but the correlation was weak. © 2017 Wiley Periodicals, Inc.

  11. Evaluating the balance between vertical diffusive nitrate supply and nitrogen fixation with reference to nitrate uptake in the eastern subtropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Patey, Matthew D.; Forryan, Alexander; Torres-Valdes, Sinhue

    2013-10-01

    The balance between N2 fixation and diffusive NO3- supply is a key determinant for assessing the importance of both processes for new production in subtropical waters. Here we report observations of integrated N2 fixation rates from the eastern subtropical North Atlantic Ocean with coincident estimates of diffusive NO3- supply. We find the average rate of N2 fixation is equivalent to 62% of the diffusive NO3- supply, though N2 fixation could exceed the diffusive flux at individual stations. Turbulent diffusivity measurements across the nitracline indicate a mean diffusivity of 0.077 cm2 s-1. If approximations for methodological underestimates in the dominant N2 fixation technique are considered, the magnitude of N2 fixation is shown to represent 100% of the NO3- flux on average, and can be almost threefold higher at individual stations. As the study site is characterized by low rates of N2 fixation compared to other sectors of the North Atlantic this confirms N2 fixation as a major source term across the subtropical North Atlantic. The seasonal context of our observations suggests environmental factors underlie the in situ variability in observed N2 fixation rates, and may well explain lower previous assessments of the importance of N2 fixation relative to diffusive NO3- supply in this region. The diffusive NO3- supply provides <20% of measurable NO3- uptake with the remainder supplied via other mechanisms, most notably nitrification. The mean integrated rate of N2 fixation equates to just 8% of the NO3- consumed on a daily basis by the phytoplankton community.

  12. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  13. Evaluating the use of 1-D transit time distributions to infer the mean state and variability of oceanic ventilation

    NASA Astrophysics Data System (ADS)

    Shao, Andrew E.; Mecking, Sabine; Thompson, LuAnne; Sonnerup, Rolf E.

    2016-09-01

    An offline tracer transport model transport is used to simulate chlorofluorocarbon (CFCs), sulfur hexafluoride (SF6), oxygen, ideal age, and model transit time distributions (TTDs) to evaluate how well tracers can be used to constrain both the mean state and variability of oceanic ventilation. Using climatological transports, the two-parameter 1-D inverse Gaussian approximation of the model TTD is found to be an adequate representation of ventilation pathways within the parts of the subtropical gyres with simple ventilation dynamics, but a poor approximation for regions with large gradients in ideal age (i.e., near the base of the thermocline and the continental boundaries). TTDs inferred from CFC-12 and SF6 using a Peclet number-based lookup table approach yield poor representations of the model TTD with a consistent bias toward ventilation being strongly dominated by along-isopycnal diffusion. In a run with variable circulation, ideal age is used to track changes in thermocline ventilation. Variability in both apparent oxygen utilization (AOU) and tracer-inferred TTD mean ages inferred using CFC-12 (assuming fixed Peclet number) and dual tracers (SF6 and CFC-12) are well-correlated to ideal age variability in most of the thermocline. Changes in AOU are correlated with ideal age variability in even more regions compared to the TTD ages both horizontally and vertically down to intermediate depths. Generally, when changes in TTD mean age and AOU agreed in sign, correlations of both with ideal age changes were positive indicating the usefulness of tracers in diagnosing ventilation changes.

  14. Ventilation Model Report

    SciTech Connect

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of

  15. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    DTIC Science & Technology

    2004-01-01

    lubricants PDB polyethylene diffusion bag PVC polyvinyl chloride RPD relative percentage difference TCE trichloroethene USGS U.S. Geological Survey VOA...PDB and low-flow sample results was only 1.2 µg/L. The average relative percentage difference (RPD) between PDB and low- flow sample results for

  16. New generation ventilators.

    PubMed

    Bersten, A D; Skowronski, G A; Oh, T E

    1986-08-01

    Desirable features of new generation intensive care ventilators include the ability to ventilate a wide range of patient sizes, an uncomplicated control panel, an appropriate but not excessive variety of ventilatory patterns, adequate patient monitoring and alarm functions, and simplicity of cleaning and routine maintenance. Examples of currently available ventilators include the Servo 900-C, CPU-1, Engstrom Erica, Bear 5, Drager EV-A and Hamilton Veolar. The incorporation of microcomputer control into some of these ventilators has resulted in improved flexibility and a limited number of automatic responses to detected patient changes. However, the function of components provided to allow spontaneous ventilation, such as demand valves, requires considerable improvement. Current trends in ventilator design include further refinement of computer control and the provision of graphic displays showing the results of continuous sophisticated analysis of respiratory function. The extent to which these developments will prove clinically useful will require careful evaluation.

  17. Intermodule ventilation studies for the Space Station

    NASA Technical Reports Server (NTRS)

    Davis, Roy G.; Reuter, James L.

    1987-01-01

    This paper examines the ability of the Space Station intermodule ventilation system to maintain centralized control of CO2 removal and O2 supply. The resulting concentration gradients that will arise are calculated by assuming steady state, ideal gas, isothermal conditions, and perfect mixing of air within and between the pressurized elements. In order to estimate the degree of mixing actually obtained for a given ventilation scheme, a program has been developed based on a potential flow solution technique. Preliminary results from this study indicate that substantial short circuiting and recirculation air flow patterns could arise if a simple duct and diffuser air exchange method at the docking port interface were employed.

  18. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  19. Mechanical ventilation in children.

    PubMed

    Kendirli, Tanil; Kavaz, Asli; Yalaki, Zahide; Oztürk Hişmi, Burcu; Derelli, Emel; Ince, Erdal

    2006-01-01

    Mechanical ventilation can be lifesaving, but > 50% of complications in conditions that require intensive care are related to ventilatory support, particularly if it is prolonged. We retrospectively evaluated the medical records of patients who had mechanical ventilation in the Pediatric Intensive Care Unit (PICU) during a follow-up period between January 2002-May 2005. Medical records of 407 patients were reviewed. Ninety-one patients (22.3%) were treated with mechanical ventilation. Ages of all patients were between 1-180 (median: 8) months. The mechanical ventilation time was 18.8 +/- 14.1 days. Indication of mechanical ventilation could be divided into four groups as respiratory failure (64.8%), cardiovascular failure (19.7%), central nervous system disease (9.8%) and safety airway (5.4%). Tracheostomy was performed in four patients. The complication ratio of mechanically ventilated children was 42.8%, and diversity of complications was as follows: 26.3% atelectasia, 17.5% ventilator-associated pneumonia, 13.1% pneumothorax, 5.4% bleeding, 4.3% tracheal edema, and 2.1% chronic lung disease. The mortality rate of mechanically ventilated patients was 58.3%, but the overall mortality rate in the PICU was 12.2%. In conclusion, there are few published epidemiological data on the follow-up results and mortality in infants and children who are mechanically ventilated.

  20. Noninvasive ventilation in trauma

    PubMed Central

    Karcz, Marcin K; Papadakos, Peter J

    2015-01-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. PMID:25685722

  1. Ventilatory failure, ventilator support, and ventilator weaning.

    PubMed

    Tobin, Martin J; Laghi, Franco; Jubran, Amal

    2012-10-01

    The development of acute ventilatory failure represents an inability of the respiratory control system to maintain a level of respiratory motor output to cope with the metabolic demands of the body. The level of respiratory motor output is also the main determinant of the degree of respiratory distress experienced by such patients. As ventilatory failure progresses and patient distress increases, mechanical ventilation is instituted to help the respiratory muscles cope with the heightened workload. While a patient is connected to a ventilator, a physician's ability to align the rhythm of the machine with the rhythm of the patient's respiratory centers becomes the primary determinant of the level of rest accorded to the respiratory muscles. Problems of alignment are manifested as failure to trigger, double triggering, an inflationary gas-flow that fails to match inspiratory demands, and an inflation phase that persists after a patient's respiratory centers have switched to expiration. With recovery from disorders that precipitated the initial bout of acute ventilatory failure, attempts are made to discontinue the ventilator (weaning). About 20% of weaning attempts fail, ultimately, because the respiratory controller is unable to sustain ventilation and this failure is signaled by development of rapid shallow breathing. Substantial advances in the medical management of acute ventilatory failure that requires ventilator assistance are most likely to result from research yielding novel insights into the operation of the respiratory control system.

  2. Review of Residential Ventilation Technologies

    SciTech Connect

    Armin Rudd

    2005-08-30

    This paper reviews current and potential ventilation technologies for residential buildings, including a variety of mechanical systems, natural ventilation, and passive ventilation. with particular emphasis on North American climates and construction.

  3. Multifamily Ventilation Retrofit Strategies

    SciTech Connect

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  4. Guide to Home Ventilation

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  5. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    SciTech Connect

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan

    2014-06-19

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  6. Hall Effects on Isothermal Vertical Plate with Uniform Mass Diffusion in the Presence of Rotating Fluid and Chemical Reaction of First Order

    NASA Astrophysics Data System (ADS)

    Dhananjeya Kumaar, V. S. A.; Muthucumaraswamy, R.

    2017-02-01

    An exact solution of the combined study of Hall effects on a vertical plate with a rotating fluid in the presence of a homogeneous chemical reaction of first order has been analysed. The dimensionless governing coupled partial differential equations are tackled using the usual Laplace transform technique. The sway of the Hall parameter, Hartmann number, Grashof number, Prandtl number, Schmidt number, chemical reaction parameter on the axial velocity and concentration of the fluid has been depicted graphically. When the non-dimensional angular velocity, Ω = {2M^2} \\over {1 + m.2}, the transverse velocity component vanishes, thereby the axial velocity of the fluid attains the maximum value. It is noted that with increase in the Hall parameter, thermal Grashof number and mass Grashof number, the axial velocity of the fluid increases significantly.

  7. Ventilator for internal combustion engine

    SciTech Connect

    Aoki, K.

    1986-04-08

    A ventilator is described for an internal combustion engine, consisting of: a housing; a diaphragm that divides the inside of the housing into a pressure chamber communicating with a crankcase and an atmospheric chamber communicating with the atmosphere; an outlet tube extending vertically in the pressure chamber and communicating with an intake manifold; a valve fixed to the diaphragm and acting to open or close an opening at an upper end of the outlet tube for controlling the quantity of blowby gas introduced into the outlet tube from the pressure chamber; an oil sump located at a lower end of the outlet tube and having a given capacity; a check valve mounted at the bottom of the oil sump to allow fluid to flow from the sump toward the pressure chamber; and an outlet port formed through the side wall of the outlet tube and protruding radially outwardly, the outlet tube being in communication with the intake manifold via the outlet port.

  8. CFD and ventilation research.

    PubMed

    Li, Y; Nielsen, P V

    2011-12-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.

  9. Adaptive lung ventilation.

    PubMed

    Linton, D M

    2001-09-01

    Adaptive lung ventilation (ALV) is a method of closed-loop mechanical ventilation analogous to modern closed-loop technology in aviation such as the autopilot and automatic landing system. The algorithm of the controller of ALV is designed to automatically provide pressure-controlled synchronized intermittent mandatory ventilation (P-SIMV) and weaning as individually required in any clinical situation. The synchronized pressure limited breaths constantly adapt to the patient requirements to encourage optimal alveolar ventilation with minimal adverse physiological disturbance and timely weaning. The ease of application, efficiency, and safety of the first ALV controllers have been demonstrated in lung models, in patients with normal lungs undergoing general anesthesia, in patients requiring unusual positioning, in transition to and from one-lung anesthesia, and in long-term ventilation of patients with various lung pathologies and in weaning patients who have restrictive or obstructive pulmonary disease. Prospective comparative studies of ALV versus other currently used manually selected modes of mechanical ventilation, such as the one reported in this article, should confirm the safety and identify the benefits of this form of advanced closed-loop mechanical ventilation technology.

  10. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  11. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  12. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  13. 3He Diffusion MRI of the Lung

    PubMed Central

    Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.

    2007-01-01

    Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852

  14. Why We Ventilate

    SciTech Connect

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  15. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  16. Sub-inertial Gravity Modes in the B8V Star KIC 7760680 Reveal Moderate Core Overshooting and Low Vertical Diffusive Mixing

    NASA Astrophysics Data System (ADS)

    Moravveji, Ehsan; Townsend, Richard H. D.; Aerts, Conny; Mathis, Stéphane

    2016-06-01

    Thus far, KIC 7760680 is the richest slowly pulsating B star, exhibiting 36 consecutive dipole (ℓ = 1) gravity (g-) modes. The monotonically decreasing period spacing of the series, in addition to the local dips in the pattern, confirm that KIC 7760680 is a moderate rotator with clear mode trapping in chemically inhomogeneous layers. We employ the traditional approximation of rotation to incorporate rotational effects on g-mode frequencies. Our detailed forward asteroseismic modeling of this g-mode series reveals that KIC 7760680 is a moderately rotating B star with mass ˜3.25 M ⊙. By simultaneously matching the slope of the period spacing and the number of modes in the observed frequency range, we deduce that the equatorial rotation frequency of KIC 7760680 is 0.4805 day-1, which is 26% of its Roche break up frequency. The relative deviation of the model frequencies and those observed is less than 1%. We succeed in tightly constraining the exponentially decaying convective core overshooting parameter to f ov ≈ 0.024 ± 0.001. This means that convective core overshooting can coexist with moderate rotation. Moreover, models with exponentially decaying overshoot from the core outperform those with the classical step-function overshoot. The best value for extra diffusive mixing in the radiatively stable envelope is confined to {log}{D}{{ext}}≈ 0.75+/- 0.25 (with D ext in cm2 s-1), which is notably smaller than theoretical predictions.

  17. Conventional mechanical ventilation

    PubMed Central

    Tobias, Joseph D.

    2010-01-01

    The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU). Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the arena for the development of the manual skills and the refinement of the equipment needed for airway management, which subsequently led to the more widespread use of endotracheal intubation thereby ushering in the era of positive pressure ventilation. Although there seems to be an ever increasing complexity in the techniques of mechanical ventilation, its successful use in the PICU should be guided by the basic principles of gas exchange and the physiology of respiratory function. With an understanding of these key concepts and the use of basic concepts of mechanical ventilation, this technique can be successfully applied in both the PICU and the operating room. This article reviews the basic physiology of gas exchange, principles of pulmonary physiology, and the concepts of mechanical ventilation to provide an overview of the knowledge required for the provision of conventional mechanical ventilation in various clinical arenas. PMID:20927268

  18. Noninvasive ventilation: practical advice.

    PubMed

    Bello, Giuseppe; De Pascale, Gennaro; Antonelli, Massimo

    2013-02-01

    This critical review discusses the key points that would be of practical help for the clinician who applies noninvasive ventilation (NIV) for treatment of patients with acute respiratory failure (ARF). In recent years, the growing role of NIV in the acute care setting has led to the development of technical innovations to overcome the problems related to gas leakage and dead space. A considerable amount of research has been conducted to improve the quality of the devices as well as optimize ventilation modes used to administer NIV. As a result, also mechanical ventilators have been implemented with modalities aimed at delivering NIV. The success of NIV in patients with ARF depends on several factors, including the skills of the clinician, selection of patient, choice of interface, selection of ventilation mode and ventilator setting, monitoring, and the motivation of the patient. Recent advances in the understanding of the physiological aspects of using NIV through different interfaces and ventilator settings have led to improve patient-machine interaction, enhancing favorable NIV outcome.

  19. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-09-01

    In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin at comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ({approx}5 C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort.

  20. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    PubMed

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  1. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  2. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  3. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  4. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  5. Topographic distribution of pulmonary ventilation and perfusion in the horse

    SciTech Connect

    Amis, T.C.; Pascoe, J.R.; Hornof, W.

    1984-08-01

    The regional distribution of ventilation to perfusion ratios (VA/Q) in the lungs of 8 healthy standing Thoroughbred geldings (4.4 +/- 1.5 years, 465.7 +/- 46.6 kg) was studied, using steady-state inhalation and IV infusion of the radioactive gas krypton-81m. The VA/Q was uniformly distributed within a vertical lung strip centered over the 9th rib on the right side. Ventilation per unit of alveolar volume (V/VA) assessed from the clearance of inhaled radioactive gas in 5 horses increased from 0.49 +/- 0.13 (arbitrary units) in nondependent lung zones to 1.45 +/- 0.16 in dependent lung zones. Seemingly, a vertical gradient of pulmonary ventilation exists in the horse that is matched by a similar gradient of perfusion.

  6. Weaning from artificial ventilation.

    PubMed

    Mancebo, J

    1998-06-01

    Every intubated and mechanically-ventilated patient should be clinically evaluated, at least on a daily basis, by a skilled team in order to speed up the weaning process as much as possible. Again, it should be emphasized that the adoption of an active clinical strategy when faced with "difficult" to wean patients is of paramount importance. In one study, performed in Spain, analysing the prevalence of mechanical ventilation in intensive care units [3], reported the mean number of days that patients spent on mechanical ventilation was 27. In a more recent intervention study, in which a specific protocol was followed each day [2], the mean number of days on mechanical ventilation was only 12. These data have been confirmed by several authors [4, 40], and it has also been reported that a protocol-directed weaning strategy leads not only to a significant reduction in the duration of mechanical ventilation but also to a significant decrease in the number of complications and cost [4]. However, even following a protocol-directed weaning strategy, it is possible that weaning duration can be further reduced. In a prospective study performed in our institution [41] during 32 months, we reported that, following an episode of unplanned extubation, the only independent variables associated with the need for reintubation were the number of days of mechanical ventilation and the type of ventilatory support at the time of autoextubation. Indeed, when patients were in the weaning period only 16% (5 out of 32) needed reintubation, whereas reintubation was needed in 82% (22 out of 27) of patients who had an unplanned extubation during full mechanical ventilatory support. These data suggest that there are still some patients being on mechanical ventilation for a longer than necessary period of time. Finally, very recent advances in technological areas such as artificial intelligence, are proving to be useful in the management of the weaning process. When such systems are applied to

  7. Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Dunne, John P.; Key, Robert M.; Matsumoto, Katsumi; Sarmiento, Jorge L.; Slater, Richard D.; Swathi, P. S.

    2004-12-01

    Differing models of the ocean circulation support different rates of ventilation, which in turn produce different distributions of radiocarbon, oxygen, and export production. We examine these fields within a suite of general circulation models run to examine the sensitivity of the circulation to the parameterization of subgridscale mixing and surface forcing. We find that different models can explain relatively high fractions of the spatial variance in some fields such as radiocarbon, and that newer estimates of the rate of biological cycling are in better agreement with the models than previously published estimates. We consider how different models achieve such agreement and show that they can accomplish this in different ways. For example, models with high vertical diffusion move young surface waters into the Southern Ocean, while models with high winds move more young North Atlantic water into this region. The dependence on parameter values is not simple. Changes in the vertical diffusion coefficient, for example, can produce major changes in advective fluxes. In the coarse-resolution models studied here, lateral diffusion plays a major role in the tracer budget of the deep ocean, a somewhat worrisome fact as it is poorly constrained both observationally and theoretically.

  8. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  9. Ventilation flow: Submerged

    NASA Technical Reports Server (NTRS)

    Hutchinson, D.

    1985-01-01

    The ventilation system on a submarine is discussed. When the submarine is submerged. The ventilation system provides a conditioned atmosphere in the ship with complete isolation from the outside. A conditioned atmosphere includes not only filtration and temperature and humidity control, but also air purification (removal of potentially harmful quantities of impurities and comtaminants) and revitalization (addition of vital life support oxygen). Carbon dioxide removal, the oxygen system, air conditioning, carbon monoxide removal, hydrogen removal, and atmosphere monitoring systems are among the topics discussed.

  10. Numerical Solutions by EFGM of MHD Convective Fluid Flow Past a Vertical Plate Immersed in a Porous Medium in the Presence of Cross Diffusion Effects via Biot Number and Convective Boundary Condition

    NASA Astrophysics Data System (ADS)

    Raju, R. S.; Reddy, B. M.; Rashidi, M. M.; Gorla, R. S. R.

    2017-08-01

    In this investigation, the numerical results of a mixed convective MHD chemically reacting flow past a vertical plate embedded in a porous medium are presented in the presence of cross diffusion effects and convective boundary condition. Instead of the commonly used conditions of constant surface temperature or constant heat flux, a convective boundary condition is employed which makes this study unique and the results more realistic and practically useful. The momentum, energy, and concentration equations derived as coupled second-order, ordinary differential equations are solved numerically using a highly accurate and thoroughly tested element free Galerkin method (EFGM). The effects of the Soret number, Dufour number, Grashof number for heat and mass transfer, the viscous dissipation parameter, Schmidt number, chemical reaction parameter, permeability parameter and Biot number on the dimensionless velocity, temperature and concentration profiles are presented graphically. In addition, numerical results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are discussed through tabular forms. The discussion focuses on the physical interpretation of the results as well as their comparison with the results of previous studies.

  11. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  12. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  13. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  14. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  15. Dead space: the physiology of wasted ventilation.

    PubMed

    Robertson, H Thomas

    2015-06-01

    An elevated physiological dead space, calculated from measurements of arterial CO2 and mixed expired CO2, has proven to be a useful clinical marker of prognosis both for patients with acute respiratory distress syndrome and for patients with severe heart failure. Although a frequently cited explanation for an elevated dead space measurement has been the development of alveolar regions receiving no perfusion, evidence for this mechanism is lacking in both of these disease settings. For the range of physiological abnormalities associated with an increased physiological dead space measurement, increased alveolar ventilation/perfusion ratio (V'A/Q') heterogeneity has been the most important pathophysiological mechanism. Depending on the disease condition, additional mechanisms that can contribute to an elevated physiological dead space measurement include shunt, a substantial increase in overall V'A/Q' ratio, diffusion impairment, and ventilation delivered to unperfused alveolar spaces.

  16. How to Plan Ventilation Systems.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  17. How to Plan Ventilation Systems.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  18. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  19. Non-invasive ventilation.

    PubMed Central

    Spence, D.

    1996-01-01

    Nasal intermittent positive pressure ventilation is an effective treatment for nocturnal hypoventilation secondary to chest wall deformity or respiratory muscle weakness. Physicians should be aware that, in these groups of patients, disabling breathlessness can be alleviated and established cor pulmonale reversed by the technique. Images Figure 1 Figure 2 Figure 3 PMID:8949588

  20. Ventilator-associated pneumonia.

    PubMed

    Morehead, R S; Pinto, S J

    2000-07-10

    Ventilator-associated pneumonia is a common complication in intensive care units, occurring in 9% to 24% of patients intubated for longer than 48 hours. Because of this large disease burden and the resultant attributable morbidity and mortality, there is great interest in accurately diagnosing, treating, and preventing this complication. More severely ill patients tend to develop ventilator-associated pneumonia, and identified risk factors include prolonged mechanical ventilation, reintubation after failed extubation, and a few other clinical variables. The efficacy of diagnostic and preventive strategies is somewhat controversial. Diagnosis by invasive methods requires a considerable commitment of resources but can potentially reduce cost of care; however, mortality benefit from this approach has not been demonstrated. As such, in most institutions, ventilator-associated pneumonia is best diagnosed using traditional clinical criteria. Prompt administration of appropriate antibiotics seems to be the only intervention that alters outcome once the diagnosis is established. Several strategies seem to reduce pneumonia incidence; however, mortality and cost benefits have yet to be convincingly shown.

  1. Energy recovery ventilator

    SciTech Connect

    Schneider, S. L.; Dravnieks, K.

    1985-04-30

    An energy recovery ventilator adapted to be mounted on a roof and adapted to be connected to the outlet of an exhaust air duct of a building ventilation system and the inlet of an air supply duct of a building ventilation system. The energy recovery ventilator includes a housing having an exhaust air chamber and a supply air chamber separated by a divider wall. A circular heat transfer wheel is position in the housing, a portion of the wheel being housed in the exhaust air chamber and a second portion of the wheel being housed in the supply air chamber, and the heat transfer wheel is caused to rotate about a central axis. An exhaust fan is housed in the exhaust air chamber and causes exhaust air to be pulled through the exhaust air duct and the heat transfer wheel and to be exhausted from the housing. A supply air fan is housed in the supply air housing above the heat transfer wheel, and causes outside air to be drawn into the supply air chamber and to be forced through the heat transfer wheel into the air supply duct.

  2. Understanding mechanical ventilators.

    PubMed

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  3. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  4. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  5. Patient-ventilator dyssynchrony during assisted invasive mechanical ventilation.

    PubMed

    Murias, G; Villagra, A; Blanch, L

    2013-04-01

    Patient-ventilator dyssynchrony is common during mechanical ventilation. Dyssynchrony decreases comfort, prolongs mechanical ventilation and intensive care unit stays, and might lead to worse outcome. Dyssynchrony can occur during the triggering of the ventilator, the inspiration period after triggering, the transition from inspiration to expiration, and the expiratory phase. The most common dyssynchronies are delayed triggering, autotriggering, ineffective inspiratory efforts (which can occur at any point in the respiratory cycle), mismatch between the patient's and ventilator's inspiratory times, and double triggering. At present, the detection of dyssynchronies usually depends on healthcare staff observing ventilator waveforms; however, performance is suboptimal and many events go undetected. To date, technological complexity has made it impossible to evaluate patient-ventilator synchrony throughout the course of mechanical ventilation. Studies have shown that a high index of dyssynchrony may increase the duration of mechanical ventilation. Better training, better ventilatory modes, and/or computerized systems that permit better synchronization of patients' demands and ventilator outputs are necessary to improve patient-ventilator synchrony.

  6. Stratospheric Turbulence and Vertical Effective Diffusion Coefficients

    DTIC Science & Technology

    1975-09-29

    be obtained from was computed. The left side shows a jaggedprofile of shear vs. altitude, and the right side a SL hodograph (showing the velocity...between point 7 and 8 in the Figtue 7 shows K, as a function of the upper hodograph ), a search is made to find the maxi- limit of integration L Among...The curve on the right sid of ec:h box shows the prortic after spreading. These profdes consist ofa 5UperpoStion Of 8 (faih.- hodograph between

  7. [High-frequency ventilation. Development of new ventilation systems--experimental and clinical results].

    PubMed

    Mutz, N

    1984-01-01

    Based on the well known High Frequency Jet Ventilation (HFJV) two modified types of High Frequency Ventilation, Forced Diffusion Ventilation (FDV) and High Frequency Pulsation (HFP) have been developed. Both systems are designed to allow ventilation with very small volume portions in the upper range of HFV frequencies. In dog experiments sufficient gas exchange could be maintained during FDV up to frequencies 3000 per minute and even with an uninterrupted "continuous" jet entering the lungs on carina level. With this mode of ventilation lung could be kept in a resting position. Due to particular configuration of a pair of nozzles at the tip of a modified endotracheal catheter fresh gas is forced down the airways along the inner edges of bifurcations towards the lung periphery. At the same time stale gas leaves the lung via the remaining cross section of the airways. Thus a continuous scavanging process can be established without significant lung inflation. This mechanisms are not met during HFP. Therefore the range of frequencies achievable with this type of ventilation is significantly lower (250 to 500/min.) and "tidal volumes" are much higher. However, they are still beyond the anatomical dead space which suggest again a contribution of alternative mechanisms to gas transport. The impact of both types of HFV on gas exchange and pressure-flow conditions were studied in lung models as well as in animal experiments. FDV and HFP were also applied successfully to a group of 23 patients undergoing major lung surgery. In all patients it was possible to maintain excellent gas exchange throughout the whole surgical procedure. The exposure of the surgical field was much more quiet as compared to IPPV. Due to the small tidal volumes lung pressures can be kept much lower and gas losses via the open bronchi and lung surface are reduced dramatically.

  8. On the horizon: liquid ventilation.

    PubMed

    Eanes, R

    1995-02-01

    Studies in preterm animals and humans have shown that liquid ventilation is a potential alternative mode of support for neonates with respiratory failure. Perfluorochemicals have a high solubility for respiratory gases and can be instilled in the lung using lower pressures than with gas ventilation. Other potential advantages of liquid ventilation include decreased alveolar surface tension, improved pulmonary mechanics, alveolar recruitment, and the removal of pulmonary debris. This article describes in detail what liquid ventilation is, compares the physiologic effects of liquid ventilation to gas ventilation, and presents the nursing implications of this technique. A review of the recent literature on the subject is presented, including reports of laboratory and clinical experience with liquid ventilation.

  9. ASHRAE and residential ventilation

    SciTech Connect

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  10. Ventilator-associated pneumonia.

    PubMed

    2009-11-01

    Ventilator-associated pneumonia is a pneumonia that develops initially more than 48 h from the start of tracheal intubation and mechanical ventilation. The route of infection is almost always through the respiratory tract. Intake of contaminants from outside the tracheal tube (silent aspiration) is considered a key route, and suctioning of secretions that have accumulated above the cuff of the endotracheal tubes is effective in preventing infection. The circuit is managed and heated-wire humidifiers and suction are manipulated based on appropriate infection control measures. To diagnose pathogens, efforts should be made to collect specimens from the pneumonia focus. Realistically, however, diagnosis can also be achieved based on the clinical course and from the results of culture of samples from tracheal aspirate. Use of prophylactic antimicrobials is not recommended, but once a diagnosis is made, antimicrobials are administered that combat the causative microorganism.

  11. [Non-invasive ventilation].

    PubMed

    Gallardo Romero, Jose Manuel; García, Teresa Gómez; Sancho Chust, José Norberto; González Martínez, Mónica

    2010-10-01

    The advent of non-invasive mechanical ventilation (NIMV) has radically changed the management of acute and chronic respiratory failure. Over the last few years, the number of possible applications of NIMV has progressively increased, both in the hospital and extrahospital setting. NIMV is now used in all hospitals and resident physicians currently receive specific training -nonexistent until a few years ago- in this modality. It falls to all of us to push forward the clinical and scientific advances represented by the development of NIMV, by promoting the events that accompany better knowledge of the physiopathological bases of ventilation and of its continuous applications in daily clinical practice and by perfecting the elements required for the correct application of this technique. The present review aims to provide a broad overview of NIMV, from the most theoretical knowledge (the physiopathology of NIMV) to the most practical skills (recognition of patient-ventilator asynchrony). Through this progression from the complex to the most basic, or from the basics to the most complex, depending on the perspective taken, we aim to provide deeper knowledge of the concepts required to understand the technical functioning of the ventilator, describing its distinct modes and parameters and the abilities that must be developed for the correct indication, use and monitoring of the technique. We provide a final reflection on other forms of respiratory support that can be offered to patients with ventilatory failure. Copyright © 2010 Sociedad Española de Neumología y Cirugía Torácica. Published by Elsevier Espana. All rights reserved.

  12. Oven ventilation system

    SciTech Connect

    Brewer, D.E.

    1987-02-17

    A ventilation system is described for venting an oven with external surfaces, the oven being located within an enclosed space, the system comprising: intake means for collecting air from the external environment of the enclosed space; means for forming a sheet of the air and passing the sheet across the external surfaces of the oven; and exhaust means for exhausting the sheet of the air to the external environment of the enclosed space after the air has been passed across the external surfaces.

  13. Harnessing natural ventilation benefits.

    PubMed

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  14. Home Mechanical Ventilation in Children.

    PubMed

    Preutthipan, Aroonwan

    2015-09-01

    The number of children dependent on home mechanical ventilation has been reported to be increasing in many countries around the world. Home mechanical ventilation has been well accepted as a standard treatment of children with chronic respiratory failure. Some children may need mechanical ventilation as a lifelong therapy. To send mechanically ventilated children back home may be more difficult than adults. However, relatively better outcomes have been demonstrated in children. Children could be safely ventilated at home if they are selected and managed properly. Conditions requiring home ventilation include increased respiratory load from airway or lung pathologies, ventilatory muscle weakness and failure of neurologic control of ventilation. Home mechanical ventilation should be considered when the patient develops progressive respiratory failure or intractable failure to wean mechanical ventilation. Polysomnography or overnight pulse oximetry plus capnometry are used to detect nocturnal hypoventilation in early stage of respiratory failure. Ventilator strategy including non-invasive and invasive approach should be individualized for each patient. The author strongly believes that parents and family members are able to take care of their child at home if they are trained and educated effectively. A good team work with dedicated members is the key factor of success.

  15. Diaphragmatic dysfunction in mechanical ventilation.

    PubMed

    Haitsma, Jack J

    2011-04-01

    It has become clear from experimental data that prolonged mechanical ventilation can induce diaphragm dysfunction, also known as ventilator-induced diaphragm dysfunction. In this article we will discuss most recent understanding on ventilator-induced diaphragm dysfunction and data on diaphragm dysfunction in patients. Over the last year several studies confirmed the existence of diaphragm dysfunction in patients. Known atrophy pathways are activated in patients undergoing prolonged conventional ventilation resulting in muscle proteolysis and a decrease in myofiber content. The loss of diaphragm force is time-dependent, but current data do not distinguish between the role played by other factors involved in diaphragm dysfunction. Diaphragm dysfunction occurs in patients, especially when ventilated with controlled modes of ventilation that minimize diaphragm activity. Time on the ventilator seems to be one of the biggest risk factors resulting in difficulties in weaning patients and prolonging time on the ventilator. Future trials should investigate whether improved patient-ventilator synchrony can reduce ventilator-induced diaphragm dysfunction and decrease weaning failure.

  16. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow

    NASA Astrophysics Data System (ADS)

    Nishina, Ayako; Nakamura, Hirohiko; Park, Jae-Hun; Hasegawa, Daisuke; Tanaka, Yuki; Seo, Seongbong; Hibiya, Toshiyuki

    2016-08-01

    Near-bottom water flowing over the Kerama Gap's sills is thought to ventilate the deep water below ˜1100 m depth in the Okinawa Trough and then upwell with 5-10 years residence time. The present study follows up on this phenomenon, using comprehensive profile data of temperature, salinity, dissolved oxygen, currents and turbulence obtained by intensive shipboard observations performed in June 2013 and June 2014 in the region. Strong near-bottom subtidal flow with speeds exceeding 0.5 m s-1 was observed within a layer of about 100 m thickness over the western side of the peak of the main sill. Temperature and salinity sections along the Kerama Gap indicated some depressions and overturns of the deep water downstream of the strong overflow, suggesting the existence of breaking internal gravity waves and hydraulic jumps. Associated vertical diffusivities, estimated using the Thorpe scale and the buoyancy frequency, were three to four orders of magnitude larger than typical values observed in the thermocline of the open ocean (˜10-5 m2 s-1). The dissolved oxygen section also indicated strong vertical mixing and associated upwelling with the entrainment of the near-bottom overflow water into the lower thermocline beneath the Kuroshio in the Okinawa Trough. The present study not only supports the previous conceptual model but also provides new evidence that the Okinawa Trough is an upwelling location where nutrient rich Philippine Sea intermediate water is sucked up into the lower thermocline below the Kuroshio.

  17. Models to assess perfume diffusion from skin.

    PubMed

    Schwarzenbach, R; Bertschi, L

    2001-04-01

    Temperature, fragrance concentration on the skin and power of ventilation have been determined as crucial parameters in fragrance diffusion from skin. A tool has been developed to simulate perfume diffusion from skin over time, allowing headspace analysis and fragrance profile assessments in a highly reproducible way.

  18. Ventilators for noninvasive ventilation to treat acute respiratory failure.

    PubMed

    Scala, Raffaele; Naldi, Mario

    2008-08-01

    The application of noninvasive ventilation (NIV) to treat acute respiratory failure has increased tremendously both inside and outside the intensive care unit. The choice of ventilator is crucial for success of NIV in the acute setting, because poor tolerance and excessive air leaks are significantly correlated with NIV failure. Patient-ventilator asynchrony and discomfort can occur if the physician or respiratory therapist fails to adequately set NIV to respond to the patient's ventilatory demand, so clinicians need to fully understood the ventilator's technical peculiarities (eg, efficiency of trigger and cycle systems, speed of pressurization, air-leak compensation, CO(2) rebreathing, reliability of fraction of inspired oxygen reading, monitoring accuracy). A wide range of ventilators of different complexity have been introduced into clinical practice to noninvasively support patients in acute respiratory failure, but the numerous commercially available ventilators (bi-level, intermediate, and intensive care unit ventilators) have substantial differences that can influence patient comfort, patient-ventilator interaction, and, thus, the chance of NIV clinical success. This report examines the most relevant aspects of the historical evolution, the equipment, and the acute-respiratory-failure clinical application of NIV ventilators.

  19. A Mathematical Model for the Middle Ear Ventilation

    NASA Astrophysics Data System (ADS)

    Molnárka, G.; Miletics, E. M.; Fücsek, M.

    2008-09-01

    The otitis media is one of the mostly existing illness for the children, therefore investigation of the human middle ear ventilation is an actual problem. In earlier investigations both experimental and theoretical approach one can find in ([l]-[3]). Here we give a new mathematical and computer model to simulate this ventilation process. This model able to describe the diffusion and flow processes simultaneously, therefore it gives more precise results than earlier models did. The article contains the mathematical model and some results of the simulation.

  20. Pulmonary mechanics during mechanical ventilation.

    PubMed

    Henderson, William R; Sheel, A William

    2012-03-15

    The use of mechanical ventilation has become widespread in the management of hypoxic respiratory failure. Investigations of pulmonary mechanics in this clinical scenario have demonstrated that there are significant differences in compliance, resistance and gas flow when compared with normal subjects. This paper will review the mechanisms by which pulmonary mechanics are assessed in mechanically ventilated patients and will review how the data can be used for investigative research purposes as well as to inform rational ventilator management.

  1. [Jet ventilation in laryngotracheal surgery].

    PubMed

    Friedrich, G; Mausser, G; Gugatschka, M

    2008-12-01

    Conventional endotracheal intubation can be a limiting factor in endolaryngeal and endotracheal surgery. Tubeless jet ventilation can overcome this problem and provides an unlimited operation field to the surgeon. Since the development of first jet ventilation systems, many modifications have been performed and are used permanently in daily clinical routine. The aim of this work is to provide an overview of widely used jet ventilation systems and furthermore to list all advantages, as well as disadvantages of this technique in laryngotracheal surgery.

  2. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping... REQUIREMENTS Hazardous Locations § 111.105-21 Ventilation. A ventilation duct which ventilates a hazardous location has the classification of that location. Each fan for ventilation of a hazardous location must...

  3. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping... REQUIREMENTS Hazardous Locations § 111.105-21 Ventilation. A ventilation duct which ventilates a hazardous location has the classification of that location. Each fan for ventilation of a hazardous location must...

  4. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping... REQUIREMENTS Hazardous Locations § 111.105-21 Ventilation. A ventilation duct which ventilates a hazardous location has the classification of that location. Each fan for ventilation of a hazardous location must...

  5. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained.

  6. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  7. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  8. Ventilation heterogeneity in obesity.

    PubMed

    Pellegrino, Riccardo; Gobbi, Alessandro; Antonelli, Andrea; Torchio, Roberto; Gulotta, Carlo; Pellegrino, Giulia Michela; Dellacà, Raffaele; Hyatt, Robert E; Brusasco, Vito

    2014-05-01

    Obesity is associated with important decrements in lung volumes. Despite this, ventilation remains normally or near normally distributed at least for moderate decrements in functional residual capacity (FRC). We tested the hypothesis that this is because maximum flow increases presumably as a result of an increased lung elastic recoil. Forced expiratory flows corrected for thoracic gas compression volume, lung volumes, and forced oscillation technique at 5-11-19 Hz were measured in 133 healthy subjects with a body mass index (BMI) ranging from 18 to 50 kg/m(2). Short-term temporal variability of ventilation heterogeneity was estimated from the interquartile range of the frequency distribution of the difference in inspiratory resistance between 5 and 19 Hz (R5-19_IQR). FRC % predicted negatively correlated with BMI (r = -0.72, P < 0.001) and with an increase in slope of either maximal (r = -0.34, P < 0.01) or partial flow-volume curves (r = -0.30, P < 0.01). Together with a slight decrease in residual volume, this suggests an increased lung elastic recoil. Regression analysis of R5-19_IQR against FRC % predicted and expiratory reserve volume (ERV) yielded significantly higher correlation coefficients by nonlinear than linear fitting models (r(2) = 0.40 vs. 0.30 for FRC % predicted and r(2) = 0.28 vs. 0.19 for ERV). In conclusion, temporal variability of ventilation heterogeneities increases in obesity only when FRC falls approximately below 65% of predicted or ERV below 0.6 liters. Above these thresholds distribution is quite well preserved presumably as a result of an increase in lung recoil.

  9. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay

    2017-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (< 300 meters) optical interconnect (OI). The next generation OI has been targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (< 10 m) by using only on-off keying (OOK) modulation scheme without any signal processing techniques. In contrast to OOK, 4-PAM modulation format is attractive for >50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.

  10. Ventilated Oscillatory Boundary Layers

    DTIC Science & Technology

    1993-02-01

    AD-A266 226IllII !i III ll11111 II •" Ventilated Oscillatory Boundary Layers 0 Daniel -. Conley Douglas L. I nman C 0 UM U U U U till 1% w 1% W" Z t...A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. VENlTILATiD SCIILLAORY BOUNDARY LAYERS Daniel C. C7onley DoL’laN L. . ... La olDla...Wave Crest ........ 5. Boundary Layer Development Under the Wave Trough W 6 . Laboratory Observations .................. ................ 7

  11. Laboratory and Industrial Ventilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This handbook supplements the Facilities Engineering Handbook (NHB 7320.1) and provides additional policies and criteria for uniform application to ventilation systems. It expands basic requirements, provides additional design and construction guidance, and places emphasis on those design considerations which will provide for greater effectiveness in the use of these systems. The provisions of this handbook are applicable to all NASA field installations and the Jet Propulsion Laboratory. Since supply of this handbook is limited, abstracts of the portion or portions applicable to a given requirement will be made for the individual specific needs encountered rather than supplying copies of the handbook as has been past practice.

  12. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations

    SciTech Connect

    Vezina, W.; Chamberlain, M.; Vinitski, S.; King, M.; Nicholson, R.; Morgan, W.K.

    1985-11-01

    The differentiation of pulmonary embolism (PE) from regional ventilatory abnormalities accompanied by reduced perfusion requires contemporary perfusion and ventilation studies. Distinguishing these conditions in ventilator-dependent patients is aided by administering a Tc-99m aerosol to characterize regional ventilation, and by performing a conventional Tc-99m MAA perfusion study. The technique uses a simple in-house constructed apparatus. Simple photographic techniques suffice, but computer subtraction of perfusion from the combined perfusion-ventilation image renders interpretation easier if aerosol administration follows perfusion imaging. Multiple defects can be examined in a single study. Excluding normal or near-normal perfusion studies, PE was thought to be present in eight of 16 patients after perfusion imaging alone, but in only one of eight after added aerosol imaging. Angiography confirmed the diagnosis in that patient. Of the eight patients who had abnormal perfusion but were thought unlikely to have PE from the perfusion study alone, two had normal ventilation, and subsequently were shown to have PE by angiography. Because angiography was only performed on patients who were thought to have a high probability of PE on sequential perfusion-ventilation imaging, the true incidence of PE may have been higher. Aerosol ventilation imaging is a useful adjunct to perfusion imaging in patients on ventilators. It requires an efficient delivery system, particularly if aerosol administration follows perfusion imaging, as it does in this study.

  13. Ventilation time and anthropogenic CO2 in the South China Sea based on CFC-11 measurements

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Zhang, Miming; Cai, Minggang; Ke, Hongwei; Deng, Hengxiang; Li, Wenquan

    2016-10-01

    The South China Sea (SCS) is the largest semi-enclosed marginal sea in Southeast Asia, and is bounded by the Asian continent, Philippine Archipelago, and Great Sunda Islands. Due to the wide shelves on its northwestern and southern ends as well as the presence of numerous islets, atolls and reefs, the average depth of the SCS is only 1350 m. In this study we used measurements of the transient tracer CFC-11 from the SCS to calculate ventilation time-scales and the concentration of anthropogenic CO2 (Cant) based on the transit time distribution. The CFC-11 concentrations decreased consistently with depth and the deep and bottom water in the SCS had a CFC-11 value close to the detection limit (0.01 pmol kg-1 or 0.5 ppt). The ventilation times (mean ages) for the deep and bottom water column were 500-600 years, and based on the mean age profiles the southern part of the intermediate SCS water was older than the northern part. The ventilation time distribution was in agreement with the existence of mean annual cyclonic circulation in the SCS. The mean column inventory of Cant in the northern SCS was 28.9 mol C m-2 (error range (ER): 22.8-35.6 mol C m-2), while in the southern SCS it was 28.4 mol m-2 (ER: 21.9-35.2 molCm-2). The total Cant inventory was estimated to be 1 Pg C (ER: 0.8-1.3 Pg C, referenced to the year 2011), suggesting that the SCS stores less Cant then the adjacent seas. The vertical diffusivity was estimated to be 2-4.6×10-4 m2 s-1 in the SCS based on the "transient steady state". The upwelling was estimated as 13-34 myr-1. The high diffusivity was probably due to the strong internal tide, while the strong upwelling was due to the persistent counterclockwise (cyclonic) circulation.

  14. Fuselage ventilation under wind conditions

    NASA Technical Reports Server (NTRS)

    Stuart, J. W.

    1979-01-01

    To determine realistic fuselage ventilation rates for post-crash fires and full-scale fire tests, the effects on wind-about fuselage ventilation rate of various parameters were studied. The parameters investigated were fuselage size and shape, fuselage orientation and proximity to ground, fuselage-opening and location, and wind speed and direction.

  15. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  16. Mechanical ventilation in abdominal surgery.

    PubMed

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery.

  17. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  18. Evaluation of building ventilation systems

    SciTech Connect

    Hughes, R.T.; O'Brien, D.M.

    1986-04-01

    Over the past several years, NIOSH has responded to health hazard evaluation requests from workers in dozens of office environments. Typically, the employees have complained of headache, eye and upper respiratory tract irritation, dizziness, lethargy and the inability to concentrate. Most often inadequate ventilation has been blamed for these complaints. Of paramount importance in the evaluation and correction of these problems is an effective evaluation of the building's ventilation system. Heating, ventilating and air-conditioning conditions that can cause worker stresses include: migration of odors or chemical hazards between building areas; reentrainment of exhaust from building fume hoods or through heat wheels; buildup of microorganisms in the HVAC system components; and poor odor or environmental control due to insufficient fresh outdoor air or system heating or cooling malfunction. The purpose of this paper is to provide an overview of building ventilation systems, the ventilation problems associated with poorly designed or operating systems, and the methodology for effectively evaluating system performance.

  19. Difficult weaning from mechanical ventilation.

    PubMed

    Oh, T E

    1994-07-01

    Weaning from mechanical ventilation may be influenced by factors relating to equipment, techniques and procedures. Criteria to initiate weaning and predictors of weaning outcome are generally unreliable, but mechanical work of breathing, the tidal volume: frequency ratio and the inspiratory pressure: maximal inspiratory pressure ratio may anticipate those likely to fail weaning. The optimal weaning ventilatory mode is not known, but intermittent mandatory ventilation, pressure support ventilation, and continuous positive pressure ventilation are the most commonly used. The resistances of individual components of breathing circuits are extremely important. Blow-by heated humidifiers and ventilators which compensate for the impedances of their inspiratory demand valves impose clinically acceptable spontaneous breathing loads. Close monitoring, adequate respiratory muscle rest, attention to mineral deficiencies, nutrition and pulmonary hygiene are also important parts of the weaning process.

  20. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  1. Ventilator-induced diaphragmatic dysfunction.

    PubMed

    Petrof, Basil J; Jaber, Samir; Matecki, Stefan

    2010-02-01

    Diaphragmatic function is a major determinant of the ability to successfully wean patients from mechanical ventilation. There is increasing recognition of a condition termed ventilator-induced diaphragmatic dysfunction. The purpose of the present review is to present evidence that mechanical ventilation can itself be a cause of diaphragmatic dysfunction, to outline our current understanding of the cellular mechanisms responsible for this phenomenon, and to discuss the implications of recent research for future therapeutic strategies. Many critically ill patients demonstrate diaphragmatic weakness. A large body of evidence from animal models, and more limited data from humans, indicates that mechanical ventilation can cause muscle fiber injury and atrophy within the diaphragm. Current data support a complex underlying pathophysiology involving oxidative stress and the activation of several intracellular proteolytic pathways involved in degradation of the contractile apparatus. This includes the calpain, caspase, and ubiquitin-proteasome systems. In addition, there is a simultaneous downregulation of protein synthesis pathways. Studies in animal models suggest that future therapies may be able to specifically target these processes, whereas for the time being current preventive measures in humans are primarily based upon allowing persistent diaphragmatic activation during mechanical ventilation. Diaphragmatic dysfunction is common in mechanically ventilated patients and is a likely cause of weaning failure. Recently, there has been a great expansion in our knowledge of how mechanical ventilation can adversely affect diaphragmatic structure and function. Future studies need to better define the evolution and mechanistic basis for ventilator-induced diaphragmatic dysfunction in humans, in order to allow the development of mechanical ventilation strategies and pharmacologic agents that will decrease the incidence of ventilator-induced diaphragmatic dysfunction.

  2. Ventilation and respiratory mechanics.

    PubMed

    Sheel, Andrew William; Romer, Lee M

    2012-04-01

    During dynamic exercise, the healthy pulmonary system faces several major challenges, including decreases in mixed venous oxygen content and increases in mixed venous carbon dioxide. As such, the ventilatory demand is increased, while the rising cardiac output means that blood will have considerably less time in the pulmonary capillaries to accomplish gas exchange. Blood gas homeostasis must be accomplished by precise regulation of alveolar ventilation via medullary neural networks and sensory reflex mechanisms. It is equally important that cardiovascular and pulmonary system responses to exercise be precisely matched to the increase in metabolic requirements, and that the substantial gas transport needs of both respiratory and locomotor muscles be considered. Our article addresses each of these topics with emphasis on the healthy, young adult exercising in normoxia. We review recent evidence concerning how exercise hyperpnea influences sympathetic vasoconstrictor outflow and the effect this might have on the ability to perform muscular work. We also review sex-based differences in lung mechanics.

  3. Solar ventilation and tempering

    NASA Astrophysics Data System (ADS)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  4. Cardiac gated ventilation

    SciTech Connect

    Hanson, C.W. III; Hoffman, E.A.

    1995-12-31

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  5. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  6. Vertical constituent transport in the mesosphere

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Summers, Michael E.; Bevilacqua, Richard M.; Deland, Matthew T.; Allen, Mark

    1987-01-01

    Ground-based microwave spectroscopy measurements of mesospheric CO and H2O vertical mixing ratio profiles are used to infer vertical mixing rates in the upper mesosphere. The CO and H2O data consistently imply vertical eddy diffusion coefficients in the 70- to 85-km region of 100,000-200,000 sq cm/s during spring through summer at midlatidues. Although chemical acceleration of vertical transport is substantial for O and O3, below the mesopause, the divergences of their associated fluxes are modest, with at most a factor of 2 effect on the concentrations of O and O3 for measured variability in gravity wave activity. Comparison of Solar Mesosphere Explorer (SME) O3 data with model results reinforces the conclusions of slow vertical mixing in the upper mesosphere as a consequence of the reduced HO(x) catalytic loss of odd oxygen. The changes in chemical rate constants recommended by Rusch and Eckman (1985), in conjunction with slow vertical mixing, yield good agreement with SME O3 data. The slow vertical mixing deduced in this study is consistent with upper limits obtained from studies of the mesospheric heat budget and could be construed as evidence for an advectively controlled mesosphere. A comparison of the vertical eddy diffusion coefficients for momentum stresses, constituent transport, and heat transport suggests that the eddy Prandtl number must be of order 10.

  7. Vertical constituent transport in the mesosphere

    NASA Astrophysics Data System (ADS)

    Strobel, Darrell F.; Summers, Michael E.; Bevilacqua, Richard M.; Deland, Matthew T.; Allen, Mark

    1987-06-01

    Ground-based microwave spectroscopy measurements of mesospheric CO and H2O vertical mixing ratio profiles are used to infer vertical mixing rates in the upper mesosphere. The CO and H2O data consistently imply vertical eddy diffusion coefficients in the 70- to 85-km region of 100,000-200,000 sq cm/s during spring through summer at midlatidues. Although chemical acceleration of vertical transport is substantial for O and O3, below the mesopause, the divergences of their associated fluxes are modest, with at most a factor of 2 effect on the concentrations of O and O3 for measured variability in gravity wave activity. Comparison of Solar Mesosphere Explorer (SME) O3 data with model results reinforces the conclusions of slow vertical mixing in the upper mesosphere as a consequence of the reduced HO(x) catalytic loss of odd oxygen. The changes in chemical rate constants recommended by Rusch and Eckman (1985), in conjunction with slow vertical mixing, yield good agreement with SME O3 data. The slow vertical mixing deduced in this study is consistent with upper limits obtained from studies of the mesospheric heat budget and could be construed as evidence for an advectively controlled mesosphere. A comparison of the vertical eddy diffusion coefficients for momentum stresses, constituent transport, and heat transport suggests that the eddy Prandtl number must be of order 10.

  8. Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim

    2017-04-01

    Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline

  9. [Leak monitoring in noninvasive ventilation].

    PubMed

    Rabec, C A; Reybet-Degat, O; Bonniaud, P; Fanton, A; Camus, P

    2004-11-01

    Nasal mask ventilation has been shown to be effective, but outcomes do not always match expectations because of mouth leaks, patient-ventilator asynchrony, or decreased upper airway patency. These developments are detected when they lead ultimately to circuit leaks that lower the effectiveness of ventilation through pressure loss, poor inspiratory triggering, and prolonged inspiratory time. The quality of sleep is affected, and adverse effects and treatment intolerance may arise. A number of ways to detect leaks and their practical consequences are proposed in this article. We applied 310 leak-detection procedures to 177 patients who had disappointing clinical, gasometric, or polysomnographic outcomes of ventilation. The leak-detection procedures varied according to the type of ventilation and the supposed underlying pathophysiological mechanism. Significant leaks were detected in 132 patients (76%); therapeutic changes were then prescribed to optimize outcomes. We present a practical method to apply in patients with suboptimal ventilation outcomes. If leaks can be detected during treatment, the probable cause of treatment failure can sometimes be established and possible pathophysiological mechanisms better understood. With this knowledge, it may be possible to improve ventilation.

  10. Ventilator Associated Pneumonia in Children.

    PubMed

    Chang, Ivy; Schibler, Andreas

    2016-09-01

    Ventilator associated pneumonia (VAP) is a common complication in mechanically ventilated children and adults. There remains much controversy in the literature over the definition, treatment and prevention of VAP. The incidence of VAP is variable, depending on the definition used and can effect up to 12% of ventilated children. For the prevention and reduction of the incidence of VAP, ventilation care bundles are suggested, which include vigorous hand hygiene, head elevation and use of non-invasive ventilation strategies. Diagnosis is mainly based on the clinical presentation with a lung infection occurring after 48hours of mechanical ventilation requiring a change in ventilator settings (mainly increased oxygen requirement, a positive culture of a specimen taken preferentially using a sterile sampling technique either using a bronchoscope or a blind lavage of the airways). A new infiltrate on a chest X ray supports the diagnosis of VAP. For the treatment of VAP, initial broad-spectrum antibiotics should be used followed by a specific antibiotic therapy with a narrow target once the bacterium is confirmed.

  11. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  12. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  13. Liquid ventilation: a future modality?

    PubMed

    Bresnahan, M

    1999-09-01

    Liquid ventilation, an idea currently being trialled in the United States, is increasingly being discussed as a possible future trend in ventilation. A review of the available literature indicates that this treatment provides effective gas exchange and has a number of potential advantages. These include lower airway pressures, decreased alveolar surface tension, alveolar recruitment and removal of pulmonary exudate. While yet to be seen in this country, liquid ventilation may be introduced in the future. If it is, those caring for patients treated in that way will require knowledge of the mechanics and physiological changes involved, as well as the potential hazards of this modality.

  14. 6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION HOUSE. THIS AIR CONDITIONING SYSTEM WAS INSTALLED BY PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS WHEN THE MILL WAS CONSTRUCTED IN 1923-24. ONE AIR WASHER AND FAN ROOM EXTERIOR IS VISIBLE ON THE RIGHT. THE DUCTS FROM BOTH FAN ROOMS (CURVED METAL STRUCTURES AT CENTER AND LEFT OF PHOTO) ARE CONNECTED TO A COMMON AIR SHAFT. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA

  15. Preoperational test report, vent building ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation plan. 57.8520 Section 57.8520... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ventilation Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by...

  17. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Crawlspace ventilation. 3285.505... ventilation. (a) A crawlspace with skirting must be provided with ventilation openings. The minimum net area of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet...

  18. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Crawlspace ventilation. 3285.505... ventilation. (a) A crawlspace with skirting must be provided with ventilation openings. The minimum net area of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet...

  19. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  20. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  1. Preoperational test, vent building ventilation system

    SciTech Connect

    Clifton, F.T., Westinghouse Hanford

    1996-08-20

    Preoperational Test Procedure for Vent Building Ventilation System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The Vent Building ventilation system provides ventilation, heating, cooling, and zone confinement control for the W-030 Project Vent Building. The tests verify correct System operation and correct indications displayed by the central Monitor and Control system.

  2. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation. 168.15-50 Section 168.15-50 Shipping COAST... Accommodations § 168.15-50 Ventilation. (a) All quarters must be adequately ventilated in a manner suitable to the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided...

  3. 46 CFR 194.20-5 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation. 194.20-5 Section 194.20-5 Shipping COAST... Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The... based upon the volume of the compartment. (1) Power ventilation units shall have nonsparking...

  4. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Ventilation. 175.201 Section 175... SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built after... unless it is equipped with an operable ventilation system that meets the requirements of 33 CFR...

  5. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Ventilation. 175.201 Section 175... SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built after... unless it is equipped with an operable ventilation system that meets the requirements of 33 CFR...

  6. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Crawlspace ventilation. 3285.505... ventilation. (a) A crawlspace with skirting must be provided with ventilation openings. The minimum net area of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet...

  7. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Ventilation. 175.201 Section 175... SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built after... unless it is equipped with an operable ventilation system that meets the requirements of 33 CFR...

  8. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation. 168.15-50 Section 168.15-50 Shipping COAST... Accommodations § 168.15-50 Ventilation. (a) All quarters must be adequately ventilated in a manner suitable to the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided...

  9. 46 CFR 194.20-5 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation. 194.20-5 Section 194.20-5 Shipping COAST... Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The... based upon the volume of the compartment. (1) Power ventilation units shall have nonsparking...

  10. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Accommodations § 168.15-50 Ventilation. (a) All quarters must be adequately ventilated in a manner suitable to the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation. 168.15-50 Section 168.15-50 Shipping...

  11. Physiological Effects of Positive Pressure Ventilation.

    DTIC Science & Technology

    1992-05-01

    in the ventilated patient and increase proportionally with the length of time Ventilation 43 mechanical ventilation is employed. Major infection ... sources are contributed to repeated breaks in the ventilator circuit and aspiration of gastric contents. There appears to be a positive correlation with

  12. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  13. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system...

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system...

  15. Interactions between locomotion and ventilation in tetrapods.

    PubMed

    Boggs, Dona F

    2002-10-01

    Interactions between locomotion and ventilation have now been studied in several species of reptiles, birds and mammals, from a variety of perspectives. Among these perspectives are neural interactions of separate but linked central controllers; mechanical impacts of locomotion upon ventilatory pressures and flows; and the extent to which the latter may affect gas exchange and the energetics of exercise. A synchrony, i.e. 1:1 pattern of coordination, is observed in many running mammals once they achieve galloping speeds, as well as in flying bats, some flying birds and hopping marsupials. Other, non-1:1, patterns of coordination are seen in trotting and walking quadrupeds, as well as running bipedal humans and running and flying birds. There is evidence for an energetic advantage to coordination of locomotor and respiratory cycles for flying birds and running mammals. There is evidence for a mechanical constraint upon ventilation by locomotion for some reptiles (e.g. iguana), but not for others (e.g. varanids and crocodilians). In diving birds the impact of wing flapping or foot paddling on differential air sac pressures enhances gas exchange during the breath hold by improving diffusive and convective movement of air sac oxygen to parabronchi. This paper will review the current state of our knowledge of such influences of locomotion upon respiratory system function.

  16. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  17. Basic concepts in mechanical ventilation.

    PubMed

    Carbery, Catherine

    2008-03-01

    Mechanical ventilatory support is a major component of the clinical management of critically ill patients admitted into intensive care. Closely linked with the developments within critical care medicine, the use of ventilatory support has been increasing since the polio epidemics in the 1950s (Lassen 1953). Initially used to provide controlled mandatory ventilation, today with advances in technology, most mechanical ventilators are triggered by the patient, increasing the awareness of the complexity of patient/ventilator interaction (Tobin 1994). Though ventilator appearance and design may have changed quite significantly and the variety of options for support extensive, the basic concepts of mechanical ventilatory support of the critically ill patient remains unchanged. This paper aims to outline these concepts so as to gain a better understanding of mechanical ventilatory support.

  18. Mechanical ventilation in the home.

    PubMed

    Make, B J; Gilmartin, M E

    1990-07-01

    Despite advances in the application of mechanical ventilation as a short-term, life-saving technique, intensive care units are increasingly faced with patients who cannot be weaned from ventilatory assistance and who require mechanical ventilation as a long-term, life-supporting necessity. Because of limited resources in health care facilities for the management of chronic ventilator-assisted individuals, home care has become an important option. With careful selection of appropriate candidates, home care for ventilator-assisted individuals can result in not only decreased respiratory symptoms, reduction in hospitalization, and improved physiologic measures, but also an improved quality of life with substantial survival and a reduction in the costs of medical care.

  19. The Ventilation, Heating and Lighting of Hospital Wards

    PubMed Central

    Watt, James

    1933-01-01

    History of ventilation in last 100 years, showing reversal of ideas and influence of sanatorium idea. Physiology of cool moving air. How it affects metabolism, heat-loss and heat-production. Relation to sunlight. Reactive capacity of the individual. Practice of these teachings, as illustrated by sanatorium treatment of tuberculosis and by open-air schools. Exposure to cooling air a powerful therapeutic agent. Infrequent occurrence in sanatoria of diseases or complications often ascribed to cold. Dilution of infection. Applicability to diseases other than tuberculosis. Shock and old age. Perflation and diffusion, their relative values. Uniformity or variability of effect desirable? Incompatibility of good ventilation and ordinary standards of heating. Former the more important. Conclusion that ward temperatures may be lowered without harm. Measures necessary to compensate, clothing, classification of patients, small wards. Changing standards of comfort. Psychological effects. Systems of ventilation in hospital wards. Mechanical by propulsion or extraction being displaced by natural system, usually by cross-window ventilation. Supplementary ventilators. Objection to heating of incoming air. Fallibility of human factor in management. Sash versus casement windows. Hoppers. Austral window. Orientation and exposure of wards. Ventilation of small wards. Proportion of window space to solid wall. Balconies. Floor space. Heating of wards. Heating of air or floor or walls. Open fires. Value of radiant heat. Steam or water under low or high pressure. Radiators or pipes. Lighting. Avoidance of glare from windows. Arrangement of beds in wards. Colour of walls. Blinds and curtains. Artificial lighting. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5 PMID:19989481

  20. Lung Functional and Biologic Responses to Variable Ventilation in Experimental Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome.

    PubMed

    Samary, Cynthia S; Moraes, Lillian; Santos, Cintia L; Huhle, Robert; Santos, Raquel S; Ornellas, Debora S; Felix, Nathane S; Capelozzi, Vera L; Schanaider, Alberto; Pelosi, Paolo; de Abreu, Marcelo Gama; Rocco, Patricia R M; Silva, Pedro L

    2016-07-01

    The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Prospective, randomized, controlled experimental study. University research laboratory. Twenty-four Wistar rats. Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis. Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11-17] vs variable ventilation, 9 [8-10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3-23.3] vs variable ventilation, 5.6 [4.6-12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3-2.1] vs variable ventilation, 0.7 [0.6-1.4]; p < 0.05) and increased relative

  1. Ventilator risk management using a programmed monitor.

    PubMed

    Silvern, D A; Gupte, P M

    1989-01-01

    A computer program was written to improve quality control and risk management of patients on ventilators. The software was designed to run on the new-generation Spacelabs PC Monitor interfaced to the Puritan-Bennett 7200a ventilator. Before the program allows connection of the ventilator to a patient, the ventilator is polled for initial hardware status, alarm statuses and alarm limit settings. If there are no hardware failures, alarm violations, or improperly set alarm limits, the program prompts the clinician to connect the ventilator to the patient. Polling is done periodically after patient ventilation begins, and patient data, alarm conditions, or changes to the ventilator settings are automatically written to disk. In addition, real-time data can be displayed at any time during the ventilation session by using a set of touch-screen options. After the ventilation session is complete, the clinician can print the final report in hard copy or to disk.

  2. Inspiratory work and response times of a modified pediatric volume ventilator during synchronized intermittent mandatory ventilation and pressure support ventilation.

    PubMed

    Martin, L D; Rafferty, J F; Wetzel, R C; Gioia, F R

    1989-12-01

    Volume ventilation by demand flow ventilators significantly increases work of breathing during inspiration. Although various ventilator modifications and different modes of ventilation have been developed, there have been few studies regarding imposed work of breathing in infants and children. This study was designed to evaluate several modifications of a commercially available demand flow ventilator designed to shorten response time (tr) and decrease the imposed work (Wi) involved in opening the demand valve. Minimum withdrawal volume (Vmin), maximum negative pressure (P mneg), and tr were measured. Wi was defined as the product of Vmin and P mneg. Seven Siemens Servo 900C ventilators were tested under 16 different trial conditions with four variables: 1) mode of ventilation (synchronized intermittent mandatory ventilation [SIMV] vs. pressure support ventilation [PSV]); 2) caliber of circuit tubing (adult vs. pediatric); 3) location of airway pressure monitor (distal vs. proximal); and 4) ventilator trigger sensitivity (0 cm H2O--high vs. -2 cm H2O--low). Vmin, Pmneg, and Wi were all decreased (P less than .05) while tr was unaffected by changing ventilator trigger sensitivity from low to high. Wi was decreased by pediatric tubing and proximal airway pressure monitoring only when low trigger sensitivity was used. PSV and proximal airway monitoring shortened tr. The authors conclude that the use of pediatric circuit tubing and proximal airway pressure monitoring with a Siemens Servo 900C ventilator significantly improved ventilator performance.

  3. Residential ventilation standards scoping study

    SciTech Connect

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  4. Ventilation of idealised urban area, LES and wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Kukačka, L.; Fuka, V.; Nosek, Š.; Kellnerová, R.; Jaňour, Z.

    2014-03-01

    In order to estimate the ventilation of vehicle pollution within street canyons, a wind tunnel experiment and a large eddy simulation (LES) was performed. A model of an idealised urban area with apartment houses arranged to courtyards was designed according to common Central European cities. In the wind tunnel, we assembled a set-up for simultaneous measurement of vertical velocity and tracer gas concentration. Due to the vehicle traffic emissions modelling, a new line source of tracer gas was designed and built into the model. As a computational model, the LES model solving the incompressible Navier-Stokes equations was used. In this paper, we focused on the street canyon with the line source situated perpendicular to an approach flow. Vertical and longitudinal velocity components of the flow with the pollutant concentration were obtained from two horizontal grids placed in different heights above the street canyon. Vertical advective and turbulent pollution fluxes were computed from the measured data as ventilation characteristics. Wind tunnel and LES data were qualitatively compared. A domination of advective pollution transport within the street canyon was determined. However, the turbulent transport with an opposite direction to the advective played a significant role within and above the street canyon.

  5. Unexpected death of a ventilator-dependent amyotrophic lateral sclerosis patient.

    PubMed

    di Paolo, M; Evangelisti, L; Ambrosino, N

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive, neurodegenerative disease and most patients affected die of respiratory compromise and/or pneumonia within 2-3 years of diagnosis. As ALS progresses, ventilator assistance is required. In the end stages of the disease, patients suffer from respiratory failure and may become ventilator-dependent. Deaths due to malfunction of mechanical ventilators are reported but there are very few forensic autopsy records. We report the case of a 69-year-old ALS female ventilator-dependent, trachostomised patient who was found dead by her husband, with the ventilator in "stand-by" mode. A forensic autopsy was performed. Samples of internal organs were taken for histological and toxicological examination. The ventilator internal memory was also analysed and tested in order to find possible malfunction. Gross examination did not reveal any sign of trauma but showed brain and lung congestion. Pulmonary histological examination revealed thickening of peribronchial interstitial space, alveolar over-distension, break of inter-alveolar walls and diffuse alveolar haemorrhages. Focal microhemorrhages were also detected in other organs. Analysis of the ventilator internal memory showed that during the night of death, there had been several voltage drops. Specific tests revealed malfunction of the internal battery which was unable to provide the necessary voltage, as a consequence the ventilator switched off, stopping ventilation. Battery malfunction reduced the volume of the ventilator alarm, which was not heard by the caregiver. Histological pattern, with acute pulmonary emphysema and focal polivisceral haemorrhages, is strongly suggestive of a death due to "acute" asphyxia. The authors also discuss the need for strict supervision and follow up of these ventilatory dependent patients and their devices. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  6. [Nasopharyngeal myiasis during mechanical ventilation].

    PubMed

    Yoshitomi, A; Sato, A; Suda, T; Chida, K

    1997-12-01

    We report a case of myiasis caused by Phaenicia sericata during mechanical ventilation. An 86-year-old woman with bronchiectasis was admitted to our hospital with severe respiratory failure. Treatment with mechanical ventilation and sedatives was initiated. On the 10th day of hospitalization, about 20 white larvae were found in the patient's oral or nasal cavities. The larvae were removed and identified as Phaenicia sericata. No mucosal injury was found in the patient's oral or nasal cavity by endoscopic examination. The patient died of multiple organ failure caused by sepsis that had no association with myiasis. From the clinical course and the fly's life cycle, it is considered that the fly laid eggs in the patient's oral or nasal cavity while she was sedated during mechanical ventilation. Myiasis can occur even in a hospital.

  7. Assisted mechanical ventilation: the future is now!

    PubMed

    Kacmarek, Robert M; Pirrone, Massimiliano; Berra, Lorenzo

    2015-07-29

    Assisted ventilation is a highly complex process that requires an intimate interaction between the ventilator and the patient. The complexity of this form of ventilation is frequently underappreciated by the bedside clinician. In assisted mechanical ventilation, regardless of the specific mode, the ventilator's gas delivery pattern and the patient's breathing pattern must match near perfectly or asynchrony between the patient and the ventilator occurs. Asynchrony can be categorized into four general types: flow asynchrony; trigger asynchrony; cycle asynchrony; and mode asynchrony. In an article recently published in BMC Anesthesiology, Hodane et al. have demonstrated reduced asynchrony during assisted ventilation with Neurally Adjusted Ventilatory Assist (NAVA) as compared to pressure support ventilation (PSV). These findings add to the growing volume of data indicating that modes of ventilation that provide proportional assistance to ventilation - e.g., NAVA and Proportional Assist Ventilation (PAV) - markedly reduce asynchrony. As it becomes more accepted that the respiratory center of the patient in most circumstances is the most appropriate determinant of ventilatory pattern and as the negative outcome effects of patient-ventilator asynchrony become ever more recognized, we can expect NAVA and PAV to become the preferred modes of assisted ventilation!

  8. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    PubMed

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  9. Deep ventilation process in Patagonian fjord, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Santos, Iván; Silvan, Nelson; Castillo, Manuel; Mayorga, Nicolas; Schneider, Wolfgang; Montero, Paulina; Daneri, Giovanni; Valle-Levinson, Arnoldo; Pizarro, Oscar; Ramirez, Nadín; Igor, Gabriela; Navarro, Eduardo

    2017-04-01

    The Puyuhuapi Fjord (44.6° S) has previously been reported as one of the hypoxic fjords in Chilean Patagonia (dissolved oxygen -DO below 2 mL L-1). Hydrographic sampling between 1995-2016 confirmed hypoxia below 100 m depth, down to the bottom (250 m). A line of sensors at an oceanographic mooring in Puyuhuapi were deployed to continuously record the temporal-vertical behaviour of water column temperature and salinity from the surface down to 120 m, from February to July 2015. A multi-Parameter water quality sonde was deployed at the bottom of the line, with a DO optical sensor. From February to mid-May, hypoxia was sustained (1.4-1.6 mL L-1). However, from May until the end of June, DO values increased (2.8 mL L-1), exceeding the hypoxia threshold. This was the first event of deep ventilation reported in a Chilean Patagonian Fjord. During this time period, deep water temperatures increased by 1.3 °C, coinciding with the decreased in salinity from 33.6 to 32.8. The main cause of this event was attributed to the arrival of a new volume of mixed oceanic water into the fjord, transported by Modified Subantartic Water, with warm temperatures, lower salinities and slightly higher DO values, given its origin in the surface layer of the outer oceanic region. A new experiment was carried out during January-November, 2016 in order to corroborate the ventilation process and its connection with the adjacent ocean. Temperature, salinity and DO sensors were deployed in the outside fjords region close to the ocean (Melinka Channel) and in Puyuhuapi Fjord, to record the data at very high temporal resolution. The distance between both stations was 150 km. In the oceanic mooring the DO time series collected at 150 m depth showed hypoxia in summer related to the position of the Equatorial Sub-surface water, but from fall DO started to increase registering high values in August and September (4-5 mL/L) when the Subantartic Water arrive. The DO records in Puyuhuapi at 120 m showed a

  10. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation.

    PubMed

    Mireles-Cabodevila, Eduardo; Diaz-Guzman, Enrique; Arroliga, Alejandro C; Chatburn, Robert L

    2012-01-01

    Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes). Two examples are adaptive support ventilation (ASV) and mid-frequency ventilation (MFV). We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario's respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  11. Intraoperative mechanical ventilation for the pediatric patient.

    PubMed

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made.

  12. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  13. Experimental evaluation of the Skylab orbital workshop ventilation system concept

    NASA Technical Reports Server (NTRS)

    Allums, S. L.; Hastings, L. J.; Ralston, J. T.

    1972-01-01

    Extensive testing was conducted to evaluate the Orbital Workshop ventilation concept. Component tests were utilized to determine the relationship between operating characteristics at 1 and 0.34 atm. System tests were conducted at 1 atm within the Orbital Workshop full-scale mockup to assess delivered volumetric flow rate and compartment air velocities. Component tests with the Anemostat circular diffusers (plenum- and duct-mounted) demonstrated that the diffuser produced essentially equivalent airflow patterns and velocities in 1- and 0.34-atm environments. The tests also showed that the pressure drop across the diffuser could be scaled from 1 to 0.34 atm using the atmosphere pressure ratio. Fan tests indicated that the performance of a multiple, parallel-mounted fan cluster could be predicted by summing the single-fan flow rates at a given delta P.

  14. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  15. Net diffusivity in ocean general circulation models with nonuniform grids

    NASA Technical Reports Server (NTRS)

    Yin, F. L.; Fung, I. Y.

    1991-01-01

    The numerical vertical diffusivity K(num), embedded in a numerical ocean general circulation model with nonuniform vertical grid, is estimated. It is shown that in a downwelling region, K(num) is negative for a grid with grid size increasing with depth. When the grid size increment, or the downward vertical velocity, is large, K(num) may exceed the vertical diffusivity specified and may result in a negative effective vertical diffusivity. Therefore care needs to be taken to specify the vertical diffusivity in a numerical model with nonuniform grid, and a lower bound is generally imposed in order to avoid an unphysical negative value. Some possible effects of the negative effective diffusivity are discussed.

  16. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  17. The effect of changing ventilator settings on indices of ventilation inhomogeneity in small ventilated lungs

    PubMed Central

    Schmalisch, G; Proquitté, H; Roehr, CC; Wauer, RR

    2006-01-01

    Background In ventilated newborns the use of multiple breath washout (MBW) techniques for measuring both lung volume and ventilation inhomogeneity (VI) is hampered by the comparatively high dead space fraction. We studied how changes in ventilator settings affected VI indices in this particular population. Methods Using a computer simulation of a uniformly ventilated volume the interaction between VI indices (lung clearance index (LCI), moment ratios (M1/M0, M2/M0, AMDN1, AMDN2) of the washout curve) and tidal volume (VT), dead space (VD) and functional residual capacity (FRC) were calculated. The theoretical results were compared with measurements in 15 ventilated piglets (age <12 h, median weight 1135 g) by increasing the peak inspiratory pressure (PIP). FRC and VI indices were measured by MBW using 0.8% heptafluoropropane as tracer gas. Results The computer simulation showed that the sensitivity of most VI indices to changes in VD/VT and VT/FRC increase, in particular for VD/VT > 0.5. In piglets, the raised PIP caused a significant increase of VT from 15.4 ± 9.5 to 21.9 ± 14.7 (p = 0.003) and of the FRC from 31.6 ± 14.7 mL to 35.0 ± 15.9 mL (p = 0.006), whereas LCI (9.15 ± 0.75 to 8.55 ± 0.74, p = 0.019) and the moment ratios M1/M0, M2/M0 (p < 0.02) decreased significantly. No significant changes were seen in AMDN1 and AMDN2. The within-subject variability of the VI indices (coefficient of variation in brackets) was distinctly higher (LCI (9.8%), M1/M0 (6.6%), M2/M0 (14.6%), AMDN1 (9.1%), AMDN2 (16.3%)) compared to FRC measurements (5.6%). Computer simulations showed that significant changes in VI indices were exclusively caused by changes in VT and FRC and not by an improvement of the homogeneity of alveolar ventilation. Conclusion In small ventilated lungs with a high dead space fraction, indices of VI may be misinterpreted if the changes in ventilator settings are not considered. Computer simulations can help to prevent this misinterpretation. PMID

  18. Inadequate face mask ventilation--clinical applications.

    PubMed

    Goranović, Tatjana; Milić, Morena; Holjevac, Jadranka Katancić; Maldini, Branka; Sakić, Katarina

    2010-09-01

    Face mask ventilation is a life saving technique. This article will review aetiology and patophysiological consequences of inadequate mask ventilation. The main focus will be on circulatory changes during induction of anesthesia, before and in a short period after intubation that could be attributed to inadequate mask ventilation in humans.

  19. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system; (4) Locations of all main, booster and auxiliary fans not shown in paragraph (d) of this standard...) Significant changes in the ventilation system projected for one year. (c) Mine fan data for all active main... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the...

  20. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations § 27.831 Ventilation. (a) The ventilating system for the pilot and passenger compartments must be designed to prevent... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ventilation. 27.831 Section...

  1. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations § 27.831 Ventilation. (a) The ventilating system for the pilot and passenger compartments must be designed to prevent... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 27.831 Section...

  2. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations § 27.831 Ventilation. (a) The ventilating system for the pilot and passenger compartments must be designed to prevent... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ventilation. 27.831 Section...

  3. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations § 27.831 Ventilation. (a) The ventilating system for the pilot and passenger compartments must be designed to prevent... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ventilation. 27.831 Section...

  4. 46 CFR 194.15-5 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation. 194.15-5 Section 194.15-5 Shipping COAST....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or...

  5. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations § 27.831 Ventilation. (a) The ventilating system for the pilot and passenger compartments must be designed to prevent... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ventilation. 27.831 Section...

  6. 46 CFR 194.15-5 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation. 194.15-5 Section 194.15-5 Shipping COAST....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or...

  7. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  8. 46 CFR 116.610 - Ventilation ducts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... type of piping, chamber, or conduit used for ventilation. (b) A ventilation duct, and materials incidental to its installation, must be made of noncombustible material. (c) Combustibles and other foreign materials are not allowed within ventilation ducts. However, metal piping and electrical wiring installed in...

  9. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  10. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  11. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  12. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  13. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  14. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  15. 9 CFR 91.21 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Ventilation. 91.21 Section 91.21... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.21 Ventilation. Each underdeck... mechanical ventilation that will furnish a complete change of air in each compartment every 2 minutes...

  16. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  17. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  18. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Ventilation. 175.201 Section 175.201 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built...

  19. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  20. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ventilation. 175.201 Section 175... SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built after July 31, 1980, that has a gasoline engine for electrical generation, mechanical power, or...

  1. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ventilation system must be sized to change the air in the ventilated space at least 30 times per hour. (f) A... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  2. Fire Service Training. Ventilation. (Revised).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One of a set of fourteen outlines for use in a course to train novice firemen, this guide covers ventilation practices and principles. As background, subjects such as heat transmission and building construction are included. The three objectives of this part of the course are to enable the fireman to (1) rescue trapped victims, (2) locate fires as…

  3. Preventing Ventilation On Sailboard Skegs

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A.

    1990-01-01

    Design effort undertaken to solve spinout problem plaguing high-performance sailboards. Proposed skeg section designed by use of computer model of pressure field and boundary layer. Prevents ventilation by maintaining attached boundary-layer flow throughout operating environment. Cavitation also avoided by preventing valleys in pressure distribution while skeg operated throughout its range.

  4. Preventing Ventilation On Sailboard Skegs

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A.

    1990-01-01

    Design effort undertaken to solve spinout problem plaguing high-performance sailboards. Proposed skeg section designed by use of computer model of pressure field and boundary layer. Prevents ventilation by maintaining attached boundary-layer flow throughout operating environment. Cavitation also avoided by preventing valleys in pressure distribution while skeg operated throughout its range.

  5. Prognosis of mechanically ventilated patients.

    PubMed Central

    Papadakis, M A; Lee, K K; Browner, W S; Kent, D L; Matchar, D B; Kagawa, M K; Hallenbeck, J; Lee, D; Onishi, R; Charles, G

    1993-01-01

    In this Department of Veterans Affairs cooperative study, we examined predictors of in-hospital and 1-year mortality of 612 mechanically ventilated patients from 6 medical intensive care units in a retrospective cohort design. The outcome variable was vital status at hospital discharge and after 1 year. The results showed that 97% of patients were men, the mean age was 63 +/- 11 years (SD), and hospital mortality was 64% (95% confidence interval, 60% to 68%). Within the next year, an additional 38% of hospital survivors died, for a total 1-year mortality of 77% (95% confidence interval, 73% to 80%). Hospital and 1-year mortality, respectively, for patients older than 70 years was 76% and 94%, for those with serum albumin levels below 20 grams per liter it was 92% and 96%, for those with an Acute Physiology and Chronic Health Evaluation II (APACHE II) score greater than 35 it was 91% and 98%, and for patients who were being mechanically ventilated after cardiopulmonary resuscitation it was 86% and 90%. The mortality ratio (actual mortality versus APACHE II-predicted mortality) was 1.15. Conclusions are that patient age, APACHE II score, serum albumin levels, or the use of cardiopulmonary resuscitation may identify a subset of mechanically ventilated veterans for whom mechanical ventilation provides little or no benefit. PMID:8128673

  6. Cardiovascular effects of mechanical ventilation and weaning.

    PubMed

    Frazier, Susan K

    2008-03-01

    Because of their anatomic position in the closed thoracic cavity, the heart and lungs interact during each ventilation cycle. The application of mechanical ventilation and subsequent removal changes normal ventilatory mechanics and produces alterations in cardiac preload and afterload that influence global hemodynamic state and delivery of oxygen and nutrients. Adverse cardiovascular responses to mechanical ventilation and weaning from ventilation include hemodynamic alterations and instability, myocardial ischemia, autonomic dysfunction, and cardiac dysrhythmias. Clinicians must have a clear understanding of the cardiovascular effects of mechanical ventilation and weaning so they may anticipate, recognize, and effectively manage negative effects and improve patient outcomes.

  7. Economics of mechanical ventilation and respiratory failure.

    PubMed

    Cooke, Colin R

    2012-01-01

    For patients with acute respiratory failure, mechanical ventilation provides the most definitive life-sustaining therapy. Because of the intense resources required to care for these patients, its use accounts for considerable costs. There is great societal need to ensure that use of mechanical ventilation maximizes societal benefits while minimizing costs, and that mechanical ventilation, and ventilator support in general, is delivered in the most efficient and cost-effective manner. This review summarizes the economic aspects of mechanical ventilation and summarizes the existing literature that examines its economic impact cost effectiveness.

  8. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  9. Patient-ventilator interaction: an overview.

    PubMed

    Prinianakis, George; Kondili, Eumorfia; Georgopoulos, Dimitris

    2005-06-01

    During assisted mechanical ventilation, the total pressure applied to respiratory system is the sum of ventilator and muscle pressure. As a result, the respiratory system is under the influence of two pumps, the ventilator pump (ie, Paw), which is controlled by the physician's brain and the capabilities of the ventilator, and the patient's own respiratory muscle pump (Pmus), which is controlled by the patient's brain. The patient-ventilator interaction is mainly an expression of the function of these two brains, which should be in harmony to promote patient-ventilator synchrony. The achievement of this harmony depends exclusively on the physician, who should be aware that during assisted mechanical ventilation the respiratory system is not a passive structure but reacts to pressure delivered by the ventilator via various feedback systems and, depending on several factors both to the ventilator and patient, may modify the function of the ventilator. Finally, the physician should know that the ventilator imposes significant constraints to the respiratory system, the magnitude of which depends heavily on the triggering variable, the variable that controls the gas delivery and the cycling off criterion.

  10. Night ventilation control strategies in office buildings

    SciTech Connect

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factors influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)

  11. Airway pressure release ventilation: theory and practice.

    PubMed

    Frawley, P M; Habashi, N M

    2001-05-01

    Airway pressure release ventilation (APRV) is a relatively new mode of ventilation, that only became commercially available in the United States in the mid-1990s. Airway pressure release ventilation produces tidal ventilation using a method that differs from any other mode. It uses a release of airway pressure from an elevated baseline to simulate expiration. The elevated baseline facilitates oxygenation, and the timed releases aid in carbon dioxide removal. Advantages of APRV include lower airway pressures, lower minute ventilation, minimal adverse effects on cardio-circulatory function, ability to spontaneously breathe throughout the entire ventilatory cycle, decreased sedation use, and near elimination of neuromuscular blockade. Airway pressure release ventilation is consistent with lung protection strategies that strive to limit lung injury associated with mechanical ventilation. Future research will probably support the use of APRV as the primary mode of choice for patients with acute lung injury.

  12. Performance of the Volumetric Diffusive Respirator at Altitude

    DTIC Science & Technology

    2014-08-18

    AFRL-SA-WP-SR-2014-0020 Performance of the Volumetric Diffusive Respirator at Altitude Dario Rodriquez, MSc1; Tyler Britton, RRT2...the Volumetric Diffusive Respirator at Altitude 5a. CONTRACT NUMBER FA8650-12-2-6B012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...volumetric diffusive respirator is a pneumatic ventilator used by the U.S. Army Burn Team and the U.S. Air Force Lung Team for patients with hypoxemic

  13. Vertical Axis Wind Turbine

    SciTech Connect

    Homicz, Greg

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  14. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  15. Summary of human responses to ventilation

    SciTech Connect

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  16. Plasmapause diffusion

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.

    1983-01-01

    The Bohm diffusion coefficient and observed electrostatic wave scattering are used as the bases of estimates of the smoothing effect that diffusion may have on steep plasmapause density gradients. The estimate for diffusion resulting from scattering by observed electrostatic waves is found to be much lower than that of the perpendicular Bohm diffusion coefficient for characteristic plasma temperatures and magnetic fields. This diffusion rate estimate may be too small, however, if the wave amplitudes are significantly higher for steep plasmapauses. The effects are therefore negligible for most considerations of macroscopic plasmapause dynamics, but may be significant in limiting drift wave instabilities and similar phenomena driven by the steepness of the plasmapause density gradient.

  17. Stockpiling Ventilators for Influenza Pandemics

    PubMed Central

    Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response. PMID:28518041

  18. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  19. [Mechanical ventilation during thoracic anesthesia].

    PubMed

    Valenza, F

    1999-05-01

    Aim of the study was to test individual mechanical and functional responses to open chest lateral decubitus during one lung ventilation. We measured dependent lung pressure volume (P-V) curves of 19 patients during supine and lateral decubitus. We found that patients characterized by high FEV1 developed greater changes in P-V curve shape than those characterized by low FEV1. Based on these results we decided to test a ventilation strategy characterized by the use of ZEEP or PEEP = 10 cm H2O applied to the dependent lung. In a preliminary set of patients stratified by FEV1 we found that PEEP deteriorated PaO2/FiO2 in patients with low FEV1, while there was a trend towards improvement in patients with high FEV1. It is possible that dependent lung PEEP counteracts atelectasias in normal lungs, while it may divert blood flow or create dead space in patients with sick and stiff lungs. We conclude that during one lung ventilation in open chest lateral decubitus, ventilatory setting need to be individually tailored.

  20. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  1. Prevention of ventilator-associated pneumonia.

    PubMed

    Lau, Arthur C W; So, H M; Tang, S L; Yeung, Alwin; Lam, S M; Yan, W W

    2015-02-01

    Ventilator-associated pneumonia is the commonest, yet mostly preventable, infection in mechanically ventilated patients. Successful control of ventilator-associated pneumonia can save hospitalisation cost, and is possible by using a multidisciplinary clinical and administrative approach. The ventilator-associated pneumonia rate should be expressed as the number of ventilator-associated pneumonia days per 1000 ventilator days to take into account the device-utilisation duration for meaningful comparison. Various strategies address the issue, including general infection control measures, body positioning, intubation and mechanical ventilation, oral and gastro-intestinal tract, endotracheal tube, airway pressure, cuff pressure, selective digestive and/or oropharyngeal decontamination, and probiotic or early antibiotic treatment, as well as overall administration at a policy level. The rationale and controversy of these approaches are discussed in this article. The authors suggest that all units treating mechanically ventilated patients should have a ventilator-associated pneumonia prevention protocol in place, and ventilator-associated pneumonia should be seriously considered as a key performance indicator in local intensive care units.

  2. Transient-state mechanisms of wind-induced burrow ventilation.

    PubMed

    Turner, J Scott; Pinshow, Berry

    2015-01-15

    Burrows are common animal habitations, yet living in a burrow presents physiological challenges for its inhabitants because the burrow isolates them from sources and sinks for oxygen, carbon dioxide, water vapor and ammonia. Conventionally, the isolation is thought to be overcome by either diffusion gas exchange within the burrow or some means of capturing wind energy to power steady or quasi-steady bulk flows of air through it. Both are examples of what may be called 'DC' models, namely steady to quasi-steady flows powered by steady to quasi-steady winds. Natural winds, however, are neither steady nor quasi-steady, but are turbulent, with a considerable portion of the energy contained in so-called 'AC' (i.e. unsteady) components, where wind velocity varies chaotically and energy to power gas exchange is stored in some form. Existing DC models of burrow gas exchange do not account for this potentially significant source of energy for ventilation. We present evidence that at least two AC mechanisms operate to ventilate both single-opening burrows (of the Cape skink, Trachylepis capensis) and double-opening model burrows (of Sundevall's jird, Meriones crassus). We propose that consideration of the physiological ecology and evolution of the burrowing habit has been blinkered by the long neglect of AC ventilation. © 2015. Published by The Company of Biologists Ltd.

  3. Computational Study of Ventilation and Disease Spread in Poultry Houses

    NASA Astrophysics Data System (ADS)

    Cimbala, John; Pawar, Sourabh; Wheeler, Eileen; Lindberg, Darla

    2006-11-01

    The air flow in and around poultry houses has been studied numerically with the goal of determining disease spread characteristics and comparing ventilation schemes. A typical manure-belt layer egg production facility is considered. The continuity, momentum, and energy equations are solved for flow both inside and outside poultry houses using the commercial computational fluid dynamics (CFD) code FLUENT. Both simplified two-dimensional and fully three-dimensional geometries are modeled. The spread of virus particles is considered to be analogous to diffusion of a tracer contaminant gas, in this case ammonia. The effect of thermal plumes produced by the hens in the poultry house is also considered. Two ventilation schemes with opposite flow directions are compared. Contours of temperature and ammonia mass fraction for both cases are obtained and compared. The analysis shows that ventilation and air quality characteristics are much better for the case in which the air flow is from bottom to top (enhancing the thermal plume) instead of from top to bottom (fighting the thermal plume) as in most poultry houses. This has implications in air quality control in the event of epidemic outbreaks of avian flu or other infectious diseases.

  4. Ventilation and anthropogenic CO2 in the Sulu Sea

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Tanhua, Toste

    2017-06-01

    The Sulu Sea, a semi-enclosed deep marginal basin, has limited exchange of deep water and poorly constrained ventilation time-scales. Here we use observations of the transient tracer CFC-12 to calculate the ventilation time-scale and the concentration of anthropogenic CO2 (Cant) in the Sulu Sea based on the transient time distribution (TTD) method. We found that CFC-12 has penetrated the entire water column in the Sulu Sea and the mean ages increase with depth monotonically and exceed 400 years below the depth of about 2500 m. The mean ages derived from CFC data in the Sulu Sea below about 500 m are lower than those in the South China Sea (SCS) at the same depth, indicating that the ventilation time of deep water is shorter in the Sulu Sea than the SCS. The mean column inventory of Cant in the Sulu Sea is 39 mol m- 2 (error range (ER): 30-49 mol m- 2) for the deeper part and the estimated total Cant inventory in 2011 is 81 Tg (ER: 66-98 Tg). By applying the Transient Steady State approximation on the Cant data we calculated the lower limit of the diapycnal diffusivity, Kz, to 1.1 × 10- 4 m2 s- 1 (ER: 0.7-1.8 × 10- 4 m2 s- 1) for the Sulu Sea below the surface mixed layer.

  5. Uniformity of stratum-ventilated thermal environment and thermal sensation.

    PubMed

    Cheng, Y; Fong, M L; Yao, T; Lin, Z; Fong, K F

    2014-10-01

    Three human test series were conducted to evaluate the uniformity of the thermal environments in a stratum-ventilated chamber with dimensions of 8.8 m (L) × 5.1 m (W) × 2.4 m (H). In all, nineteen conditions were generated by adjusting the room temperature, supply airflow rate, and supply terminal type. An air diffuser performance index (ADPI) of at least 80% was achieved for most cases. This result shows that the air velocity and temperature in the occupied zone are reasonably uniform. Subjective assessments using the ASHRAE 7-point scale indicate that the thermal sensations of the subjects in stratum ventilation are also uniform. This study examines the applicability of the predicted mean vote (PMV) model for evaluating stratum ventilation. When compared to the actual mean thermal sensation votes (ATS), the PMV values are acceptable. The PMV results at a height of 1.1 m above the floor show better agreement with the ATS than at a height of 0.1 m.

  6. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  7. Traumatic vertical atlantoaxial dislocation.

    PubMed

    Payer, M; Wetzel, S; Kelekis, A; Jenny, B

    2005-08-01

    We present a case of traumatic vertical atlantoaxial dislocation of 16 millimetres with a fatal outcome. We hypothesize that this extremely rare traumatic vertical atlantoaxial dislocation results from insufficiency of the C1/C2 facet capsules after rupture of the tectorial membrane and the alar ligaments.

  8. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  9. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark Raymond

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  10. Griffith diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.-T.; Nelson, C. D.

    1979-01-01

    Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.

  11. Griffith diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.-T.; Nelson, C. D.

    1979-01-01

    Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.

  12. Airflow studies in a forced ventilated chamber with low partitions

    SciTech Connect

    Chow, W.K.; Tsui, K.F.

    1995-12-31

    A climate chamber was used to study experimentally the airflow characteristics in a ventilated space with low partitions. Two types of commonly used air distribution devices were selected for the study--a ceiling diffuser and side grille systems. A total of 16 tests were performed using the two diffusers with partition heights varying up to 1.8 m (5.91 ft) above floor level. From the measured results, the thermal comfort indices were assessed. A stabilization effect of airflow was found when the partition height reached 1.8 m (5.91 ft). Local draft risk was located in the occupied zone. Also, the modified Archimedes number proposed by Jackman (1990) was used to describe the indoor airflow in the absence of a workable design guide for partitioned spaces.

  13. Mechanical ventilation: what have we learned?

    PubMed

    Fenstermacher, Denise; Hong, Dennis

    2004-01-01

    Mechanical ventilation is the second most frequently performed therapeutic intervention after treatment for cardiac arrhythmias in intensive care units today. Countless lives have been saved with its use despite being associated with a greater than 30% in-hospital mortality rate. As life expectancies increase and people with chronic illnesses survive longer, artificial support with mechanical ventilation is also expected to rise. In one survey, over half of senior internal medicine residents reported their training on mechanical ventilation as inadequate, whereas the majority of critical care nurses reported having received no formal education on its use. Technological advances resulting in the availability of sleeker ventilators with graphic waveform displays and new modes of ventilation have challenged the bedside clinicians to incorporate this new data along with evidenced-based research into their daily practice. A review of current thoughts on mechanical ventilation and weaning is presented.

  14. Successful management of severe respiratory failure combining heliox with noninvasive high-frequency percussive ventilation.

    PubMed

    Stucki, Pascal; Scalfaro, Pietro; de Halleux, Quentin; Vermeulen, François; Rappaz, Isabelle; Cotting, Jacques

    2002-03-01

    Heliox has been shown to be beneficial in the management of different obstructive pulmonary disorders. High-frequency percussive ventilation has recently been advocated to treat lung injury in children with reduced lung compliance. We report our experience of combining heliox with noninvasive high-frequency percussive ventilation in a 5-yr-old boy with severe acute respiratory failure resulting from advanced cystic fibrosis lung disease. The dramatic improvement allowed stabilization and withholding of endotracheal intubation. We hypothesize that this approach improved gas exchange by enhancing molecular diffusion and by favoring laminar flow throughout the upper and lower airways. Further investigations should study the mechanisms of this noninvasive bimodal therapy.

  15. [Home mechanical ventilation: Invasive and noninvasive ventilation therapy for chronic respiratory failure].

    PubMed

    Huttmann, S E; Storre, J H; Windisch, W

    2015-06-01

    Home mechanical ventilation represents a valuable therapeutic option to improve alveolar ventilation in patients with chronic respiratory failure. For this purpose both invasive ventilation via tracheostomy and noninvasive ventilation via facemasks are available. The primary goal of home mechanical ventilation is a reduction of symptoms, improvement of quality of life and in many cases reduction of mortality. Elective establishment of home mechanical ventilation is typically provided for noninvasive ventilation in respect to clinical symptoms and partial pressure of carbon dioxide depending on the underlying disease. However, invasive mechanical ventilation is increasingly being used to continue ventilatory support in polymorbid patients following unsuccessful weaning. Recommendations and guidelines have been published by the German Respiratory Society (DGP).

  16. Performance of Portable Ventilators at Temperature Extremes

    DTIC Science & Technology

    2015-03-30

    shipped and stored at ambient conditions. The effect of storage at hot and cold temperature extremes on ventilator performance is unknown. We evaluated...The effect of storage at hot and cold temperature extremes on ventilator performance is unknown. We evaluated three portable ventilators currently...operated immediately after 30 minutes of acclimation to room temperature but displayed either a “battery too hot ” or “battery too cold” alert at

  17. Single-lung ventilation in pediatric anesthesia.

    PubMed

    Choudhry, Dinesh K

    2005-12-01

    Single-lung ventilation is requested for an increasing spectrum of surgical procedures in infants and children. A clear understanding of the physiology of single-lung ventilation, the techniques of lung separation, and the technical skill necessary to apply these techniques are essential for an anesthesiologist practicing thoracic anesthesia. This article focuses on various devices available for single-lung ventilation in the pediatric age group, the relevant respiratory physiology, and the strategies that optimize oxygenation during one-lung anesthesia.

  18. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Opening and closing ventilation doors. 57.8532... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...-establish normal ventilation to working places....

  19. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Opening and closing ventilation doors. 57.8532... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...-establish normal ventilation to working places....

  20. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Opening and closing ventilation doors. 57.8532... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...-establish normal ventilation to working places....

  1. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ventilation system must not allow air to stagnate in any part of a ventilated space. (g) A ventilation system... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space...

  2. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventilation system must not allow air to stagnate in any part of a ventilated space. (g) A ventilation system... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space...

  3. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Face ventilation control devices. 75.330... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.330 Face ventilation control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall...

  4. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Face ventilation control devices. 75.330... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.330 Face ventilation control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall...

  5. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Face ventilation control devices. 75.330... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.330 Face ventilation control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall...

  6. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Face ventilation control devices. 75.330... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.330 Face ventilation control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall...

  7. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Face ventilation control devices. 75.330... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.330 Face ventilation control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall...

  8. [Principles and function of mechanical ventilation: classification and modes of ventilators].

    PubMed

    Kelbel, C; Huntemann, M; Lorenz, J

    2006-04-01

    A spectrum of diseases is associated with the necessity for partial or total support of pulmonary ventilation. The insight into the function of ventilators and their modes reduces the spectrum of ventilatory support to a few basic principles. The knowledge enables the pulmonary intensivist to adapt mechanical ventilation to the individual patient's needs. This overview describes the technical aspects of mechanical ventilation and summarizes the variety of specific modes implied.

  9. Initial ventilator settings for critically ill patients.

    PubMed

    Kilickaya, Oguz; Gajic, Ognjen

    2013-03-12

    The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressure<30 cmH2O); b) prevention of atelectasis (positive end-expiratory pressure≥5 cmH2O, as needed recruitment maneuvers); c) adequate ventilation (respiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%). Most patients tolerate lung protective mechanical ventilation well without the need for excessive sedation. Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade. Given the difficulty in timely identification of patients with or at risk of ARDS and both the safety and potential benefit in patients without ARDS, lung-protective mechanical ventilation is recommended as an initial approach to mechanical ventilation in both perioperative and critical care settings.

  10. Endotoxemia accelerates diaphragm dysfunction in ventilated rabbits.

    PubMed

    Yang, Yi; Yu, Tao; Pan, Chun; Longhini, Federico; Liu, Ling; Huang, Yingzi; Guo, Fengmei; Qiu, Haibo

    2016-12-01

    Ventilators may induce diaphragm dysfunction, and most of the septic population who are admitted to the intensive care unit require mechanical ventilation. However, there is no evidence that sepsis accelerates the onset of ventilator-induced diaphragm dysfunction or affects the microcirculation. Our study investigated whether lipopolysaccharide (LPS)-induced endotoxemia accelerated diaphragm dysfunction in ventilated rabbits by evaluating microcirculation, lipid accumulation, and diaphragm contractility. After anesthesia and tracheostomy, 25 invasively monitored and mechanically ventilated New Zealand white rabbits were randomized to control (n = 5), controlled mechanical ventilation (CMV) (n = 5), pressure support ventilation (PSV; n = 5), CMV or PSV with LPS-induced endotoxemia (CMV-LPS and PSV-LPS, respectively; n = 5 for each). Rabbits were anesthetized and ventilated for 24 h, except the control rabbits (30 min). Diaphragmatic contractility was evaluated using neuromechanical and neuroventilatory efficiency. We evaluated the following at the end of the protocol: (1) diaphragm microcirculation; (2) lipid accumulation; and (3) diaphragm muscular fibers structure. Diaphragm contractility, microcirculation, lipid accumulation, and fiber structures were severely compromised in endotoxemic animals after 24 h compared to nonendotoxemic rabbits. Moreover, a slight but significant increase in lipid accumulation was observed in CMV and PSV groups compared with controls (P < 0.05). Endotoxemia accelerates the diaphragm dysfunction process in ventilated rabbits, affects the microcirculation, and results in diaphragmatic lipid accumulation and contractility impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Lung-protective ventilation in neonatology.

    PubMed

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should therefore aim to reduce tidal volumes, and recruit and stabilize atelectatic lung units (open lung ventilation strategy). This review will summarize the available evidence on lung-protective ventilation in neonatology, discussing both high-frequency ventilation (HFV) and positive pressure ventilation (PPV). It shows that HFV does not appear to have a clear benefit over PPV, although most studies failed to apply a true open lung ventilation strategy during HFV. The evidence on the optimal tidal volume, positive end-expiratory pressure and the role for lung recruitment during lung-protective PPV is extremely limited. Volume-targeted ventilation seems to be a promising mode in terms of lung protection, but more studies are needed. Due to the lack of convincing evidence, lung-protective ventilation and modes seem to be implemented in daily clinical practice at a slow pace.

  12. [VENTILOP survey. Survey in peroperative mechanical ventilation].

    PubMed

    Fischer, F; Collange, O; Mahoudeau, G; Simon, M; Moussa, H; Thibaud, A; Steib, A; Pottecher, T; Mertes, M

    2014-06-01

    Mechanical ventilation can initiate ventilator-associated lung injury and postoperative pulmonary complications. The aim of this study was to evaluate (1) how mechanical ventilation was comprehended by anaesthetists (physician and nurses) and (2) the need for educational programs. A computing questionnary was sent by electronic-mail to the entire anaesthetist from Alsace region in France (297 physicians), and to a pool of 99 nurse anaesthetists. Mechanical ventilation during anaesthesia was considered as optimized when low tidal volume (6-8mL) of ideal body weight was associated with positive end expiratory pressure, FiO2 less than 50%, I/E adjustment and recruitment maneuvers. The participation rate was 50.5% (172 professionals). Only 2.3% of professionals used the five parameters for optimized ventilation. Majority of professionals considered that mechanical ventilation adjustment influenced the patients' postoperative outcome. Majority of the professionals asked for a specific educational program in the field of mechanical ventilation. Only 2.3% of professionals optimized mechanical ventilation during anaesthesia. Guidelines and specific educational programs in the field of mechanical ventilation are widely expected. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  13. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    SciTech Connect

    T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

    2004-07-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery...

  15. Micromachined electrostatic vertical actuator

    SciTech Connect

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.; Krulevitch, P.A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  16. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  17. [Evaluation of patient-ventilator synchrony of three new types of ventilators with pressure sunnort ventilation mode].

    PubMed

    Zhou, Juan; Wu, Hao; Cao, Desen

    2014-08-01

    Pressure-support ventilation (PSV) is a form of important ventilation mode. Patient-ventilator synchrony of pressure support ventilation can be divided into inspiration-triggered and expiration-triggered ones. Whether the ventilator can track the patient's inspiration and expiration very well or not is an important evaluating item of the performance of the ventilator. The ventilator should response to the patient's inspiration effort on time and deliver the air flow to the patient under various conditions, such as different patient's lung types and inspiration effort, etc. Similarly, the ventilator should be able to response to the patient's expiration action, and to decrease the patient lung's internal pressure rapidly. Using the Active Servo Lung (ASL5000) respiratory simulation system, we evaluated the spontaneous breathing of PSV mode on E5, Servo i and Evital XL. The following parameters, the delay time before flow to the patient starts once the trigger variable signaling the start of inspiration, the lowest inspiratory airway pressure generated prior to the initiation of PSV, etc. were measured.

  18. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.

  19. Ventilator-induced Lung Injury

    PubMed Central

    Kneyber, Martin C. J.; Zhang, Haibo; Slutsky, Arthur S.

    2016-01-01

    It is well established that mechanical ventilation can injure the lung, producing an entity known as ventilator-induced lung injury (VILI). There are various forms of VILI, including volutrauma (i.e., injury caused by overdistending the lung), atelectrauma (injury due to repeated opening/closing of lung units), and biotrauma (release of mediators that can induce lung injury or aggravate pre-existing injury, potentially leading to multiple organ failure). Experimental data in the pediatric context are in accord with the importance of VILI, and appear to show age-related susceptibility to VILI, although a conclusive link between use of large Vts and mortality has not been demonstrated in this population. The relevance of VILI in the pediatric intensive care unit population is thus unclear. Given the physiological and biological differences in the respiratory systems of infants, children, and adults, it is difficult to directly extrapolate clinical practice from adults to children. This Critical Care Perspective analyzes the relevance of VILI to the pediatric population, and addresses why pediatric patients might be less susceptible than adults to VILI. PMID:25003705

  20. Manual resuscitators and portable ventilators.

    PubMed

    Phillips, G D; Skowronski, G A

    1986-08-01

    This paper reviews the state of the art in Australia of manually operated, self-inflating bag resuscitators, including the Laerdal, Air Viva and Ambu; manually operated bags dependent upon an oxygen supply, including Mapleson B, C, E and F, the CIG Medishield Oxy-Saver and modified Oxy-Viva Resuscitator 3, and the Komesaroff Oxy-Resuscitator RD85; oxygen-powered resuscitators, including the Oxy-Viva Resuscitator 3 with Demand and RM2 Valves, and the Oxylife FM85; and portable ventilators, including the Drager Oxylog, and Ohmeda Logic 07. Specific comment is made to the effect that the design of the resuscitator is often less important than the knowledge and ability of the operator in using the equipment to achieve adequate lung ventilation. The simplest, cheapest, most useful resuscitators are the manually operated self-inflating bag assemblies. With special training, use of more complex equipment can be justified in some circumstances. The more complex the equipment, the greater the risk of inappropriate use, and the greater the risk of equipment malfunction unless a regular maintenance program is followed.

  1. Dynamic Behaviour of Ventilated Hydrofoils.

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Arndt, Roger; Wosnik, Martin

    2006-11-01

    In certain types of pumping applications oscillations are induced by operation with liquids containing a free gas load. In order to understand the physics of this process, a series of tests with a ventilated A 2D NACA 0015 hydrofoil were performed in the water tunnel at the St. Anthony Falls Laboratory of the University of Minnesota. The special bubble removal feature of the water tunnel allowed continuous ventilation without experiencing visible bubbles upstream the hydrofoil. These studies build on previous work on cavitation-induced oscillations. Gas injection studies were made over a range of gas flow rates and test section pressure. The results clearly show that lift oscillations increase in intensity when the gas load is increased. The point of maximum unsteadiness is also associated the rapid decline of the foil performance as measured as average lift. Further increase of the gas injection load gives a steady behaviour with almost no lift. These experiments are compared with traditional cavitation experiments. The similarities between gas injection- and cavitation induced unsteadiness on the hydrofoil are many, but the amplitude of lift oscillations found on the foil with gas injection corresponds to about 50% of that found for cavitating hydrofoils. The fact that the oscillations are periodic leads to the consideration of both passive and active control.

  2. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  3. Intermittent ventilation in the hypoxic zone of western Long Island Sound during the summer of 2004

    NASA Astrophysics Data System (ADS)

    O'Donnell, James; Dam, Hans G.; Bohlen, W. Frank; Fitzgerald, William; Gay, Peter S.; Houk, Adam E.; Cohen, David C.; Howard-Strobel, Mary M.

    2008-09-01

    Observations of dissolved oxygen (DO) concentration, salinity, and temperature, during summer of 2004, at three levels on two moorings in the area of western Long Island Sound that is prone to seasonal hypoxia are described. Ship surveys in the area reveal that the DO concentration below the pycnocline decreases at approximately 2.4 mM m-3 d-1 throughout the summer. We show that this is the net result of oscillations in the rate of change of the DO concentration with periods of 3 to 7 days. During intervals of declining DO concentration, the rate of change is consistent with previous estimates of the rate of community respiration. Since there is insufficient light for photosynthesis below the pycnocline, increasing DO concentration (ventilation) must be a consequence of either vertical mixing or horizontal advection from regions of higher concentration. Analysis of the covariation of DO, salinity, and temperature and knowledge of the mean property distributions allow us to associate most (˜80%) of the ventilation intervals with increased vertical mixing. Comparison of DO and wind stress measurements suggest that it is the component in the along-sound direction that controls the occurrence of ventilation, perhaps through modification of the rate of stratification by the density-driven circulation. We conclude that the spatial and temporal variability of vertical mixing is crucial to understanding the duration and extent of hypoxia in the Long Island Sound estuary.

  4. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  5. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  6. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  7. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  8. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  9. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... location has the classification of that location. Each fan for ventilation of a hazardous location must be...

  10. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... location has the classification of that location. Each fan for ventilation of a hazardous location must be...

  11. 29 CFR 1926.57 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ventilation. 1926.57 Section 1926.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.57 Ventilation. (a) General. Whenever...

  12. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  13. Preoperational test report, primary ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  14. 46 CFR 116.610 - Ventilation ducts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... served by the ventilation duct for shutting off the passage of air through the ventilation duct in the... side of the boundary. A fire damper blade need not be insulated; and (7) Ducts serving cargo spaces... at least 11 USSG and not more than 3.2 millimeters (0.125 inch) gap between the blade and casing; (2...

  15. 14 CFR 23.831 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ventilation system must be designed to provide each occupant with at least 0.55 pounds of fresh air per minute... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ventilation. 23.831 Section 23.831... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Personnel...

  16. 29 CFR 1910.94 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sizes capable of passing through the upper respiratory system to reach the lower lung passages. (xi... handled by an exhaust ventilation system. (viii) Exhaust ventilation system. A system for removing... in automatic systems. Where flammable or explosive dust mixtures may be present, the construction...

  17. 29 CFR 1910.94 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sizes capable of passing through the upper respiratory system to reach the lower lung passages. (xi... handled by an exhaust ventilation system. (viii) Exhaust ventilation system. A system for removing... in automatic systems. Where flammable or explosive dust mixtures may be present, the construction...

  18. 29 CFR 1910.94 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sizes capable of passing through the upper respiratory system to reach the lower lung passages. (xi... handled by an exhaust ventilation system. (viii) Exhaust ventilation system. A system for removing... in automatic systems. Where flammable or explosive dust mixtures may be present, the construction...

  19. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene... surface beneath the entire floor area of the home. (b) Ventilation openings must be placed as high...

  20. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect

    Sherman, Max

    2008-10-01

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  1. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  2. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  3. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  4. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  5. 14 CFR 23.831 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ventilation. 23.831 Section 23.831 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Cargo Accommodations § 23.831 Ventilation. (a) Each passenger and crew compartment must be...

  6. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  7. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation. 72.05-50 Section 72.05-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-50 Ventilation. (a) Where the term duct is used in this section, it shall...

  8. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification. Class...

  9. Tracheostomy tube enabling speech during mechanical ventilation.

    PubMed

    Nomori, Hiroaki

    2004-03-01

    A voice tracheostomy tube (VTT) was developed to enable patients to speak during mechanical ventilation. The VTT has slits cut in it and is covered on part of its side with an elastic cuff, enabling the cuff to expand with positive pressure from the ventilator on inspiration and to deflate on expiration. By this mechanism, inspired air from the ventilator goes to the lung with the cuff inflated, and some of the expired air passes out around the deflated cuff and discharges through the glottis, allowing sufficient ventilation and also enabling vocal fold vibration. An experiment using a model lung showed that there was little leakage on inspiration even for low lung compliance and high airway pressure, and that the leakage volume on expiration was approximately 40% of the ventilated volume, ie, the volume discharging through the vocal fold in clinical use. Sixteen patients who had been managed by ventilation via a conventional tracheostomy tube were switched to the VTT. All patients except one were able to speak after switching to the VTT without change in PaO(2) and PaCO(2). There were no complications associated with the use of the VTT. Bronchoscopy showed that the cuff of the VTT did not damage the tracheal mucosa. The VTT enables patients to speak during mechanical ventilation with sufficient ventilation and without aspiration and damage to the tracheal mucosa, even in patients with low lung compliance.

  10. New evidence in one-lung ventilation.

    PubMed

    Meleiro, H; Correia, I; Charco Mora, P

    2017-09-26

    Mechanical ventilation in thoracic surgery has undergone significant changes in recent years due to the implementation of the protective ventilation. This review will analyze recent ventilatory strategies in one-lung ventilation. A MEDLINE research was performed using Mesh term "One-Lung Ventilation" including randomized clinical trials, metanalysis, reviews and systematic reviews published in the last 6 years. Search was performed on 21st March 2017. A total of 75 articles were initially found. After title and abstract review 14 articles were included. Protective ventilation is not simply synonymous of low tidal volume ventilation, but it also includes routine use of PEEP and alveolar recruitment maneuver. New techniques are still in discussion namely PEEP adjustment, ratio inspiration:expiration, ideal type of anesthesia during one-lung ventilation and hypercapnic ventilation. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... provide cross-ventilation. (d) Ventilation openings must be covered for their full height and width with a... the home are accessible. (f) Dryer vents and combustion air inlets must pass through the skirting to the outside. Any surface water runoff from the furnace, air conditioning, or water heater drains must...

  12. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  13. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  14. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  15. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  16. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  17. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  18. Bilateral basal Xe-133 retention and ventilation/perfusion patterns in mild and subclinical congestive heart failure

    SciTech Connect

    Lee, H.K.; Skarzynski, J.J.; Spadaro, A. )

    1989-12-01

    The Xe-133 ventilation pattern in congestive heart failure (CHF) was assessed using 24 inpatient ventilation/perfusion studies performed to rule out pulmonary embolism. Patients with histories of CHF, myocardial infarction (MI), and cardiomyopathy were included in the study. Frank pulmonary edema, pulmonary embolism, and other known lung diseases such as chronic obstructive lung disease, tumor, and pneumonia were excluded. Fifteen of the 24 patients had abnormal ventilation scans. Twelve of the 15 showed bilateral basal Xe-133 retention on washout; the remaining 3 showed diffuse, posterior regional retention. On perfusion scans, 14 of the 15 abnormal ventilation patients showed evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, or patchy perfusion, and all of them had a history of CHF or cardiac disease. Nine of the 24 patients had normal ventilation scans, including normal washout patterns. Seven of the nine had normal perfusion (p less than 0.01). Four of the nine normal ventilation patients had a history of cardiac disease or CHF but no recent acute MI. Bilateral basal regional Xe-133 retention, coupled with perfusion scan evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, and patchy perfusion pattern, appears to be a sensitive and characteristic ventilation/perfusion finding in mild or subclinical CHF.

  19. Mine ventilation and air conditioning. 3. edition

    SciTech Connect

    Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y.J.

    1998-12-31

    This revised edition presents an engineering design approach to ventilation and air conditioning as part of the comprehensive environmental control of the mine atmosphere. It provides an in-depth look, for practitioners who design and operate mines, into the health and safety aspects of environmental conditions in the underground workplace. The contents include: Environmental control of the mine atmosphere; Properties and behavior of air; Mine air-quality control; Mine gases; Dusts and other mine aerosols; Mine ventilation; Airflow through mine openings and ducts; Mine ventilation circuits and networks; Natural ventilation; Fan application to mines; Auxiliary ventilation and controlled recirculation; Economics of airflow; Control of mine fires and explosions; Mine air conditioning; Heat sources and effect in mines; Mine air conditioning systems; Appendices; References; Answers to selected problems; and Index.

  20. Mechanical Ventilation: State of the Art.

    PubMed

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  2. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  3. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  4. Vertical axis wind turbine

    SciTech Connect

    Cubbers, J.

    1993-07-13

    A vertical axis wind turbine is described comprising: a vertically extending axle supported for rotation about a vertical axis; a series of wind vanes arranged around said axle; support means supporting each of said wind vanes on said axle, each of said wind vanes comprising a substantially flat main panel section of flexible material draped vertically by said support means to extend in a circumferential direction; each of said wind vanes including at least one pocket comprised of a substantially flat overlayer panel of flexible material overlying the outside of said wind vane flexible material panel section and attached thereto along a vertical side by a seam and also attached thereto along the top and bottom, but unattached along the other side to form a normally closed pocket which is able to flare open when wind is blowing from the unattached side thereof and thereby catch said wind, said pocket collapsing when wind blows from the attached side of said overlayer by said overlayer panel again overlying said main panel section.

  5. Open Lung Biopsy Among Critically Ill, Mechanically Ventilated Patients. A Metaanalysis

    PubMed Central

    Walkey, Allan J.

    2015-01-01

    Rationale: Open lung biopsy may be performed to guide therapy in mechanically ventilated patients with diagnostic uncertainty regarding etiology of pulmonary infiltrates. Current evidence for open lung biopsy in mechanically ventilated patients comes from single-center case series. Objectives: We performed a metaanalysis of case series to determine diagnoses, complications, and changes in therapy after lung biopsy in critically ill patients requiring mechanical ventilation. Methods: We searched Medline for case series of lung biopsies in critically ill patients requiring mechanical ventilation. We pooled results of individual case series using random effects metaanalysis models to obtain summary proportions. Measurements and Main Results: We identified 14 case series including a total of 512 mechanically ventilated patients with 530 histopathological diagnoses. The most common diagnoses were “fibrosis/pneumonitis” (n = 155, 25%; 95% confidence interval [CI], 14–37%) and infection (n = 113, 20%; 95% CI, 15–27%). Viruses were the most commonly identified infectious etiology identified on open lung biopsy, representing 50% of potential pathogens. Diffuse alveolar damage was present in a minority of specimens (n = 100, 16%; 95% CI, 8–25%). Therapeutic changes after lung biopsy occurred in 399 patients (78%; 95% CI, 64–81%). Procedure-related complications occurred in 29% of patients (95% CI, 25–33%), most commonly persistent air leak. Mortality among mechanically ventilated patients after diagnostic open lung biopsy was 54%. Conclusions: Among mechanically ventilated patients with respiratory failure of unclear etiology, lung biopsy yielded a wide range of diagnoses and was associated with a change in therapy in most patients. PMID:26065712

  6. Regional tidal lung strain in mechanically ventilated normal lungs.

    PubMed

    Paula, Luis Felipe; Wellman, Tyler J; Winkler, Tilo; Spieth, Peter M; Güldner, Andreas; Venegas, Jose G; Gama de Abreu, Marcelo; Carvalho, Alysson R; Vidal Melo, Marcos F

    2016-12-01

    Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. Eight supine pigs were ventilated with VT = 6 and 12 ml/kg and PEEP = 0, 6, and 12 cmH2O. End-expiratory and end-inspiratory scans were analyzed in eight regions of interest along the ventral-dorsal axis. Regional reference volumes were computed at end-expiration (with/without correction of regional VT for intratidal recruitment) and at resting lung volume (PEEP = 0) corrected for intratidal and PEEP-derived recruitment. All strain estimates demonstrated vertical heterogeneity with the largest tidal strains in middependent regions (P < 0.01). Maximal strains for distinct estimates occurred at different lung regions and were differently affected by VT-PEEP conditions. Values consistent with lung injury and inflammation were reached regionally, even when global measurements were below critical levels. Strains increased with VT and were larger in middependent than in nondependent lung regions. PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.

  7. Ventilation of Nonparalyzed Patients Under Anesthesia with Laryngeal Mask Airway, Comparison of Three Modes of Ventilation: Volume Controlled Ventilation, Pressure Controlled Ventilation, and Pressure Controlled Ventilation-volume Guarantee.

    PubMed

    Ghabach, Maroun Badwi; El Hajj, Elie M; El Dib, Rouba D; Rkaiby, Jeanette M; Matta, May S; Helou, May R

    2017-01-01

    Pressure controlled ventilation (PCV) is the preferable mode of ventilation of nonparalyzed patients undergoing anesthesia with laryngeal mask airway (LMA) as compared to volume controlled ventilation (VCV) and spontaneously breathing patient. In this study, we compared the PC-volume guarantee (PC-VG) mode of ventilation with VCV and PCV modes. A total of 30 patients, American Society of Anesthesiologists (ASA) physical status Classes I and II, scheduled for elective surgery under general anesthesia with a classic LMA were ventilated, subsequently, with the three modes of ventilation: VCV, PCV, and PC-VG for 10 min each mode. Tidal volume set for all patients was 8 ml/kg of ideal body weight. Parameters measured with modes of ventilation include peak inspiratory pressure (PIP), compliance, measured tidal volume, O2 saturation, end-tidal CO2, and presence of an oropharyngeal leak. The PIP was significantly higher with the application of VCV mode of ventilation than PCV and PC-VG modes. The compliance was significantly lower when using the mode of ventilation VCV than PCV and PC-VG. The PIP and the compliance were not statistically different between the PCV and PC-VG modes of ventilation. Ventilation of nonparalyzed patients with LMA under anesthesia with PC-VG is advantageous over VCV in reducing PIP and increasing lung compliance. No difference was noted between PCV and PC-VG in ASA Classes I or II under the adequate depth of anesthesia in patients with normal pulmonary function.

  8. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  9. [Duane vertical surgical treatment].

    PubMed

    Merino, M L; Gómez de Liaño, P; Merino, P; Franco, G

    2014-04-01

    We report 3 cases with a vertical incomitance in upgaze, narrowing of palpebral fissure, and pseudo-overaction of both inferior oblique muscles. Surgery consisted of an elevation of both lateral rectus muscles with an asymmetrical weakening. A satisfactory result was achieved in 2 cases, whereas a Lambda syndrome appeared in the other case. The surgical technique of upper-insertion with a recession of both lateral rectus muscles improved vertical incomitance in 2 of the 3 patients; however, a residual deviation remains in the majority of cases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  10. A vertical cephalometric analysis.

    PubMed

    Alió Sanz, Juan J; Iglesias Conde, Carmen

    2007-01-01

    Correctly assessing open-bite malocclusions has remained problematic because clinicians have not had entirely reliable methods of determining the exact amount of skeletal and dental contributions to the problem. A new cephalometric technique, the vertical cephalometric analysis, offers orthodontists a system that precisely identifies the percentage of skeletal and dentoalveolar components that open-bite patients have. The vertical cephalometric analysis offers a discriminating diagnostic method for evaluating, diagnosing, and treatment planning for patients with open bite. This technique will allow clinicians to classify patients with accuracy, as well as to establish prognoses and select therapies.

  11. The role of dead space ventilation in predicting outcome of successful weaning from mechanical ventilation.

    PubMed

    Mohr, A M; Rutherford, E J; Cairns, B A; Boysen, P G

    2001-11-01

    The exact mechanism by which tracheostomy results in clinical improvement in respiratory function and liberation from mechanical ventilation remains unknown. Physiologic dead space, which includes both normal and abnormal components of non-gas exchange tidal volume, is a clinical measure of the efficiency of ventilation. Theoretically, tracheostomy should reduce dead space ventilation and improve pulmonary mechanics, thereby facilitating weaning from mechanical ventilation. This study compares arterial blood gases (ABG), pulmonary mechanics, including minute ventilation (VE) and dead space ventilation (Vd/Vt) within 24 hours before and after tracheostomy in 45 patients admitted to a surgical intensive care unit. There was no difference noted in patients' ABG or VE. Pre- and posttracheostomy change in Vd/Vt was negligible (50.7 and 10 vs. 51.9 and 11; p = NS). On subgroup analysis, those patients that were weaned from mechanical ventilation with 72 hours of tracheostomy (T3) were compared with those patients weaned from mechanical ventilation 5 days or more after tracheostomy (T+5). Again, no difference was found in pulmonary mechanics or Vd/Vt pre- and posttracheostomy. There is minimal improvement in pulmonary mechanics after tracheostomy. The change in physiologic dead space posttracheostomy does not predict the outcome of weaning from mechanical ventilation. Tracheostomy does allow better pulmonary toilet, and easier initiation and removal of mechanical ventilation and control of the upper airway.

  12. [Comparison of volume preset and pressure preset ventilators during daytime nasal ventilation in chronic respiratory failure].

    PubMed

    Perrin, C; Wolter, P; Berthier, F; Tamisier, R; Jullien, V; Lemoigne, F; Blaive, B

    2001-02-01

    Both volume preset and pressure preset ventilators are available for domiciliary nasal ventilation. Owing to their technical characteristics, it has been suggested that impaired ventilatory mechanics might cause a drop in the tidal volume (Vt) delivered by pressure preset devices, thereby placing mechanical ventilation at risk of inefficacy. We have assessed two ventilator systems (one pressure preset and one volume preset) with regard to the tidal volume and end-tidal carbon dioxide tension (PetCO(2)) changes that may be achieved in a group of awake patients with stable chronic respiratory failure (CRF). Eleven patients with stable CRF were ventilated in the assist/control mode for two consecutive one-hour periods. One ventilator was tested each hour, in random order. The VIGIL'AIR(R) system was used to record Vt, Respiratory Rate (RR), and Inspiratory/Expiratory ratio (I/E). The deviation E (E=preset value - measured value) was calculated for each measurement. Changes in PetCO(2) and arterial oxygen saturation were determined respectively by a capnometer and a pulse oximeter. Comparison of the mean deviation of Vt calculated for the two ventilators revealed a difference in patients with chronic obstructive pulmonary disease (COPD). The deviation was greatest with the pressure preset ventilator (PPV), which gave mean measured values higher than the mean preset values. The same comparison failed to reveal any difference in restrictive CRF. Comparison of the volume preset and pressure preset ventilators for RR, I/E and PetCO(2) did not reveal any difference. Compared to the volume preset ventilator, the efficacy of PPV to ventilate is not affected by the restrictive or obstructive nature of CRF. Our results show that pressure-preset ventilator is an adequate alternative to the volume-preset device for daytime non invasive ventilation in chronic respiratory insufficiency.

  13. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    PubMed

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Infiltration as Ventilation: Weather-Induced Dilution

    SciTech Connect

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    2011-06-01

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount of air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.

  15. Electrical Impedance Tomography During Mechanical Ventilation.

    PubMed

    Walsh, Brian K; Smallwood, Craig D

    2016-10-01

    Electrical impedance tomography (EIT) is a noninvasive, non-radiologic imaging modality that may be useful for the quantification of lung disorders and titration of mechanical ventilation. The principle of operation is based on changes in electrical conductivity that occur as a function of changes in lung volume during ventilation. EIT offers potentially important benefits over standard imaging modalities because the system is portable and non-radiologic and can be applied to patients for long periods of time. Rather than providing a technical dissection of the methods utilized to gather, compile, reconstruct, and display EIT images, the present article seeks to provide an overview of the clinical application of this technology as it relates to monitoring mechanical ventilation and providing decision support at the bedside. EIT has been shown to be useful in the detection of pneumothoraces, quantification of pulmonary edema and comparison of distribution of ventilation between different modes of ventilation and may offer superior individual titration of PEEP and other ventilator parameters compared with existing approaches. Although application of EIT is still primarily done within a research context, it may prove to be a useful bedside tool in the future. However, head-to-head comparisons with existing methods of mechanical ventilation titration in humans need to be conducted before its application in general ICUs can be recommended. Copyright © 2016 by Daedalus Enterprises.

  16. Contribution of mesoscale eddies to Black Sea ventilation

    NASA Astrophysics Data System (ADS)

    Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure

    2017-04-01

    The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, eddies are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-eddy-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to eddy centers and radii. Derived statistics indicate how consistently mesoscale eddies alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with eddies in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10

  17. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  18. Variation in Definition of Prolonged Mechanical Ventilation.

    PubMed

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  19. Diffuser Test

    NASA Image and Video Library

    2007-09-13

    Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.

  20. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  1. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  2. Special Considerations in Neonatal Mechanical Ventilation.

    PubMed

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome.

  3. How to choose an anesthesia ventilator?

    PubMed

    Coisel, Y; Millot, A; Carr, J; Castagnoli, A; Pouzeratte, Y; Verzilli, D; Futier, E; Jaber, S

    2014-01-01

    During the past few years, many manufacturers have developed a new generation anesthesia ventilators or anesthesia workstations with innovative technology and introduced so-called new ventilatory modes in the operating room. The aim of this article is to briefly explain how an anesthesia ventilator works, to describe the main differences between the technologies used, to describe the main criteria for evaluating technical and pneumatic performances and to list key elements not to be forgotten during the process of acquiring an anesthesia ventilator. Copyright © 2014. Published by Elsevier SAS.

  4. Bronchoscopy during noninvasive ventilation: indications and technique.

    PubMed

    Murgu, Septimiu D; Pecson, Jocelyn; Colt, Henri G

    2010-05-01

    Diagnostic or therapeutic flexible bronchoscopy is often necessary in severely ill patients. These patients often have comorbidities that increase the risk of bronchoscopy-related complications. Noninvasive ventilation might decrease the risk of these complications in patients with severe refractory hypoxemia, postoperative respiratory distress, or severe emphysema, and in pediatric patients. Noninvasive ventilation may prevent hypoventilation in patients with obstructive sleep apnea and obesity hypoventilation syndrome who require bronchoscopy, and may assist in the bronchoscopic evaluation of patients with expiratory central-airway collapse. We describe the indications, contraindications, and technique of flexible bronchoscopy during noninvasive ventilation.

  5. [Classification and terminology of artificial lung ventilation].

    PubMed

    Gal'perin, Iu S

    2005-01-01

    The author considers the main features of a prepared edition of the international standard ISO 4135:2001 "Equipment for anesthesia and artificial ventilation. Glossary" as the state standard of Russia. He shows methods for classification of the modes of ventilation support. A classification scheme of its procedures is proposed, by giving necessary notes. The abbreviations of these procedures are given in the Russian and English languages. The shorthand notations of airways gas pressure in the characteristic points of a respiratory cycle are clarified in detail and on this basis the procedures for limiting inspiration pressure during controlled artificial ventilation.

  6. Ventilatory management of one-lung ventilation.

    PubMed

    Della Rocca, G; Coccia, C

    2011-05-01

    Hypoxemia is considered to be the most important challenge during one-lung ventilation (OLV). Recent studies, however, have shown that one-lung ventilation can involve some lung damage and can therefore be per se a cause of hypoxemia. OLV can be associated to an injury: but the techniques used to improve oxygenation may also damage the lung. A new ventilator approach should be used and applied with regards to what is so far known in terms of "lung protection" also during OLV.

  7. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    PubMed

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  8. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  9. Ventilation heterogeneity predicts asthma control in adults following inhaled corticosteroid dose titration.

    PubMed

    Farah, Claude S; King, Gregory G; Brown, Nathan J; Peters, Matthew J; Berend, Norbert; Salome, Cheryl M

    2012-07-01

    Asthma guidelines recommend inhaled corticosteroid (ICS) dose titration for patients on the basis of an assessment of current asthma control. However, the physiological determinants of asthma symptom control are poorly understood and spirometry is a poor predictor of symptomatic response. To determine the role of small airway measurements in predicting the symptom response following ICS dose titration. Adult asthmatic patients had the Asthma Control Questionnaire (ACQ) scores and lung function measured at baseline and after 8 weeks. Tests included spirometry, plethysmography, sputum cell count, exhaled nitric oxide, airway hyperresponsiveness to mannitol, respiratory system mechanics using the forced oscillation technique, and ventilation heterogeneity using the multiple breath nitrogen washout. The parameters ventilation heterogeneity in convection-dependent airways and ventilation heterogeneity in diffusion-dependent airways were derived as measures of ventilation heterogeneity in the small airways. The dose of ICS was doubled if the ACQ score was greater than or equal to 1.5 (uptitration) and quartered if the ACQ score was less than 1.5 (downtitration). The relationships between baseline physiological parameters and the change in the symptom-only 5-item ACQ (deltaACQ-5) were examined by using Spearman correlations, forward stepwise linear regressions, and receiver operator curve analyses. ICS dose uptitration (n= 20) improved ACQ-5 scores (1.76 to 1.16; P= .04). Baseline fraction of exhaled nitric oxide (r= -0.55; P= .01) and ventilation heterogeneity in convection-dependent airways (r= -0.64; P= .002) correlated with deltaACQ-5, but ventilation heterogeneity in convection-dependent airways was the only independent predictor (r(2) = 0.34; P = 0.007). ICS dose downtitration (n= 41) worsened ACQ-5 scores (0.46 to 0.80; P< .001), with 29% of the patients having a deltaACQ-5 of greater than 0.5. Only baseline ventilation heterogeneity in diffusion-dependent airways

  10. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  11. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  12. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  13. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  14. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  15. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  16. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  17. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  18. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  19. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  20. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  1. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  2. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  3. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  4. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation of slopes and shafts. 77.1911... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and shafts shall be ventilated by mechanical ventilation equipment during development. Such equipment...

  5. 46 CFR 108.185 - Ventilation for enclosed classified locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Ventilation § 108.185 Ventilation for enclosed classified locations. (a) The ventilation system for each enclosed classified location must be... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed classified locations....

  6. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation of slopes and shafts. 77.1911... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and shafts shall be ventilated by mechanical ventilation equipment during development. Such equipment...

  7. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and accessible from the cargo handling deck. Such ventilation systems shall be designed to preclude... 46 Shipping 1 2014-10-01 2014-10-01 false Ventilation-T/ALL. 38.20-10 Section 38.20-10 Shipping... Ventilation § 38.20-10 Ventilation—T/ALL. (a) A power ventilation system shall be provided for...

  8. 46 CFR 108.185 - Ventilation for enclosed classified locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Ventilation § 108.185 Ventilation for enclosed classified locations. (a) The ventilation system for each enclosed classified location must be... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed classified locations....

  9. 46 CFR 108.185 - Ventilation for enclosed classified locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Ventilation § 108.185 Ventilation for enclosed classified locations. (a) The ventilation system for each enclosed classified location must be... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed classified locations....

  10. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...

  11. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...

  12. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...

  13. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...

  14. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...

  15. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...

  16. 46 CFR 111.103-7 - Ventilation stop stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation stop stations. 111.103-7 Section 111.103-7...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-7 Ventilation stop stations. Each ventilation stop... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of...

  17. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation of slopes and shafts. 77.1911... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and shafts shall be ventilated by mechanical ventilation equipment during development. Such equipment...

  18. 49 CFR 192.187 - Vaults: Sealing, venting, and ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vaults: Sealing, venting, and ventilation. 192.187... Components § 192.187 Vaults: Sealing, venting, and ventilation. Each underground vault or closed top pit... ventilating effect of a pipe 4 inches (102 millimeters) in diameter; (2) The ventilation must be enough...

  19. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV) attachment... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards)....

  20. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV) attachment... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards)....

  1. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV) attachment... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards)....

  2. 49 CFR 192.187 - Vaults: Sealing, venting, and ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vaults: Sealing, venting, and ventilation. 192.187... Components § 192.187 Vaults: Sealing, venting, and ventilation. Each underground vault or closed top pit... ventilating effect of a pipe 4 inches (102 millimeters) in diameter; (2) The ventilation must be enough...

  3. 46 CFR 111.103-7 - Ventilation stop stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation stop stations. 111.103-7 Section 111.103-7...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-7 Ventilation stop stations. Each ventilation stop... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of...

  4. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV) attachment... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards)....

  5. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Ventilation-T/ALL. 38.20-10 Section 38.20-10 Shipping... Ventilation § 38.20-10 Ventilation—T/ALL. (a) A power ventilation system shall be provided for compartments... equipped with power ventilation of the exhaust type having capacity sufficient to effect a complete...

  6. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  7. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  8. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  9. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  10. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  11. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  12. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV)...

  13. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...

  14. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...

  15. Ultimately short ballistic vertical graphene Josephson junctions

    PubMed Central

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  16. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Okazaki, Nobuo; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2008-03-01

    This study was performed to investigate the ability of breathing chest radiography using flat-panel detector (FPD) to quantify relative local ventilation. Dynamic chest radiographs during respiration were obtained using a modified FPD system. Imaging was performed in three different positions, ie, standing and right and left decubitus positions, to change the distribution of local ventilation. We measured the average pixel value in the local lung area. Subsequently, the interframe differences, as well as difference values between maximum inspiratory and expiratory phases, were calculated. The results were visualized as images in the form of a color display to show more or less x-ray translucency. Temporal changes and spatial distribution of the results were then compared to lung physiology. In the results, the average pixel value in each lung was associated with respiratory phase. In all positions, respiratory changes of pixel value in the lower area were greater than those in the upper area (P < 0.01), which was the same tendency as the regional differences in ventilation determined by respiratory physiology. In addition, in the decubitus position, it was observed that areas with large respiratory changes in pixel value moved up in the vertical direction during expiration, which was considered to be airway closure. In conclusion, breathing chest radiography using FPD was shown to be capable of quantifying relative ventilation in local lung area and detecting regional differences in ventilation and timing of airway closure. This method is expected to be useful as a new diagnostic imaging modality for evaluating relative local ventilation.

  17. Xenon-enhanced CT imaging of local pulmonary ventilation

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  18. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  19. EVALUATION OF VENTILATION PERFORMANCE FOR INDOOR SPACE

    EPA Science Inventory

    The paper discusses a personal-computer-based application of computational fluid dynamics that can be used to determine the turbulent flow field and time-dependent/steady-state contaminant concentration distributions within isothermal indoor space. (NOTE: Ventilation performance ...

  20. [The choice of a pediatric anesthesia ventilator].

    PubMed

    Kern, D; Larcher, C; Cottron, N; Ait Aissa, D; Fesseau, R; Alacoque, X; Delort, F; Masquère, P; Agnès, E; Visnadi, G; Fourcade, O

    2013-12-01

    The technology of anesthesia ventilators has substantially progressed during last years. The choice of a pediatric anesthesia ventilator needs to be led by multiple parameters: requirement, technical (pneumatic performance, velocity of halogenated or oxygen delivery), cost (purchase, in operation, preventive and curative maintenance), reliability, ergonomy, upgradability, and compatibility. The demonstration of the interest of pressure support mode during maintenance of spontaneous ventilation anesthesia makes this mode essential in pediatrics. In contrast, the financial impact of target controlled inhalation of halogenated has not be studied in pediatrics. Paradoxically, complex and various available technologies had not been much prospectively studied. Anesthesia ventilators performances in pediatrics need to be clarified in further clinical and bench test studies. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  1. Speech for People with Tracheostomies or Ventilators

    MedlinePlus

    ... his or her life is undergoing dramatic change. Young children with tracheostomies do not get to explore making sounds. They also may have limited social interactions that are critical to the ... impact does having a ventilator have on speech? For ...

  2. 14 CFR 23.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hazardous concentrations of gases and vapors in normal operations and in the event of reasonably probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems and equipment. If...

  3. Innovative ventilation system for animal anatomy laboratory

    SciTech Connect

    Lacey, D.R.; Smith, D.C.

    1997-04-01

    A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 air changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.

  4. Waste tank ventilation system waste material accumulations

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-06

    This paper calculates the amount of material that accumulates in the ventilation systems of various Tank Waste Remediation System facilities and estimates the amount of material that could be released due to a rapid pressurization.

  5. 'Elective' ventilation: an unethical and harmful misnomer?

    PubMed

    Stammers, Trevor

    2013-01-01

    The demand for organs prompted the first use of elective ventilation in the UK in the 1990s. Recently the shortfall in supply of organs has once again prompted calls for elective ventilation to be instituted even in patients who are not brain dead. This paper proposes that the term 'elective' ventilation is a misnomer and the term non-therapeutic ventilation (NTV) should be used instead. It is further argued that the practice of NTV in cases of severe stroke is unethical and has the potential of causing a variety of harms to the patient, their relatives, and the healthcare professionals working in transplant teams and this may result in a backlash of reductions in the number of organ donations.

  6. [Mechanical ventilation at home: facts and questions].

    PubMed

    Fitting, J W

    1993-06-15

    Treatment of respiratory insufficiency with retention of CO2 by mechanic ventilation has come into use over the last decade, favored by use of non-invasive methods like nasal ventilation. Best results have been observed in hypercapnic respiratory insufficiency caused by neuromuscular disease or restrictive pathologic changes of the lung. Nocturnal use of nasal ventilation alone is often sufficient to correct also the daily CO2-values. Mechanisms explaining this beneficial effect are not yet known-The respiratory CNS-centers, respiratory muscles or thoracopulmonary mechanics may play etiologically an important role. Medical indications for nasal ventilation in chronic obstructive pulmonary disease are not clear, since results from several studies are controversial. Also in severe or progressive neurologic diseases a critical evaluation is mandatory for assessment of benefits including improvement of quality of life.

  7. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... periodic inspection by means of a hinged or bolted plate in the duct. The damper and the portion of duct... ventilator, and the duct shall be insulated to meet the applicable requirements of tables 72.05-10(d) and...

  8. [Cardiopulmonary resuscitation: risks and benefits of ventilation].

    PubMed

    Cordioli, Ricardo Luiz; Garelli, Valentina; Lyazidi, Aissam; Suppan, Laurent; Savary, Dominique; Brochard, Laurent; Richard, Jean-Christophe M

    2013-12-11

    Knowledge of the physiological mechanisms that govern cardiopulmonary interactions during cardiopulmonary resuscitation (CPR) allows to better assess risks and benefits of ventilation. Ventilation is required to maintain gas exchange, particularly when CPR is prolonged. Nevertheless, conventional ventilation (bag mask or mechanical ventilation) may be harmful when excessive or when chest compressions are interrupted. In fact large tidal volume and/or rapid respiratory rate may adversely compromise hemodynamic effects of chest compressions. In this regard, international recommendations that give the priority to chest compressions, are meaningful. Continuous flow insufflation with oxygen that generates a moderate positive airway pressure avoids any interruption of chest compressions and prevents the risk of lung injury associated with prolonged resuscitation.

  9. Comfort parameters - Ventilation of a subway wagon

    NASA Astrophysics Data System (ADS)

    Petr, Pavlíček; Ladislav, Tříska

    2017-09-01

    Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.

  10. Uneven ventilation of the lung following trauma.

    PubMed Central

    Lozman, J; Dutton, R E; Newell, J; Powers, S R

    1977-01-01

    Ventilatory function of the lungs has been studied in 13 post-trauma patients using a two compartment analysis. The analysis is based upon a model of the lung which describes a nitrogen washout curve in terms of fast and slowly ventilated compartments. Data output from a digital computer provides values that compare the fractions of the alveolar ventilation and volume of the two compartments. All patients on initial investigation had large identifiable slow spaces. Subsequent evaluation at a time of clinical improvement showed that the ventilation of the slow space had increased significantly (P less than .003), whereas no change was evident in the volume fraction. The ventilation to volume ratio of the slow space, measured on these two separate occasions increased in twelve of the patients studied. An increase in this ratio correlated with improvement in the patient's clinical condition. PMID:921355

  11. Ventilation Guidance for Spray Polyurethane Foam Application

    EPA Pesticide Factsheets

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  12. EVALUATION OF VENTILATION PERFORMANCE FOR INDOOR SPACE

    EPA Science Inventory

    The paper discusses a personal-computer-based application of computational fluid dynamics that can be used to determine the turbulent flow field and time-dependent/steady-state contaminant concentration distributions within isothermal indoor space. (NOTE: Ventilation performance ...

  13. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... least 0.55 pounds of fresh air per minute. (b) Crew and passenger compartment air must be free from... within 5 degrees F. of each other and adequate ventilation to occupants in both compartments. (3) The...

  14. Determination of mode of ventilation using OSRE.

    PubMed

    Faulke, D; Etchells, T A; Harrison, M J; Lisboa, P J G

    2009-11-01

    This study classifies the mode of ventilation using respiratory rate, inhaled and exhaled carbon dioxide concentrations in anaesthetised patients. Thirty seven patients were breathing spontaneously (SPONT) and 50 were on a ventilator (intermittent positive pressure ventilation, IPPV). A data-based methodology for rule inference from trained neural networks, orthogonal search-based rule extraction, identified two sets of low-order Boolean rules for differential identification of the mode of ventilation. Combining both models produced three possible outcomes; IPPV, SPONT and 'Uncertain'. The true positive rates were approximately maintained at 96% for IPPV and 93% for SPONT, with false positive rates of 0.4% for each category and 4.3% 'Uncertain' inferences.

  15. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  16. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  17. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  18. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  19. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  20. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)