NASA Astrophysics Data System (ADS)
Nar, Sevda Yeliz; Cakir, Altan
2018-02-01
Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.
TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavic, I.; Szymakowski, J.; Stachorska, D.
1961-03-01
A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less
A Sensitive Cloud Chamber without Radioactive Sources
ERIC Educational Resources Information Center
Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka
2012-01-01
We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)
NASA Technical Reports Server (NTRS)
Keyser, G.
1978-01-01
The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.
A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon
DOE R&D Accomplishments Database
Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.
1955-03-01
The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.
NASA Astrophysics Data System (ADS)
Cantrell, W. H.; Chandrakar, K. K.; Karki, S.; Kinney, G.; Shaw, R.
2017-12-01
Many of the climate impacts of boundary layer clouds are modulated by aerosol particles. As two examples, their interactions with incoming solar and upwelling terrestrial radiation and their propensity for precipitation are both governed by the population of aerosol particles upon which the cloud droplets formed. In turn, clouds are the primary removal mechanism for aerosol particles smaller than a few micrometers and larger than a few nanometers. Aspects of these interconnected phenomena are known in exquisite detail (e.g. Köhler theory), but other parts have not been as amenable to study in the laboratory (e.g. scavenging of aerosol particles by cloud droplets). As a complicating factor, boundary layer clouds are ubiquitously turbulent, which introduces fluctuations in the water vapor concentration and temperature, which govern the saturation ratio which mediates aerosol-cloud interactions. We have performed laboratory measurements of aerosol-cloud coupling and feedbacks, using Michigan Tech's Pi Chamber (Chang et al., 2016). In conditions representative of boundary layer clouds, our data suggest that the lifetime of most interstitial particles in the accumulation mode is governed by cloud activation - particles are removed from the Pi Chamber when they activate and settle out of the chamber as cloud droplets. As cloud droplets are removed, these interstitial particles activate until the initially polluted cloud cleans itself and all particulates are removed from the chamber. At that point, the cloud collapses. Our data also indicate that smaller particles, Dp < ˜ 20 nm are not activated, but are instead removed through diffusion, enhanced by the fact that droplets are moving relative to the suspended aerosol. I will discuss results from both warm (i.e. liquid water only) and mixed phase clouds, showing that cloud and aerosol properties are coupled through fluctuations in the supersaturation, and that threshold behaviors can be defined through the use of the Dämkohler number, the ratio of the characteristic turbulence timescale to the cloud's microphysical response time. Chang, K., et al., 2016. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00203.1
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
Sea spray as a source of ice nucleating particles - results from the AIDA Ocean03 campaign
NASA Astrophysics Data System (ADS)
Salter, M. E.; Ickes, L.; Adams, M.; Bierbauer, S.; Bilde, M.; Christiansen, S.; Ekman, A.; Gorokhova, E.; Höhler, K.; Kiselev, A. A.; Leck, C.; Mohr, C.; Mohler, O.; Murray, B. J.; Porter, G.; Ullrich, R.; Wagner, R.
2017-12-01
Clouds and their radiative effects are one of the major influences on the radiative fluxes in the atmosphere, but at the same time they remain the largest uncertainty in climate models. This lack of understanding is especially pronounced in the high Arctic. Summertime clouds can persist over long periods in this region, which is difficult to replicate in models based on our current understanding. The clouds most often encountered in the summertime high Arctic consist of a mixture of ice crystals and super-cooled water droplets, so-called mixed-phase clouds. This cloud type is sensitive to the availability of aerosol particles, which can act as cloud condensation nuclei and ice nuclei. However, since the high Arctic is a pristine region, aerosol particles are not very abundant, and the hypothesis of open leads in the Arctic as a potentially important source of cloud and ice nucleating particles via bubble bursting has emerged. In this context, we have conducted a series of experiments at the AIDA chamber at KIT, designed to investigate the mechanisms linking marine biology, seawater chemistry and aerosol physics/potential cloud impacts. During this campaign, two marine diatom species (Melosira arctica and Skeletonema marinoi) as well as sea surface microlayer samples collected during several Arctic Ocean research cruises were investigated. To aerosolize the samples, a variety of methods were used including a sea spray simulation chamber to mimic the process of bubble-bursting. The ice nucleating efficiency (mixed-phase cloud regime) of the samples was determined either directly in the AIDA chamber during adiabatic expansions, or using the INKA continuous flow diffusion chamber, or a cold stage. Results from the campaign along with the potential implications are presented.
Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang
2013-12-01
1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.
Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies
NASA Astrophysics Data System (ADS)
Rogers, David C.
A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min -1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about -4°C to -25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of -15°C and +1% with respect to water, the range is -14.6 to -15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate. A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina. Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to detect silver iodide ice nucleating aerosols and to distinguish ice crystals from water droplets.
NASA Technical Reports Server (NTRS)
Eaton, L. R. (Inventor)
1976-01-01
An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.
NASA Technical Reports Server (NTRS)
Winchester, L. W., Jr.
1980-01-01
Using the finite difference method with overrelaxation, numerical solutions of the steady-state vorticity transport equation were obtained for a continuous flow diffusion chamber of the Hudson-Squires type. The calculation neglected the effects due to temperature, gravity, and saturation. The size and shape of the manifold used to inject the aerosol laden flow were varied to obtain a design which would improve the performance of the chamber from strictly low Reynolds number (less than 20) fluid dynamical considerations.
Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki
2006-06-14
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
Simulating synchrotron radiation in accelerators including diffuse and specular reflections
Dugan, G.; Sagan, D.
2017-02-24
An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less
Simple Cloud Chambers Using Gel Ice Packs
ERIC Educational Resources Information Center
Kamata, Masahiro; Kubota, Miki
2012-01-01
Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…
Biases in field measurements of ice nuclei concentrations
NASA Astrophysics Data System (ADS)
Garimella, S.; Voigtländer, J.; Kulkarni, G.; Stratmann, F.; Cziczo, D. J.
2015-12-01
Ice nuclei (IN) play an important role in the climate system by influencing cloud properties, precipitation, and radiative transfer. Despite their importance, there are significant uncertainties in estimating IN concentrations because of the complexities of atmospheric ice nucleation processes. Field measurements of IN concentrations with Continuous Flow Diffusion Chamber (CFDC) IN counters have been vital to constrain IN number concentrations and have led to various parameterizations of IN number vs. temperature and particle concentration. These parameterizations are used in many global climate models, which are very sensitive to the treatment of cloud microphysics. However, due to non-idealities in CFDC behavior, especially at high relative humidity, many of these measurements are likely biased too low. In this study, the extent of this low bias is examined with laboratory experiments at a variety of instrument conditions using the SPectrometer for Ice Nucleation, a commercially-available CFDC-style chamber. These laboratory results are compared to theoretical calculations and computational fluid dynamics models to map the variability of this bias as a function of chamber temperature and relative humidity.
Konishi, Yuki; Hayashi, Hiroaki; Takegami, Kazuki; Fukuda, Ikuma; Ueno, Junji
2014-01-01
A cloud chamber is a detector that can visualize the tracks of charged particles. Hayashi, et al. suggested a visualization experiment in which X-rays generated by diagnostic X-ray equipment were directed into a cloud chamber; however, there was a problem in that the wall of the cloud chamber scattered the incoming X-rays. In this study, we developed a new cloud chamber with entrance windows. Because these windows are made of thin film, we were able to direct the X-rays through them without contamination by scattered X-rays from the cloud chamber wall. We have newly proposed an experiment in which beta-particles emitted from radioisotopes are directed into a cloud chamber. We place shielding material in the cloud chamber and visualize the various shielding effects seen with the material positioned in different ways. During the experiment, electrons scattered in the air were measured quantitatively using GM counters. We explained the physical phenomena in the cloud chamber using Monte Carlo simulation code EGS5. Because electrons follow a tortuous path in air, the shielding material must be placed appropriately to be able to effectively block their emissions. Visualization of the tracks of charged particles in this experiment proved effective for instructing not only trainee radiological technologists but also different types of healthcare professionals.
Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt
ERIC Educational Resources Information Center
Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro
2015-01-01
We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…
The cloud chamber as a field diagnostic tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, A
1967-10-19
This document presents the Pros and Cons of using a cloud chamber for field use. Historical aspects are briefly discussed. A cloud chamber experiment on Midi Mist is described. Plans for fielding an experiment on Hupmobile are presented.
Temperature characterisation of the CLOUD chamber at CERN
NASA Astrophysics Data System (ADS)
Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.
2014-12-01
Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.
NASA Astrophysics Data System (ADS)
Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon
2016-04-01
The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.
NASA Astrophysics Data System (ADS)
Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.
2017-09-01
Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in the chamber. To study the mechanisms responsible for the ice nucleation in the four instruments, the FF (from LACIS and PIMCA-PINC) and the activated fraction, AF (from PINC and SPIN), are compared. Measured FFs are on the order of a factor of 3 higher than AFs, but are not consistent for all aerosol types and temperatures investigated. It is shown that measurements from CFDCs cannot be assumed to produce the same results as those instruments exclusively measuring immersion freezing. Instead, the need to apply a scaling factor to CFDCs operating above water saturation has to be considered to allow comparison with immersion freezing devices. Our results provide further awareness of factors such as the importance of dispersion methods and the quality of particle size selection for intercomparing online INP counters.
A Simple, Inexpensive Chamber for Growing Snow Crystals in the Classroom
NASA Astrophysics Data System (ADS)
Hiramatsu, Kazuhiko; Sturm, Matthew
2005-09-01
The creation of artificial snow crystals for scientific study usually requires patience, hard work, and fairly elaborate and expensive equipment that almost always includes a cold room. Here we describe an inexpensive and easy-to-build apparatus that can produce artificial snow crystals in the classroom. The apparatus, which can operate as both a diffusion and cloud chamber, was developed in Japan in 1996 and has been in use in schools there for several years, where it has also been reported on in scientific journals, the newspapers, and television.1,2 The apparatus allows students and teachers to actually watch snow crystals grow. While it has been demonstrated in the United States,3 we are not aware that it has seen much use here.
Controlled generation of large volumes of atmospheric clouds in a ground-based environmental chamber
NASA Technical Reports Server (NTRS)
Hettel, H. J.; Depena, R. G.; Pena, J. A.
1975-01-01
Atmospheric clouds were generated in a 23,000 cubic meter environmental chamber as the first step in a two part study on the effects of contaminants on cloud formation. The generation procedure was modeled on the terrestrial generation mechanism so that naturally occurring microphysics mechanisms were operative in the cloud generation process. Temperature, altitude, liquid water content, and convective updraft velocity could be selected independently over the range of terrestrially realizable clouds. To provide cloud stability, a cotton muslin cylinder 29.3 meters in diameter and 24.2 meters high was erected within the chamber and continuously wetted with water at precisely the same temperature as the cloud. The improved instrumentation which permitted fast, precise, and continual measurements of cloud temperature and liquid water content is described.
Developing Cloud Chambers with High School Students
NASA Astrophysics Data System (ADS)
Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji
The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.
Cloud Physics Test in the Space Power Chamber
1975-09-21
A researcher sets up equipment in the Space Power Chamber at National Aeronautics and Space Administration’s (NASA) Plum Brook Station to study the effects of contaminants on clouds. Drs. Rosa and Jorge Pena of Pennsylvania State University's Department of Meteorology initiated the program in an effort to develop methods of creating stable, long-lasting clouds in a test chamber in order to study their composition and formation. The researchers then wanted to use the artificially-created clouds to determine how they were affected by pollution. The 100-foot diameter and 122-foot high Space Power Chamber is the largest vacuum chamber in the world. The researchers covered the circular walls with muslin. A recirculating water system saturated the cloth. The facility engineers then reduced the chamber’s pressure which released the water from the muslin and generated a cloud. The researchers produced five different clouds in this first portion of this study. They discovered that they could not create stable clouds because of the heat generated by the water-pumping equipment. Nonetheless, they felt confident enough to commence planning the second phase of the program using a heat exchanger to cool the equipment.
Making a Fish Tank Cloud Chamber
ERIC Educational Resources Information Center
Green, Frances
2012-01-01
The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…
NASA Technical Reports Server (NTRS)
Sassen, K.
1984-01-01
A cryogenic, 50 liter volume Planetary Cloud Simulation Chamber has been constructed to permit the laboratory study of the cloud compositions which are likely to be found in the atmospheres of the outer planets. On the basis of available data, clouds composed of water ice, carbon dioxide, and liquid and solid ammonia and methane, both pure and in various mixtures, have been generated. Cloud microphysical observations have been permitted through the use of a cloud particle slide injector and photomicrography. Viewports in the lower chamber have enabled the collection of cloud backscattering data using 633 and 838 nm laser light, including linear depolarization ratios and complete Stokes parameterization. The considerable technological difficulties associated with the collection of angular scattering patterns within the chamber, however, could not be completely overcome.
NASA Astrophysics Data System (ADS)
Chou, Cédric
2010-05-01
Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in undisturbed free troposphere, but is also influenced by the Planetary Boundary Layer (PBL) especially in summer. The probability of Saharan Dust Events (SDE) at the Jungfraujoch is usually high from March to July (Collaud Coen et al., 2004). Two campaigns have been performed during this period in order to investigate the influence of a SDE on the IN number concentration and properties: PINC II took place from February 23rd to March 16th, 2009 and PINC III from June 3rd to 17th, 2009. The operating conditions inside the chamber during both campaigns were -31°C with relative humidities with respect to ice and water of 127% and 91%, respectively. During the first campaign, no SDE were detected and the average number concentration of IN was <10 particles/liter. Two SDE of different intensity occurred during the second campaign on June 15th and 16th where significantly higher IN number concentrations have been observed. We found that the larger the particles are, the more efficient they are as IN especially during SDE. References: Collaud Coen M., Weingartner E., Schaub D., Hueglin C., Corrigan C., Henning S., Schwikowski M., and Baltensperger U. (2004). Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys., 4, 2465-2480, 2004 Rogers, D. C. (1988), Development of a Continuous Flow Thermal Gradient Diffusion Chamber for Ice Nucleation Studies, Atmos. Res. 22:149-181. Stetzer, O., Baschek, B., Lueoend, F., Lohmann, U. (2008), The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice Formation, Aerosol Science and Technology, 42:64-74, 2008
Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation
NASA Technical Reports Server (NTRS)
Robinson, N. F.; Scott, W. T.
1981-01-01
A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.
Diffuse cloud chemistry. [in interstellar matter
NASA Technical Reports Server (NTRS)
Van Dishoeck, Ewine F.; Black, John H.
1988-01-01
The current status of models of diffuse interstellar clouds is reviewed. A detailed comparison of recent gas-phase steady-state models shows that both the physical conditions and the molecular abundances in diffuse clouds are still not fully understood. Alternative mechanisms are discussed and observational tests which may discriminate between the various models are suggested. Recent developments regarding the velocity structure of diffuse clouds are mentioned. Similarities and differences between the chemistries in diffuse clouds and those in translucent and high latitude clouds are pointed out.
Laser-filamentation-induced condensation and snow formation in a cloud chamber.
Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan
2012-04-01
Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.
Temperature uniformity in the CERN CLOUD chamber
NASA Astrophysics Data System (ADS)
Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti
2017-12-01
The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings
) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.
NASA Technical Reports Server (NTRS)
Cheng, R. J.
1982-01-01
Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.
NASA Astrophysics Data System (ADS)
Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.
2007-10-01
Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.
Garrett, George A.; Shacter, John
1978-01-01
1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.
The Third International Cloud Condensation Nuclei Workshop. [conference
NASA Technical Reports Server (NTRS)
Kocmond, W. C.; Rogers, C. R. (Editor); Rea, S. W. (Editor)
1981-01-01
Twenty-five instruments were tested, including size characterization devices and two Aitken counters. The test aerosols were supplied to the instruments by an on-line generation system, thereby eliminating the need for storage bags. Cloud condensation chambers and haze chambers are highlighted.
Atmospheric cloud physics laboratory project study
NASA Technical Reports Server (NTRS)
Schultz, W. E.; Stephen, L. A.; Usher, L. H.
1976-01-01
Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.
Design, fabrication and delivery of a prototype saturator for ACPL
NASA Technical Reports Server (NTRS)
Keyser, G.; Rogers, C. F.; Squires, P.
1979-01-01
The design configuration and performance characteristics of a saturator developed to provide ground-based simulation for some of the experiments for ACPL-1 first flights of Spacelab are described, some difficulties encountered with the apparatus are discussed, and recommendations concerning testing of this type of instrument are presented. The saturators provide a means of accurately fixing the water vapor mixing ratio of an aerosol sample. Dew point temperatures from almost freezing to ambient room temperatures can be attained with high precision. The instruments can accommodate aerosol flow rates approaching 1000 cc/s. Provisions were made to inject aerosols upstream of these saturators, although downstream injection can be accomplished as well. A device of this type will be used in the ACPL-1 to condition various aerosols delivered concurrently to a CFD, expansion chamber, and static diffusion chamber used in zero gravity cloud-forming experiments. The saturator was designed to meet the requirements projected for the flight instrument.
Inhibition of Granulopoiesis in Diffusion Chambers by a Granulocyte Chalone
1974-07-01
culture has o 5_g a been well documented. ’ Breivik et al. , using chamber to chamber transfers in nonpretreated hosts, have illustrated the...1972. 7. Breivik , H. and Benestad, H. B. Regulation of granulocyte and macrophage formation in diffusion chamber cultures of mouse...haematopoietic cells. Exptl. Cell Res. 70:340-348, 1972. 8. Breivik , H., Benestad, H. B. and B^yum, A. Diffusion chamber and spleen colony assay of murine
NASA Astrophysics Data System (ADS)
Gleason, Alyx; Bedard, Jamie; Bellis, Matthew; CMS Collaboration
2016-03-01
In the summer of 2015, we hosted 10 high school teachers for a three-day ``Physics at the Frontier'' Workshop. The mornings were spent learning about particle physics, CMS and the LHC, and radiation safety while the afternoons were spent building turn-key cloud chambers for use in their classrooms. The basic cloud chamber design uses Peltier thermoelectric coolers, rather than dry ice, and instructions can be found in multiple places online. For a robust build procedure and for easy use in the classroom, we redesigned parts of the construction process to make it easier to put together while holding costs below 200 per chamber. In addition to this new design, we also created a website with instructions for those who are interested in building their own using this design. This workshop was funded in part by a minigrant for Outreach and Education from the USCMS collaboration. Our experience with the workshop and the lessons learned from the cloud chamber design will be discussed. This work was funded in part by NSF Grants PHY-1307562 and a USCMS-administered minigrant for Outreach and Education.
NASA Astrophysics Data System (ADS)
Krueger, Steven; Cantrell, W.; Niedermeier, D.; Shaw, R.; Stratmann, F.
2017-11-01
Although airborne instruments provide detailed information about the microphysical structure of clouds, the measurements provide only a few snapshots of each cloud. Deducing the droplet spectrum evolution from such measurements is next to impossible. We are using two alternative approaches: laboratory studies and numerical simulations. The former relies on a new turbulent cloud chamber (the Pi Chamber) at Michigan Technical University, as well as the first humid turbulent wind tunnel (LACIS-T) at the Leibniz Institute for Tropospheric Research. Both produce conditions for droplet growth (i.e., supersaturation) by mixing saturated vapor at different temperatures. The Pi Chamber produces turbulence by inducing Rayleigh-Bénard convection, while the wind tunnel generates turbulence with a grid. We are using the Explicit Mixing Parcel Model (EMPM) to numerically simulate droplet spectrum evolution in these flows. The EMPM explicitly links turbulent mixing and droplet spectrum evolution by representing a turbulent flow in a 1D domain with the linear eddy model. The EMPM can economically span scales from those of the smallest turbulent eddies to those of the largest. The EMPM grows or evaporates thousands of individual cloud droplets according to their local environments.
Progress report on a new search for free e/3 quarks in the cores of 10(15) - 10(16) eV air showers
NASA Technical Reports Server (NTRS)
Hodson, A. L.; Bull, R. M.; Taylor, R. S.; Belford, C. H.
1985-01-01
The Leeds 3 sq m Wilson cloud chamber is being used in a new search for free e/3 quarks close to the axes of 10 to the 15th power - 10 to the 16th power eV air showers. A ratio trigger circuit is used to detect the incidence of air shower cores; the position of the shower center and the axis direction are determined from photographs of current-limited spark chambers. It is thus possible, for the first time, to know where we have looked for quarks in air showers and to select for scanning only those cloud chamber photographs where we have good evidence that the shower axis was close to the chamber. 250 g/sq cm of lead/concrete absorber above the cloud chamber serve to reduce particle densities and make a quark search possible very close to the shower axes. The current status of the search is given.
S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer
2016-01-01
Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...
Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro
2007-08-01
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
NASA Astrophysics Data System (ADS)
Roberts, G.; Mauger, G.; Hadley, O.; Ramanathan, V.
2006-07-01
Measurements of aerosol and cloud properties in the Eastern Pacific Ocean were taken during an airborne experiment on the University of Wyoming's King Air during April 2004 as part of the Cloud Indirect Forcing Experiment (CIFEX). We observed a wide variety of aerosols, including those of long-range transport from Asia, clean marine boundary layer, and North American emissions. These aerosols, classified by their size distribution and history, were found in stratified layers between 500 to 7500 m above sea level and thicknesses from 100 to 3000 m. A comparison of the aerosol size distributions to measurements of cloud condensation nuclei (CCN) provides insight to the CCN activity of the different aerosol types. The overall ratio of measured to predicted CCN concentration (NCCN) is 0.56 ± 0.41 with a relationship of NCCN,measured = NCCN,predicted0.846±0.002 for 23 research flights and 1884 comparisons. Such a relationship does not accurately describe a CCN closure; however, it is consistent with our measurements that high CCN concentrations are more influenced by anthropogenic sources, which are less CCN active. While other CCN closures have obtained results closer to the expected 1:1 relationship, the different aerosol types (and presumably differences in aerosol chemistry) are responsible for the discrepancy. The measured NCCN at 0.3% supersaturation (Sc) ranged from 20 cm-3 (pristine) to 350 cm-3 (anthropogenic) with an average of 106 ± 54 cm-3 over the experiment. The inferred supersaturation in the clouds sampled during this experiment is ˜0.3%. CCN concentrations of cloud-processed aerosol were well predicted using an ammonium sulfate approximation for Sc ≤ 0.4%. Predicted NCCN for other aerosol types (i.e., Asian and North American aerosols) were high compared to measured values indicating a less CCN active aerosol. This study highlights the importance of chemical effects on CCN measurements and introduces a CCN activation index as a method of classifying the efficiency of an aerosol to serve as CCN relative to an ammonium sulfate particle. This index ranged from close to unity for cloud processed aerosols to as low as 0.31 for aged aerosols transported from Asia. We also compare the performance of two CCN instruments (static thermal diffusion chamber and streamwise continuous flow chamber) on a 45 minute level leg where we observe an aged layer and a nucleation event. More than 50% of the aged aerosol served as CCN at 0.2% Sc, primarily owing to their large size, while CCN concentrations during the nucleation event were close to 0 cm-3. CCN concentrations from both instruments agreed within instrument errors; however, the continuous flow chamber effectively captured the rapid transition in aerosol properties.
Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions
Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger
2013-01-01
Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10−9 fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere. PMID:23733936
Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions.
Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger
2013-06-18
Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10(-9) fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere.
Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles
NASA Astrophysics Data System (ADS)
Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar
2016-04-01
Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany
Method and apparatus for measuring purity of noble gases
Austin, Robert
2008-04-01
A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.
Atmospheric scavenging of hydrochloric acid. [from rocket exhaust
NASA Technical Reports Server (NTRS)
Knutson, E. O.; Fenton, D. L.
1975-01-01
The scavenging of hydrogen chloride from a solid rocket exhaust cloud was investigated. Water drops were caused to fall through a confined exhaust cloud and then analyzed to determine the amount of HCl captured during fall. Bubblers were used to measure HCl concentration within the chamber. The measured chamber HCl concentration, together with the measured HCl deposition on the chamber walls, accounted for 81 to 94% of the theoretical HCl. It was found that the amount of HCl captured was approximately one-half of that predicted by the Frossling correlation. No effect of humidity was detected through a range of 69-98% R.H.. The scavenging of HCl from a solid rocket exhaust cloud was calculated using an idealized Kennedy Space Center rain cycle. Results indicate that this cycle would reduce the cloud HCl concentration to 20.6% if its value in the absence of rain.
Chemistry in dynamically evolving clouds
NASA Technical Reports Server (NTRS)
Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.
1985-01-01
A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.
Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds.
Järvinen, E; Vochezer, P; Möhler, O; Schnaiter, M
2014-11-01
Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32 μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.
Light diffusing fiber optic chamber
Maitland, Duncan J.
2002-01-01
A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.
NASA Astrophysics Data System (ADS)
Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank
2016-05-01
There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.
Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol
NASA Astrophysics Data System (ADS)
Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank
2016-04-01
There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice nucleation of secondary organic aerosol produced from ozonolysis of α-pinene, Atmos. Chem. Phys. Discuss., 15, 35719-35752, doi:10.5194/acpd-15-35719-2015, 2015. Järvinen, E. et al., Observation of viscosity transition in α-pinene secondary organic aerosol, Atmos. Chem. Phys. Discuss., 15, 28575-28617, doi:10.5194/acpd-15-28575-2015, 2015.
APPARATUS FOR PRODUCING SHADOWGRAPHS
Wilson, R.R.
1959-08-11
An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich
2016-01-01
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers.
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Barbosa, Henrique M J; Pöschl, Ulrich; Andreae, Meinrat O
2016-05-24
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl, James A.
From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.
Some Consequences of Some Assumptions with Respect to the Physical Decal of a Chamber Aerosol Cloud
1963-12-01
RESPECT TO THE PHYSICAL DECAY OF A CHAMBER AEROSOL CLOUD* Theodore W. Horner* Project Statistician, Booz-Allen Applied Research, Inc. 4815 Rugby Avenue...recovery percentage at time t is 0 Nf(r) h(r, t) ars (r, t) dr (1) B-(t) B1 r, t) S0 , where B’r, t) is the biological recovery percentage for
Spatial distribution of cloud droplets in a turbulent cloud-chamber flow
NASA Astrophysics Data System (ADS)
Jaczewski, A.; Malinowski, S. P.
2005-07-01
We present the results of a laboratory study of the spatial distribution of cloud droplets in a turbulent environment. An artificial, weakly turbulent cloud, consisting of droplets of diameter around 14 m, is observed in a laboratory chamber. Droplets on a vertical cross-section through the cloud interior are imaged using laser sheet photography. Images are digitized and numerically processed in order to retrieve droplet positions in a vertical plane. The spatial distribution of droplets in the range of scales, l, from 4 to 80 mm is characterized by: the clustering index CI(l), the volume averaged pair correlation function eta;(l) and a local density defined on a basis of correlation analysis. The results indicate that, even in weak turbulence in the chamber that is less intense and less intermittent than turbulence observed in clouds, droplets are not spread according to the Poisson distribution. The importance of this deviation from the Poisson distribution is unclear when looking at CI(l) and
(l). The local density indicates that in small scales each droplet has, on average, more neighbours than expected from the average droplet concentration and gives a qualitative and intuitive measure of clustering.
Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin
2016-04-04
We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.
Measurement of optical blurring in a turbulent cloud chamber
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.
2016-10-01
Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the proposal of a closure experiment for verification of theoretical aerosol effects using actual clouds in a controlled laboratory setting.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
The diffusion approximation. An application to radiative transfer in clouds
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Barkstrom, B. R.
1976-01-01
It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; ...
2016-03-04
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
NASA Astrophysics Data System (ADS)
Deal, E.; Carazzo, G.; Jellinek, M.
2013-12-01
The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.
NASA Astrophysics Data System (ADS)
Abbatt, J. P. D.; Broekhuizen, K.; Pradeep Kumar, P.
The ability of mixed ammonium sulfate/organic acid particles to act as cloud condensation nuclei (CCN) has been studied in the laboratory using a continuous flow, thermal-gradient diffusion chamber operated at supersaturations between 0.3% and 0.6%. The organic acids studied were malonic acid, azelaic acid, hexanoic acid, cis-pinonic acid, oleic acid and stearic acid, and the particles were largely prepared by condensation of the organic vapor onto a dry ammonium sulfate core. For malonic acid and hexanoic acid, the mixed particles activated as predicted by a simple Köhler theory model where both species are assumed to be fully soluble and the droplet has the surface tension of water. Three low-solubility species, cis-pinonic acid, azelaic acid and oleic acid, are well modeled where the acid was assumed to be either partially or fully insoluble. Interestingly, although thin coats of stearic acid behaved in a manner similar to that displayed by oleic and cis-pinonic acid, we observed that thick coats led to a complete deactivation of the ammonium sulfate, presumably because the water vapor could not diffuse through the solid stearic acid. We observed no CCN behavior that could be clearly attributed to a lowering of the surface tension of the growing droplet by the presence of the organic constituents, some of which are highly surface active.
Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity
NASA Technical Reports Server (NTRS)
Franco, Jose; Cox, Donald P.
1986-01-01
Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.
NASA Astrophysics Data System (ADS)
Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.
2014-12-01
A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting instrumentation includes a suite of aerosol generation and characterization techniques, a laser Doppler interferometer, and a holographic cloud particle imaging system.We will present detailed specifications, an overview of the supporting instrumentation, and initial characterization experiments from the Π chamber.
Apparatus for purifying exhaust gases of internal combustion engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, A.; Oya, H.
1980-06-03
Apparatus for purifying the exhaust gases of internal combustion engines is disclosed that is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a cylindrical shell having an inlet chamber, a catalyst chamber, an outlet chamber, and a monolithic catalyst element in the catalyst chamber. The inlet chamber has inlet ports communicating with the upstream exhaust pipes respectively and axial lines of the inlet ports cross each other in the inlet chamber. In the inlet chamber, a diffusion means is provided to diffuse the exhaust gas for uniformly distributingmore » it to the catalyst element.« less
Optical holography applications for the zero-g Atmospheric Cloud Physics Laboratory
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1974-01-01
A complete description of holography is provided, both for the time-dependent case of moving scene holography and for the time-independent case of stationary holography. Further, a specific holographic arrangement for application to the detection of particle size distribution in an atmospheric simulation cloud chamber. In this chamber particle growth rate is investigated; therefore, the proposed holographic system must capture continuous particle motion in real time. Such a system is described.
Properties of the electron cloud in a high-energy positron and electron storage ring
Harkay, K. C.; Rosenberg, R. A.
2003-03-20
Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less
The spectral energy distribution of the scattered light from dark clouds
NASA Technical Reports Server (NTRS)
Mattila, Kalevi; Schnur, G. F. O.
1989-01-01
A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.
Abo-Elmagd, M; Sadek, A M
2014-12-01
Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
Hazard calculations of diffuse reflected laser radiation for the SELENE program
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Babb, Phillip D.
1993-01-01
The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.
Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R
2015-10-01
A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling the effect of diffuse light on canopy photosynthesis in controlled environments
NASA Technical Reports Server (NTRS)
Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)
2002-01-01
A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.
Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops
NASA Technical Reports Server (NTRS)
Liao, Xiaohan; Rossow, William B.; Rind, David
1995-01-01
A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.
Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx
2015-07-23
The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.
Molecular clouds without detectable CO
NASA Technical Reports Server (NTRS)
Blitz, Leo; Bazell, David; Desert, F. Xavier
1990-01-01
The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to ben an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase
Molecular clouds without detectable CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blitz, L.; Bazell, D.; Desert, F.X.
1990-03-01
The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to be an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is thenmore » only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase 18 refs.« less
Time dependence of 222Rn, 220Rn and their progenies' distributions in a diffusion chamber
NASA Astrophysics Data System (ADS)
Stevanovic, N.; Markovic, V. M.; Nikezic, D.
2017-11-01
Diffusion chamber with SSNTD (Solid State Nuclear Track Detector) placed inside is a passive detector for measuring the activity of 222Rn and 220Rn (radon and thoron) and their progenies. Calibration from detected alpha particle tracks to progeny activity is often acquired from theoretical models. One common assumption related to these models found in literature is that concentrations of 222Rn and 220Rn at the entrance of a chamber are constant during the exposure. In this paper, concentrations of 222Rn and 220Rn at the entrance of the chamber are taken to be variable with time, which is actually the case in reality. Therefore, spatial distributions of 222Rn and 220Rn and their progenies inside the diffusion chamber should be time dependent. Variation of 222Rn and 220Rn concentrations on the entrance of the chamber was modeled on the basis of true measurements. Diffusion equations in cylindrical coordinates were solved using FDM (Finite Difference Method) to obtain spatial distributions as functions of time. It was shown that concentrations of 222Rn, 220Rn and their progenies were not homogeneously distributed in the chamber. Due to variable 222Rn and 220Rn concentrations at the entrance of the chamber, steady state (the case when concentration of 222Rn, 220Rn and their progenies inside the chamber remains unchanged with time) could not be reached. Deposition of progenies on the chamber walls was considered and it was shown that distributions of deposited progenies were not uniform over walls' surface.
Development of the cosmic ray techniques
NASA Technical Reports Server (NTRS)
Rossi, B.
1982-01-01
It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.
Heterogeneous freezing of droplets with immersed surface modified mineral dust particles
NASA Astrophysics Data System (ADS)
Hartmann, Susan
2010-05-01
In the framework of the international measurement campaign FROST II (FReezing Of duST), the heterogeneous freezing of droplets with an immersed surface modified size-segregated mineral dust particles was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al. 2004). The following measurements were done: LACIS, CFDC (Continuous Flow thermal gradient Diffusion Chamber, Rogers (1988)) and FINCH (Fast Ice Nucleus Chamber Counter, Bundke et al (2008)) were used to analyze the immersion freezing behavior of the treated Arizona Test Dust (ATD) particles at different temperature regimes. The ability to act as IN (Ice Nucleus) in the deposition nucleation mode was quantified by the PINC (Portable Ice Nucleation Chamber) and the CFDC instrument. AMS (Aerosol Mass Spectrometers, e.g. Schneider et al. (2005)) and ATOFMS (Aerosol Time-Of-Flight Mass Spectrometer) measurements were applied to determine particle composition. The hygroscopic growth and the critical super-saturations needed for droplet activation were determined by means of an H-TDMA (Humidity-Tandem Differential Mobility Analyzer) and CCN counter (Cloud Condensation Nucleus counter, Droplet Measurement Technologies, Roberts and Nenes (2005)). The 300 nm ATD particles were chemically and physically treated by coating with sulphuric acid (H2SO4, three different coating thicknesses) and ammonium sulphate ((NH4)2SO4) or by thermal treatment with a thermodenuder operating at 250°C. The H2SO4 coating modified the particles by reacting with particle material, forming soluble sulfates and therefore changing surface properties. AMS showed free H2SO4 only for thick H2SO4 coatings. In the heated section of the thermodenuder coating materials were evaporated partly and the surface properties of the particles were additionally altered. Uncoated particles and those coated with thin coatings of H2SO4, showed almost no hygroscopic growth. Particles coated with thicker coatings of H2SO4 and of (NH4)2SO4 grew noticeably above 95% relative humidity. All investigated particles were found to activate at atmospherically relevant super-saturations. All kinds of treatment lower the IN-ability, whereas the deposition nucleation was more sensitive to treatments than the immersion freezing mode. Considering the immersion freezing behavior, pure ATD particles and particles coated with thin coatings of H2SO4 were more efficient IN, than particles with thick H2SO4 or (NH4)2SO4 coatings. Thermal treatments of the particles led to further decrease of the IN capability except for particles coated with (NH4)2SO4, where the heating did not effect the immersion freezing behavior likely due to their already reduced IN ability. In order to specify the temperature-dependent immersion freezing, two parameterization based on either stochastic or singular hypothesis were performed. From both theoretical approaches it can be concluded that the treatments lead to particle surface modifications lowering the nucleation efficiency. References: Bundke, U., B. Nillius, et al. (2008), The fast Ice Nucleus chamber FINCH, Atmospheric Research 90(2-4): 180-186. Rader, D. J. and P. H. McMurry (1986), Application of the Tandem Differential Mobility Analyzer to studies of droplet growth or evaporation, J. Aerosol Sci., Vol. 17, No. 5, pp. 771-787. Roberts, G., and A. Nenes (2005), A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206-221. Schneider, J., N. Hock, S. Weimer, S. Borrmann, U. Kirchner, R. Vogt, and V. Scheer (2005), Nucleation particles in Diesel exhaust: Composition inferred from in situ mass spectrometric analysis, Environ. Sci. Technol., 39, 6153-6161. Rogers,D .C. (1988), Developmenot f a continuousflow thermal gradient diffusion chamber for ice nucleation studies. Atmospheric Research, 22, 149-181. Stratmann, F., A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, and S. Schmidt (2004), Laboratory studies and numerical simulations of cloud droplet formation under realistic super-saturation conditions, J. Atmos. Oceanic Technol., 21, 876-887.
NASA Astrophysics Data System (ADS)
Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois
2014-05-01
It is acknowledged that atmospheric photo-oxidation of Volatile Organic Compounds (VOC) leads to the formation of less volatile oxidized species. These compounds can undergo gas-to-particle conversion, leading to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Nevertheless, some of these oxidized species are water soluble and could also partition into cloud droplets. Higher molecular weight and less volatile compounds could be produced in the aqueous phase and remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of the present work is to study SOA formation in the presence of cloud droplets during isoprene photo-oxidation. To this end, an original multiphase approach in a simulation chamber was set up in order to investigate the chemistry occurring in the gaseous, particulate and aqueous phases, and the exchange between these phases. Experiments were performed, within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM chamber (Wang et al., 2011). This chamber was designed to investigate multiphase processes under realistic actinic flux, and accurate control of both temperature and relative humidity. A specific protocol was set up to produce cloud events in the simulation chamber exhibiting a significant lifetime in the presence of light (10-12 minutes). By using this protocol, many clouds could be generated in a single experiment. In each experiment, around 800 ppb of isoprene was injected in the chamber together with HONO under dry conditions before irradiation. A Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and O3 analyzers were used to analyze gas-phase composition. Dried SOA size distributions and total concentrations were measured by a Scanning Mobility Particle Sizer (SMPS). An Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also used to investigate aerosol composition. Cloud droplets size distributions were measured by a white light Optical Particle Counter (OPC). In all experiments, the dissolution of gaseous oxidation products into aqueous phase and SOA production have been observed during isoprene photo-oxidation in the presence of a cloud event. The overall results in additional SOA mass production and the dynamic of gaseous oxidation products and SOA mass concentrations will be presented. Ervens, B. et al. (2011). Atmospheric Chemistry and Physics 11(21): 11069-11102. Wang, J. et al. (2011). Atmospheric Measurement Techniques 4(11): 2465-2494.
Metasurfaced Reverberation Chamber.
Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran
2018-01-25
The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2017-03-01
We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
Restricted exchange microenvironments for cell culture.
Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F
2018-03-01
Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.
A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.
2014-01-01
Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column density, and is lowest in the massive clouds. The column densities and mass fraction of CO-dark H2 are less than predicted by models of diffuse molecular clouds using solar metallicity, which is not surprising as most of our detections are in Galactic regions where the metallicity is larger and shielding more effective. There is an overall trend towards a higher fraction of CO-dark H2 in clouds with increasing Galactic radius, consistent with lower metallicity there. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel
2016-05-01
The Thornton Laboratory participated in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign in Finland by deploying our mass spectrometer. We then participated in environmental simulation chamber studies at Pacific Northwest National Laboratory (PNNL). Thereafter, we analyzed the results as demonstrated in the several presentations and publications. The field campaign and initial environmental chamber studies are described below.
NASA Technical Reports Server (NTRS)
1976-01-01
Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-10-05
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-01-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141
Model calculations for the airborne Fast Ice Nuclei CHamber FINCH-HALO
NASA Astrophysics Data System (ADS)
Nillius, B.; Bingemer, H.; Bundke, U.; Jaenicke, R.; Reimann, B.; Wetter, T.
2009-04-01
Ice nuclei (IN) initiate the formation of primary ice in tropospheric clouds. In mixed phase clouds the primary ice crystals can grow very fast by the Bergeron-Findeisen process (Findeisen, 1938) at the expense of evaporating water droplets, and form precipitation. Thus, IN are essential for the development of precipitation in mixed phase clouds in the middle latitude. However, the role of IN in the development of clouds is still poorly understood and needs to be studied (Levin and Cotton, 2007). A Fast Ice Nuclei CHamber (FINCH-HALO) for airborne operation on the High And LOng Range research aircraft (HALO) is under development at the Institute for Atmosphere and Environment University Frankfurt. IN particles are activated within the chamber at certain ice super-saturation and temperature by mixing three gas flows, a warm moist, a cold dry, and an aerosol flow. After activation the particles will grow within a processing chamber. In an optical depolarisation detector droplets and ice crystals are detected separately. The setup of the new FINCH-HALO instrument is based on the ground based IN counter FINCH (Bundke, 2008). In FINCH-HALO a new cooling unit is used. Thus, measurements down to -40°C are possible. Furthermore minor changes of the inlet section where the mixing occurs were done. The contribution will present 3D model calculations with FLUENT of the flow conditions in the new inlet section for different pressure levels during a flight typical for HALO. Growth rates of ice crystals in the chamber at different temperature and super-saturation will be shown. References: Bundke U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, H. Bingemer, (2008). The Fast Ice Nucleus Chamber FINCH, Atmospheric Research, doi:10.1016/j.atmosres.2008.02.008 Findeisen, R., (1938). Meteorologisch-physikalische Begebenheiten der Vereisung in der Atmosphäre. Hauptversammlung 1938 der Lilienthal-Gesellschaft. Levin, Z., W. Cotton, (2007). Aerosol pollution impact on precipitation: a scientific review. The WMO/IUGG International Aerosol Precipitation Science Assessment Group (IAPSAG). World Meteorological Organization, Geneva. Acknowledgements: This work was supported by the German Research Foundation, SFB 641 "Tropospheric Ice Phase" TP A1, SPP 1294, BU 1432/3-1, JA 344/12-1, by the Helmholtz Association, VI-233 "Aerosol Cloud Interactions" and by the EU FP6 Infrastructure Project EUSAAR.
Why Did the 2010 Eyjafjallajokull Volcanic Eruption Cloud Last So Long?
NASA Astrophysics Data System (ADS)
Jellinek, M.; Carazzo, G.
2013-12-01
The global economic consequences of the relatively small Eyjafjallajokull eruption in the spring of 2010 caught the world off guard. That the eruption cloud lasted for several months rather than weeks, efficiently disrupting air travel and the holiday plans of thousands of tourists, drew arguably more attention and a certainly garnered a highly emotional response. The longevity of this eruption cloud was touted to be "an anomaly". However, this anomaly nearly repeated itself the following year in the form of the 2011 Puyehue-Cordon Caulle eruption cloud. A major reason that the behavior of the 2010 Eyjafjallajokul cloud was surprising is that "standard" models for ash sedimentation (i.e., heavy particles fall out of the cloud faster than light particles) are incomplete. Observations of the 2010 Eyjafjallajokull, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process in addition to particle settling is the production of internal layering. We use analog experiments on turbulent particle-laden umbrella clouds and simple models to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability leading to this layering. This 'particle diffusive convection' strongly influences cloud longevity where volcanic umbrella clouds are enriched in fine ash. More generally, volcanic cloud residence times will depend on ash fluxes related to both individual particle settling and diffusive convection. We discuss a new sedimentation model that includes both contributions to the particle flux and explains the the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. Examples of periodic layering in volcanic clouds compared with experiments in which periodic layering emerges as a result of buoyancy effects related to a particle-salt double diffusive instability.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Optical observations related to the molecular chemistry in diffuse interstellar clouds
NASA Technical Reports Server (NTRS)
Federman, S. R.
1987-01-01
Observations, which have been published since 1979, of molecular species in diffuse clouds are discussed. Particular attention is given to the ultraviolet measurements of CO with the Copernicus and IUE satellites and to ground-based optical measurements of CH, CH(+), CN, and 02. These data encompass large enough samples to test the chemical schemes expected to occur in diffuse clouds. Upper limits for other species (e.g., H2O, H2O(+), and C3) place restrictions on the pathways for molecular production. Moreover, analysis of the rotational distribution of the C2 molecule results in the determination of the physical conditions of the cloud. These parameters, including density, temperature, and the intensity of the radiation field, are necessary for modeling the chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivi, M.T.F.; Collet, G.; King, F.
Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Corby, Joanna F.; Martin-Drumel, Marie-Aline; Schilke, P.; McCarthy, Michael C.; Remijan, Anthony
2017-06-01
Many diffuse and translucent clouds lie along the line of sight between Earth and the Galactic Center that can be probed through molecular absorption at characteristic velocities. We highlight results of a study of diffuse and translucent clouds along the line of sight to Sgr B2, including SOFIA observations of SH near 1.4 THz and GBT PRIMOS observations from 4 to 50 GHz. We find significant variation in the chemical conditions within these clouds, and the abundances do not appear to correlate with the total optical depth. Additionally, from the GBT observations, we report the first detections of multiple complex organic molecules (COMs) in diffuse and translucent clouds, including CH_3CN, HC_3N, CH_3CHO, and NH_2CHO. We compare the GBT results to complementary observations of SH, H_2S, and others at mm, sub-mm, and THz frequencies from the NRAO 12m, Herschel HIFI, and SOFIA facilities, and comment on the insights into interstellar sulfur chemistry which is currently not well constrained.
Long-Term INP Measurements within the BACCHUS project
NASA Astrophysics Data System (ADS)
Schrod, Jann; Bingemer, Heinz; Curtius, Joachim
2016-04-01
The European research project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) studies the interactions between aerosols, clouds and the climate system, and tries to reconstruct pre-industrial aerosol and cloud conditions from data collected in pristine environments. The number concentration of Ice Nucleating Particles (INP) is an important, yet scarcely known parameter. As a partner of Work package 1 of BACCHUS we began in September 2014 to operate a globally spanned network of four INP sampling stations, which is the first of its kind. The stations are located at the ATTO observatory in the Brazilian Rainforest, the Caribbean Sea (Martinique), the Zeppelin Observatory at Svalbard in the Arctic, and in central Europe (Germany). Samples are collected routinely every day or every few days by electrostatic precipitation of aerosol particles onto Si substrates. The samples are stored in petri-slides, and shipped to our laboratory in Frankfurt, Germany. The number of ice nucleating particles on the substrate is analyzed in the isothermal static diffusion chamber FRIDGE by growing ice on the INP and photographing and counting the crystals. The measurements in the temperature range from -20°C to -30°C and relative humidities of 100-135% (with respect to ice) address primarily the deposition/condensation nucleation modes. Here we present INP and supporting aerosol data from this novel INP network for the first time.
Study of the transport parameters of cloud lightning plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z. S.; Yuan, P.; Zhao, N.
2010-11-15
Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less
NASA Astrophysics Data System (ADS)
Smith, Helen R.; Connolly, Paul J.; Webb, Ann R.; Baran, Anthony J.
2016-07-01
Ice clouds were generated in the Manchester Ice Cloud Chamber (MICC), and the backscattering linear depolarisation ratio, δ, was measured for a variety of habits. To create an assortment of particle morphologies, the humidity in the chamber was varied throughout each experiment, resulting in a range of habits from the pristine to the complex. This technique was repeated at three temperatures: -7 °C, -15 °C and -30 °C, in order to produce both solid and hollow columns, plates, sectored plates and dendrites. A linearly polarised 532 nm continuous wave diode laser was directed through a section of the cloud using a non-polarising 50:50 beam splitter. Measurements of the scattered light were taken at 178°, 179° and 180°, using a Glan-Taylor prism to separate the co- and cross-polarised components. The intensities of these components were measured using two amplified photodetectors and the ratio of the cross- to co-polarised intensities was measured to find the linear depolarisation ratio. In general, it was found that Ray Tracing over-predicts the linear depolarisation ratio. However, by creating more accurate particle models which better represent the internal structure of ice particles, discrepancies between measured and modelled results (based on Ray Tracing) were reduced.
Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes
NASA Astrophysics Data System (ADS)
Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.
2018-03-01
A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.
NASA Technical Reports Server (NTRS)
Stewart, R. B.; Grose, W. L.
1975-01-01
Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.
Scattering of laser light - more than just smoke and mirrors
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Love, Stephen; Cahalan, Robert
2004-01-01
A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
NASA Astrophysics Data System (ADS)
Kudryavtsev, A. A.; Serditov, K. Yu.
2012-07-01
This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.
History and overview of the in vivo diffusion chamber (D. C. ) culture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carsten, A.L.
The development of the modern diffusion chamber system has been traced from the nearly 100 year old concept for in vivo growth of isolated cells in a semi-permeable container to the modern systems consisting of single and multiple chambers with differing wall materials. Various applications of the system and methods of analysis are discussed. The many advantages and disadvantages of this system are considered as compared with other available culture systems.
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.
2011-05-01
In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.
C+ detection of warm dark gas in diffuse clouds
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-10-01
We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+ (GOT C+) survey of the [CII] 2P3/2-2P1/2 fine-structure line at 1.9 THz (158 μm) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV < 1.3 mag) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H2, dark gas, component. This first [CII] 158 μm detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.
2000-01-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.
1991-01-01
A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanniah, K. D.; Beringer, J.; Tapper, N. J.
2010-05-01
We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptakemore » under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.« less
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
A Balloon-Borne Cloud Condensation Nuclei Counter
NASA Technical Reports Server (NTRS)
Delene, David J.; Deshler, Terry; Wechsler, Perry; Vali, Gabor A.
1997-01-01
A balloon-borne instrument was constructed for observations of vertical profiles of cloud condensation nucleus (CCN) concentrations, active at 1% supersaturation. Droplet concentration in the static thermal-gradient diffusion chamber is deduced from the amount of scattered laser light detected by a photodetector. The photodetector is calibrated using a video camera and computer system to count the number of droplets produced from NaCl aerosol. Preliminary data are available from nine early morning profiles obtained at Laramie, Wyoming, between June 1995 and January 1997. To complement the CCN measurements, instruments that measure condensation nuclei (CN) and aerosols with diameter greater than 0.30 micrometers (D(sub 0.3) were also included on the balloon package. CCN concentrations exhibited a general decrease from the surface to the top of the boundary layers, were generally uniform through well-mixed layers, and show variability above well-mixed layers. In general, the structure of the CCN profile appears to be closely related to the structure in the CN and D(sub 0.3) profiles. Summer profiles generally have CCN concentration greater than 200/cu cm up to 500 mbar, whereas winter profiles are less than 200/cu cm at all levels.
From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator
NASA Technical Reports Server (NTRS)
Cary, Ron
1992-01-01
The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.
NASA Astrophysics Data System (ADS)
Levin, E. J.; DeMott, P. J.; Suski, K. J.; Boose, Y.; Hill, T. C. J.; McCluskey, C. S.; Schill, G. P.; Duncan, D.; Al-Mashat, H.; Prather, K. A.; Sedlacek, A. J., III; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Pekour, M. S.; Leung, L. R.; Kreidenweis, S. M.
2016-12-01
California is currently under drought conditions and changes in precipitation due to future climate change scenarios are uncertain. Thus, understanding the controlling factors for precipitation in this region, and having the capability to accurately model these scenarios, is important. A crucial area in understanding precipitation is in the interplay between atmospheric moisture and aerosols. Specifically, ice nucleation in clouds is an important process controlling precipitation formation. A major component of CA's yearly precipitation comes from wintertime atmospheric river (AR) events which were the focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX) and CalWater 2 campaigns. These two campaigns provided sampling platforms on four aircraft, including the ARM Aerial Facility G-1, as well as the NOAA Ron Brown research vessel and at a ground station at Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G-1 and at Bodega Bay, and using aerosol filter collections on these platforms as well as the Ron Brown for post-processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G-1 with the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Both the CFDC and ATOFMS sampled off of an isokinetic inlet when flying in clear air and a counter-flow virtual impactor in clouds to capture ice crystal and cloud droplet residuals. In this presentation we present ice nucleating particle concentrations before, during and after an AR event from air, ground and ocean-based measurements. We also examine INP concentration variability in orographic clouds and in clear air at altitude along the Sierra Nevada range, in the marine boundary layer and through the Central Valley, and relate these INP measurements to other aerosol physical and chemical properties.
Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Spaans, Marco
1996-01-01
We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
Interstellar clouds - From a dynamical perspective on their chemistry
NASA Technical Reports Server (NTRS)
Prasad, S. S.
1985-01-01
The possibility is examined that in the course of its dynamical evolution, a single mass of interstellar gas would exhibit properties of diffuse clouds, dense clouds and finally also of clouds perturbed by shocks or intense UV or X-ray radiation generated by a star of its own creation. This concept provides a common thread through the bewildering diversity of physical and chemical compositional properties shown by interstellar clouds. From this perspective, instead of being static objects, interstellar clouds are possibly incessantly evolving from initially diffuse to later dense state and then to star formation which ultimately restructures or disperses the remaining cloud material to begin the whole evolutionary process once again. Based on a simplified study of interstellar chemistry from a dynamical perspective, the ideas are presented as an heuristic: to encourage thought on the future direction of molecular astrophysics and the need to consider the chemical behavior of interstellar clouds in conjunction with, rather than in isolation from, their dynamical behavior. A physical basis must be sought for the semiempirical temperature formula which has been given a critical role in the collapse of diffuse clouds. Self-shielding effects in the chemistry of CO were neglected and this drawback should be removed; the ability of the model to explain the fractional abundances of more complex molecules, such as cyanopolyynes, should be examined.
De Haan, David O; Hawkins, Lelia N; Welsh, Hannah G; Pednekar, Raunak; Casar, Jason R; Pennington, Elyse A; de Loera, Alexia; Jimenez, Natalie G; Symons, Michael A; Zauscher, Melanie; Pajunoja, Aki; Caponi, Lorenzo; Cazaunau, Mathieu; Formenti, Paola; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François
2017-07-05
The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k 450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m 3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10 -17 cm 3 molecule -1 s -1 at 294 K and activation energy E a = 64 ± 37 kJ/mol.
NASA Astrophysics Data System (ADS)
Velusamy, T.; Pineda, J. L.; Langer, W. D.; Willacy, K.; Goldsmith, P. F.
2011-05-01
Our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the well-shielded molecular phase traced by CO. Recently, using the first results of the Herschel Key Project GOT C+, a HIFI C+ survey of the Galactic plane, Velusamy, Langer, Pineda et al. (A&A 521, L18, 2010) have shown that in the diffuse interstellar transition clouds a significant fraction of the carbon exists primarily as C^+ with little C^0 and CO in a warm 'dark gas' layer in which hydrogen is mostly H_2 with little atomic H, surrounding a modest 12CO-emitting core. The [CII] fine structure transition, at 1.9 THz (158 μm) is the best tracer of this component of the interstellar medium, which is critical to our understanding of the atomic to molecular cloud transitions. The Herschel Key Project GOT C+ is designed to study such clouds by observing with HIFI the [CII] line emission along 500 lines of sight (LOSs) throughout the Galactic disk. Here we present the identification and chemical status of a few hundred diffuse and transition clouds traced by [CII], along with auxiliary HI and CO data covering ~100 LOSs in the inner Galaxy between l= -30° and 30°. We identify transition clouds as [CII] components that are characterized by the presence of both HI and 12CO, but no 13CO emission. The intensities, I(CII) and I(HI), are used as measures of the visual extinction, AV, in the cloud up to the C^+/C^0/CO transition layer and a comparison with I(12CO) yields a more complete H_2 molecular inventory. Our results show that [CII] emission is an excellent tool to study transition clouds and their carbon chemistry in the ISM, in particular as a unique tracer of molecular H_2, which is not easily observed by other means. The large sample presented here will serve as a resource to study the chemical and physical status of diffuse transition clouds in a wide range of Galactic environments and constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse ISM.
Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber
NASA Astrophysics Data System (ADS)
Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y..; Delort, A.-M.
2015-02-01
The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by lacks of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 = cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~33 min per m2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.
Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber
NASA Astrophysics Data System (ADS)
Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M.
2015-06-01
The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m-2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.
Computation of shear-induced collective-diffusivity in emulsions
NASA Astrophysics Data System (ADS)
Malipeddi, Abhilash Reddy; Sarkar, Kausik
2017-11-01
The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re < 5 . This work has been limited to a viscosity matched case.
NASA Astrophysics Data System (ADS)
Bundke, U.; Jaenicke, R.; Klein, H.; Nillius, B.; Reimann, B.; Wetter, T.; Bingemer, H.
2009-04-01
Ice formation in clouds is a subject of great practical and fundamental importance since the occurrence of ice particle initializes dramatic changes in the microphysical structure of the cloud, which finally ends in the formation of precipitation. The initially step of ice formation is largely unknown. Homogenous nucleation of ice occurs only below -40 °C. If an ice nucleus (IN) is present, heterogeneous nucleation may occur at higher temperature. Here deposition freezing, condensation and immersion freezing as well as contact freezing are known. Also growth rates of ice particles are known as function of crystal surface properties, temperature and super saturation. Timescales for homogenous freezing activation in the order of 0.01 seconds and nucleation rates have been measured by Anderson et al. (1980) and Hagen et al., (1981) using their expansion cloud chamber. This contribution of deposition mode freezing measurements by the ice nucleus counter FINCH presents evidence that the activation timescale of this freezing mode is in the order of 1E-3 seconds. FINCH is an Ice Nucleus counter which activates IN in a supersaturated environment at freezing temperatures. The activation conditions are actively controlled by mixing three gas flows (aerosol, particle-free cold-dry and warm-humid flows).See Bundke et al. 2008 for details. In a special operation mode of FINCH we are able to produce a controlled peak super saturation in the order of 1 ms duration. For several test aerosols the results observed in this particular mode are comparable to normal mode operations, where the maximum super saturation remains for more than a second, thus leading to the conclusion that the time for activation is in the order of 1ms or less. References: R.J. Anderson et al, "A Study of Homogeneous Condensation Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber, Journal of the Atmospheric Sciences, Vol. 37, 2508-2520, 1980 U.Bundke et al., "The fast Ice Nucleus chamber FINCH", Atmospheric Research, Volume 90, Issues 2-4, 180-186, DOI:10.1016/j.atmosres.2008.02.008, 2008 D.E. Hagen et al., "Homogenous Condensation Freezing Nucleation Rate Measurements for Small Water Droplets in an Expansion Cloud Chamber", Journal of the Atmospheric Sciences, Vol 38, 1236-1243, 1981 Acknowledgments: This work was supported by the German Research Foundation: SFB 641 "Tropospheric Ice Phase" TP A1, SPP1294 BU1432/3-1, JA344/12-1, by the Helmholtz Association: VI-233 "Aerosol Cloud Interactions" and by and by the EU FP6 Infastructure Project EUSAAR.
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.
2016-04-01
This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.
NASA Astrophysics Data System (ADS)
Lazarian, A.; Esquivel, A.; Crutcher, R.
2012-10-01
Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling Bvpropρ2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed "reconnection diffusion," we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength with density. In addition, we demonstrate that the reconnection diffusion process can account for the empirical Larson relations and list a few other implications of the reconnection diffusion concept. We argue that magnetic reconnection provides a solution to the magnetic flux problem of star formation that agrees better with observations than the long-standing ambipolar diffusion paradigm. Due to the illustrative nature of our simplified model we do not seek quantitative agreement, but discuss the complementary nature of our approach to the three-dimensional MHD numerical simulations.
2001-01-24
The Diffusion-Controlled Apparatus for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A semi-permeable plug or fuse at the center controls the rate at which a precipitant diffuses from the reservoir chamber into the solution chamber , thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.
Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.
2014-12-01
Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.
NASA Astrophysics Data System (ADS)
Carazzo, G.; Jellinek, M.
2010-12-01
The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.
CesrTA Retarding Field Analyzer Modeling Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvey, J.R.; Celata, C.M.; Crittenden, J.A.
2010-05-23
Retarding field analyzers (RFAs) provide an effective measure of the local electron cloud density and energy distribution. Proper interpretation of RFA data can yield information about the behavior of the cloud, as well as the surface properties of the instrumented vacuum chamber. However, due to the complex interaction of the cloud with the RFA itself, understanding these measurements can be nontrivial. This paper examines different methods for interpreting RFA data via cloud simulation programs. Techniques include postprocessing the output of a simulation code to predict the RFA response; and incorporating an RFA model into the cloud modeling program itself.
Biological aerosol particles in the atmosphere and their impact on clouds (BIOCLOUDS)
NASA Astrophysics Data System (ADS)
Amato, Pierre; Attard, Eleonore; Deguillaume, Laurent; Delort, Anne-Marie; Flossmann, Andrea; Good, Nicholas; Joly, Muriel; Koop, Thomas; Möhler, Ottmar; Monier, Marie; Morris, Cindy; Oehm, Caroline; Pöschl, Ulrich; Sancelme, Martine
2015-04-01
The project BIOCLOUDS aimed at investigating and quantifying the role of bioaerosols in tropospheric clouds. We focused on the studies on microorganisms, mainly bacteria. To reach our objective we (1) isolated and identified INA bacterial strains in cloud waters, (2) studied in more details IN properties of bacteria isolated from cloud waters in laboratories and cloud chamber, (3) used new data as input to cloud models. 1. Isolation and Identification of INA bacterial strains in cloud waters Cloud water samples were collected at the puy de Dôme station under sterile conditions, microorganisms were cultured on agar plates and further identified by DNA sequencing coding for16SrRNA. 257 bacterial strains isolated from 25 cloud events were screened and 44 isolates were selected as they belonged to Pseudomonas, Xanthomonas and Erwinia genera which are potential INA candidates. Using the classical "Droplet Freezing method" as ice nucleation test, 7 strains were shown INA+. Their cumulative IN frequency profiles were established and showed that some of them are very efficient, for example the strain Pseudomonas syringae 13b74 started to nucleate a t-3°C and 4% of the cells were active at- 5°C. 2. Further laboratory investigations of IN properties of cloud bacterial strains All the experiments presented in this section were carried out with 3 Pseudomonas syringae strains. We tested the influence of O3, NO, UV and pH, which are atmospheric markers of anthropogenic activity, on the IN activity of the Pseudomonas strains. It was clearly shown that pH had a main influence, acidic pHs decreased the IN activity of the strains. This suggests a negative impact of human emissions on the natural capacity of bacteria to precipitate with rain. The 3 Pseudomas strains were sprayed in the AIDA cloud chamber. The survival of these strains with time before cloud formation was measured and will be used in the future to parameterize models for bacterial transport. After cloud formation, IN activity of bacteria was followed with time, our results suggest that bacteria are precipitated in the cloud chamber as a result of their IN activity. Also the coating of bacteria with sulfates decreased their IN activity, pointing out the negative potential anthropogenic influence on IN bacteria activity. 3. Modeling study to see if any impact of bacteria on cloud development and/or precipitation is realistic. Modeling studies were performed with DESCAM (Detailed SCAvenging Model) using as an input the new data from the different campaigns in AIDA. M. VAÏTILINGOM et al. Atmospheric Environment, 2012, 56, 88-100. E. ATTARD et al. Atmospheric Chemistry and Physics, 2012, 12, 10667-10677. M. JOLY et al. Atmospheric Environment, 2013, 70, 392-400.
Study of the Fine-Scale Structure of Cumulus Clouds.
NASA Astrophysics Data System (ADS)
Rodi, Alfred R.
Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for converting the aircraft Eulerian data into estimates of Lagrangian correlations. Predictions of the model are compared with observations of plume growth. A detailed analysis of errors in the air motion sensing system on the aircraft is presented. A procedure is developed to estimate the errors due to aircraft gyroscope sensitivity to horizontal accelerations.
Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)
NASA Astrophysics Data System (ADS)
Wollenberg, J. L.; Peters, S. C.
2007-12-01
Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.
Experimental determination of turbulence in a GH2-GOX rocket combustion chamber
NASA Technical Reports Server (NTRS)
Tou, P.; Russell, R.; Ohara, J.
1974-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.
Development of a turn-key cloud chamber in collaboration with non-academic science enthusiasts
NASA Astrophysics Data System (ADS)
Muenkel, Jessica; Harrington, Meghan; Bellis, Matthew; Waldman, Ariel; Bergey, Nathan; Cooper, Ivan; Bombosch, Juliane
2014-03-01
Science Hack Day is an event that brings together scientists and science enthusiasts for 24 hours to ``hack'' a science project. These events serve two purposes. The first and most obvious is to provide a structured environment for science outreach. Academics and researchers have the opportunity for ``boots-on-the-ground'' interactions with the general public. The second purpose, though more challenging, is to enable science enthusiasts to donate their skills so that they are able to push back to educators and researchers in a fashion that that benefits their work. We discuss our experiences at the 2013 San Francisco Science Hack Day at the California Academy of Sciences. We worked with attendees of the conference to create a cloud chamber that worked with Peltier thermocoolers, rather than dry ice. In this fashion, we educated attendees about radiation and particle physics, while also benefitting from the experience and knowledge of the attendees in constructing the device. This ``turn-key'' cloud chamber is now in use at Siena College as an outreach and educational device. The properties of this device and the story of its construction will be presented. Representing CMS.
Modeling the Diffuse Cloud-Top Optical Emissions from Ground and Cloud Flashes
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard; Koshak, William
2008-01-01
A number of studies have indicated that the diffuse cloud-top optical emissions from intra-cloud (IC) lightning are brighter than that from normal negative cloud-to-ground (CG) lightning, and hence would be easier to detect from a space-based sensor. The primary reason provided to substantiate this claim has been that the IC is at a higher altitude within the cloud and therefore is less obscured by the cloud multiple scattering medium. CGs at lower altitudes embedded deep within the cloud are more obscured, so CG detection is thought to be more difficult. However, other authors claim that because the CG source current (and hence luminosity) is typically substantially larger than IC currents, the greater CG source luminosity is large enough to overcome the effects of multiple scattering. These investigators suggest that the diffuse cloud top emissions from CGs are brighter than from ICs, and hence are easier to detect from space. Still other investigators claim that the detection efficiency of CGs and ICs is about the same because modern detector sensitivity is good enough to "see" either flash type no matter which produces a brighter cloud top emission. To better assess which of these opinions should be accepted, we introduce an extension of a Boltzmann lightning radiative transfer model previously developed. It considers characteristics of the cloud (geometry, dimensions, scattering properties) and specific lightning channel properties (length, geometry, location, current, optical wave front propagation speed/direction). As such, it represents the most detailed modeling effort to date. At least in the few cases studied thus far, it was found that IC flashes appear brighter at cloud top than the lower altitude negative ground flashes, but additional model runs are to be examined before finalizing our general conclusions.
Multi-chamber deposition system
Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.
1989-10-17
A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.
Multi-chamber deposition system
Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.
1989-06-27
A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.
Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2017-04-01
Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.
Separation of gases by diffusion
Peieris, R. E.; Simon, F. E.; Arms, H. S.
1960-12-13
An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)
Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol
NASA Astrophysics Data System (ADS)
Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.
2015-12-01
Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel engine exhaust to ice nuclei concentrations. Sampling was done for both diesel and biodiesel on fresh emissions and emissions aged up to 18 days equivalent photochemical aging with a Potential Aerosol Mass chamber. Our results show that, for mixed-phase clouds, both fresh and aged (bio)diesel are not likely a significant source of ice nuclei.
Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols
NASA Technical Reports Server (NTRS)
Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.
2007-01-01
In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.
Chemistry and Evolution of Interstellar Clouds
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.
2003-01-01
In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.
Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng
2013-12-01
The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.
Interstellar and Cometary Dust
NASA Technical Reports Server (NTRS)
Mathis, John S.
1997-01-01
'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.
Diffusion of protein through the human cornea.
Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N
2012-01-01
To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.
Small particles big effect? - Investigating ice nucleation abilities of soot particles
NASA Astrophysics Data System (ADS)
Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.
2017-04-01
Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential emissions. Collected particles will be re-suspended and aerosolized using an atomizer (TSI, model 3076) and dried by a diffusion drier prior to ice nucleation experiments. A Particle Phase Discriminator (PPD) coupled to HINC will allow discrimination of size-resolved liquid and ice hydrometeors formed on the atmospheric soot particles injected into the CFDC. This will allow to more precisely quantify the microphysical properties of these particles in cloud processes for the conditions tested. To our knowledge this is the first time such a coupling is done for atmospheric soot particles. Results show different activation behavior of the soot over the temperature range investigated. While CAST-brown soot needs conditions above water saturation to show any freezing, some of the commercial soot samples show heterogeneous ice nucleation well below water saturation for the cirrus conditions. For the mixed-phase cloud conditions all soot types show droplet activation for high water supersaturation.
Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.
1989-01-01
The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.
[CII] observations of H2 molecular layers in transition clouds
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-10-01
We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Humans differ in their personal microbial cloud
Altrichter, Adam E.; Bateman, Ashley C.; Stenson, Jason; Brown, GZ; Green, Jessica L.; Bohannan, Brendan J.M.
2015-01-01
Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud. PMID:26417541
Star Formation and the Hall Effect
NASA Astrophysics Data System (ADS)
Braiding, Catherine
2011-10-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.
Sound, infrasound, and sonic boom absorption by atmospheric clouds.
Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis
2011-09-01
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America
Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.
Stout, David A; Toyjanova, Jennet; Franck, Christian
2015-06-12
The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.
Permeabilized Rat Cardiomyocyte Response Demonstrates Intracellular Origin of Diffusion Obstacles
Jepihhina, Natalja; Beraud, Nathalie; Sepp, Mervi; Birkedal, Rikke; Vendelin, Marko
2011-01-01
Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes. PMID:22067148
1997-07-01
Astronaut James D. Halsell, Jr., mission commander, uses a Hi-8mm camcorder to videotape the Hand Held Diffusion Test Cells (HHDTC), in the Spacelab Science Module aboard the Earth-orbiting Space Shuttle Columbia (STS-94). Each test cell has three chambers containing a protein solution, a buffer solution and a precipitant solution chamber. Using the liquid-liquid diffusion method, the different fluids are brought into contact but not mixed. Over a period of time, the fluids will diffuse into each other through the random motion of molecules. The gradual increase in concentration of the precipitant within the protein solution causes the proteins to crystallize.
1993-04-06
The COS consists of a specially designed (VDA) Vapor Diffusion Apparatus tray with 6 chambers, a video camera for each chamber, a lighting system, and associated hardware. By observing the crystal growth in each chamber, researchers can identify which conditions and concentrations of proteins and precipitants are best for promoting the crystal growth to a particular protein.
1963-01-01
Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.
2009-04-01
The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.
Decoherence and Determinism in a One-Dimensional Cloud-Chamber Model
NASA Astrophysics Data System (ADS)
Sparenberg, Jean-Marc; Gaspard, David
2018-03-01
The hypothesis (Sparenberg et al. in EPJ Web Conf 58:01016, [1]. https://doi.org/10.1051/epjconf/20135801016) that the particular linear tracks appearing in the measurement of a spherically-emitting radioactive source in a cloud chamber are determined by the (random) positions of atoms or molecules inside the chamber is further explored in the framework of a recently established one-dimensional model (Carlone et al. Comm Comput Phys 18:247, [2]. https://doi.org/10.4208/cicp.270814.311214a). In this model, meshes of localized spins 1/2 play the role of the cloud-chamber atoms and the spherical wave is replaced by a linear superposition of two wave packets moving from the origin to the left and to the right, evolving deterministically according to the Schrödinger equation. We first revisit these results using a time-dependent approach, where the wave packets impinge on a symmetric two-sided detector. We discuss the evolution of the wave function in the configuration space and stress the interest of a non-symmetric detector in a quantum-measurement perspective. Next we use a time-independent approach to study the scattering of a plane wave on a single-sided detector. Preliminary results are obtained, analytically for the single-spin case and numerically for up to 8 spins. They show that the spin-excitation probabilities are sometimes very sensitive to the parameters of the model, which corroborates the idea that the measurement result could be determined by the atom positions. The possible origin of decoherence and entropy increase in future models is finally discussed.
Combustor nozzle for a fuel-flexible combustion system
Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH
2011-03-22
A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.
The abundance of CO in diffuse interstellar clouds - An ultraviolet survey
NASA Technical Reports Server (NTRS)
Federman, S. R.; Glassgold, A. E.; Jenkins, E. B.; Shaya, E. J.
1980-01-01
CO was detected in 17 directions and its upper limits were estimated in 21 directions by a UV survey carried out with the Copernicus satellite in the C-X 1088 A and E-X 1076 A lines toward 48 bright stars. The CO column densities range from 10 to the 12th to 10 to the 17th/sq cm and correlate with C I and H2. The tendency of the C I/CO ratio to be about 10 follows the ratio of particular atomic and molecular cross-sections and the physical parameters of interstellar clouds. Finally, the connection between UV observations in diffuse clouds and radio observations of (C-13)O in dark clouds is discussed.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2013-01-01
In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.
NASA Astrophysics Data System (ADS)
Vâjâiac, Sorin Nicolae; Filip, Valeriu; Štefan, Sabina; Boscornea, Andreea
2014-03-01
The paper describes a method of assessing the size distribution of fog droplets in a cloud chamber, based on measuring the time variation of the transmission of a light beam during the gravitational settling of droplets. Using a model of light extinction by floating spherical particles, the size distribution of droplets is retrieved, along with characteristic structural parameters of the fog (total droplet concentration, liquid water content and effective radius). Moreover, the time variation of the effective radius can be readily extracted from the model. The errors of the method are also estimated and fall within acceptable limits. The method proves sensitive enough to resolve various modes in the droplet distribution and to point out changes in the distribution due to diverse types of aerosol present in the chamber or to the thermal condition of the fog. It is speculated that the method can be further simplified to reach an in-situ version for real-time field measurements.
Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation.
Giorio, Chiara; Monod, Anne; Brégonzio-Rozier, Lola; DeWitt, Helen Langley; Cazaunau, Mathieu; Temime-Roussel, Brice; Gratien, Aline; Michoud, Vincent; Pangui, Edouard; Ravier, Sylvain; Zielinski, Arthur T; Tapparo, Andrea; Vermeylen, Reinhilde; Claeys, Magda; Voisin, Didier; Kalberer, Markus; Doussin, Jean-François
2017-10-12
Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.
Composition, structure and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.; Allamandola, Louis J.
1986-01-01
The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.
Femtosecond laser filament induced condensation and precipitation in a cloud chamber
Ju, Jingjing; Liu, Jiansheng; Liang, Hong; Chen, Yu; Sun, Haiyi; Liu, Yonghong; Wang, Jingwei; Wang, Cheng; Wang, Tiejun; Li, Ruxin; Xu, Zhizhan; Chin, See Leang
2016-01-01
A unified picture of femtosecond laser induced precipitation in a cloud chamber is proposed. Among the three principal consequences of filamentation from the point of view of thermodynamics, namely, generation of chemicals, shock waves and thermal air flow motion (due to convection), the last one turns out to be the principal cause. Much of the filament induced chemicals would stick onto the existing background CCN’s (Cloud Condensation Nuclei) through collision making the latter more active. Strong mixing of air having a large temperature gradient would result in supersaturation in which the background CCN’s would grow efficiently into water/ice/snow. This conclusion was supported by two independent experiments using pure heating or a fan to imitate the laser-induced thermal effect or the strong air flow motion, respectively. Without the assistance of any shock wave and chemical CCN’s arising from laser filament, condensation and precipitation occurred. Meanwhile we believe that latent heat release during condensation /precipitation would enhance the air flow for mixing. PMID:27143227
NASA Astrophysics Data System (ADS)
Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.
2014-12-01
Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, R. V.; Hollinden, A. B.
1973-01-01
The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.
NASA Astrophysics Data System (ADS)
Pedruzo-Bagazgoitia, Xabier; Lohou, Fabienne; Dione, Cheikh; Lothon, Marie; Kalthoff, Norbert; Adler, Bianca; Babić, Karmen; Vilà-Guerau de Arellano, Jordi
2017-04-01
The role of boundary-layer clouds as part of the Western African Monsoon system is investigated. The system encompasses the interaction between large-scale phenomena such as the (southerly) monsoon flow, the African Easterly Jet and the (northerly) Harmattan wind, and the role of smaller scale processes driven by turbulence and the sea-vegetation transition on the lower troposphere, such as the frequently observed nocturnal low-level jet. As observed during the DACCIWA project campaign, low stratocumulus clouds recurrently appear inland during the night, sometimes prevailing until the next afternoon while in other cases they break up in the morning and disappear or transform to convective clouds. These observations rise two research questions: Do surface conditions affect the cloud breakup? Is the direct or diffuse character of radiation relevant for the cloud transition? In our study we focus on the local effect of the surface and radiation on the breakup of stratocumulus and the subsequent transition to convective clouds during the morning transition. We design an idealized Large Eddy Simulation (LES) experiment in which the surface is coupled to the cloud dynamics based on radiosoundings launched during the campaign at the supersite of Savé (Benin), which is located about 180 km north of the Gulf of Guinea. This experiment includes the most relevant factors for the evolution of the boundary layer and stratocumulus in the morning. By systematically breaking down the complexity of the system, we study the relevance of atmospheric stability (by modifying the atmospheric lapse rates), and the partition of evaporation and sensible heat flux on the evolution, break up and transition of the stratocumulus cloud layer. Previous studies have shown that diffuse radiation controlled by clouds and aerosols can locally enhance evaporation. Therefore, particular emphasize is put on the determination of the role of direct and diffuse radiation during the cloud transition on the vegetated canopy, and the impact on the surface fluxes and cloud dynamics.
EVALUATION OF RADON EMANATION FROM SOIL WITH VARYING MOISTURE CONTENT IN A SOIL CHAMBER
The paper describes measurements to quantitatively identify the extent to which moisture affects radon emanation and diffusive transport components of a sandy soil radon concentration gradient obtained in the EPA test chamber. The chamber (2X2X4 m long) was constructed to study t...
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.
2010-01-01
Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.
NASA Astrophysics Data System (ADS)
Alpert, P. A.; Knopf, D. A.
2015-05-01
Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.
Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay
NASA Astrophysics Data System (ADS)
Moe, Michael
2013-04-01
Although we are awash in neutrinos, we remain ignorant of some of their fundamental properties. We don't know their masses. We don't know whether ``anti-neutrinos'' are really distinct particles. Double beta (ββ) decay offers a handle on these questions if we can observe the energy spectrum of the two emitted electrons, and determine whether or not they share their energy with two neutrinos. Seeing neutrinoless (0ν) decay would solve some enduring puzzles. The power of the process to elucidate the neutrino was recognized in the 1930's, but ββ decay would be exceedingly rare and difficult to detect. Unsuccessful laboratory searches had been going on for 25 years when the UC Irvine group began its first experiment with a cloud chamber in 1972. After some background for the non-expert, and a snapshot of the theoretical and experimental milieu at the time, the talk will begin with the reasons for choosing a cloud chamber, and the taming of its balky and idiosyncratic behavior. The talk will end with the first definitive observation of two-neutrino (2ν)ββ decay of ^82Se in the vastly superior time projection chamber (TPC) in 1987. Discouragement through the tortuous 15-year interval was relieved by occasional victories. Some I will illustrate with revealing cloud-chamber photographs. We learned many things from this primitive device, and after seven years we isolated an apparent ββ decay signal. But the efficiency of the trigger was small, and difficult to pin down. Estimating 2.2%, we were way low. The resulting ``short'' ^82Se half-life of 1 x 10^19 years was suspect. New technology came to the rescue with the invention of the TPC. Experience with the cloud chamber guided our design of a TPC specifically for ββ decay. The TPC was built from scratch. Its long, steep learning curve was also punctuated with little triumphs. A memorable moment was the first turn-on of a portion of the chamber. So long ago, this all seems rather quaint, but through ample use of photographs and anecdotes it makes and interesting story. As a digital device, the TPC made data acquisition and analysis orders of magnitude simpler and faster. After seven years of massage, the TPC yielded good evidence for 2ν decay of ^82Se with a half-life near 10^20 years. While the 0ν mode was not in evidence, finally seeing ββ decay in the laboratory created optimism about an eventual 0ν discovery.
The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C.J.; Riley, W.J.; Biraud, S.C.
2009-05-01
This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less
Design and analysis of a double superimposed chamber valveless MEMS micropump.
Zordan, E; Amirouche, F
2007-02-01
The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.
Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers
NASA Technical Reports Server (NTRS)
Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.
1993-01-01
Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.
1976-07-01
A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by
The Growth of Protein Crystals Using McDUCK
NASA Technical Reports Server (NTRS)
Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc
1998-01-01
Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals grown we are currently proposing McDUCK for the growth of macromolecule crystals for use in neutron diffraction studies.
HHDTC - Cmdr Halsell photographs hardware
2016-08-12
STS083-313-012 (4-8 April 1997) --- Astronaut James D. Halsell, Jr., mission commander, uses a Hi-8mm camcorder to videotape the Hand Held Diffusion Test Cells (HHDTC), in the Spacelab Module aboard the Earth-orbiting Space Shuttle Columbia. Each test cell has three chambers containing a protein solution, a buffer solution and a precipitant solution chamber. Using the liquid-liquid diffusion method, the different fluids are brought into contact but not mixed. Over a period of time, the fluids will diffuse into each other through the random motion of molecules. The gradual increase in concentration of the precipitant within the protein solution causes the proteins to crystallize.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram
The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence
NASA Astrophysics Data System (ADS)
Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.
2017-12-01
In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.
NASA Astrophysics Data System (ADS)
Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to <5%) is about 10 nm. The memory time of Mg in the growth chamber is about 60 min, after which the Mg doping concentration is reduced to <1%.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
Introduction for Diffusion Chamber Culture Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carsten, A. L.
The diffusion-chamber system has been applied to studies of cell kinetics, progenitor cell quantitation, humoral effects, immunological effects, cytogenetics, organogenesis, and the cellular effects of drugs and physical factors such as radiation, hypoxia, etc. Chamber contents have been analyzed by clot dissolution with measuring of cell content, limiting dilution evaluation, radionuclide utilization (tritiated thymidine labeling), growth of colony number, size and type, CFU-S or CFU-C content, or proliferation by secondary culture in mice or in vitro systems, and chromosome changes. Cell types ranging from embryonal tissues to adult normal and neoplastic tissues have been grown in hosts across species barriers.more » Advantages and disadvantages of this system are discussed.« less
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.
2018-03-01
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
Rocket exhaust ground cloud/atmospheric interactions
NASA Technical Reports Server (NTRS)
Hwang, B.; Gould, R. K.
1978-01-01
An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.
NASA Astrophysics Data System (ADS)
Baltensperger, U.; Xiao, M.; Hoyle, C.; Dada, L.; Garmash, O.; Stolzenburg, D.; Molteni, U.; Lehtipalo, K.; El-Haddad, I.; Dommen, J.
2017-12-01
Atmospheric aerosols play an important role on climate via aerosol-radiation interaction and aerosol-cloud interaction. The latter is strongly influenced by new particle formation (NPF). The physical and chemical mechanisms behind the NPF process are still under investigation. Great advancements were made in resolving chemical and physical mechanisms of NPF with a series of experiments conducted at the CLOUD (Cosmics Leaving Outdoor Droplets) chamber facility at CERN (Geneva, Switzerland), including binary nucleation of sulfuric acid - water, ternary nucleation of sulfuric acid - water with ammonia or dimethylamine as well as oxidation products (highly oxygenated molecules, HOMs) from biogenic precursors with and without the presence of sulfuric acid. Here, we investigate possible NPF mechanisms in urban atmospheres, where large populations are exposed to high aerosol concentrations; these mechanisms are still missing and are urgently needed. Urban atmospheres are highly polluted with high concentrations of SO2, ammonia, NOx and volatile organic vapors from anthropogenic activity as well as with high particle concentrations, which provide a high condensation sink for condensable gases. Aromatic hydrocarbons from industrial activities, traffic and residential combustion are present at high concentrations and contribute significantly to photochemical smog in the urban environment.The experiments were conducted at the CLOUD chamber facility during the CLOUD11 campaign in fall 2016. Three aromatic hydrocarbons were selected: toluene, 1,2,4-trimethylbenzene (1,2,4-TMB) and naphthalene (NPT). Experiments were also conducted with mixtures of the three aromatic hydrocarbons to better represent the urban atmosphere. All the experiments were conducted in the presence of sulfuric acid concentrations with or without the addition of ammonia and NOx. New particle formation rates and early growth rates derived for each precursor and their mixture, together with sulfuric acid and with or without the addition of ammonia and NOx will be reported.
Atmospheric cloud physics thermal systems analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.
Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A
2015-01-01
A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
Plasma processes in inert gas thrusters
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.
(TES) Thermal Enclosure System with (COS) Crystal Observation System
NASA Technical Reports Server (NTRS)
1993-01-01
The COS consists of a specially designed (VDA) Vapor Diffusion Apparatus tray with 6 chambers, a video camera for each chamber, a lighting system, and associated hardware. By observing the crystal growth in each chamber, researchers can identify which conditions and concentrations of proteins and precipitants are best for promoting the crystal growth to a particular protein.
2012-01-01
We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation/evaporation rates with varying pressure are discussed, measurements that are important for resolving the relative importance of gas diffusional transport and surface kinetics. PMID:23057492
Device and method for screening crystallization conditions in solution crystal growth
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1995-01-01
A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.
Device and Method for Screening Crystallization Conditions in Solution Crystal Growth
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1997-01-01
A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.
Dynamic consideration of smog chamber experiments
NASA Astrophysics Data System (ADS)
Chuang, Wayne K.; Donahue, Neil M.
2017-08-01
Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.
Theory of grain alignment in molecular clouds
NASA Technical Reports Server (NTRS)
Roberge, Wayne G.
1993-01-01
Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.
Characteristics of Perforated Diffusers at Free-Stream Mach Number 1.90
1950-05-08
deg) Subscripts: 0 free stream 1 inlet entrance 2 Inlet throat 3 pitot -static rake in simulated combustion chamber 4 outlet of simulated...consisted of a 40-tube pitot -static survey rake located 0.55 combust Ion-chamber diameter downstream of the outlet of the subsonic diffuser (fig. 8(b...The rake was so designed that eaoh pitot -static tube was located at the oentroid of one of the forty equal area segments Into which the combustion
[Proliferative activity of cells in dyshormonal fibroadenomatosis of the human breast].
Gudim-Levkovich, K A; Iakhimovich, L V; Slinchak, S M; Kaminskaia, L P; Kovbasiuk, S A
1981-11-01
Fibroadenomatous tissue of the human mammary gland was cultivated in diffuse chambers implanted into mice. On day 6 of culture the growing cells were subjected to morphological and autoradiographic analysis. The index of 3H-thymidine labeling of cell nuclei was found to correlate with the morphological pattern of dyshormonal fibroadenomatosis of the mammary gland. It is discussed whether it is desirable to use the culture in diffuse chambers for screening the actively proliferating forms human mammary gland dyshormonal dysplasias prone to malignancy.
Experimental determination of the turbulence in a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Hara, J.; Smith, L. O.; Partus, F. P.
1972-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.
Cloud Induced Enhancement of Ground Level Solar Radiation
NASA Astrophysics Data System (ADS)
Inman, R.; Chu, Y.; Coimbra, C.
2013-12-01
Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.
NASA Astrophysics Data System (ADS)
Pilli, Siva P.
Moisture plays a significant role in influencing the mechanical behavior and long-term durability of composites. The objective of this dissertation was to understand the basic concepts of moisture transport in polymeric composites. Humidity test chambers were used in combination with D2O water to characterize the diffusion of D2O using Nuclear Reaction Analysis (NRA). Moisture content was measured as a function of through-thickness depth using NRA. In this study a novel method to measure the orthotropic diffusivities of polymer matrix composites has been demonstrated. This was achieved by soaking the samples in D2O vapor and subsequently characterizing the diffusion of D2O at all edges of the coupon using NRA. The diffusivity through the surface was 3½ times higher than the diffusivity through the edges. A direct comparison of experimental data with models using orthotropic diffusivities was in relatively good agreement. Surface moisture content was also measured as a function of time using NRA. It was shown that the surface concentration reaches an intermediate value of 79% Mm very rapidly and is followed by a slow linear increase to the saturation level (Mm). This research also interrogates the effect of pressure on diffusion. Test chambers were built to maintain a constant relative humidity of 80% at 60°C at three different pressures (0.101 MPa, 0.517 MPa and 1.034 MPa) including a liquid water immersion test chamber at 60°C. In this study it was observed that the time to saturation increased with increasing chamber pressure. This was primarily due to the increased maximum moisture content at higher pressures. Liquid immersion of the test samples provided the upper bound for maximum moisture content and a lower bound for time to saturation. The effects of material systems and layups on humidity measurements were also studied using two different polymer composite material systems, Cycom and Toray. Diffusivity results were identical for different layups whereas differences were observed for different material systems. Finally three-dimensional numeric models were developed, using ANSYS, to compare with the measured moisture content. Models incorporating the time-dependent and 3-D diffusion have shown an improved correlation with experiments.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
NASA Technical Reports Server (NTRS)
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Modeling the atmospheric chemistry of TICs
NASA Astrophysics Data System (ADS)
Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John
2009-05-01
An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.
Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust
NASA Astrophysics Data System (ADS)
Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.
2016-05-01
Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.
Are Organic Aerosols Good Cloud Condensation Nuclei?
NASA Astrophysics Data System (ADS)
Abbatt, J. P.; Broekhuizen, K.; Kumar, P. P.
2002-12-01
The ability of a set of organic-containing aerosols to act as cloud condensation nuclei has been measured in the laboratory using a thermal-gradient diffusion chamber operated at a fixed supersaturation. We observe that particles composed of soluble organics, such as malonic acid and adipic acid, activate at dry particle diameters in agreement with Kohler theory predications assuming the solutes are fully soluble and the droplet has the surface tension of water. Surprisingly, we also observe that sparingly soluble azelaic acid and cis-pinonic acid particles also activate, perhaps because they are being formed in a supersaturated, amorphous state or that their activation is aided by surface uptake of water. Mixed organic/ammonium sulfate particles have also been studied, and a range of behavior is observed. Soluble species such as malonic acid enhance activation through the vapour-pressure lowering effect whereas a thick coating of stearic acid on ammonium sulfate makes the particles totally inactive. Lastly, we have observed that pure oleic acid particles, which show no indication of activation when pure, can be activated after exposure to gas-phase ozone. The atmospheric implications of our results will be discussed. An interesting issue is the degree to which we can quantitatively model our results by assuming the surface tension of the growing droplet is that of water, i.e. without the need to invoke the surface-tension-lowering effect due to surface-active organics.
Dark Murky Clouds in the Bright Milky Way
2011-08-24
This infrared image from NASA Wide-field Infrared Survey Explorer shows exceptionally cold, dense cloud cores seen in silhouette against the bright diffuse infrared glow of the plane of the Milky Way galaxy.
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.
1990-01-01
A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.
Nikezić, D; Krstić, D
1995-12-01
Radon progeny are positively charged immediately after formation. A negatively charged electret collects radon progeny atoms which are produced in the diffusion chamber. The detector sensitivity may be increased by using an electret in front of solid state nuclear track detector. Dependence of detection sensitivity on distance between electret and detector LR115 II is studied theoretically and experimentally in this paper. A relatively small fraction of 218Po atoms that formed in the diffusion chamber are collected by the electret. We estimated that the attracted fraction of 218Po was 17% while the attracted fraction of 214Bi-214Po is considerably larger and amounted to approximately 60%. These results confirm previous finding that 218Po atoms discharge quickly after their formation. The comparative radon measurements using diffusion chambers with and without electrets were performed. The amplification of detector sensitivity due to the electret amounted to approximately 80%.
1994-02-16
These Vapor Diffusion Apparatus (VDA) trays were first flown in the Thermal Enclosure System (TES) during the USMP-2 (STS-62) mission. Each tray can hold 20 protein crystal growth chambers. Each chamber contains a double-barrel syringe; one barrel holds protein crystal solution and the other holds precipitant agent solution. During the microgravity mission, a torque device is used to simultaneously retract the plugs in all 20 syringes. The two solutions in each chamber are then mixed. After mixing, droplets of the combined solutions are moved onto the syringe tips so vapor diffusion can begin. During the length of the mission, protein crystals are grown in the droplets. Shortly before the Shuttle's return to Earth, the experiment is deactivated by retracting the droplets containing protein crystals, back into the syringes.
A history of radiation detection instrumentation.
Frame, Paul W
2004-08-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
A history of radiation detection instrumentation.
Frame, Paul W
2005-06-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Chang, R. Y.-W.; Slowik, J. G.; Vlasenko, A.; Abbatt, J. P. D.; Leaitch, W. R.
2010-01-01
Growth rates of water droplets were measured with a static diffusion cloud condensation chamber in May-June 2007 at a rural field site in Southern Ontario, Canada, 70 km north of Toronto. The observations include periods when the winds were from the south and the site was impacted by anthropogenic air from the U.S. and Southern Ontario as well as during a 5-day period of northerly wind flow when the aerosol was dominated by biogenic sources. The growth of droplets on anthropogenic size-selected particles centred at 0.1 μm diameter and composed of approximately 40% organic and 60% ammonium sulphate (AS) by mass, was delayed by on the order of 1 s compared to a pure AS aerosol. Simulations of the growth rate on monodisperse particles indicate that a lowering of the water mass accommodation coefficient from αc=1 to an average of αc=0.04 is needed (assuming an insoluble organic with hygroscopicity parameter, κorg, of zero). Simulations of the initial growth rate on polydisperse anthropogenic particles agree best with observations for αc=0.07. In contrast, the growth rate of droplets on size-selected aerosol of biogenic character, consisting of >80% organic, was similar to that of pure AS. Simulations of the predominantly biogenic polydisperse aerosol show agreement between the observations and simulations when κorg=0.2 (with upper and lower limits of 0.5 and 0.07, respectively) and αc=1. Inhibition of water uptake by the anthropogenic organic applied to an adiabatic cloud parcel model in the form of a constant low αc increases the number of droplets in a cloud compared to pure AS. If the αc is assumed to increase with increasing liquid water on the droplets, then the number of droplets decreases which could diminish the indirect climate forcing effect. The slightly lower κorg in the biogenic case decreases the number of droplets in a cloud compared to pure AS.
Developing a Webcam-Based Data Logger to Analyze Cosmic Rays in a Cloud Chamber
NASA Astrophysics Data System (ADS)
Nealon, Kelly; Bellis, Matt
2015-04-01
Muons from secondary cosmic rays provide students with an opportunity to interact with a natural phenomenon that relies both on special relativity and fairly sophisticated particle physics knowledge. In many physics departments, undergraduate students set up a pair of scintillators in coincidence to measure the rate of these muons and in some cases, measure their angular dependence, but this requires specialized and potentially expensive equipment. We have spent the past year formalizing a design of a cloud chamber that relies not on dry ice, but Peltier thermoelectric coolers, that can be built for about one hundred dollars worth of equipment. With this design we can see the tracks left by cosmic rays, however to turn it into a useful undergraduate physics lab requires some sort of data logger. This poster details our efforts to use an off-the-shelf webcam to trigger on the change in image when a cosmic ray track appears in the chamber. We use this to estimate the rate and angular dependence and compare our results to other measurements. The successes and limitations of this approach will be discussed.
Demonstrating Diffusion: Why the Confusion?
ERIC Educational Resources Information Center
Panizzon, Debra Lee
1998-01-01
Examines the principles of diffusion and how it may be confused with convection. Suggests that educators may be misleading students and clouding their understanding of the process. Provides two contemporary examples to explain the process of diffusion and how it differs from convection. (Author/CCM)
THOR: Cloud Thickness from Off beam Lidar Returns
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken
2004-01-01
Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
Highly Permeable Silicon Membranes for Shear Free Chemotaxis and Rapid Cell Labeling
Chung, Henry H.; Chan, Charles K.; Khire, Tejas S.; Marsh, Graham A.; Clark, Alfred; Waugh, Richard E.; McGrath, James L.
2015-01-01
Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 µL min−1; vavg ~45 mm min−1) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow. PMID:24850320
NASA Astrophysics Data System (ADS)
Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Gallagher, M.; Wills, R.; Murray, B. J.; Plane, J. M. C.
2009-11-01
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHi thresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHi thresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns (190 K) = 10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns: m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4°, respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.
NASA Astrophysics Data System (ADS)
Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Murray, B. J.; Gallagher, M.; Wills, R.; Plane, J. M. C.
2010-02-01
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHithresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns(190 K)=10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns:m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4° respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.
Towards a bulk approach to local interactions of hydrometeors
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2018-02-01
The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
A search with Copernicus for interstellar N2 in diffuse clouds
NASA Technical Reports Server (NTRS)
Lutz, B. L.; Snow, T. P., Jr.; Owen, T.
1979-01-01
Multiple Copernicus scans of two N2 band regions (near 958.5 and 960.2A) of Delta Sco and Epsilon Per are reported. The observations indicate upper limits for the number of N2 molecules equal to 1.0-3.8 times 10 to the -12th/sq cm and 1.2-4.4 times 10 to the -12th/sq cm, respectively; the limits depend on the cloud temperature. It is suggested that the limits are consistent with the column densities predicted by chemical models for diffuse interstellar clouds, and the predicted relative abundances are presented in terms of the ratio of N(N2)/(2N(H2) + N(Hl)).
On the cosmic ray diffusion in a violent interstellar medium
NASA Technical Reports Server (NTRS)
Bykov, A. M.; Toptygin, I. N.
1985-01-01
A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.
NASA Astrophysics Data System (ADS)
Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.
2018-03-01
Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
Lamb, Kara D; Clouser, Benjamin W; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J
2017-05-30
The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H 2 O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.
Lamb, Kara D.; Clouser, Benjamin W.; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J.
2017-01-01
The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (−40 °C), conditions necessary to form cirrus clouds in the Earth’s atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122–127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice (αeq) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of αeq, and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice–vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems. PMID:28495968
Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge
NASA Astrophysics Data System (ADS)
Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André
2018-02-01
An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.
Cleaning of a thermal vacuum chamber with shrouds in place
NASA Technical Reports Server (NTRS)
Bond, William R.
1992-01-01
In February, 1991, a failure of a rotary booster pump caused the diffusion pumps to backstream into a 10 ft x 15 ft thermal vacuum chamber. Concerns existed about the difficulty of removing and reinstalling the shrouds without causing leaks. The time required for the shroud removal was also of concern. These concerns prompted us to attempt to clean the chamber without removing the shrouds.
Soft X-ray observation of the Rho Ophiuchus dark cloud region
NASA Technical Reports Server (NTRS)
Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.
1979-01-01
Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
NASA Astrophysics Data System (ADS)
Langer, W.
2007-10-01
Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.
SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)
NASA Astrophysics Data System (ADS)
Langer, W.
2011-09-01
Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.
NASA Astrophysics Data System (ADS)
Velusamy, T.
2010-07-01
The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.
Precipitating Condensation Clouds in Substellar Atmospheres
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)
2000-01-01
We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.
Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber
NASA Technical Reports Server (NTRS)
Lebas, J.; Tou, P.; Ohara, J.
1975-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec.
Structure formation in a colliding flow: The Herschel view of the Draco nebula
NASA Astrophysics Data System (ADS)
Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.
2017-03-01
Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures follows a power-law dN/ dlog (M) M-1.4. We identify a mass-size relation with the same exponent as that found in molecular clouds (M L2.3). On the other hand, we found that only 15% of the mass of the cloud is in gravitationally bound structures. Conclusions: We conclude that the collision of diffuse gas from the Galactic halo with the diffuse interstellar medium of the outer layer of the disk is an efficient mechanism for producing dense structures. The increase of pressure induced by the collision is strong enough to trigger the formation of cold neutral medium out of the warm gas. It is likely that ambipolar diffusion is the mechanism dominating the turbulent energy dissipation. In that case the cold structures are a few times larger than the energy dissipation scale. The dense structures of Draco are the result of the interplay between magnetohydrodynamical turbulence and thermal instability as self-gravity is not dominating the dynamics. Interestingly they have properties typical of those found in more classical molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced Herschel data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A109
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bjorklund, J. R.; Bowers, J. F.
1973-01-01
The NASA/MSFC multilayer diffusion models are discribed which are used in applying meteorological information to the estimation of toxic fuel hazards resulting from the launch of rocket vehicle and from accidental cold spills and leaks of toxic fuels. Background information, definitions of terms, description of the multilayer concept are presented along with formulas for determining the buoyant rise of hot exhaust clouds or plumes from conflagrations, and descriptions of the multilayer diffusion models. A brief description of the computer program is given, and sample problems and their solutions are included. Derivations of the cloud rise formulas, users instructions, and computer program output lists are also included.
On the Chemistry of Hydrides of N Atoms and O+ Ions
NASA Astrophysics Data System (ADS)
Awad, Zainab; Viti, Serena; Williams, David A.
2016-08-01
Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.
Modeling the drug transport in the anterior segment of the eye.
Avtar, Ram; Tandon, Deepti
2008-10-02
The aim of the present work is the development of a simple mathematical model for the time course concentration profile of topically administered drugs in the anterior chamber aqueous humor and investigation of the effects of various model parameters on the aqueous humor concentration of lipophilic and hydrophilic drugs. A simple pharmacokinetic model for the transient drug transport in the anterior segment has been developed by using the conservation of mass in the precorneal tear film, Fick's law of diffusion and Michaelis-Menten kinetics of drug metabolism in cornea, and the conservation of mass in the anterior chamber. An analytical solution describing the drug concentration in the anterior chamber has been obtained. The model predicts that an increase in the drug metabolic (consumption) rate in the corneal epithelium reduces the drug concentration in the anterior chamber for both lipophilic and hydrophilic molecules. A decrease in the clearance rate and distribution volume of the drug in the anterior chamber raises the aqueous humor concentration significantly. It is also observed that decay rate of drug concentration in the anterior chamber is higher for lipophilic molecules than that for hydrophilic molecules. The bioavailability of drugs applied topically to the eye may be improved by a rise in the precorneal tear volume, diffusion coefficient in corneal epithelium and distribution coefficient across the endothelium anterior chamber interface, and by reducing the drug metabolism, drug clearance rate and distribution volume in anterior chamber.
Degassing procedure for ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Moore, B. C.
1979-01-01
Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.
SEPARATION OF GASES BY DIFFUSIION
Peierls, R.E.; Simon, F.E.; Arms, H.S.
1960-12-13
A method and apparatus are given for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase with the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction within the chamber. By these means a concentration gradient along the chamber is established.
NASA Technical Reports Server (NTRS)
Davis, M. H.
1981-01-01
Final development of a gravimetric test for performance evaluation of a precision saturator is described. The design and development of a prototype droplet levitation chamber is discussed. Technical assistance to the MSFC Airborne Laser Doppler Program is reported.
NASA Technical Reports Server (NTRS)
2007-01-01
The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.Electron-cloud build-up in hadron machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furman, M.A.
2004-08-09
The first observations of electron-proton coupling effect for coasting beams and for long-bunch beams were made at the earliest proton storage rings at the Budker Institute of Nuclear Physics (BINP) in the mid-60's [1]. The effect was mainly a form of the two-stream instability. This phenomenon reappeared at the CERN ISR in the early 70's, where it was accompanied by an intense vacuum pressure rise. When the ISR was operated in bunched-beam mode while testing aluminum vacuum chambers, a resonant effect was observed in which the electron traversal time across the chamber was comparable to the bunch spacing [2]. Thismore » effect (''beam-induced multipacting''), being resonant in nature, is a dramatic manifestation of an electron cloud sharing the vacuum chamber with a positively-charged beam. An electron-cloud-induced instability has been observed since the mid-80's at the PSR (LANL) [3]; in this case, there is a strong transverse instability accompanied by fast beam losses when the beam current exceeds a certain threshold. The effect was observed for the first time for a positron beam in the early 90's at the Photon Factory (PF) at KEK, where the most prominent manifestation was a coupled-bunch instability that was absent when the machine was operated with an electron beam under otherwise identical conditions [4]. Since then, with the advent of ever more intense positron and hadron beams, and the development and deployment of specialized electron detectors [5-9], the effect has been observed directly or indirectly, and sometimes studied systematically, at most lepton and hadron machines when operated with sufficiently intense beams. The effect is expected in various forms and to various degrees in accelerators under design or construction. The electron-cloud effect (ECE) has been the subject of various meetings [10-15]. Two excellent reviews, covering the phenomenology, measurements, simulations and historical development, have been recently given by Frank Zimmermann [16,17]. In this article we focus on the mechanisms of electron-cloud buildup and dissipation for hadronic beams, particularly those with very long, intense, bunches.« less
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Goldsmith, P. F.; Li, D.; Velusamy, T.; Yorke, H. W.
2009-01-01
Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory (HSO) Key Program to study the diffuse interstellar medium by sampling the C+ fine structure line emission at 1.9 THz (158 microns) in the Galactic disk. Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about properties of the diffuse atomic and diffuse molecular gas clouds. The 158-micron CII line is an important tracer of diffuse regions, and C+ is a major ISM coolant, the Galaxy's strongest emission line virtually unobscured by dust, with a total luminosity about a 1000 times that of CO J=1-0. The GOT C+ program will obtain high spectral resolution CII spectra using the Heterodyne Instrument for the Far Infrared (HIFI) receiver. It will employ deep integrations, wide velocity coverage (350 km/s) with 0.22 km/s resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource to determine the properties of the atomic gas, in the (a) overall Galactic disk, (b) central 300pc of the Galactic center, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). These spectra will provide the astronomical community with a rich statistical database of diffuse cloud properties, especially those of the atomic gas, sampled throughout the Galaxy for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale Galactic C+ surveys. This research was conducted at the Jet Propulsion Laboratory and is supported by a NASA grant.
NASA Technical Reports Server (NTRS)
Gerber, H.; DeMott, P. J.; Rogers, D. C.
1995-01-01
The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.
Interstellar abundances and depletions inferred from observations of neutral atoms
NASA Technical Reports Server (NTRS)
Snow, T. P.
1984-01-01
Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.
Apparatus for purifying exhaust gases of internal combustion engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, O.; Oya, H.
1980-06-03
Apparatus for purifying the exhaust gases of internal combustion engines is disclosed is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a shell having an inlet chamber, catalyst chamber, and an outlet chamber. The axial lines of the inlet ports are arranged to cross each other in the inlet chamber at a position near, but upstream of, the upstream facing end of said monolithic catalyst element, so that gas flow can diffuse to the entire plane of the element.
NASA Astrophysics Data System (ADS)
Polonsky, I. N.; Davis, A. B.; Love, S. P.
2004-05-01
WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.
2014-06-01
A new heterogeneous ice nucleation parameterization that covers a~wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.
Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size
NASA Astrophysics Data System (ADS)
Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas
2014-05-01
The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume nucleation rate coefficients. This contribution will show the results from the re-analysis of AIDA homogeneous freezing experiments with pure water droplets and will discuss the comparison to the literature data.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.
2014-12-01
A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle
2014-12-10
A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 °C to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by n s, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RH ice) in the chamber. Our measurementsmore » showed several different pathways to nucleate ice depending on T and RH ice conditions. For instance, almost independent freezing was observed at -60 °C < T < -50 °C, where RH ice explicitly controlled ice nucleation efficiency, while both T and RH ice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant n s, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new n s parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.« less
Dust scattering from the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty
2017-04-01
We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).
Use of cryopumps on large space simulation systems
NASA Technical Reports Server (NTRS)
Mccrary, L. E.
1980-01-01
The need for clean, oil free space simulation systems has demanded the development of large, clean pumping systems. The assurance of optically dense liquid nitrogen baffles over diffusion pumps prevents backstreaming to a large extent, but does not preclude contamination from accidents or a control failure. Turbomolecular pumps or ion pumps achieve oil free systems but are only practical for relatively small chambers. Large cryopumps were developed and checked out which do achieve clean pumping of very large chambers. These pumps can be used as the original pumping system or can be retrofitted as a replacement for existing diffusion pumps.
NASA Technical Reports Server (NTRS)
Sivo, Joseph N.; Peters, Daniel J.
1959-01-01
A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
PAHs molecules and heating of the interstellar gas
NASA Technical Reports Server (NTRS)
Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.
1989-01-01
Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.
Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes
2009-07-13
Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping
Electrochemical cell apparatus having an exterior fuel mixer nozzle
Reichner, Philip; Doshi, Vinod B.
1992-01-01
An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.
The Intrinsic Variability in the Water Vapor Saturation Ratio Due to Turbulence
NASA Astrophysics Data System (ADS)
Anderson, Jesse Charles
The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the pi chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Benard convection at several turbulent intensities. These were used to calculate the saturation ratio, often referred to as the relative humidity. The fluctuations in the water vapor concentration were found to be the more important than the temperature for the variability of the saturation ratio. The fluctuations in the saturation ratio result in some cloud droplets experiencing a higher supersaturation than other cloud droplets, causing those "lucky" droplets to grow at a faster rate than other droplets. This difference in growth rates could contribute to a broadening of the size distribution of cloud droplets, resulting in the enhancement of collision-coalescence. These fluctuations become more pronounced with more intense turbulence.
1985-03-01
aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s
NASA Technical Reports Server (NTRS)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
NASA Astrophysics Data System (ADS)
Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.
2004-01-01
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u ∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m -2 day -1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.
VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu
2017-01-01
The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.
1978-01-01
The cloud-rise preprocessor and multilayer diffusion computer programs were used by NASA in predicting concentrations and dosages downwind from normal and abnormal launches of rocket vehicles. These programs incorporated: (1) the latest data for the heat content and chemistry of rocket exhaust clouds; (2) provision for the automated calculation of surface water pH due to deposition of HCl from precipitation scavenging; (3) provision for automated calculation of concentration and dosage parameters at any level within the vertical grounds for which meteorological inputs have been specified; and (4) provision for execution of multiple cases of meteorological data. Procedures used to automatically calculate wind direction shear in a layer were updated.
Apparatus for diffusion controlled dialysis under microgravity conditions
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1995-01-01
Apparatus for implementing crystal growth by allowing mixing of solutions under microgravity conditions includes a housing within which a number of pairs of chambers are formed. The chambers of each pair are aligned and a rotary valve is positioned between the chambers of each pair. When the valve is in a first position one chamber of each pair may communicate with the other chamber. A separate valve is provided for each pair of chambers so that each pair of chambers may be activated independently of the others and sequentially at selected intervals. Protein solution may be located within a small cavity in a cap which closes one of the chambers of a pair, and the cavity in the cap is closed by a dialysis membrane. The length of certain pairs of chambers may differ from the length of other pairs of chambers to optimize conditions for various dialysis productions, and wicking material may be incorporated into selected chambers for controlling the critical approach to supersaturation.
NASA Astrophysics Data System (ADS)
Viesca, R. C.
2015-12-01
Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.
Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout
2016-07-01
For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores
NASA Astrophysics Data System (ADS)
Ciolek, Glenn E.; Mouschovias, Telemachos Ch.
1998-09-01
Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn <~ 109 cm-3, a result that is contrary to the ``canonical'' value of k = 1/2 found in previous static equilibrium chemistry calculations and often used to study the effect of ambipolar diffusion in interstellar clouds. For typical cloud and grain parameters, reduction of the abundance of grains results in k > 1/2 during the core formation epoch (densities <~105 cm-3). As a consequence, observations of the degree of ionization in cores could be used, in principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.
Formaldehyde in the Diffuse Interstellar Cloud MBM40
NASA Astrophysics Data System (ADS)
Joy, Mackenzie; Magnani, Loris A.
2018-06-01
MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.
GOT C+ Survey of Transition Clouds in the Inner Galaxy
NASA Astrophysics Data System (ADS)
Velusamy, Thangasamy; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-05-01
To understand star formation and the lifecycle of the interstellar gas we need detailed information about the transition of diffuse atomic to molecular clouds. The C+ line at 1.9 THz traces a so-far poorly studied stage in cloud evolution - the transitional clouds going from atomic HI to molecular H2 The transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. Here we present the first results on transition clouds along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 10 degrees, observed under the GOT C+ program, a HIFI Herschel Key Project to study the diffuse ISM. We can separate out the different ISM components along each line of sight by comparisons of the high spectral resolution ( 1 km/s) and high sensitivity (rms 0.1 K to 0.2 K) HIFI data on C+ with HI, 12CO, and 13CO spectra. These observations are being carried out with the Herschel Space Observatory. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA.
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
Millimeter-wave Absorption Studies of Molecules in Diffuse Clouds
NASA Astrophysics Data System (ADS)
Lucas, Robert; Liszt, Harvey S.
1999-10-01
With IRAM instruments in the last few years, we have been using compact extragalactic millimeter wave radio sources as background objects to study the absorption spectrum of diffuse interstellar gas at millimeter wavelengths. The molecular content of interstellar gas has turned out to be unexpectedly rich. Simple polyatomic molecules such as HCO+, C2H are quite ubiquitous near the Galactic plane (beta < 15o), and many species are detected in some directions (CO, HCO+, H2CO, HCN, HNC, CN, C2H, C3H2, H2S, CS, HCS+, SO, SiO). Remarkable proportionality relations are found between related species such as HCO+ and OH, or CN, HCN and HNC. The high abundance of some species is still a challenge for current models of diffuse cloud chemistry. A factor of 10 increase in the sensitivity will make such studies achievable in denser clouds, where the chemistry is still more active and where abundances are nowadays only available by emission measurements, and thus subject to uncertainties due to sometimes poorly understood line formation and excitation conditions.
Nondestructive test of regenerative chambers
NASA Technical Reports Server (NTRS)
Malone, G. A.; Stauffis, R.; Wood, R.
1972-01-01
Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.
Particle and chemical control using tunnel flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilese, Frank; Delgado, Gildardo R.; Wack, Daniel
An apparatus for contaminant control, having: a first optical assembly including: a first light homogenizer tunnel with: a first end connected to an extreme ultra-violet light source, a second end in communication with a destination chamber, a first enclosed space, and, a first gas input arranged to introduce a first gas such that the first gas flows in a first direction toward the first end and in a second direction toward the second end. The apparatus alternately having: a second optical assembly including: a second light homogenizer tunnel with: a third end connected to an extreme ultra-violet light source, amore » fourth end in communication with a destination chamber, a second enclosed space, a diffusion barrier tube including: a fifth end facing the fourth end and a sixth end in communication with a destination chamber, and a second gas input between the second light homogenizer tunnel and the diffusion tube.« less
A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.
Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu
2018-03-06
A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru
The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown thatmore » the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.« less
Using depolarization to quantify ice nucleating particle concentrations: a new method
NASA Astrophysics Data System (ADS)
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; Yang, Ping; Levin, Ezra J. T.; Suski, Kaitlyn J.; DeMott, Paul J.; Brooks, Sarah D.
2017-12-01
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal size cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.
Improved Cloud Condensation Nucleus Spectrometer
NASA Technical Reports Server (NTRS)
Leu, Ming-Taun
2010-01-01
An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main chamber at the inlet end. The inlet assembly is designed to offer improved (relative to prior such assemblies) laminar-flow performance within the main chamber. Dry aerosols are subjected to activation and growth in the supersaturation field. f) After aerosol activation, at the outlet end of the main chamber, a polished stainless-steel probe is used to sample droplets into a laser particle counter. The probe features an improved design for efficient sampling. The counter has six channels with size bins in the range of 0.5- to 5.0-micron diameter. g) To enable efficient sampling, the probe is scanned along the width axis of the main chamber (thereby effecting scanning along the temperature gradient and thereby, further, effecting scanning along the supersaturation gradient) by means of a computer-controlled translation stage.
NASA Astrophysics Data System (ADS)
Sanchez, G.; Cancillo, M. L.; Serrano, A.
2010-09-01
This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the top of the atmosphere have also been analyzed. Several interesting features have been found. It is particularly worth to note the decreasing relative contribution of the direct component to the global irradiance as the solar zenith angle increases, due to a longer path crossed within the atmosphere. In broken clouds and overcast conditions, the diffuse component becomes the major contribution to the irradiance being the high-frequency variability the main difference between both type of cases. While in overcast conditions the global irradiance remains remarkably low, under broken clouds the global irradiance shows a very high variability frequently reaching values higher than the irradiance at the top of the atmosphere, due to multi-reflection phenomenon. The present study contributes to a better knowledge of the radiation field and its partitioning, involving original high-frequency measurements.
NASA Astrophysics Data System (ADS)
Alpert, Peter A.; Knopf, Daniel A.
2016-02-01
Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of Jhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.
Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA
NASA Astrophysics Data System (ADS)
Lewicki, J. L.; Hilley, G. E.
2014-09-01
One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.
Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA
Lewicki, Jennifer L.; Hilley, George E.
2014-01-01
One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June–October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24–25 October soil CO2 flux surveys were 165, 172, and 231 t d− 1, respectively. The average (June–October) CO2 emission rate estimated for this area was 123 t d− 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time–frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July–August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d− 1, which may suggest that emissions returned to 1998–2009 levels, following an increase from 2009 to 2011.
Evolution of magnetic fields in collapsing star-forming clouds under different environments
NASA Astrophysics Data System (ADS)
Higuchi, Koki; Machida, Masahiro N.; Susa, Hajime
2018-04-01
In nearby star-forming clouds, amplification and dissipation of the magnetic field are known to play crucial roles in the star-formation process. The star-forming environment varies from place to place and era to era in galaxies. In this study, amplification and dissipation of magnetic fields in star-forming clouds are investigated under different environments using magnetohydrodynamics (MHD) simulations. We consider various star-forming environments in combination with the metallicity and the ionization strength, and prepare prestellar clouds having two different mass-to-flux ratios. We calculate the cloud collapse until protostar formation using ideal and non-ideal (inclusion and exclusion of ohmic dissipation and ambipolar diffusion) MHD calculations to investigate the evolution of the magnetic field. We perform 288 runs in total and show the diversity of the density range within which the magnetic field effectively dissipates, depending on the environment. In addition, the dominant dissipation process (Ohmic dissipation or ambipolar diffusion) is shown to strongly depend on the star-forming environment. Especially, for the primordial case, magnetic field rarely dissipates without ionization source, while it efficiently dissipates when very weak ionization sources exist in the surrounding environment. The results of this study help to clarify star formation in various environments.
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, J.F.
1995-10-10
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, John F.
1995-01-01
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.
NuSTAR monitoring of the Galactic center diffuse emission
NASA Astrophysics Data System (ADS)
Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo
2017-08-01
Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.
A search for the 13175 A infrared diffuse band in dense environments
NASA Technical Reports Server (NTRS)
Adamson, A. J.; Kerr, Tom H.; Whittet, D. C. B.; Duley, Walter W.
1994-01-01
Models of ionized interstellar C60 predict a strong transition in the 1.2 micrometer region, and two candidate bands have recently been detected in reddened stars. We have searched for the stronger of these bands (at 13175 A) in the Taurus dark cloud complex, to determine its response to the dark-cloud environment. None of the three lines of sight studied (two near the cloud surface, one reaching A(sub V) greater than 20(sup m)) give rise to a detectable band; in one case the equivalent width is a factor of order three below that predicted. Since such behaviour is also shown by the optical Diffuse Interstellar Bands, we suggest that the 13175 A band is a genuine DIB, but we caution against an automatic interpretation in terms of an ionic carrier.
Local effects of partly-cloudy skies on solar and emitted radiation
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1982-01-01
A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.
Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation
NASA Astrophysics Data System (ADS)
Pedersen, J. O.; Enghoff, M. B.; Svensmark, H.
2012-12-01
The role of ionization in the formation of clouds and aerosols has been debated for many years. A body of evidence exists that correlates cloud properties to galactic cosmic ray ionization; however these results are still contested. In recent years experimental evidence has also been produced showing that ionization can promote the nucleation of small aerosols at atmospheric conditions. The experiments showed that an increase in ionization leads to an increase in the formation of ultrafine aerosols (~3 nm), but in the real atmosphere such small particles have to grow by coagulation and condensation to become cloud condensation nuclei (CCN) in order to have an effect on clouds. However, numerical studies predict that variations in the count of ultra-fine aerosols will lead only to an insignificant change in the count of CCN. This is due to 1) the competition between the additional ultra-fine aerosols for the limited supply of condensable gases leading to a slower growth and 2) the increased loss rates of the additional particles during the longer growth-time. We investigated the growth of aerosols to CCN sizes using an 8 m3 reaction chamber made from electro-polished stainless steel. One side was fitted with a Teflon foil to allow ultraviolet light to illuminate the chamber, which was continuously flushed with dry purified air. Variable concentrations of water vapor, ozone, and sulfur dioxide could be added to the chamber. UV-lamps initiated photochemistry producing sulfuric acid. Ionization could be enhanced with two Cs-137 gamma sources (30 MBq), mounted on each side of the chamber. Figure 1 shows the evolution of the aerosols, following a nucleation event induced by the gamma sources. Previous to the event the aerosols were in steady state. Each curve represents a size bin: 3-10 nm (dark purple), 10-20 nm (purple), 20-30 nm (blue), 30-40 nm (light blue), 40-50 nm (green), 50-60 nm (yellow), and 60-68 nm (red). Black curves show a ~1 hour smoothing. The initial increase in small aerosols persists all the way to the largest size bin. Similar experiments where the aerosol burst was produced with either the ionization source or an aerosol generator (neutralized aerosols) were made and compared with each other and model runs. The runs using neutral aerosol bursts agree with the model predictions, where the initial burst is dampened such that there is little or no change in the largest sizes. Thus there seems to be a fundamental difference between the bursts produced by ionization and those produced by the aerosol generator. Growth of aerosols, nucleated by ionization.
Missing energies at pair creation
NASA Technical Reports Server (NTRS)
El-Ela, A. A.; Hassan, S.; Bagge, E. R.
1985-01-01
Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.
NASA Technical Reports Server (NTRS)
Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.
2002-01-01
Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.
An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS
NASA Astrophysics Data System (ADS)
Liu, Fengli; Zhang, Jun; Alici, Gursel; Yan, Sheng; Mutlu, Rahim; Li, Weihua; Yan, Tianhong
2016-09-01
In this paper, we report a new micromixer based on a flexible artificial cilium activated by an external magnetic field. The cilium is fabricated from Polydimethylsiloxane doped with Fe microparticles. The fabrication method is based on the standard sacrificial layer technology. The cilium was built on a glass slide, and then was bonded on the top of the micro-mixer chamber in a microfluidic chip. This fabrication process for the miniaturized active mixers is simple and cost effective. An electromagnetic system was used to drive the cilium and induce strong convective flows of the fluid in the chamber. In the presence of an alternating magnetic field, the cilium applied a corresponding alternating force on the surrounding fluids. The performance of the electromagnetically activated cilium was quantified and optimized in order to obtain maximum mixing performance. In addition, the mixing performance of the cilium in a circular micro-chamber was compared with pure diffusion. Up to 80% of a 60 ul liquid in the chamber can be fully mixed after 2 min using a cilium mixer under a magnetic flux density of 22 mT in contrast to the 20 min which were needed to obtain the same mixing percentage under pure diffusion. Furthermore, for a mixing degree of 80%, the mixing speed for the cilia micromixer proposed in this study was 9 times faster than that of the diffusion-based micro-mixers reported in the literature.
Coherent forward broadening in cold atom clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, F.
2016-02-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.
The Hall effect in star formation
NASA Astrophysics Data System (ADS)
Braiding, C. R.; Wardle, M.
2012-05-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.
Review of isothermal haze chamber performance
NASA Technical Reports Server (NTRS)
Fitzgerald, J. W.; Rogers, C. F.; Hudson, J. G.
1981-01-01
The theory of this method of characterizing cloud condensation nuclei (CCN) over the critical supersaturation range of about 0.01% to 0.2% was reviewed, and guidelines for the design and operation of IHC's are given. IHC data are presented and critically analyzed. Two of the four IHC's agree to about 40% over the entire range of critical. a third chamber shows similar agreement with the first two over the lower part of the critical supersaturation range but only a factor of two agreement at higher supersaturation. Some reasons for the discrepancies are given.
NASA Astrophysics Data System (ADS)
Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.
2018-05-01
We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
Empirical relationships between gas abundances and UV selective extinction
NASA Technical Reports Server (NTRS)
Joseph, Charles L.
1990-01-01
Several studies of gas-phase abundances in lines of sight through the outer edges of dense clouds are summarized. These lines of sight have 0.4 less than E(B-V) less than 1.1 and have inferred spatial densities of a few hundred cm(-3). The primary thrust of these studies has been to compare gaseous abundances in interstellar clouds that have various types of peculiar selective extinction. To date, the most notable result has been an empirical relationship between the CN/Fe I abundance ratio and the depth of the 2200 A extinction bump. It is not clear at the present time, however, whether these two parameters are linearly correlated or the data are organized into two discrete ensembles. Based on 19 samples and assuming the clouds form discrete ensembles, lines of sight that have a CN/Fe I abundance ratio greater than 0.3 (dex) appear to have a shallow 2.57 plus or minus 0.55 bump compared to 3.60 plus or minus 0.36 for other dense clouds and compared to the 3.6 Seaton (1979) average. The difference in the strength of the extinction bump between these two ensembles is 1.03 plus or minus 0.23. Although a high-resolution IUE survey of dense clouds is far from complete, the few lines of sight with shallow extinction bumps all show preferential depletion of certain elements, while those lines of sight with normal 2200 A bumps do not. Ca II, Cr II, and Mn II appear to exhibit the strongest preferential depletion compared to S II, P II, and Mg II. Fe II and Si II depletions also appear to be enhanced somewhat in the shallow-bump lines of sight. It should be noted that Copernicus data suggest all elements, including the so-called nondepletors, deplete in diffuse clouds (Snow and Jenkins 1980, Joseph 1988). Those lines of sight through dense clouds that have normal 2200 A extinction bumps appear to be extensions of the depletions found in the diffuse interstellar medium. That is, the overall level of depletion is enhanced, but the element-to-element abundances are similar to those in diffuse clouds. In a separate study, the abundances of neutral atoms were studied in a dense cloud having a shallow 2200 A bump and in one with a normal strength bump.
The Phoretic Motion Experiment (PME) definition phase
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Neste, S. L. (Editor)
1982-01-01
The aerosol generator and the charge flow devices (CFD) chamber which were designed for zero-gravity operation was analyzed. Characteristics of the CFD chamber and aerosol generator which would be useful for cloud physics experimentation in a one-g as well as a zero-g environment are documented. The Collision type of aerosol generator is addressed. Relationships among the various input and output parameters are derived and subsequently used to determine the requirements on the controls of the input parameters to assure a given error budget of an output parameter. The CFD chamber operation in a zero-g environment is assessed utilizing a computer simulation program. Low nuclei critical supersaturation and high experiment accuracies are emphasized which lead to droplet growth times extending into hundreds of seconds. The analysis was extended to assess the performance constraints of the CFD chamber in a one-g environment operating in the horizontal mode.
Pressure Characteristics of a Diffuser in a Ram RDE Propulsive Device
2017-07-21
Continuous detonation Rotating-detonation- engine Ethylene-air Diffuser Pressure feedback Modeling and simulation Office of Naval Research 875 N. Randolph...RDE PROPULSIVE DEVICE INTRODUCTION This report focuses on the diffuser of a ram Rotating Detonation Engine (RDE) device. A ram RDE is a ramjet with...the constant pressure combustion chamber replaced with a Rotating Detonation Engine combustor to accomplish pressure gain combustion. A ram engine
Study of the propagation of a plane turbulent jet in flow-through chamber workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laigna, K.Yu.; Potter, E.A.
1988-05-01
The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less
NASA Astrophysics Data System (ADS)
Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem
2018-04-01
Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.
HYDROGEN CHLORIDE IN DIFFUSE INTERSTELLAR CLOUDS ALONG THE LINE OF SIGHT TO W31C (G10.6-0.4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monje, R. R.; Lis, D. C.; Phillips, T. G.
2013-04-10
We report the detection of hydrogen chloride, HCl, in diffuse molecular clouds on the line of sight toward the star-forming region W31C (G10.6-0.4). The J = 1-0 lines of the two stable HCl isotopologues, H{sup 35}Cl and H{sup 37}Cl, are observed using the 1b receiver of the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory. The HCl line is detected in absorption, over a wide range of velocities associated with diffuse clouds along the line of sight to W31C. The analysis of the absorption strength yields a total HCl column density of a few 10{sup 13}more » cm{sup -2}, implying that HCl accounts for {approx}0.6% of the total gas-phase chlorine, which exceeds the theoretical model predictions by a factor of {approx}6. This result is comparable to those obtained from the chemically related species H{sub 2}Cl{sup +} and HCl{sup +}, for which large column densities have also been reported on the same line of sight. The source of discrepancy between models and observations is still unknown; however, the detection of these Cl-bearing molecules provides key constraints for the chlorine chemistry in the diffuse gas.« less
Khair, Aditya S
2018-01-23
The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.
NASA Technical Reports Server (NTRS)
Buist, R. J.
1977-01-01
The design and fabrication of a thermoelectric chiller for use in chilling a liquid reservoir is described. Acceptance test results establish the accuracy of the thermal model and predict the unit performance under various conditions required by the overall spacelab program.
The dynamics of droplets in moist Rayleigh-Benard turbulence
NASA Astrophysics Data System (ADS)
Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond
2017-11-01
Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.
Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds
NASA Technical Reports Server (NTRS)
Jarzembski, M. A.; Srivastava, V.
1995-01-01
Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.
Method for measurement of radon diffusion and solubility in solid materials
NASA Astrophysics Data System (ADS)
Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia
2018-02-01
In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
Impact of combustion products from Space Shuttle launches on ambient air quality
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.
1974-01-01
The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.
Interpreting measurements obtained with the cloud absorption radiometer
NASA Technical Reports Server (NTRS)
1988-01-01
The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.
Laboratory investigation of nitrile ices of Titan's stratospheric clouds
NASA Astrophysics Data System (ADS)
Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.
2017-09-01
Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.
SH Observations In and Toward Sgr B2(N): Linking the Missing Sulfur
NASA Astrophysics Data System (ADS)
McCarthy, Michael
Where is the missing sulfur in the molecular reservoir of the interstellar medium (ISM)? In the warm gas phase ISM, the abundance of sulfur is nearly equivalent to its solar value, but in the cold, diffuse clouds which span the space between stars, sulfur is depleted by several orders of magnitude. Our inability to account for this depletion represents a significant gap in our understanding of the fundamental chemical and physical processes occurring in the primordial reservoirs of gas and dust in the ISM. Central to this chemistry is SH, a radical for which few observations presently exist, and for which SOFIA is uniquely capable of accessing in its ground rotational state. We propose observations of SH in the cold, shocked molecular shell surrounding Sgr B2(N), and, simultaneously, in diffuse and translucent clouds along the line of sight to Sgr B2(N). We will constrain the abundance of SH, and compare it to previous measurements of SO, CS, C_2S, HCS(+) , H_2CS, and H_2S in these sources which span the evolutionary timescale from diffuse clouds to dense, cold shocked regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.
2013-06-24
Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flowmore » Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.« less
The 15 273 Å diffuse interstellar band in the dark cloud Barnard 68
NASA Astrophysics Data System (ADS)
Elyajouri, Meriem; Cox, Nick L. J.; Lallement, Rosine
2017-09-01
High obscuration of background stars behind dark clouds precludes the detection of optical diffuse interstellar bands (DIBs) and hence our knowledge of DIB carriers in these environments. Taking advantage of the reduced obscuration of starlight in the near-infrared (NIR) we used one of the strongest NIR DIBs at 15 273 Å to probe the presence and properties of its carrier throughout the nearby interstellar dark cloud Barnard 68. We measured equivalent widths (EW) for different ranges of visual extinction AV, using VLT/KMOS H-band (1.46-1.85 μm) moderate-resolution (R 4000) spectra of 43 stars situated behind the cloud. To do so, we fitted the data with synthetic stellar spectra from the APOGEE project and TAPAS synthetic telluric transmissions appropriate for the observing site and time period. The results show an increase of DIB EW with increasing AV. However, the rate of increase is much flatter than expected from the EW-AV quasi-proportionality established for this DIB in the Galactic diffuse interstellar medium. Based on a simplified inversion assuming sphericity, it is found that the volume density of the DIB carrier is 2.7 and 7.9 times lower than this expected average value in the external and central regions of the cloud, which have nH≃ 0.4 and 3.5 × 105 cm-3, respectively. Further measurements with multiplex NIR spectrographs should allow detailed modeling of such an edge effect of this DIB and other bands and help clarify its actual origin. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.C-0931(A).
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Cloud effects on ultraviolet photoclimatology
NASA Technical Reports Server (NTRS)
Green, A. E. S.; Spinhirne, J. D.
1978-01-01
The purpose of this study is to quantify for the needs of photobiology the influence of clouds upon the ultraviolet spectral irradiance reaching the ground. Towards this end, analytic formulas are developed which approximately characterize the influence of clouds upon total solar radiation. These may be used in conjunction with a solar pyranometer to assign an effective visual optical depth for the cloud cover. A formula is also developed which characterizes the influence of the optical depth of clouds upon the UV spectral irradiance in the 280-340 nm region. Thus total solar energy observations to assign cloud optical properties can be used to calculate the UV spectral irradiance at the ground in the presence of these clouds. As incidental by-products of this effort, convenient formulas are found for the direct and diffuse components of total solar energy.
Coherent Forward Broadening in Cold Atom Clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, Francis
2016-05-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, Thangasamy; Langer, William D.; Goldsmith, Paul; Li, Di; Yorke, Harold
The GOT C+ a HIFI Herschel Key Project, studies the diffuse ISM throughout the Galactic Plane, using C+ as cloud tracer. The C+ line at 1.9 THz traces a so-far poorly studied stage in ISM cloud evolution -the transitional clouds going from atomic HI to molecular H2. This transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. The C+ line is also an excellent tracer of the warm diffuse gas and the warm, dense gas in the Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. We present our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO) along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 25 degrees, taken during the HIFI Priority Science Phase. Comparisons of the high spectral resolution ( 1 km/s) HIFI data on C+ with HI, 12CO, and 13CO spectra allow us to separate out the different ISM components along each line of sight. Our results provide detailed information about the transition of diffuse atomic to molecular gas clouds needed to understand star formation and the lifecycle of the interstellar gas. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoctoral associate.
NASA Astrophysics Data System (ADS)
Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.
2018-02-01
The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A10
The paper presents an analysis of steady-state diffusion in the soil for two different conditions of moisture. The model accounts for multiphase emanation and transport. When the position dependence of the moisture profile is taken into account, the model and measurements agree w...
NASA Astrophysics Data System (ADS)
Bernsmann, Falk; Laube, Norbert; Baldsiefen, Gerhard; Castellucci, Mattia
2014-11-01
Inflammations and crystalline bacterial biofilms (encrustations) remain a major complication in long-term artificial urinary tract drainage. To solve this problem we present urological implants with coatings made of amorphous hydrogenated carbon (a-C:H) that show excellent protection from encrustation in-vitro as well as in-vivo. Part of the success of a-C:H coatings is attributed to their ability to act as a diffusion barrier between an implant and the body, which prevents leaching of solvents from polymeric implants. To further enhance their barrier properties a-C:H coatings are combined with parylene coatings to develop diffusion-barrier multilayer coatings with a total thickness between 0.2 μm and 0.8 μm. The combination of the two types of coatings leads to a reduction of water diffusion by a factor of up to ten with respect to uncoated 25 μm thick polyimide sub-strates. The diffusion of water vapour from a controlled atmospheric pressure chamber through coated foils to a vacuum chamber is measured in a custom-built device.
Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium
NASA Technical Reports Server (NTRS)
Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.
1992-01-01
Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.
Probabilistic verification of cloud fraction from three different products with CALIPSO
NASA Astrophysics Data System (ADS)
Jung, B. J.; Descombes, G.; Snyder, C.
2017-12-01
In this study, we present how Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) can be used for probabilistic verification of cloud fraction, and apply this probabilistic approach to three cloud fraction products: a) The Air Force Weather (AFW) World Wide Merged Cloud Analysis (WWMCA), b) Satellite Cloud Observations and Radiative Property retrieval Systems (SatCORPS) from NASA Langley Research Center, and c) Multi-sensor Advection Diffusion nowCast (MADCast) from NCAR. Although they differ in their details, both WWMCA and SatCORPS retrieve cloud fraction from satellite observations, mainly of infrared radiances. MADCast utilizes in addition a short-range forecast of cloud fraction (provided by the Model for Prediction Across Scales, assuming cloud fraction is advected as a tracer) and a column-by-column particle filter implemented within the Gridpoint Statistical Interpolation (GSI) data-assimilation system. The probabilistic verification considers the retrieved or analyzed cloud fractions as predicting the probability of cloud at any location within a grid cell and the 5-km vertical feature mask (VFM) from CALIPSO level-2 products as a point observation of cloud.
Mendler, Edward Charles
2005-02-01
The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.
Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.
2017-12-01
Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, R. K.; Sivaraman, C.; Shippert, T. R.
Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosismore » from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.« less
A new passive radon-thoron discriminative measurement system.
Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M
2010-10-01
A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.
Ice nucleation by plant structural materials and its potential contribution to glaciation in clouds
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Hoose, C.; Järvinen, E.; Kiselev, A. A.; Moehler, O.; Schnaiter, M.; Ullrich, R.; Cziczo, D. J.; Felgitsch, L.; Gourihar, K.; Grothe, H.; Reicher, N.; Rudich, Y.; Tobo, Y.; Zawadowicz, M. A.
2015-12-01
Glaciation of supercooled clouds through immersion freezing is an important atmospheric process affecting the formation of precipitation and the Earth's energy budget. Currently, the climatic impact of ice-nucleating particles (INPs) is being reassessed due to increasing evidence of their diversity and abundance in the atmosphere as well as their ability to influence cloud properties. Recently, it has been found that microcrystalline cellulose (MCC; extracted from natural wood pulp) can act as an efficient INP and may add crucial importance to quantify the role of primary biological INP (BINP) in the troposphere. However, it is still unclear if the laboratory results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to assess the overall role of BINPs in clouds and the climate system. Here, we use the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber in Karlsruhe, Germany to demonstrate that several important plant constituents as well as natural plant debris can act as BINPs in simulated super-cooled clouds of the lower and middle troposphere. More specifically, we measured the surface-scaled ice nucleation activity of a total 16 plant structural materials (i.e., celluloses, lignins, lipids and carbohydrates), which were dispersed and immersed in cloud droplets in the chamber, and compared to that of dried leaf powder as a model proxy for atmospheric BINPs. Using these surface-based activities, we developed parameters describing the ice nucleation ability of these particles. Subsequently, we applied them to observed airborne plant debris concentrations and compared to the background INP simulated in a global aerosol model. Our results suggest that cellulose is the most active BINPs amongst the 16 materials and the concentration of ice nucleating cellulose and plant debris to become significant (>0.1 L-1) below about -20 ˚C. Overall, our findings support the view that MCC may be a good proxy for inferring ice nucleating properties of natural plant debris. More atmospheric observations of airborne cellulose-containing particles are necessary to allow better estimates of their effects on clouds and the global climate. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).
A dual-porosity reactive-transport model of off-axis hydrothermal systems
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Abbot, D. S.; Archer, D. E.
2017-12-01
We built a dual-porosity reactive-transport 2D numerical model of off-axis pillow basalt alteration. An "outer chamber" full of porous glassy material supports significant seawater flushing, and an "inner chamber", which represents the more crystalline interior of a pillow, supports diffusive alteration. Hydrothermal fluids in the two chambers interact, and the two chambers are coupled to 2D flows. In a few million years of low-temperature alteration, the dual-porosity model predicts progressive stages of alteration that have been observed in drilled crust. A single-porosity model, with all else being equal, does not predict alteration stages as well. The dual-chamber model also does a better job than the single-chamber model at predicting the types of minerals expected in off-axis environments. We validate the model's ability to reproduce observations by configuring it to represent a thoroughly-studied transect of the Juan de Fuca Ridge eastern flank.
A Survey of Near-infrared Diffuse Interstellar Bands
NASA Astrophysics Data System (ADS)
Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi
2018-04-01
We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.
Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, F.; Morabito, L. K.; Oonk, J. B. R.
In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less
Blaugher, Richard D.
1998-05-05
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Vertical two chamber reaction furnace
Blaugher, Richard D.
1999-03-16
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Blaugher, R.D.
1998-05-05
A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Vertical two chamber reaction furnace
Blaugher, R.D.
1999-03-16
A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Catching Cosmic Rays with a DSLR
ERIC Educational Resources Information Center
Sibbernsen, Kendra
2010-01-01
Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…
Knowledge and Technology: Sharing With Society
NASA Astrophysics Data System (ADS)
Benvenuti, Cristoforo; Sutton, Christine; Wenninger, Horst
The following sections are included: * A Core Mission of CERN * Medical Accelerators: A Tool for Tumour Therapy * Medipix: The Image is the Message * Crystal Clear: From Higgs to PET * Solar Collectors: When Nothing is Better * The TARC Experiment at CERN: Modern Alchemy * A CLOUD Chamber with a Silvery Lining * References
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
HD 62542: Probing the Bare, Dense Core of an Interstellar Cloud
NASA Astrophysics Data System (ADS)
Welty, Daniel; Sonnentrucker, Paule G.; Rachford, Brian; Snow, Theodore; York, Donald G.
2018-01-01
We discuss the interstellar absorption from many atomic and molecular species seen in high-resolution HST/STIS UV spectra of the moderately reddened B3-5 V star HD 62542 [E(B-V) ~ 0.35; AV ~ 1.2]. This remarkable sight line exhibits both very steep far-UV extinction and a high fraction of hydrogen in molecular form -- with strong absorption from CH, C2, CN, and CO but weak absorption from CH+ and most of the commonly observed diffuse interstellar bands. Most of the material appears to reside in a single narrow velocity component -- thus offering a rare opportunity to probe the relatively dense, primarily molecular core of a single interstellar cloud, with little associated diffuse atomic gas.Detailed analyses of the absorption-line profiles seen in the UV spectra reveal a number of properties of the main diffuse molecular cloud toward HD 62542:1) The depletions of Mg, Si, and Fe are more severe than those seen in any other sight line, but the depletions of Cl and Kr are very mild; the overall pattern of depletions differs somewhat from those derived from larger samples of Galactic sight lines.2) The rotational excitation of H2 and C2 indicates that the gas is fairly cold (Tk = 40-45 K) and moderately dense (nH > 420 cm-3) somewhat higher densities are suggested by the fine-structure excitation of neutral carbon.3) The excitation temperatures characterizing the rotational populations of both 12CO (11.7 K) and 13CO (7.7 K) are higher than those typically found for Galactic diffuse molecular clouds.4) Carbon is primarily singly ionized -- N(C+) > N(CO) > N(C).5) The relative abundances of various trace neutral atomic species reflect the effects of both the steep far-UV extinction and the severe depletions of some elements.6) Differences in line widths for the various atomic and molecular species are suggestive of differences in spatial distribution within the main cloud.Support for this study was provided by NASA, via STScI grant GO-12277.008-A.
A Neural Network Approach to Infer Optical Depth of Thick Ice Clouds at Night
NASA Technical Reports Server (NTRS)
Minnis, P.; Hong, G.; Sun-Mack, S.; Chen, Yan; Smith, W. L., Jr.
2016-01-01
One of the roadblocks to continuously monitoring cloud properties is the tendency of clouds to become optically black at cloud optical depths (COD) of 6 or less. This constraint dramatically reduces the quantitative information content at night. A recent study found that because of their diffuse nature, ice clouds remain optically gray, to some extent, up to COD of 100 at certain wavelengths. Taking advantage of this weak dependency and the availability of COD retrievals from CloudSat, an artificial neural network algorithm was developed to estimate COD values up to 70 from common satellite imager infrared channels. The method was trained using matched 2007 CloudSat and Aqua MODIS data and is tested using similar data from 2008. The results show a significant improvement over the use of default values at night with high correlation. This paper summarizes the results and suggests paths for future improvement.
Asymptotic radiance and polarization in optically thick media: ocean and clouds.
Kattawar, G W; Plass, G N
1976-12-01
Deep in a homogeneous medium that both scatters and absorbs photons, such as a cloud, the ocean, or a thick planetary atmosphere, the radiance decreases exponentially with depth, while the angular dependence of the radiance and polarization is independent of depth. In this diffusion region, the asymptotic radiance and polarization are also independent of the incident distribution of radiation at the upper surface of the medium. An exact expression is derived for the asymptotic radiance and polarization for Rayleigh scattering. The approximate expression for the asymptotic radiance derived from the scalar theory is shown to be in error by as much as 16.4%. An exact expression is also derived for the relation between the diffusion exponent k and the single scattering albedo. A method is developed for the numerical calculation of the asymptotic radiance and polarization for any scattering matrix. Results are given for scattering from the haze L and cloud C3 distributions for a wide range of single scattering albedos. When the absorption is large, the polarization in the diffusion region approaches the values obtained for single scattered photons, while the radiance approaches the value calculated from the expression: phase function divided by (1 + kmicro), where micro is the cosine of the zenith angle. The asymptotic distribution of the radiation is of interest since it depends only on the inherent optical properties of the medium. It is, however, difficult to observe when the absorption is large because of the very low radiance values in the diffusion region.
Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas
NASA Astrophysics Data System (ADS)
Shetty, Rahul; Clark, Paul C.; Klessen, Ralf S.
2014-08-01
Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt-Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ_dep^CO) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ_dep^CO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.
Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments
NASA Technical Reports Server (NTRS)
Anderson, B. J.
1981-01-01
In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which ismore » the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.« less
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.
Diamonds in dense molecular clouds - A challenge to the standard interstellar medium paradigm
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T. M.
1993-01-01
Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
Comparison of 3D point clouds produced by LIDAR and UAV photoscan in the Rochefort cave (Belgium)
NASA Astrophysics Data System (ADS)
Watlet, Arnaud; Triantafyllou, Antoine; Kaufmann, Olivier; Le Mouelic, Stéphane
2016-04-01
Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different kind of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g. Agisoft, PhotoModeler3D, VisualSFM). We present here a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The site is located in the Belgian Variscan fold-and-thrust belt, a region that shows many karstic networks within Devonian limestone units. A LIDAR scan has been acquired in the main chamber of the cave (~ 15000 m³) to spatialize 3D point cloud of its inner walls and infer geological beds and structures. Even if the use of LIDAR instrument was not really comfortable in such caving environment, the collected data showed a remarkable precision according to few control points geometry. We also decided to perform another challenging survey of the same cave chamber by modelling a 3D point cloud using photogrammetry of a set of DSLR camera pictures taken from the ground and UAV pictures. The aim was to compare both techniques in terms of (i) implementation of data acquisition and processing, (ii) quality of resulting 3D points clouds (points density, field vs cloud recovery and points precision), (iii) their application for geological purposes. Through Rochefort case study, main conclusions are that LIDAR technique provides higher density point clouds with slightly higher precision than photogrammetry method. However, 3D data modeled by photogrammetry provide visible light spectral information for each modeled voxel and interpolated vertices that can be a useful attributes for clustering during data treatment. We thus illustrate such applications to the Rochefort cave by using both sources of 3D information to quantify the orientation of inaccessible geological structures (e.g. faults, tectonic and gravitational joints, and sediments bedding), cluster these structures using color information gathered from UAV's 3D point cloud and compare these data to structural data surveyed on the field. An additional drone photoscan was also conducted in the surface sinkhole giving access to the surveyed underground cavity to seek geological bodies' connections.
Altitude-dependent Drift of a Chemical Release Cloud at Middle Latitudes
NASA Astrophysics Data System (ADS)
Pedersen, T.; Holmes, J. M.; Sutton, E. K.
2017-12-01
A chemical release experiment conducted at the White Sands Missile Range in February 2015 consisted of firing of three identical canisters at different altitudes along a near-vertical trajectory, creating a large structured cloud after diffusion and expansion of the three initial dispersals. Dedicated optical observations from near the launch site and a remote site allow determination of the position and motion of the extended optical cloud as a function of time, while photographs captured and posted by members of the general public provide additional look angles to constrain the cloud shape in more detail. We compare the observed drift and evolution of the cloud with empirical and theoretical models of the neutral winds to examine the altitudinal shear in the neutral winds and their effects on the motion and shape of the extended optical cloud.
Observational analysis of the well-correlated diffuse bands: 6196 and 6614 Å
NASA Astrophysics Data System (ADS)
Krełowski, J.; Galazutdinov, G. A.; Bondar, A.; Beletsky, Y.
2016-08-01
We confirm, using spectra from seven observatories, that the diffuse bands 6196 and 6614 are very tightly correlated. However, their strength ratio is not constant as well as profile shapes. Apparently, the two interstellar features do not react in unison to the varying physical conditions of different interstellar clouds.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
NASA Astrophysics Data System (ADS)
Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.
2017-05-01
Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.
NASA Technical Reports Server (NTRS)
Forbes, R. E.; Smith, M. R.; Farrell, R. R.
1972-01-01
An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud.
NASA Astrophysics Data System (ADS)
Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.
2016-12-01
Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.
Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design
NASA Technical Reports Server (NTRS)
Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.
1978-01-01
A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases
NASA Astrophysics Data System (ADS)
Snell, H. S. K.; Robinson, D.; Midwood, A. J.
2014-12-01
Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.
Modified Penning-Malmberg Trap for Storing Antiprotons
NASA Technical Reports Server (NTRS)
Sims, William H.; Martin, James; Lewis, Raymond
2005-01-01
A modified Penning-Malmberg trap that could store a small cloud of antiprotons for a relatively long time (weeks) has been developed. This trap is intended for use in research on the feasibility of contemplated future matter/antimatter-annihilation systems as propulsion sources for spacecraft on long missions. This trap is also of interest in its own right as a means of storing and manipulating antiprotons for terrestrial scientific experimentation. The use of Penning-Malmberg traps to store antiprotons is not new. What is new here is the modified trap design, which utilizes state-of-the-art radiofrequency (RF) techniques, including ones that, heretofore, have been used in radio-communication applications but not in iontrap applications. A basic Penning-Malmberg trap includes an evacuated round tube that contains or is surrounded by three or more collinear tube electrodes. A steady axial magnetic field that reaches a maximum at the geometric center of the tube is applied by an external source, and DC bias voltages that give rise to an electrostatic potential that reaches a minimum at the center are applied to the electrodes. The combination of electric and magnetic fields confines the charged particles (ions or electrons) for which it was designed to a prolate spheroidal central region. However, geometric misalignments and the diffusive cooling process prevent the steady fields of a basic Penning- Malmberg trap from confining the particles indefinitely. In the modified Penning-Malmberg trap, the loss of antiprotons is reduced or eliminated by use of a "rotating-wall" RF stabilization scheme that also heats the antiproton cloud to minimize loss by matter/antimatter annihilation. The scheme involves the superposition of a quadrupole electric field that rotates about the cylindrical axis at a suitably chosen radio frequency. The modified Penning-Malmberg trap (see Figure 1) includes several collinear sets of electrodes inside a tubular vacuum chamber. Each set comprises either a single metal tube or else a tube that is segmented into four electrodes that subtend equal angles about the cylindrical axis. The output of an RF signal generator is fed through a 90 hybrid coupler and then through two baluns to generate four replicas of the signal at relative phase shifts of 0 , 90 , 180 , and 270 (see Figure 2). These signal replicas are fed through 6-dB directional couplers, then via coaxial cables to the vacuum chamber. The signal is then routed to a phase cancellation network, which filters out the drive signal with the difference representing the plasma interaction. Inside the vacuum chamber, twisted-pair wires feed the signals from the coaxial cables to the four electrodes of each segmented electrode tube.
Using depolarization to quantify ice nucleating particle concentrations: a new method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less
Using depolarization to quantify ice nucleating particle concentrations: a new method
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; ...
2017-12-01
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less
GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line
NASA Astrophysics Data System (ADS)
Langer, William
2012-01-01
The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.
Engine Throat/Nozzle Optics for Plume Spectroscopy
1991-02-01
independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy
Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L
2012-09-01
The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.
Results of Tests Performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel
NASA Technical Reports Server (NTRS)
Barna, P. S.
1995-01-01
The test results briefly described in this report were obtained on the three-dimensional 1:48 scale tunnel modeled on the design proposed by Messrs. D.S.M.A. Corporation. More particularly, while the test chamber dimensions were indeed scaled down in the ration of 1:48, including the contraction and the collector as well, the duct system itself leading to and from the chamber was adapted to suit laboratory conditions and space limitations. Earlier tests with the two-dimensional model showed that blowing mode was preferred as against the suction mode, hence all tests were performed with blowing only. At the exit of the contraction the maximum airspeed attained with the 1 HP blower unit was about 200 ft/sec. This airspeed may be increased in future if desired. The test results show that pressure recovery in the diffuser was about 34 percent due to the large blockage at its entrance. Velocity traverses taken across the diffuser entrance explain the reason for this blockage. Recirculation, studied with both, hot-wire anemometry and flow-visualization techniques, was largely affected by the design of the test chamber itself and the amount of vent-air admitted to the chamber. Vent-air helped to decrease the level of turbulence.
Search with COPERNICUS for interstellar N/sub 2/ in diffuse clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, B.L.; Owen, T.; Snow, T.P. Jr.
1979-01-01
Multiple Copernicus scans of the rho'/sup 1/..sigma../sub u//sup +/--X/sup 1/..sigma../sub g//sup +/(0--0) and l/sup 1/Pi/sub u/--X/sup 1/..sigma../sub g//sup +/(0--0) band regions of N/sub 2/ in the spectra of delta Sco and epsilon Per result in upper limits of N (N/sub 2/) < or =1.0--3.8 x 10/sup 12/ cm/sup -2/ and N (N/sub 2/) < or =1.2--4.4 x 10/sup 12/ cm/sup -2/, respectively, depending upon the cloud temperature. These limits are consistent with the column densities expected from current chemical models for diffuse interstellar clouds, representing relative abundances with respect to hydrogen nuclei of N (N/sub 2/)/2N (H/sub 2/)+N (H I)more » < or =0.69--2.6 x 10/sup -9/ for delta Sco and < or =0.31--1.1 x 10/sup -8/ for epsilon Per.« less
Ben-David, Avishai; Embury, Janon F; Davidson, Charles E
2006-09-10
A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
NASA Astrophysics Data System (ADS)
Lu, Yuan; Katz, Joseph; Prosperetti, Andrea
2013-07-01
In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line holography. Variations in the water density and refractive index are used for determining the spatial distribution of the acoustic pressure nonintrusively. Several cavitation phenomena occur within the acoustic partially standing wave caused by the reflection of sound from the walls of the test chamber. At all sound levels, bubbly layers form in the periphery of the focal zone in the pressure nodes of the partial standing wave. At high sound levels, clouds of vapor microbubbles are generated and migrate in the direction of the acoustic beam. Both the cloud size and velocity vary periodically, with the diameter peaking at the pressure nodes and velocity at the antinodes. A simple model involving linearized bubble dynamics, Bjerknes forces, sound attenuation by the cloud, added mass, and drag is used to predict the periodic velocity of the bubble cloud, as well as qualitatively explain the causes for the variations in the cloud size. The analysis shows that the primary Bjerknes force and drag dominate the cloud motion, and suggests that the secondary Bjerknes force causes the oscillations in the cloud size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schartmann, M.; Ballone, A.; Burkert, A.
The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtainedmore » results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.« less
An apparatus for immersing trapped ions into an ultracold gas of neutral atoms
NASA Astrophysics Data System (ADS)
Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker
2012-05-01
We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpert, Peter A.; Knopf, Daniel A.
Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less
Alpert, Peter A.; Knopf, Daniel A.
2016-02-24
Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less
Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna
2015-01-01
Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. PMID:25678116
Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna
2015-04-01
Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows
2016-04-28
even in the motion of sea ice floes influenced by winds and ocean currents. The long time, large scale behavior of such systems is equivalent to an...flow plays a key role in many important processes in the global climate system [55] and Earth’s ecosys- tems [14]. Advection of geophysical fluids...HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif- fusivity ε and
Effects of cloudiness on global and diffuse UV irradiance in a high-mountain area
NASA Astrophysics Data System (ADS)
Blumthaler, M.; Ambach, W.; Salzgeber, M.
1994-03-01
At the high-mountain station Jungfraujoch (3576 m a.s.l., Switzerland), measurements of the radiation fluxes were made during 16 periods of six to eight weeks by means of a Robertson—Berger sunburn meter (UVB data), an Eppley UVA radiometer and an Eppley pyranometer. Cloudiness, opacity and altitude of clouds were recorded at 30-minute intervals. A second set of instruments was employed for separate measurement of the diffuse radiation fluxes using shadow bands. The global and diffuse UVA- and UVB radiation fluxes change less with cloudiness than the corresponding total radiation fluxes. When the sun is covered by clouds, the global UVA- and UVB radiation fluxes are also affected less than the global total radiation flux. The roughly equal influence of cloudiness on the UVA- and UVB radiation fluxes suggests that the reduction is influenced more by scattering than by ozone. Also, the share of diffuse irradiance in global irradiance is considerably higher for UVA- and UVB irradiance than for total irradiance. At 50° solar elevation and 0/10 cloudiness, the share is 39% for UVB irradiance, 34% for UVA irradiance and 11% for total irradiance. The increased aerosol turbidity after the eruptions of El Chichon and Pinatubo has caused a significant increase in diffuse total irradiance but has not produced any significant changes in diffuse UVA- and UVB irradiances.
Evaluation of oxide-coated iridium-rhenium chambers
NASA Astrophysics Data System (ADS)
Reed, Brian D.
1994-03-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Evaluation of oxide-coated iridium-rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1994-01-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Testing and evaluation of oxide-coated iridium/rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1993-01-01
Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Radke, L. F.; Langer, G.; Hindman, E. E., II
1978-01-01
Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.
Dynamical evolution of the Oort cloud
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1985-01-01
New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Hoose, C.; Järvinen, E.; Kiselev, A. A.; Moehler, O.; Schnaiter, M.; Ullrich, R.; Cziczo, D. J.; Felgitsch, L.; Gourihar, K.; Grothe, H.; Reicher, N.; Rudich, Y.; Tobo, Y.; Zawadowicz, M. A.
2014-12-01
Glaciation of supercooled clouds through immersion freezing is an important atmospheric process affecting the formation of precipitation and the Earth's energy budget. Currently, the climatic impact of ice-nucleating particles (INPs) is being reassessed due to increasing evidence of their diversity and abundance in the atmosphere as well as their ability to influence cloud properties. Recently, it has been found that microcrystalline cellulose (MCC; extracted from natural wood pulp) can act as an efficient INP and may add crucial importance to quantify the role of primary biological INP (BINP) in the troposphere. However, it is still unclear if the laboratory results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to assess the overall role of BINPs in clouds and the climate system. Here, we use the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber in Karlsruhe, Germany to demonstrate that several important plant constituents as well as natural plant debris can act as BINPs in simulated super-cooled clouds of the lower and middle troposphere. More specifically, we measured the surface-scaled ice nucleation activity of a total 16 plant structural materials (i.e., celluloses, lignins, lipids and carbohydrates), which were dispersed and immersed in cloud droplets in the chamber, and compared to that of dried leaf powder as a model proxy for atmospheric BINPs. Using these surface-based activities, we developed parameters describing the ice nucleation ability of these particles. Subsequently, we applied them to observed airborne plant debris concentrations and compared to the background INP simulated in a global aerosol model. Our results suggest that cellulose is the most active BINPs amongst the 16 materials and the concentration of ice nucleating cellulose and plant debris to become significant (>0.1 L-1) below about -20 ˚C. Overall, our findings support the view that MCC may be a good proxy for inferring ice nucleating properties of natural plant debris. More atmospheric observations of airborne cellulose-containing particles are necessary to allow better estimates of their effects on clouds and the global climate. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).
NASA Astrophysics Data System (ADS)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.
2016-08-01
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10-30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.
Optical properties of marine stratocumulus clouds modified by ships
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1993-01-01
Results are presented of an application of the diffusion domain method to multispectral solar radiation measurements obtained deep within a marine stratocumulus cloud layer modified by pollution from ships. In situ airborne measurements of the relative angular distribution of scattered radiation are compared to known asymptotic expressions for the intensity field deep within an optically thick cloud layer. Analytical expressions relating the ratio of the nadir-to-zenith intensities to surface reflectance, similarity parameter, and scaled optical depth beneath the aircraft flight level are used to analyze measurements obtained with the cloud absorption radiometer mounted on the University of Washington's C-131A research aircraft. It is shown that the total optical thickness of the cloud layer increased in the ship tracks, in contrast to the similarity parameter, which decreased. The decrease in absorption was a direct consequence of the reduction in cloud droplet size that occurred within the ship tracks.
MODEL TESTS ON BALL LIGHTNING; Modellversuche zum Kugelblitz
DOE Office of Scientific and Technical Information (OSTI.GOV)
nauer, H.
1959-10-31
Ball lightning phenomena and properties gleaned from a collection of observations are examined. The observations of a diffusion combustion of minute gas admixtures in air are thoroughly examined because they display the greatest resemblance to natural ball lightning. A comparison of properties with the qualities of the luminous clouds during diffusion combustion shows very good agreement. (W.D.M.)
Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility
NASA Technical Reports Server (NTRS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-01-01
We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.
Local effects of partly cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1981-01-01
Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.
Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System
NASA Technical Reports Server (NTRS)
Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.
1998-01-01
H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.
Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.
1982-01-01
The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646.
Assessment of diffuse radiation models in Azores
NASA Astrophysics Data System (ADS)
Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo
2014-05-01
Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different existing correlation models of diffuse fraction and clearness index or other plain parameters to the Azorean region. Reliable data provided by the Atmospheric Radiation Measurements (ARM) Climate Research Facility from the Graciosa Island deployment of the ARM Mobile Facility (http://www.arm.gov/sites/amf/grw) was used to perform the analysis. Model results showed a tendency to underestimate higher values of diffuse radiation. From the performance results of the correlation models reviewed it was clear that there is room for improvement.
Portable vapor diffusion coefficient meter
Ho, Clifford K [Albuquerque, NM
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Grain Growth and Silicates in Dense Clouds
NASA Technical Reports Server (NTRS)
Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.;
2006-01-01
Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).
Building materials. VOC emissions, diffusion behaviour and implications from their use.
Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios
2012-10-01
Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.
Synergistic growth studies of Entamoeba gingivalis using an Ecologen.
Gannon, J T; Linke, H A
1992-11-01
A unique multiple diffusion growth chamber, an Ecologen, designed for the study of interactions among microorganisms, was introduced as a means of growing xenic cultures of Entamoeba gingivalis with Crithidia sp. or Yersinia enterocolitica. Entamoeba gingivalis was grown in the central diffusion reservoir of the Ecologen connected to separate growth chambers inoculated with the microorganisms to be evaluated. Growth of the accompanying bacteria in the E. gingivalis compartment was almost completely eliminated, except for sparse Pseudomonas sp. growth. The most vital E. gingivalis cultures were observed when either Crithidia sp. or Y. enterocolitica were added to the Ecologen 48 h prior to the E. gingivalis inoculum. The medium which provided the best growth of the oral protozoan in this system was the new improved E. gingivalis medium containing antibiotics.
NASA Technical Reports Server (NTRS)
Susko, M.
1977-01-01
Electrets used to detect the chemical composition of rocket exhaust effluents were investigated. The effectiveness of electrets was assessed while comparisons were made with hydrogen chloride measuring devices from chamber and field tests, and computed results from a multilayer diffusion model. The experimental data used were obtained from 18 static test firings, chamber tests, and the Viking 1 launch to Mars. Results show that electrets have multipollutant measuring capabilities, simplicity of deployment, and speed of assessment. The electrets compared favorably with other hydrogen chloride measuring devices. The summary of the measured data from the electrets and the hydrogen chloride detectors was within the upper and lower bounds of the computed hydrogen chloride concentrations from the multilayer diffusion model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Seuli; Kang, Hyun-Ju; Kim, Yu-Sin
2016-06-15
The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As amore » result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.« less
Apparatus and method for excluding gas from a liquid
Murphy, Jr., Robert J.
1985-01-01
The present invention is directed to an apparatus and method for preventing diffusion of a gas under high pressure into the bulk of a liquid filling a substantially closed chamber. This apparatus and method is particularly useful in connection with test devices for testing fluid characteristics under harsh conditions of extremely high pressure and high temperature. These devices typically pressurize the liquid by placing the liquid in pressure and fluid communication with a high pressure inert gas. The apparatus and method of the present invention prevent diffusion of the pressurizing gas into the bulk of the test liquid by decreasing the chamber volume at a rate sufficient to maintain the bulk of the liquid free of absorbed or dissolved gas by expelling that portion of the liquid which is contaminated by the pressurizing gas.
A novel directly coupled gradostat
NASA Technical Reports Server (NTRS)
Wimpenny, J. W.; Earnshaw, R. G.; Gest, H.; Hayes, J. M.; Favinger, J. L.
1992-01-01
The original bidirectional compound chemostat (gradostat) described by Lovitt and Wimpenny has been simplified by making a more compact apparatus in which chemical gradients are established by diffusion between adjacent culture chambers. The experimental model (diffusion coupled (DC) gradostat) consisted of five chambers whose contents could be agitated by turbines rotating in the horizontal plane on a common shaft. Two biological experiments were designed to reveal the value of the DC gradostat. A methylotroph (Methylophilus methylotrophus) grown in a methanol gradient showed expected changes in cell viability as a function of position in the five vessel array. Cells of two species of photosynthetic bacteria (Rhodobacter capsulata and Rhodopseudomonas marina/agilis) with different salt sensitivities could be mixed and subsequently separated by the DC gradostat operating with a NaCl gradient of 0-3% w/v.
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen
2009-05-01
OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.
NASA Technical Reports Server (NTRS)
Campbell, J., Jr.; Cobb, S. M.
1976-01-01
An existing, but damaged, 25,000-pound thrust, flightweight, oxygen/hydrogen aerospike rocket thrust chamber was disassembled and partially repaired. A description is presented of the aerospike chamber configuration and of the damage it had suffered. Techniques for aerospike thrust chamber repair were developed, and are described, covering repair procedures for lightweight tubular nozzles, titanium thrust structures, and copper channel combustors. Effort was terminated prior to completion of the repairs and conduct of a planned hot fire test program when it was found that the copper alloy walls of many of the thrust chamber's 24 combustors had been degraded in strength and ductility during the initial fabrication of the thrust chamber. The degradation is discussed and traced to a reaction between oxygen and/or oxides diffused into the copper alloy during fabrication processes and the hydrogen utilized as a brazing furnace atmosphere during the initial assembly operation on many of the combustors. The effects of the H2/O2 reaction within the copper alloy are described.
NASA Astrophysics Data System (ADS)
Kong, X.; Wolf, M. J.; Garimella, S.; Roesch, M.; Cziczo, D. J.
2016-12-01
Sea Salt Aerosols (SSA) are abundant in the atmosphere, and important to the Earth's chemistry and energy budget. However, the roles of sea salts in the context of cloud formation are still poorly understood, which is partially due to the complexity of the water-salt phase diagram. At ambient temperatures, even well below 0°C, SSA deliquesces at sub-water saturated conditions. Since the ratio of the partial pressure over ice versus super-cooled water continuously declines with decreasing temperatures, it is interesting to consider if SSA continues to deliquesce under a super-saturated condition of ice, or if particles act as depositional ice nuclei when a critical supersaturation is reached. Some recent studies suggest hydrated NaCl and simulated sea salt might deliquesce between -35°C to -44°C, and below that deposition freezing becomes possible. Deliquesced droplets can subsequently freeze via the immersion or homogenous freezing mode, depending on if the deliquescence processes is complete. After the droplets or ice particles are formed, it is also interesting to consider how the different processes influence physical properties after evaporation or sublimation. This data is important for climate modeling that includes bromine burst observed in Antarctica, which is hypothesized to be relevant to the sublimation of blowing snow particles. In this study we use a SPectrometer for Ice Nuclei (SPIN; DMT, Inc., Boulder, CO) to perform experiments over a wide range of temperature and RH conditions to quantify deliquescence, droplet formation and ice nucleation. The formation of droplets and ice particles is detected by an advanced Optical Particle Counter (OPC) and the liquid/solid phases are distinguished by a machine learning method based on laser scattering and polarization data. Using an atomizer, four different sea salt samples are generated: pure NaCl and MgCl2 solutions, synthetic seawater, and natural seawater. Downstream of the SPIN chamber, a Pumped Counterflow Virtual Impactor (PCVI) is connected to separate the activated ice particles/large droplets to allow them undergo complete evaporation and sublimation. The particle size distributions are measured and compared to those upstream of SPIN to determine the effects of the ice/droplet nucleation process on the aerosol physical parameters.
Diffuse CO2 degassing monitoring of Cerro Negro volcano, Nicaragua
NASA Astrophysics Data System (ADS)
Hernández, Pedro A.; Alonso, Mar; Ibarra, Martha; Rodríguez, Wesly; Melián, Gladys V.; Saballos, Armando; Barrancos, José; Pérez, Nemesio M.; Álvarez, Julio; Martínez, William
2017-04-01
We report the results of fourteen soil CO2 efflux surveys by the closed accumulation chamber method at Cerro Negro volcano, Nicaragua. The surveys were undertaken from 1999 to 2016 to constrain the diffuse CO2 emission from this volcano and to evaluate the spatial and temporal variations of CO2 degassing rate in relation to the eruptive cycle. Cerro Negro is an active basaltic volcano belonging to the active Central American Volcanic Arc which includes a 1,100 Km long chain of 41 active volcanoes from Guatemala to Panama. Cerro Negro first erupted in 1850 and has experienced 21 eruptive eruptions with inter eruptive average periods between 7 and 9 years. Since the last eruption occurred on 5 August 1999, with erupted lava flows and ash clouds together with gas emissions, a collaborative research program between INETER and ITER/INVOLCAN has been established for monitoring diffuse CO2 emissions from this volcano. The first survey carried out at Cerro Negro was in December 1999, just 3 months after the 1999 eruption, with a total diffuse CO2 emission output estimated on 1,869 ± 197 td-1. The second survey carried out in March 2003, three years after the eruption, yielded a value of 432 ± 54 td-1. Both values that can be considered within the post-eruptive phase. The last survey performed at Cerro Negro was in November 2016, with an estimated diffuse CO2 emission of 63 ± 14 tṡd-1and soil CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 7264 g m-2 d-1. The long-term record of diffuse CO2 emissions at Cerro Negro shows small temporal variations in CO2 emissions with a peak in 2004 (256 ± 26 td-1) followed by a peak in seismicity. Except this value, the rest of estimated values can be considered within the inter-eruptive phase, period during which a decreasing trend on the total diffuse CO2 output has been observed, with estimates between 10 and 83 tṡd-1. Regarding to the spatial distribution of diffuse CO2 values, most of relatively high CO2 efflux values were measured along the 1995 and 1999 craters together with higher soil H2S efflux and soil temperatures, and always close to the fumarolic areas, suggesting a structural control of the degassing process. The observed relationship between the long-term record of diffuse CO2 emissions and volcanic-seismic activity indicates that monitoring CO2 emission is an important geochemical tool for the volcanic surveillance at Cerro Negro.
Magnetic Fields and Multiple Protostar Formation
NASA Astrophysics Data System (ADS)
Boss, A. P.
2001-12-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.
NASA Technical Reports Server (NTRS)
Dwek, Eli
2006-01-01
The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.
NASA Astrophysics Data System (ADS)
Bloch, E. M.; Ganguly, J.
2009-12-01
Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of Gabbroic and Ultramafic Xenoliths. Journal of Petrology 38: 581-624. Putirka KD (in press). Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry 69: 61-120.
NASA Astrophysics Data System (ADS)
Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.
2016-04-01
Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice detection and data treatment. A difference was observed between FF from LACIS and PIMCA-PINC compared to the ice activated fractions (AF) from PINC and SPIN. This requires further investigations. Acknowledgements Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. References Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. Hartmann et al. (2011), Atmos. Chem. Phys., 11, 1753-1767.
NASA Astrophysics Data System (ADS)
Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.
2017-05-01
Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of four to six in the cold molecular regions that are well shielded from stellar radiation. Consequently, the XCO factor derived from dust is systematically larger by 30% to 130% than the γ-ray estimate. We also evaluate the average γ-ray XCO factor for each cloud, and find that XCO tends to decrease from diffuse to more compact molecular clouds, as expected from theory. We find XCO factors in the anti-centre clouds close to or below 1020 cm-2 K-1 km-1 s, in agreement with other estimates in the solar neighbourhood. Together, they confirm the long-standing unexplained discrepancy, by a factor of two, between the mean XCO values measured at parsec scales in nearby clouds and those obtained at kiloparsec scale in the Galaxy. Our results also highlight large quantitative discrepancies in 12CO intensities between simulations and observations at low molecular gas densities.
Vacuum chamber-free centrifuge with magnetic bearings.
Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo
2013-09-01
Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.
Low-Frequency Carbon Recombination Lines in the Orion Molecular Cloud Complex
NASA Astrophysics Data System (ADS)
Tremblay, Chenoa D.; Jordan, Christopher H.; Cunningham, Maria; Jones, Paul A.; Hurley-Walker, Natasha
2018-05-01
We detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99-129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.
Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.
2001-01-01
Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22Ne. Published by Elsevier Science B.V.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Storey, R. W., Jr.
1977-01-01
The experiment included surface level and airborne in situ cloud measurements of the exhaust effluents from the Titan IIIC solid rocket boosters. Simultaneous visible spectrum photographic pictures of the ground cloud as well as infrared imaging of the cloud were obtained to study the cloud rise, growth, and direction of travel within the earth's surface mixing layer. The NASA multilayer diffusion model predictions of cloud growth, direction of travel, and expected surface level effluent concentrations were made prior to launch and after launch using measured meteorological conditions. Prelaunch predictions were used to position the effluent monitoring instruments, and the postlaunch predictions were compared with the measured data. Measurement results showed that surface level effluent values were low, often below the detection limits of the instrumentation. The maximum surface level hydrogen chloride concentration measured 50 parts per billion at about 8 km from the launch pad. The maximum observed in-cloud (airborne measurement) hydrogen chloride concentration was 7 per million.
The physics of interstellar shock waves
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Draine, Bruce T.
1987-01-01
This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.
NASA Astrophysics Data System (ADS)
Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.
2017-10-01
We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.
Results of the WHAM Hα survey of the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Smart, Brianna Marie; Haffner, Lawrence Matthew; Barger, Kat; Madsen, Greg
2018-01-01
We present the results of an Hα survey of the Small Magellanic Cloud (SMC) using the Wisconsin H-Alpha Mapper (WHAM) as the initial component of our WHAM Magellanic System Survey (SMC/LMC/Stream). Previous surveys of the SMC have focused on the bright H II regions (supernovae remnants/ HII bubbles, etc) centered around the stellar component of the galaxy. These surveys were not sensitive to the fainter Diffuse Ionized Gas (DIG) within and surrounding the galaxy. With WHAM, we detect a halo of diffuse Hα emission extending to radii well beyond the bright H II regions and comparable to extents of observed HI. Using WHAM's unprecedented sensitivity to trace diffuse emission (~ tens of mR) with a velocity resolution of 12 km/s, we have compiled the first comprehensive spatial and kinematic map of the extended Hα emission. With these new data in hand, we are able to delineate the considerable warm ionized component associated with the SMC, leading to better calculations of its present-day mass and providing new constraints for dynamical evolution simulations of the Magellanic System. Similar WHAM surveys of the diffuse ionized content of the LMC and Stream are also underway.
Observational Constraints for Modeling Diffuse Molecular Clouds
NASA Astrophysics Data System (ADS)
Federman, S. R.
2014-02-01
Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indriolo, Nick; Neufeld, D. A.; Gerin, M.
2012-10-20
Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior ofmore » the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.« less
Competition for water vapour results in suppression of ice formation in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon
2018-05-01
The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete
INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.
NASA Astrophysics Data System (ADS)
Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.
2013-12-01
Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (<30 μmol m-2 s-1, under cloud-immersed conditions) to very bright (>2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum photosynthesis occurs during high-light, diffuse-light conditions such as occurs during diffuse 'sunflecks' inside the cloud fog. Additionally, the capacity to respond to brief, intermittent sunflecks ('photosynthetic induction', e.g., time to maximum photosynthesis) was high in our MCF species. 3) Data quantifying limitations to photosynthesis were contradictory, underscoring complex relationships among photosynthesis, light, carbon and water relations. While stomatal response to atmospheric moisture demand was sensitive (e.g., 80% drop in stomatal conductance in a <1 kPa drop in vapor-pressure-deficit in conifer species), stem xylem hydraulic conductivity suggested strong drought tolerance capabilities. CONCLUSIONS: Clouds and cloud-fog exert strong influence on canopy-tree and ecosystem carbon relations. MCF are dynamic light environments. In these highly variable but ultimately light-limited ecosystems, vegetation must be able to both fix carbon when cloudy and dark but also be able to capitalize on saturating sunlight when possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel
2016-11-01
The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less
Depth of origin of magma in eruptions.
Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria
2013-09-26
Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.
Depth of origin of magma in eruptions
Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria
2013-01-01
Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1973-01-01
The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.
NASA Astrophysics Data System (ADS)
Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin
2016-07-01
The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.
Turbulent diffusion with memories and intrinsic shear
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1974-01-01
The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.
A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research
NASA Technical Reports Server (NTRS)
Fremaux, Charles M.; Bushnell, Dennis M.
2011-01-01
The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.
Global observations of aerosol-cloud-precipitation-climate interactions
NASA Astrophysics Data System (ADS)
Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; Chin, Mian; de Leeuw, Gerrit; Donovan, David P.; Kahn, Ralph; Kinne, Stefan; Kivekäs, Niku; Kulmala, Markku; Lau, William; Schmidt, K. Sebastian; Suni, Tanja; Wagner, Thomas; Wild, Martin; Quaas, Johannes
2014-12-01
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
Barthel, Matthias; Sturm, Patrick; Knohl, Alexander
2011-09-01
When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that (13)CO(2) recycling at canopy level had no effect on δ(13)C(SR) dynamics.
NASA Technical Reports Server (NTRS)
Rossow, W. B.
1977-01-01
An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.
1993-01-01
This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.
Observational evidence of dust evolution in galactic extinction curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo
Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds.more » Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.« less
Is isotropic turbulent diffusion symmetry restoring?
NASA Astrophysics Data System (ADS)
Effinger, H.; Grossmann, S.
1984-07-01
The broadening of a cloud of marked particle pairs in longitudinal and transverse directions relative to the initial separation in fully developed isotropic turbulent flow is evaluated on the basis of the unified theory of turbulent relative diffusion of Grossmann and Procaccia (1984). The closure assumption of the theory is refined; its validity is confirmed by comparing experimental data; approximate analytical expressions for the traces of variance and asymmetry in the inertial subrange are obtained; and intermittency is treated using a log-normal model. The difference between the longitudinal and transverse components of the variance tensor is shown to tend to a finite nonzero limit dependent on the radial distribution of the cloud. The need for further measurements and the implications for studies of particle waste in air or water are indicated.
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun
1989-01-01
The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun
1988-01-01
The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
In-vitro transdentinal diffusion of monomers from adhesives.
Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L
2018-06-01
Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation
NASA Astrophysics Data System (ADS)
Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.
2014-12-01
Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the aerosol particle density due to the ion density increase was confirmed. From this result, the ion-induced nucleation due to heavy ion irradiation could be verified. From the results of this study, ion-induced nucleation due to β-rays and heavy ion irradiation was confirmed.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng
2018-03-01
We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.
Neutral gas and diffuse interstellar bands in the LMC
NASA Technical Reports Server (NTRS)
Danks, Anthony C.; Penprase, Brian
1994-01-01
Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.
NASA Astrophysics Data System (ADS)
Herman, Jeremy J.
The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration profile to get more uniform as the gravity current flowed down the channel. A COMSOL model was developed which showed an overall increase in the depth of the flammable region of a cloud with increasing time, due to this effect.
NASA Technical Reports Server (NTRS)
Glasser, M. E.
1981-01-01
The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.
Frederic Joliot, Irene Curie and the Early History of the Positron (1932-33)
ERIC Educational Resources Information Center
Leone, Matteo; Robotti, Nadia
2010-01-01
As is well known, the positron was discovered in August 1932 by Carl Anderson while studying cloud chamber tracks left by cosmic rays. Far less known is the fact that a few months before Anderson's discovery, in April 1932, Frederic Joliot and Irene Curie had missed an opportunity to discover the positron during a nuclear physics experiment. One…
Bruscolini, A; Amorelli, G M; Rama, P; Lambiase, A; La Cava, M; Abbouda, A
2017-01-01
Mucopolysaccharidoses (MPS) are a heterogeneous group of rare inherited disorders, characterized by the lack or malfunction of lysosomal enzymes necessary for glycosaminoglycan (GAGs) catabolism, and their subsequent accumulation in many tissues and organs throughout the body. An overview of the current knowledge of corneal and anterior segment manifestations in patients with MPS was provided and clinical guidelines for their diagnosis and management were furnished. The anterior segment of the eye is usually involved in every subtype of MPS, with major complications including varying degrees of corneal opacification and raised intraocular pressure (IOP) with development of glaucoma. Their recognition and management can be very useful in the diagnosis of MPS. Novel techniques are available to objectively measure the grade and extent of corneal clouding and give information about the anatomy of the anterior chamber and the structures of the angle beyond the clouded cornea. It is advisable to take advantage of this new instrumentation in order to obtain thorough information on the ocular involvement and its related anterior chamber complications for a better management of patients with MPS, both in terms of visual prognosis and therapeutic outcome.
Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.
Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.
2015-11-24
A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.
2017-12-01
The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration suggesting that aboveground maintenance costs were relatively high at all of these sites. We conclude that coupled FD chamber, EC tower, and manual estimates hold promise in helping to partition and scale carbon fluxes from the plot to landscape scale.
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.
IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties
NASA Technical Reports Server (NTRS)
Bania, Thomas M.
1992-01-01
The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.
Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.
2017-04-01
UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.
NASA Astrophysics Data System (ADS)
Wang, Q. Daniel; Dong, Hui; Lang, Cornelia
2006-09-01
The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.
Marine aerosol formation from biogenic iodine emissions.
O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten
2002-06-06
The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloudmore » system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RH ice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10–30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.« less
Correlation properties of interstellar dust: Diffuse interstellar bands
NASA Technical Reports Server (NTRS)
Somerville, W. B.
1989-01-01
Results are presented from a research program in which an attempt was made to establish the physical nature of the interstellar grains, and the carriers of the diffuse interstellar bands, by comparing relations between different observed properties; the properties used include the extinction in the optical and ultraviolet (including wavelength 2200 and the far-UV rise), cloud density, atomic depletions, and strengths of the diffuse bands. Observations and also data from literature were used, selecting particularly sight-lines where some observed property was found to have anomalous behavior.
Diffuse interstellar bands in reflection nebulae
NASA Technical Reports Server (NTRS)
Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.
1994-01-01
A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.
Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick
1998-01-01
Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Staton, W. L.
1981-01-01
Solid rocket exhaust cloud dispersion cases, based on seven meteorological regimes for overland advection in the Cape Canaveral, Florida, area, are examined for launch vehicle environmental impacts. They include a space shuttle case and all seven meteorological cases for the Titan 3, which exhausts 60% less HC1. The C(HC1) decays are also compared with recent in cloud peak HC1 data from eight Titan 3 launches. It is stipulated that while good overall agreement provides validation of the model, its limitations are considerable and a dynamics model is needed to handle local convective situations.
Precision platform for convex lens-induced confinement microscopy
NASA Astrophysics Data System (ADS)
Berard, Daniel; McFaul, Christopher M. J.; Leith, Jason S.; Arsenault, Adriel K. J.; Michaud, François; Leslie, Sabrina R.
2013-10-01
We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.
Model of transient drug diffusion across cornea.
Zhang, Wensheng; Prausnitz, Mark R; Edwards, Aurélie
2004-09-30
A mathematical model of solute transient diffusion across the cornea to the anterior chamber of the eye was developed for topical drug delivery. Solute bioavailability was predicted given solute molecular radius and octanol-to-water distribution coefficient (Phi), ocular membrane ultrastructural parameters, tear fluid hydrodynamics, as well as solute distribution volume (Vd) and clearance rate (Cla) in the anterior chamber. The results suggest that drug bioavailability is primarily determined by solute lipophilicity. In human eyes, bioavailability is predicted to range between 1% and 5% for lipophilic molecules (Phi>1), and to be less than 0.5% for hydrophilic molecules (Phi<0.01). The simulations indicate that the distribution coefficient that maximizes bioavailability is on the order of 10. It was also found that the maximum solute concentration in the anterior chamber (Cmax) and the time needed to reach Cmax significantly depend on Phi, Vd, and Cla. Consistent with experimental findings, model predictions suggest that drug bioavailability can be increased by lowering the conjunctival-to-corneal permeability ratio and reducing precorneal solute drainage. Because of its mechanistic basis, this model will be useful to predict drug transport kinetics and bioavailability for new compounds and in diseased eyes.
Apparatus and method for the acceleration of projectiles to hypervelocities
Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.
1990-01-01
A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.
In-situ measurements of ice nucleating particles with FINCH (Fast Ice Nucleus Chamber)
NASA Astrophysics Data System (ADS)
Kohl, Rebecca; Frank, Fabian; Curtius, Joachim; Rose, Diana
2017-04-01
Ice nucleating particles (INPs), which are a small fraction of the total aerosol population, are capable of triggering ice formation under atmospheric conditions. Since INPs play an important role for the radiative properties of clouds as well as for the formation of precipitation it is important to get quantitative information on the ice activity of various atmospheric aerosol species. With the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) the number concentration of INP is determined at different freezing temperatures and supersaturations. In contrast to other commonly used INP counters, i.e., continuous flow diffusion chambers (CFDCs, DeMott et al., 2011), in FINCH the supersaturation is reached by mixing the sample flow of ambient aerosol with a warm moist as well as a cold dry airflow. By changing the flow rates and temperatures of the individual airflows the freezing temperature (down to -50°C) and supersaturation (up to above water saturation) can be varied relatively quickly. Particles that are ice active at the prescribed freezing temperature and supersaturation grow to crystals and are counted by a home-built optical particle counter (OPC) mounted below the chamber (Bundke et al., 2010). FINCH was operated during the four-week INUIT-BACCHUS-ACTRIS field campaign in Cyprus in April 2016. The measuring site was the location of the Cyprus Atmospheric Observatory (CAO) at Agia Marina Xyliatou, which is typically influenced by dust from the Sahara and the Middle East, an aerosol that is known to have relatively good ice nucleating ability. First results from this campaign will be presented. Acknowledgements: The authors thank the entire INUIT-BACCHUS-ACTRIS campaign team for their cooperation and support. The INUIT-2 project is financed by the German Research Foundation DFG (FOR 1525). The INUIT-Cyprus campaign is a cooperation with the EU-funded project BACCHUS and is also funded by ACTRIS-TNA. References: Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H.: The fast Ice Nucleus chamber FINCH, Atmos. Res., 90, 180-186, 10.1016/j.atmosres.2008.02.008, 2008. Bundke, U., Reimann, B., Nillius, B., Jaenicke, R., and Bingemer, H.: Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH, Atmos. Meas. Tech., 3, 263-271, doi:10.5194/amt-3-263-2010, 2010. DeMott, P. J., Moehler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., Leisner, T., Bundke, U., Klein, H., Kanji, Z. A., Cotton, R., Jones, H., Benz, S., Brinkmann, M., Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B., Bingemer, H., Abbatt, J., Ardon, K., Ganor, E., Georgakopoulos, D. G., and Saunders, C.: Resurgence in ice nuclei measurement research, Bulletin of the American Meteorological Society, 92, 1623-1635, 10.1175/bams-d-10-3119.1, 2011.
An upper limit to the abundance of lightning-produced amino acids in the Jovian water clouds
NASA Astrophysics Data System (ADS)
Bar-Nun, A.; Noy, N.; Podolak, M.
1984-08-01
The effect of excess hydrogen on the synthesis of amino acids by high-temperature shock waves in a hydrogen/methane/ammonia/water vapor mixture was studied experimentally. The energy efficiency results, together with the best estimate of the lightning energy dissipation rate on Jupiter from the Voyage data, were used to calculate an upper limit to the rate of amino acid production by lightning in Jovian water clouds. Using reasonable values for the eddy diffusion coefficients within and below the water clouds, the column abundance of lightning-produced amino acids in the clouds was estimated to be 6.2 x 10 to the -6th cm-am. Hence, concentration of amino acids in water droplets would be 8 x 10 to the -8th mole/liter.
Better vacuum by removal of diffusion-pump-oil contaminants
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Klapp, Jaime
2000-03-01
Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.
The shapes of column density PDFs. The importance of the last closed contour
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2017-10-01
The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Gatebe, Charles K.
2018-07-01
Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.
Abstract Reference List: Reviews of Pertinent Literature in Shock. Volume I.
1981-05-18
7:149-161 (1980). 9 23. MARROW CULTURE IN DIFFUSION CHAMGERS IN RABBITS: iii. EFFECT " OF ENDOTOXIN AND LEUKOCYTE PRODUCTS ON CELL PRODUCTION. R...269-286 (1979) ..... ............... ... 22 54. EXPERIMENTAL STUDIES ON COAGULATION-FIBRINOLYTIC ACTIVITY OF WHITE BLOOD CELLS INFLUENCED BY ENL)QTOXIN...Diffusion Chambers in Rabbits: III. Effect of Endo- toxin and Leukocyte Products on Cell Production. R Willemze, RI Walker, JC Herion, and JG Palmer. Am. J
Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato
2018-04-01
In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Origin and z-distribution of Galactic diffuse [C II] emission
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.
2014-12-01
Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the fractional [C ii] emission tracing (i) H2 gas in dense and diffuse molecular clouds as ~48% and ~14%, respectively, (ii) in the H i gas ~18%, and (iii) in the WIM ~21%. Including non-detections from H i increases the [C ii] in H i to ~27%. The z-scale distributions FWHM from smallest to largest are [C ii] sources with CO, ~130 pc, (CO-faint) diffuse H2 gas, ~200 pc, and the diffuse H i and WIM, ~330 pc. When combined with [C ii], CO observations probe the warm-H2 gas, tracing star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Titan’s High Altitude South Polar (HASP) Stratospheric Ice Cloud as observed by Cassini CIRS
NASA Astrophysics Data System (ADS)
Anderson, Carrie; Nna-Mvondo, Delphine; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. Michael; Jennings, Donald E.; Raulin, Francois
2017-10-01
During Cassini’s T112 flyby of Titan in the late southern fall season (July 2015), the Composite InfraRed Spectrometer (CIRS) made a startling discovery - a massive cloud system had developed throughout Titan’s mid stratosphere (~200 km) at high southern latitudes. The vertical distributions of intensity of this High-Altitude South Polar (HASP) stratospheric ice cloud system are at least an order of magnitude stronger than the CIRS-observed northern winter polar stratospheric cloud system [1]. The chemical composition of the HASP cloud is not identical to its northern winter counterpart, in that it exhibits different spectral characteristics. The HASP cloud is just one illustrative example demonstrating the rapidly changing conditions occurring in Titan’s south polar stratospheric region as Titan began its journey into southern winter. Such observed changes are contrary to the observed configuration as Titan’s northern polar stratosphere transitioned out of northern winter, which revealed a relatively slow decay of: 1) the cold polar stratospheric temperatures, 2) the strength of the polar vortex, and 3) the abundances in stratospheric organic gases and ices. We will discuss the physical and chemical characteristics of the CIRS-observed HASP mid stratospheric ice cloud system. Potential ice analog candidates obtained from thin film transmission spectra of co-condensed nitrile/hydrocarbon ice mixtures obtained with our SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) chamber are used to support these analyses. [1] Anderson C. M. and Samuelson R. E. (2011) Icarus, 212, 762-778.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert
Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.
TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, G. A. P.; Alves, F. O., E-mail: franco@fisica.ufmg.br, E-mail: falves@mpe.mpg.de
2015-07-01
Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infraredmore » patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.« less
First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud
NASA Astrophysics Data System (ADS)
Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek
2018-04-01
Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.
Mechanisms of differentiation in the Skaergaard magma chamber
NASA Astrophysics Data System (ADS)
Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.
2012-04-01
The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity-driven compaction will not work.
Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions
NASA Technical Reports Server (NTRS)
Hallett, John; Queen, Brian; Teets, Edward; Fahey, James
1995-01-01
Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.
Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing
NASA Astrophysics Data System (ADS)
Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele
2017-05-01
The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.
A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul
2015-01-01
A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.
NASA Technical Reports Server (NTRS)
Chenette, D. L.; Stone, E. C.
1983-01-01
An analysis of the electron absorption signature observed by the Cosmic Ray System (CRS) on Voyage 2 near the orbit of Mimas is presented. We find that these observations cannot be explained as the absorption signature of Mimas. Combing Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L=3.1), we find an electron spectrum where most of the flux above approx 100 keV is concentrated near 1 to 3 MeV. The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. A lower limit on the diffusion coefficient for MeV electrons is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron absorption signature observations in Mimas's orbit are enigmatic. Thus we refer to the mechanism for producing these signatures as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1% opaque to electrons across a region extending over a few hundred kilometers.
Diffusing Wave Spectroscopy Used to Study Foams
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Durian, Douglas J.
2000-01-01
The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.
User's manual for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.
1982-01-01
The REEDM computer program predicts concentrations, dosages, and depositions downwind from normal and abnormal launches of rocket vehicles at NASA's Kennedy Space Center. The atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model are described mathematically Vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud, and meteorological layering techniques are presented as well as user's instructions for REEDM. Worked example problems are included.
A diffusion climatology for Cape Canaveral, Florida
NASA Technical Reports Server (NTRS)
Siler, R. K.
1980-01-01
The problem of toxic effluent released by a space shuttle launch on local plant and animal life is discussed. Based on several successive years of data, nine basic weather patterns were identified, and the probabilities of pattern occurrence, of onshore/alongshore cloud transport, of precipitation accompanying the latter, and of ground-level concentrations of hydrogen chloride were determined. Diurnal variations for the patterns were also investigated. Sketches showing probable movement of launch cloud exhaust and isobaric maps are presented.